WO2018092832A1 - Water treatment method and device - Google Patents

Water treatment method and device Download PDF

Info

Publication number
WO2018092832A1
WO2018092832A1 PCT/JP2017/041215 JP2017041215W WO2018092832A1 WO 2018092832 A1 WO2018092832 A1 WO 2018092832A1 JP 2017041215 W JP2017041215 W JP 2017041215W WO 2018092832 A1 WO2018092832 A1 WO 2018092832A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
hydrogen peroxide
dissolved oxygen
water treatment
Prior art date
Application number
PCT/JP2017/041215
Other languages
French (fr)
Japanese (ja)
Inventor
一重 高橋
菅原 広
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to KR1020197014291A priority Critical patent/KR102233505B1/en
Priority to CN201780067211.9A priority patent/CN109906206B/en
Publication of WO2018092832A1 publication Critical patent/WO2018092832A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2

Definitions

  • the present invention relates to a water treatment method and apparatus for decomposing organic substances contained in water to be treated which is water to be treated.
  • pure water such as ultrapure water from which organic substances, ionic components, fine particles, and bacteria have been highly removed has been used as cleaning water used in the manufacturing process of semiconductor devices and the manufacturing process of liquid crystal display devices.
  • pure water used in the cleaning process of electronic component manufacturing is one of the water quality management items in order to prevent the organic matter contained in the pure water from carbonizing in the subsequent heat treatment process and causing insulation failure.
  • TOC total organic carbon
  • an ultraviolet oxidation apparatus including a stainless steel reaction tank and a tubular ultraviolet lamp installed in the reaction tank is used.
  • the water to be treated is introduced into the water and irradiated with ultraviolet rays.
  • the ultraviolet lamp for example, a low-pressure ultraviolet lamp that generates ultraviolet rays having wavelengths of 254 nm and 185 nm is used.
  • oxidized species such as hydroxyl radicals (.OH) are generated in the treated water, and trace amounts of organic substances in the treated water are oxidized by the oxidizing power of the oxidized species. Decomposes into carbon and organic acids.
  • the treated water obtained by subjecting the water to be treated in this way to the ultraviolet oxidation treatment is then sent to an ion exchange device disposed in the subsequent stage to remove carbon dioxide and organic acid.
  • Patent Document 1 oxygen gas is added to the water to be treated as a water treatment device that removes the TOC in the water to be treated using a low-pressure ultraviolet oxidation device.
  • the thing which provided the dissolved oxygen concentration adjustment process to do is proposed.
  • the low-pressure ultraviolet oxidizer is an oxidizer using a low-pressure ultraviolet lamp.
  • Patent Document 2 proposes that a predetermined amount of hydrogen peroxide (H 2 O 2 ) is added to the water to be treated before the low-pressure ultraviolet oxidation apparatus.
  • the TOC concentration in the water to be treated is on the order of mg / L, and since the water to be treated originally containing a large amount of various impurities is targeted, for example, an open reaction vessel Is used for UV irradiation.
  • an ultraviolet ray source a low-pressure ultraviolet lamp or a high-pressure ultraviolet lamp that generates a wavelength of 254 nm is generally used.
  • An object of the present invention is to provide a water treatment method and apparatus capable of downsizing the apparatus, suppressing running costs including energy costs, and improving the decomposition efficiency of organic substances.
  • the water treatment method of the present invention is a water treatment method for decomposing an organic substance contained in water to be treated, comprising a hydrogen peroxide addition stage for adding hydrogen peroxide to the water to be treated, and adding hydrogen peroxide.
  • a step of irradiating the treated water with ultraviolet rays, and a step of measuring the dissolved oxygen concentration of the outlet water from the ultraviolet irradiation step, and adding hydrogen peroxide based on the measured dissolved oxygen concentration Control the amount of hydrogen peroxide added in the stage.
  • the water treatment apparatus of the present invention is a water treatment apparatus for decomposing organic matter contained in the water to be treated, wherein the hydrogen peroxide is added to the water to be treated, and the hydrogen peroxide is added.
  • An ultraviolet irradiation device for irradiating the water to be treated with ultraviolet rays
  • a dissolved oxygen measuring means for measuring the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device
  • hydrogen peroxide based on the dissolved oxygen concentration measured by the dissolved oxygen measuring means
  • Control means for controlling the amount of hydrogen peroxide added in the adding device.
  • the decomposition efficiency of the organic matter in the water to be treated can be improved and a high TOC removal rate can be achieved, whereby the apparatus can be downsized and the running cost can be reduced.
  • FIG. 1 shows a basic configuration of a water treatment apparatus according to the present invention.
  • the water treatment apparatus shown in FIG. 1 is connected to a hydrogen peroxide addition apparatus 20 that adds hydrogen peroxide (H 2 O 2 ) to the water to be treated, and an outlet of the hydrogen peroxide addition apparatus 20, and hydrogen peroxide is added.
  • H 2 O 2 hydrogen peroxide
  • a control device 40 which is a control means for controlling the amount of H 2 O 2 added to the water to be treated based on the dissolved oxygen concentration measured in (1).
  • the hydrogen peroxide addition device 20 includes a storage tank 21 for storing H 2 O 2 and a pulse control type pump 22 connected to the outlet of the storage tank 21, and a pulse from the pump 22 is generated by a signal from the control device 40. Controlled so that H 2 O 2 is mixed with the water to be treated.
  • the control device 40 receives the measurement result of the dissolved oxygen from the DO meter 41, and based on this, sends a signal for controlling the pulse of the pump 22 in the hydrogen peroxide addition device 20 to the hydrogen peroxide addition device 20. Output
  • the dissolved oxygen concentration in the water to be treated has an effect on the TOC removal rate. It has been found that there is a correlation between the concentration of dissolved oxygen after UV oxidation, the TOC removal rate, and the amount of H 2 O 2 added. In particular, adding H 2 O 2 is that the when the amount is small additive remains also the dissolved oxygen concentration after ultraviolet oxidation treatment irrespective of the amount of H 2 O 2 less, and the addition of H 2 O 2 It has been found that the TOC removal rate is not necessarily improved when the amount of dissolved oxygen concentration after the ultraviolet oxidation treatment exceeds a certain value when the amount is increased.
  • control device 40 adds the hydrogen peroxide addition device 20 so that H 2 O 2 is added to the water to be treated in a range where the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30 does not exceed, for example, 0.1 mg / L. Is preferably controlled.
  • the ultraviolet irradiation device 30 it is preferable to use an ultraviolet oxidation device that performs ultraviolet oxidation treatment by irradiating ultraviolet rays containing a component having a wavelength of 185 nm or less.
  • the outlet water from the ultraviolet irradiation device 30 is treated by the water treatment device and supplied to the outside.
  • a sterilization lamp that emits ultraviolet light having a wavelength of 254 nm or a high-pressure mercury lamp is generally used as the ultraviolet irradiation apparatus for ultraviolet irradiation treatment.
  • the system described in Patent Document 2 described above is a system for producing ultrapure water by a circulation purification process, and uses a low-pressure ultraviolet oxidizer that generates ultraviolet rays containing a component having a wavelength of 185 nm. Ultraviolet oxidation is performed by adding H 2 O 2 .
  • Ultraviolet light having a wavelength of 185 nm is generally generated by a low-pressure mercury lamp, but the low-pressure mercury lamp also generates ultraviolet light having a wavelength of 254 nm.
  • the ratio is about 1: 9 in intensity ratio, and the component having the wavelength of 254 nm has higher intensity.
  • Ultraviolet rays having a wavelength of 185 nm have an advantage that organic substances can be directly decomposed although they are low in intensity.
  • ultraviolet rays having a wavelength of 254 nm react with H 2 O 2 to generate hydroxyl radicals (.OH) to decompose organic substances.
  • a mercury lamp that generates ultraviolet rays having a wavelength of 185 nm and a wavelength of 254 nm is used as an ultraviolet ray source. It is also possible to use an LED (light emitting diode).
  • the dissolved oxygen concentration of the water to be treated is high, if the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30 is set to be, for example, 0.1 mg / L or less, a sufficient amount of H 2 O necessary for the decomposition of the organic matter. 2 can not be added, as a result, sometimes TOC removal rate is not improved. In such a case, it is preferable to provide a deoxygenation device that reduces the dissolved oxygen concentration of the water to be treated before the hydrogen peroxide addition device 20.
  • the deoxygenation device 10 uses an ultraviolet oxidation apparatus 31 that generates ultraviolet rays containing a component having a wavelength of 185 nm as the ultraviolet irradiation apparatus 30 that performs ultraviolet oxidation treatment in the water treatment apparatus shown in FIG.
  • the deoxygenation device 10 is provided in the preceding stage of the hydrogen oxide addition device 20.
  • any device that can remove oxygen (O 2 ) dissolved in water can be used.
  • a vacuum degassing device, a membrane degassing device, and a nitrogen degassing device can be used. Either can be used.
  • Vacuum deaerators, membrane deaerators, and nitrogen deaerators can reduce dissolved oxygen concentration in water and at the same time remove volatile organics, carbon dioxide, etc.
  • a deoxygenation device that removes oxygen by adding hydrogen (H 2 ) and then reacting oxygen with hydrogen using a palladium (Pd) catalyst to form water can also be used.
  • the dissolved oxygen concentration in water is about 7 to 8 mg / L when saturated at atmospheric pressure. Even if ultra-pure water with a low dissolved oxygen concentration is exposed to the atmosphere, oxygen immediately dissolves and the dissolved oxygen concentration increases. Therefore, generally, the dissolved oxygen concentration in the waste water discharged from various processes exceeds 1 mg / L, and in many cases, becomes a value close to the saturation amount under atmospheric pressure. According to the knowledge of the present inventors, when the dissolved oxygen concentration exceeded 1 mg / L, the improvement in the TOC removal rate was not necessarily observed even when H 2 O 2 was added and the ultraviolet oxidation treatment was performed.
  • the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 1 mg / L or less. Since dissolved oxygen absorbs ultraviolet rays, when the dissolved oxygen concentration is high, the amount of ultraviolet rays that should originally be used for the decomposition reaction of organic matter decreases, and organic matter decomposition becomes difficult to proceed. On the other hand, by removing dissolved oxygen to some extent, the influence of absorption of ultraviolet rays can be reduced. As a result, the ultraviolet rays efficiently react with the organic matter, and the TOC removal rate is improved.
  • the dissolved oxygen concentration of the outlet water of the deoxygenation device 10 is 1 mg / L or less, as a guideline, the effect of the present invention is further improved by setting it to 1/10 or less of the saturation amount under atmospheric pressure. It will be demonstrated remarkably. More preferably, the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 0.5 mg / L or less, and more preferably 0.1 mg / L or less.
  • dissolved oxygen may be reduced to an extremely low concentration, for example, ⁇ g / L, even if highly deoxygenated to the order of ⁇ g / L, there is no significant difference in the obtained TOC removal performance.
  • the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 0.05 mg / L or more and 1 mg / L or less.
  • FIG. 3 shows another configuration example of the water treatment apparatus according to the present invention.
  • the water treatment apparatus based on this invention decomposes
  • the water treatment apparatus shown in FIG. 3 is the same as the water treatment apparatus shown in FIG. 2 except that a reverse osmosis device 15 is provided upstream of the deoxygenation device 10.
  • the treated water is first supplied to the reverse osmosis device 15 where the TOC is reduced, and then supplied to the deoxygenation device 10.
  • the load of removing the TOC in the ultraviolet oxidation apparatus 31 is reduced.
  • the reverse osmosis device 15 it is preferable to use a multistage treatment apparatus in which reverse osmosis membranes are installed in multiple stages. By using reverse osmosis membranes provided in multiple stages, it is possible to further eliminate TOC and reduce the load of ultraviolet oxidation treatment.
  • the reverse osmosis membrane provided in the reverse osmosis device 15 it is preferable to use a reverse osmosis membrane having a high TOC removal capability, such as a high rejection rate used for seawater desalination, for example.
  • the permeation flux per effective pressure of 1 MPa is 0.5 m 3 / m 2 / d or less.
  • the reverse osmosis membrane that can be used in the water treatment apparatus according to the present invention include, for example, SWC series membrane by Hydranautics, TM800 series membrane by Toray, SW30 series membrane by DOW, HR by Kurita -RO series membranes.
  • SWC5MAX (0.32 m 3 / m 2 / d) manufactured by Hydranautics
  • SWC6MAX (0.43 m 3 / m 2 / d) manufactured by Hydranautics
  • SW30ULE manufactured by DOW (0.39 m 3 / m 2 / d)
  • SW30HRLE (0.25 m 3 / m 2 / d) manufactured by DOW
  • TM820V (0.32 m 3 / m 2 / d) manufactured by Toray
  • Toray TM820K (0.20 m 3 / m 2 / d)
  • Kurita Kogyo HR-RO (0.36 m 3 / m 2 / d), and the like
  • the numerical value parenthesized here is the permeation flux per effective pressure of 1 MPa in the reverse osmosis membrane.
  • the permeation flux is the permeated water amount divided by the membrane area.
  • the “effective pressure” is an effective pressure acting on the membrane obtained by subtracting the osmotic pressure difference and the secondary side pressure from the average operating pressure described in JIS K3802: 2015 “Membrane terminology”.
  • the average operating pressure is an average value of the pressure of the membrane supply water on the primary side of the membrane, that is, the operating pressure, and the pressure of the concentrated water, that is, the concentrated water outlet pressure, and is expressed by the following equation.
  • Average operating pressure (Operating pressure + Condensate outlet pressure) / 2
  • the permeation flux per effective pressure of 1 MPa can be calculated from information described in the catalog of the membrane manufacturer, for example, the amount of permeated water, membrane area, recovery rate during evaluation, NaCl concentration, and the like.
  • information such as the average operating pressure / secondary pressure of the pressure vessel, raw water quality, amount of permeated water, number of membranes, etc.
  • the permeation flux of the loaded membrane can be calculated.
  • the membrane shape of the reverse osmosis membrane is not particularly limited, and examples thereof include an annular type, a flat membrane type, a spiral type, and a hollow fiber type.
  • the spiral type includes a 4-inch type, an 8-inch type, Any of a 16-inch type or the like may be used.
  • the reverse osmosis device 15 is provided in the preceding stage of the deoxygenation device 10, but the position of the reverse osmosis device 15 for reducing the load of the ultraviolet oxidation treatment is located at the hydrogen peroxide addition device. Any of the 20 entrance sides may be used. Therefore, as shown in FIG. 4, the positions of the deoxygenation device 10 and the reverse osmosis device 15 are switched, and the treated water is first supplied to the deoxygenation device 10, and the outlet water of the deoxygenation device 10 passes through the reverse osmosis device 15. You may make it supply to the hydrogen peroxide addition apparatus 20.
  • FIG. 4 the positions of the deoxygenation device 10 and the reverse osmosis device 15 are switched, and the treated water is first supplied to the deoxygenation device 10, and the outlet water of the deoxygenation device 10 passes through the reverse osmosis device 15. You may make it supply to the hydrogen peroxide addition apparatus 20.
  • the reverse osmosis device 15 is connected to the inlet of the hydrogen peroxide addition device 20 without providing the deoxygenation device 10, and the water to be treated whose TOC is reduced by the reverse osmosis device 15 is supplied to the hydrogen peroxide addition device 20.
  • 1 shows a water treatment device to be supplied.
  • an ion exchange device may be provided on the exit side of the ultraviolet irradiation device to remove ionic impurities derived from decomposition products and water to be treated in the ultraviolet oxidation treatment.
  • an ion exchange device 35 to which outlet water of the ultraviolet oxidation device 31 is supplied is further provided to the water treatment device shown in FIG. 3. The outlet water from the ion exchange device 35 is treated with this water treatment device and is supplied to the outside.
  • the organic matter contained in the water to be treated includes substances that are ionic from the stage prior to being subjected to the ultraviolet oxidation treatment, but various organic acids, carbonic acid, etc. are obtained by the ultraviolet oxidation treatment performed by adding H 2 O 2. Ionic substances are produced.
  • the ion exchange device 35 removes these ionic substances.
  • the ion exchange device 35 is composed of, for example, an ion exchange tower filled with an ion exchange resin. When the concentration of ionic impurities in the outlet water of the ultraviolet oxidizer 31 is high, it is preferable to use a regenerative ion exchanger.
  • the ion exchange resin used in the ion exchange device 35 is at least an anion exchange resin. Since organic acids and carbonic acids are weak acids, it is preferable to use a strongly basic anion exchange resin as an anion exchange resin in order to remove them reliably. Furthermore, by using a mixed resin of an anion exchange resin and a cation exchange resin as an ion exchange resin, or using a mixed bed type ion exchange tower filled with a mixed resin as an ion exchange tower, a high-purity treatment is performed. You can get water.
  • H 2 O 2 contained in the outlet water of the ultraviolet oxidizer 31 may oxidize and degrade the ion exchange resin in the ion exchanger 35. Therefore, it is preferable to remove H 2 O 2 before the ion exchange device 35.
  • the water treatment apparatus shown in FIG. 7 is provided with a hydrogen peroxide decomposition apparatus 37 for decomposing H 2 O 2 in water between the ultraviolet oxidation apparatus 31 and the ion exchange apparatus 35 in the water treatment apparatus shown in FIG. Is. Hydrogen peroxide is removed from the outlet water of the ultraviolet oxidation device 31 through the hydrogen peroxide decomposition device 37, and then supplied to the ion exchange device 35.
  • the hydrogen peroxide decomposition device 35 is, for example, a decomposition tower filled with activated carbon. It is preferable to use activated carbon as one that can effectively decompose H 2 O 2 at low cost.
  • the hydrogen peroxide decomposition device 37 can decompose H 2 O 2 using a palladium (Pd) catalyst.
  • these water treatment apparatuses have a TOC concentration of 0.1 mg / L or more and a dissolved oxygen concentration exceeding 1 mg / L. It can be used for decomposing organic matter in the treated water. According to the present invention, as will become clear from Examples described later, water to be treated containing TOC in the order of mg / L can be treated with a high TOC removal rate.
  • the water to be treated is derived from, for example, process waste water.
  • the water treatment method of the present invention is used to collect and treat process wastewater, particularly wastewater discharged from a process using ultrapure water such as a semiconductor manufacturing process.
  • the water treated by the water treatment method of the present invention can be used as raw water for producing ultrapure water. Therefore, the water treatment method of the present invention can be used to collect and treat waste water from the process of using ultrapure water and generate ultrapure water for circulation reuse.
  • FIG. 8 shows an application example of the water treatment apparatus according to the present invention.
  • the water treatment device 81 according to the present invention uses recovered water collected from the ultrapure water use process 83, which is a process of using ultrapure water, as treated water, and generates recovered water with reduced organic matter by treating this water. .
  • the ultrapure water used in the ultrapure water use process 83 is produced by the ultrapure water production apparatus 82 to which the primary pure water is supplied.
  • the recovered water from which the organic substances from the water treatment apparatus 81 are reduced is the primary pure water. And supplied to the ultrapure water production apparatus 82.
  • the ultrapure water is recovered and reused through the water treatment device 81, and the primary pure water is consumed by the ultrapure water that is consumed in the ultrapure water use process 83 and cannot be recovered. Can be supplied to the ultrapure water production apparatus 82, so that significant water saving can be realized.
  • Example 1 An apparatus having the configuration shown in FIG. 7 was assembled. In this apparatus, after performing deoxygenation treatment by deaeration on pure water, isopropyl alcohol (CH 3 CH (OH) CH 3 ; IPA) is added, H 2 O 2 is further added, and IPA is added. And H 2 O 2 are added to the water.
  • the pure water used here had a resistivity of 1 M ⁇ ⁇ cm or more, a TOC of 3 ⁇ g / L or less, a dissolved oxygen concentration of 7.8 mg / L, and a H 2 O 2 concentration of 1 ⁇ g / L or less.
  • This device uses pure water containing IPA as an organic substance (TOC component) as water to be treated, and decomposes the organic matter contained in the water to be treated.
  • Deoxygenation treatment is performed by membrane deaeration before adding IPA. Can be said to be a treatment for reducing the dissolved oxygen concentration of the water to be treated.
  • H 2 O 2 the same result as that obtained when the ultraviolet oxidation treatment is performed after the addition is obtained.
  • pure water is supplied to the membrane deaeration module 11 which is a deoxygenation apparatus.
  • the membrane degassing module 11 “Lixel G284” manufactured by Celgard was used, and the gas phase side of the membrane degassing module 11 was depressurized by the pump 12, and the degassing treatment was performed so that the dissolved oxygen concentration became a predetermined concentration.
  • a predetermined amount of IPA was added as a TOC component through the storage tank 51 and the pump 52 to the water having passed through the membrane degassing module 11 and having a reduced dissolved oxygen concentration. Thereby, the to-be-processed water with which dissolved oxygen concentration was reduced produced
  • a predetermined amount of H 2 O 2 was added to the water to be treated via the storage tank 21 and the pump 22.
  • a part of the water to be treated to which H 2 O 2 was added was branched, and the dissolved oxygen concentration and the TOC concentration were measured online with a dissolved oxygen meter (DO meter) 56 and a TOC meter 57, respectively.
  • DO meter dissolved oxygen meter
  • a DO-30A manufactured by TOA Electronics was used as the DO meter 56
  • a SIEVERS 900 TOC meter manufactured by Seaverse was used as the TOC meter 57.
  • the dissolved oxygen concentration in the DO meter 56 is the dissolved oxygen concentration in the outlet water of the membrane degassing module 11, that is, the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31.
  • the TOC measurement value TOC0 at the TOC meter 57 is the TOC concentration of the water to be treated.
  • the water that was not branched was supplied to the ultraviolet oxidizer 31.
  • JPW-2 manufactured by Nippon Photo Science Co., Ltd. is used as the ultraviolet oxidizer 31, and the ultraviolet oxidizer 31 is a low-pressure ultraviolet lamp that generates both light of wavelength 254 nm and light of wavelength 185 nm.
  • Four 165W ultraviolet lamps AZ-9000W (Science) were arranged.
  • the dissolved oxygen concentration in the outlet water of the ultraviolet oxidizer 31 is measured by the DO meter 41, a part of the outlet water of the ultraviolet oxidizer 31 is branched and passed through the ion exchanger 35, and the outlet from the ion exchanger 35
  • the TOC concentration TOC1 of water that is, the TOC concentration TOC1 of the treated water in this water treatment apparatus was measured.
  • DO meter 41 DO-30A manufactured by TOA Electronics was used
  • the TOC meter 58 a SIEVERS900 type TOC meter manufactured by Seaverse was used.
  • the mixed bed type ion exchange apparatus has a cylindrical container made of acrylic resin (inner diameter 25 mm, height 1000 mm), and 300 mL of mixed bed ion exchange resin (EG-5A: manufactured by Organo Corporation) is filled in the container. It is. At this time, the height of the ion exchange resin layer was about 600 mm.
  • TOC removal rate (%) ((TOC0 ⁇ TOC1) / TOC0) ⁇ 100
  • TOC0 is the TOC concentration of the water to be treated, that is, the TOC concentration measured by the TOC meter 57
  • TOC1 is measured by the TOC concentration of the treated water from the ion exchange device 35, that is, the TOC meter 58.
  • TOC concentration is the TOC concentration of the treated water from the ion exchange device 35.
  • the membrane deaeration module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 to 50 ⁇ g / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated, that is, at the inlet of the ultraviolet oxidizer 31.
  • the amount of H 2 O 2 was adjusted to 0 mg / L, 2.5 mg / L, 5.0 mg / L, and 10.0 mg / L.
  • the TOC removal rate and the dissolved oxygen concentration at the outlet of the ultraviolet oxidizer 31, that is, the dissolved oxygen concentration measured by the DO meter 41 were measured.
  • the results are shown in Table 1.
  • the amount of water supplied to the ultraviolet oxidizer 31 was 800 L / hour.
  • the membrane deaeration module 11 is bypassed to adjust the dissolved oxygen concentration to 7.8 mg / L, the H 2 O 2 addition amount is set to 0 mg / L, and the TOC removal rate and the ultraviolet light are adjusted.
  • the dissolved oxygen concentration at the outlet of the oxidizer 31 was measured. The results are also shown in Table 1. Since the TOC removal rate in this case was 82%, the TOC removal rate was reduced by reducing the dissolved oxygen concentration in the treated water and irradiating the treated water added with H 2 O 2 with ultraviolet rays. It turns out that it improves.
  • Example 3 The experiment was conducted except that the dissolved oxygen concentration at the entrance of the ultraviolet oxidizer 31 was 500 ⁇ g / L, and the H 2 O 2 addition amount was 0 mg / L, 1.5 mg / L, 2.5 mg / L, 5.0 mg / L. The experiment was performed under the same conditions as in Example 1. The results are shown in Table 3.
  • Example 4 The experiment was conducted except that the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 was 1000 ⁇ g / L, and the H 2 O 2 addition amount was 0 mg / L, 1.5 mg / L, 2.0 mg / L, and 2.5 mg / L. The experiment was performed under the same conditions as in Example 1. The results are shown in Table 4.
  • the membrane degassing module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 to 50 ⁇ g / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated (at the inlet of the ultraviolet oxidizer 31).
  • the TOC concentration was set to 100 ⁇ g / L.
  • the amount of H 2 O 2 added was adjusted to 0 mg / L, 0.2 mg / L, and 0.4 mg / L, and the TOC removal rate was measured in each case.
  • the amount of water supplied to the ultraviolet oxidizer 31 was 2000 L / hour.

Landscapes

  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This water treatment device, which subjects, to decomposition treatment, organic matter included in water to be treated, is provided with: a hydrogen peroxide addition device which adds hydrogen peroxide to the water to be treated, in order to improve the organic matter decomposition efficiency, and achieve a high TOC removal rate; an ultraviolet irradiation device which irradiates, with ultraviolet, the water to be treated to which the hydrogen peroxide has been added; a dissolved oxygen measurement means which measures the dissolved oxygen concentration in outlet water of the ultraviolet irradiation device; and a control means which controls the addition amount of the hydrogen peroxide on the basis of the dissolved oxygen concentration measured by the dissolved oxygen measurement means.

Description

水処理方法および装置Water treatment method and apparatus
 本発明は、処理対象の水である被処理水の中に含まれる有機物を分解処理する水処理方法および装置に関する。 The present invention relates to a water treatment method and apparatus for decomposing organic substances contained in water to be treated which is water to be treated.
 従来より、半導体装置の製造工程や液晶表示装置の製造工程において使用される洗浄水などとして、有機物、イオン成分、微粒子、細菌などが高度に除去された超純水などの純水が使用されている。特に、半導体装置を含む電子部品を製造する際には、その洗浄工程において多量の純水が使用されており、その水質に対する要求も年々高まっている。電子部品製造の洗浄工程などにおいて使用される純水では、純水中に含まれる有機物がその後の熱処理工程において炭化して絶縁不良などを引き起こすことを防止するため、水質管理項目の一つである全有機炭素(TOC;Total Organic Carbon)濃度を極めて低いレベルとすることが求められている。 Conventionally, pure water such as ultrapure water from which organic substances, ionic components, fine particles, and bacteria have been highly removed has been used as cleaning water used in the manufacturing process of semiconductor devices and the manufacturing process of liquid crystal display devices. Yes. In particular, when manufacturing an electronic component including a semiconductor device, a large amount of pure water is used in the cleaning process, and the demand for the water quality is increasing year by year. Pure water used in the cleaning process of electronic component manufacturing is one of the water quality management items in order to prevent the organic matter contained in the pure water from carbonizing in the subsequent heat treatment process and causing insulation failure. There is a demand for extremely low levels of total organic carbon (TOC).
 このような純水水質への高度な要求が顕在化するに伴って、近年、純水中に含まれる微量の有機物(TOC成分)を分解し除去する様々な方法の検討がなされている。そのような方法の代表的なものとして、紫外線酸化処理による有機物の分解除去工程が用いられている。 As such high demands for pure water quality become apparent, various methods for decomposing and removing trace amounts of organic substances (TOC components) contained in pure water have been studied in recent years. As a typical example of such a method, a process for decomposing and removing organic substances by ultraviolet oxidation treatment is used.
 一般的には、紫外線酸化処理によって有機物の分解除去を行う場合には、例えばステンレス製の反応槽とその反応槽内に設置された管状の紫外線ランプとを備える紫外線酸化装置を用い、反応槽内に被処理水を導入して被処理水に紫外線を照射する。紫外線ランプとしては、例えば、254nmと185nmの各波長を有する紫外線を発生する低圧紫外線ランプが使用される。被処理水に185nmの波長を含む紫外線が照射されると、被処理水内にヒドロキシルラジカル(・OH)などの酸化種が生成し、この酸化種の酸化力により被処理水中の微量有機物が二酸化炭素や有機酸に分解する。被処理水に対してこのように紫外線酸化処理を施して得られた処理水は、次に、後段に配置されているイオン交換装置に送られ、二酸化炭素や有機酸が除去される。 In general, when organic substances are decomposed and removed by ultraviolet oxidation treatment, for example, an ultraviolet oxidation apparatus including a stainless steel reaction tank and a tubular ultraviolet lamp installed in the reaction tank is used. The water to be treated is introduced into the water and irradiated with ultraviolet rays. As the ultraviolet lamp, for example, a low-pressure ultraviolet lamp that generates ultraviolet rays having wavelengths of 254 nm and 185 nm is used. When the water to be treated is irradiated with ultraviolet rays having a wavelength of 185 nm, oxidized species such as hydroxyl radicals (.OH) are generated in the treated water, and trace amounts of organic substances in the treated water are oxidized by the oxidizing power of the oxidized species. Decomposes into carbon and organic acids. The treated water obtained by subjecting the water to be treated in this way to the ultraviolet oxidation treatment is then sent to an ion exchange device disposed in the subsequent stage to remove carbon dioxide and organic acid.
 しかしながら、一般的な紫外線酸化装置によるTOCの酸化分解方法では、紫外線ランプを使用するが、紫外線ランプは、非常に高価であるにもかかわらず、使用期間の経過とともに紫外線強度が低下するために、例えば1年に1回程度の交換が必要である。したがって、紫外線酸化装置を用いるTOCの酸化分解処理では、紫外線ランプの交換費用の削減およびエネルギー消費量の削減といったランニングコストの抑制が課題となっている。 However, in the oxidative decomposition method of TOC by a general ultraviolet oxidation apparatus, an ultraviolet lamp is used. However, although the ultraviolet lamp is very expensive, the ultraviolet intensity decreases with the lapse of the usage period. For example, replacement is required about once a year. Therefore, in the oxidative decomposition treatment of the TOC using the ultraviolet oxidation apparatus, it is a problem to reduce the running cost such as the replacement cost of the ultraviolet lamp and the energy consumption.
 TOCの分解効率を上げるため、例えば特許文献1では、低圧紫外線酸化装置を用いて被処理水中のTOCを除去する水処理装置として、低圧紫外線酸化装置の前段に、被処理水中に酸素ガスを添加する溶存酸素濃度調整工程を設けたものが提案されている。低圧紫外線酸化装置は、低圧紫外線ランプを使用した酸化装置である。また特許文献2では、低圧紫外線酸化装置の前段において被処理水に所定量の過酸化水素(H22)を添加することが提案されている。 In order to increase the decomposition efficiency of TOC, for example, in Patent Document 1, oxygen gas is added to the water to be treated as a water treatment device that removes the TOC in the water to be treated using a low-pressure ultraviolet oxidation device. The thing which provided the dissolved oxygen concentration adjustment process to do is proposed. The low-pressure ultraviolet oxidizer is an oxidizer using a low-pressure ultraviolet lamp. Patent Document 2 proposes that a predetermined amount of hydrogen peroxide (H 2 O 2 ) is added to the water to be treated before the low-pressure ultraviolet oxidation apparatus.
 ところで近年、水資源の枯渇と悪化に対応するため、超純水を多用する半導体工場などにおいても節水が強く要望されている。節水を実現するためには一度使用した水を回収して再利用することが効果的であり、水回収率を上げるため、例えば、ユースポイントで使用した後のTOC濃度の高い排水を処理し、さらには回収して処理するための技術の検討が進められている。このような技術は、一般に、排水処理技術、排水回収処理技術などとも呼ばれる。TOC濃度の高い排水を超純水生成の原水として回収し再利用するためには、エネルギーコストをかけずに、かつ末端の超純水水質を悪化させないレベルまでTOC濃度を低減させることが必要である。TOC濃度が高い被処理水を処理する技術として、被処理水に対して過酸化水素やオゾン(O3)などの酸化剤を添加し、紫外線照射によってTOCを酸化分解する技術がある。この場合、被処理水におけるTOC濃度はmg/Lオーダーであることが想定されており、また、もともと各種の不純物を多く含んでいる被処理水を対象としていることから、例えば開放系の反応容器を使用して紫外線照射を行っている。そして、紫外線源としては、254nmの波長を発生する低圧紫外線ランプもしくは高圧紫外線ランプが一般に使用されている。 By the way, in recent years, in order to cope with the depletion and deterioration of water resources, there is a strong demand for saving water even in semiconductor factories and the like that use a lot of ultrapure water. In order to save water, it is effective to collect and reuse the water once used. To increase the water recovery rate, for example, wastewater with a high TOC concentration after use at the point of use is treated. Furthermore, studies on techniques for collecting and processing are underway. Such a technique is generally called a wastewater treatment technique, a wastewater recovery treatment technique, or the like. In order to recover and reuse wastewater with a high TOC concentration as raw water for the production of ultrapure water, it is necessary to reduce the TOC concentration to a level that does not degrade the quality of the ultrapure water at the end without incurring energy costs. is there. As a technique for treating the water to be treated having a high TOC concentration, there is a technique in which an oxidant such as hydrogen peroxide or ozone (O 3 ) is added to the water to be treated, and the TOC is oxidized and decomposed by ultraviolet irradiation. In this case, it is assumed that the TOC concentration in the water to be treated is on the order of mg / L, and since the water to be treated originally containing a large amount of various impurities is targeted, for example, an open reaction vessel Is used for UV irradiation. As an ultraviolet ray source, a low-pressure ultraviolet lamp or a high-pressure ultraviolet lamp that generates a wavelength of 254 nm is generally used.
特開2011-167633号公報JP 2011-167633 A 特開2011-218248号公報JP 2011-218248 A 特開平5-305297号公報Japanese Patent Laid-Open No. 5-305297
 被処理水中のTOC成分を分解除去するために、一般に紫外線を照射してTOC成分を酸化させる処理が行われるが、被処理水中のTOCをどれだけ除去できたかという観点で検討すると、これまでの技術は必ずしも最適化されているとは言えない。特に、特許文献2に示されるように過酸化水素を添加した上で紫外線酸化処理を行う場合については、過酸化水素の添加量を最適化することについて、十分な検討がなされてきたとは言えない。そのため、被処理水でのTOC除去率を高めるようとするときに、過度に紫外線照射量を大きくすることとなって、必要電力量が大きくなり、エネルギーコストが上昇し、また装置規模も大きくなるという課題がある。 In order to decompose and remove the TOC component in the water to be treated, in general, a process of oxidizing the TOC component by irradiating with ultraviolet rays is performed, but when considering from the viewpoint of how much TOC in the water to be treated has been removed, Technology is not necessarily optimized. In particular, as shown in Patent Document 2, in the case of performing the ultraviolet oxidation treatment after adding hydrogen peroxide, it cannot be said that sufficient studies have been made on optimizing the addition amount of hydrogen peroxide. . Therefore, when trying to increase the TOC removal rate in the water to be treated, the amount of ultraviolet irradiation is excessively increased, the required power amount is increased, the energy cost is increased, and the apparatus scale is also increased. There is a problem.
 本発明の目的は、装置の小型化が可能であって、エネルギーコストを含むランニングコストを抑えることができ、有機物の分解効率を向上させることができる水処理方法および装置を提供することにある。 An object of the present invention is to provide a water treatment method and apparatus capable of downsizing the apparatus, suppressing running costs including energy costs, and improving the decomposition efficiency of organic substances.
 本発明者らは、過酸化水素を添加して紫外線照射を行うことによって被処理水中の有機物の分解処理を行う場合に、紫外線酸化処理後の溶存酸素濃度とTOC除去率、過酸化水素添加量との間に相関があることを見出し、過酸化水素添加量を最適に制御できる関係を見つけて、本発明を完成させた。すなわち、本発明の水処理方法は、被処理水に含まれる有機物を分解処理する水処理方法であって、被処理水に過酸化水素を添加する過酸化水素添加段階と、過酸化水素を添加された被処理水に対し紫外線を照射する紫外線照射段階と、紫外線照射段階からの出口水の溶存酸素濃度を測定する段階と、を有し、測定された溶存酸素濃度に基づいて過酸化水素添加段階における過酸化水素の添加量を制御する。 In the case where the organic substance in the water to be treated is decomposed by adding ultraviolet rays and irradiating with ultraviolet rays, the present inventors have obtained dissolved oxygen concentration and TOC removal rate after the ultraviolet oxidation treatment, and the amount of hydrogen peroxide added. The present invention was completed by finding a relationship that can optimally control the amount of hydrogen peroxide added. That is, the water treatment method of the present invention is a water treatment method for decomposing an organic substance contained in water to be treated, comprising a hydrogen peroxide addition stage for adding hydrogen peroxide to the water to be treated, and adding hydrogen peroxide. A step of irradiating the treated water with ultraviolet rays, and a step of measuring the dissolved oxygen concentration of the outlet water from the ultraviolet irradiation step, and adding hydrogen peroxide based on the measured dissolved oxygen concentration Control the amount of hydrogen peroxide added in the stage.
 本発明の水処理装置は、被処理水に含まれる有機物を分解処理する水処理装置であって、被処理水に過酸化水素を添加する過酸化水素添加装置と、過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射装置と、紫外線照射装置の出口水の溶存酸素濃度を測定する溶存酸素測定手段と、溶存酸素測定手段で測定された溶存酸素濃度に基づいて過酸化水素添加装置における過酸化水素の添加量を制御する制御手段と、を有する。 The water treatment apparatus of the present invention is a water treatment apparatus for decomposing organic matter contained in the water to be treated, wherein the hydrogen peroxide is added to the water to be treated, and the hydrogen peroxide is added. An ultraviolet irradiation device for irradiating the water to be treated with ultraviolet rays, a dissolved oxygen measuring means for measuring the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device, and hydrogen peroxide based on the dissolved oxygen concentration measured by the dissolved oxygen measuring means Control means for controlling the amount of hydrogen peroxide added in the adding device.
 本発明によれば、被処理水中の有機物の分解効率が向上して高いTOC除去率を達成することができ、それにより装置の小型化とランニングコストの低減とを実現することができる。 According to the present invention, the decomposition efficiency of the organic matter in the water to be treated can be improved and a high TOC removal rate can be achieved, whereby the apparatus can be downsized and the running cost can be reduced.
本発明に基づく水処理装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the water treatment apparatus based on this invention. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another structural example of a water treatment apparatus. 本発明に基づく水処理装置の適用例を示す図である。It is a figure which shows the example of application of the water treatment apparatus based on this invention. 実施例で用いた装置の構成を示す図である。It is a figure which shows the structure of the apparatus used in the Example.
 次に、本発明の好ましい実施の形態について、図面を参照して説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明に基づく水処理装置の基本的な構成を示している。図1に示す水処理装置は、被処理水に過酸化水素(H22)を添加する過酸化水素添加装置20と、過酸化水素添加装置20の出口に接続され、過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射装置30と、紫外線照射装置30の出口水の溶存酸素濃度を測定する溶存酸素測定手段である溶存酸素計(DO計)41と、DO計41で測定された溶存酸素濃度に基づいて被処理水へのH22の添加量を制御する制御手段である制御装置40と、を備えている。過酸化水素添加装置20は、H22を貯える貯槽21と、貯槽21の出口に接続したパルス制御型のポンプ22と、を備えており、制御装置40からの信号によってポンプ22のパルスが制御され、H22が被処理水に混合されるようになっている。制御装置40は、DO計41から溶存酸素の測定結果を受け取っており、それに基づいて、過酸化水素添加装置20内のポンプ22のパルスを制御する信号を発信し、過酸化水素添加装置20に出力する。 FIG. 1 shows a basic configuration of a water treatment apparatus according to the present invention. The water treatment apparatus shown in FIG. 1 is connected to a hydrogen peroxide addition apparatus 20 that adds hydrogen peroxide (H 2 O 2 ) to the water to be treated, and an outlet of the hydrogen peroxide addition apparatus 20, and hydrogen peroxide is added. An ultraviolet irradiation device 30 for irradiating the treated water with ultraviolet rays, a dissolved oxygen meter (DO meter) 41 which is a dissolved oxygen measuring means for measuring the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30, and a DO meter 41 And a control device 40 which is a control means for controlling the amount of H 2 O 2 added to the water to be treated based on the dissolved oxygen concentration measured in (1). The hydrogen peroxide addition device 20 includes a storage tank 21 for storing H 2 O 2 and a pulse control type pump 22 connected to the outlet of the storage tank 21, and a pulse from the pump 22 is generated by a signal from the control device 40. Controlled so that H 2 O 2 is mixed with the water to be treated. The control device 40 receives the measurement result of the dissolved oxygen from the DO meter 41, and based on this, sends a signal for controlling the pulse of the pump 22 in the hydrogen peroxide addition device 20 to the hydrogen peroxide addition device 20. Output.
 後述する実施例に示すように、本発明者らは、H22を添加した被処理水に対して紫外線酸化処理を行う場合に、被処理水における溶存酸素濃度がTOC除去率に影響を及ぼすこと、および、紫外線酸化処理後の溶存酸素濃度とTOC除去率、H22の添加量との間に相関があることを見出している。特に、H22を添加するがその添加量が少ないときはH22の添加量によらず紫外線酸化処理後の溶存酸素濃度も小さいままであること、および、H22の添加量を増やしたときに紫外線酸化処理後の溶存酸素濃度がある値を超えるような場合には、必ずしもTOC除去率が向上しないことを見出した。そこで、制御装置40は、紫外線照射装置30の出口水における溶存酸素濃度が例えば0.1mg/Lを超えない範囲でH22を被処理水に添加するように、過酸化水素添加装置20を制御することが好ましい。 As shown in the examples to be described later, when the present inventors perform ultraviolet oxidation treatment on water to be treated with H 2 O 2 added, the dissolved oxygen concentration in the water to be treated has an effect on the TOC removal rate. It has been found that there is a correlation between the concentration of dissolved oxygen after UV oxidation, the TOC removal rate, and the amount of H 2 O 2 added. In particular, adding H 2 O 2 is that the when the amount is small additive remains also the dissolved oxygen concentration after ultraviolet oxidation treatment irrespective of the amount of H 2 O 2 less, and the addition of H 2 O 2 It has been found that the TOC removal rate is not necessarily improved when the amount of dissolved oxygen concentration after the ultraviolet oxidation treatment exceeds a certain value when the amount is increased. Therefore, the control device 40 adds the hydrogen peroxide addition device 20 so that H 2 O 2 is added to the water to be treated in a range where the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30 does not exceed, for example, 0.1 mg / L. Is preferably controlled.
 紫外線照射装置30としては、波長が185nm以下である成分を含む紫外線を照射して紫外線酸化処理を行う紫外線酸化装置を用いることが好ましい。図1に示す水処理装置では、紫外線照射装置30からの出口水が、この水処理装置によって処理されて外部に供給される水ということになる。 As the ultraviolet irradiation device 30, it is preferable to use an ultraviolet oxidation device that performs ultraviolet oxidation treatment by irradiating ultraviolet rays containing a component having a wavelength of 185 nm or less. In the water treatment device shown in FIG. 1, the outlet water from the ultraviolet irradiation device 30 is treated by the water treatment device and supplied to the outside.
 H22を添加して紫外線照射処理を行う従来の水処理装置では、紫外線照射処理のための紫外線照射装置として、波長254nmの紫外線を発する殺菌ランプや高圧水銀ランプが一般的に使用されている。また上述した特許文献2に記載されたシステムは、循環精製処理により超純水を製造するシステムであって、波長185nmの成分を含む紫外線を発生する低圧紫外線酸化装置を使用し、被処理水にH22を加えて紫外線酸化処理を行うものである。波長185nmの紫外線は一般に低圧水銀ランプによって発生するが、低圧水銀ランプは、同時に波長254nmの紫外線も発生する。その割合は、強度比でおよそ1:9であり、波長254nmの成分の方が強度が大きい。波長185nmの紫外線は低強度ではあるものの有機物を直接分解することができるという利点を有する。一方、波長254nmの紫外線は、H22と反応してヒドロキシルラジカル(・OH)を生成することで有機物を分解する。本発明に基づく水処理装置において用いられる紫外線照射装置には、紫外線源として、例えば、波長185nmと波長254nmの両方の紫外線を発生する水銀ランプが用いられるが、それ以外の紫外線源、例えば、紫外線LED(発光ダイオード)を用いることも可能である。 In a conventional water treatment apparatus that performs ultraviolet irradiation treatment by adding H 2 O 2 , a sterilization lamp that emits ultraviolet light having a wavelength of 254 nm or a high-pressure mercury lamp is generally used as the ultraviolet irradiation apparatus for ultraviolet irradiation treatment. Yes. In addition, the system described in Patent Document 2 described above is a system for producing ultrapure water by a circulation purification process, and uses a low-pressure ultraviolet oxidizer that generates ultraviolet rays containing a component having a wavelength of 185 nm. Ultraviolet oxidation is performed by adding H 2 O 2 . Ultraviolet light having a wavelength of 185 nm is generally generated by a low-pressure mercury lamp, but the low-pressure mercury lamp also generates ultraviolet light having a wavelength of 254 nm. The ratio is about 1: 9 in intensity ratio, and the component having the wavelength of 254 nm has higher intensity. Ultraviolet rays having a wavelength of 185 nm have an advantage that organic substances can be directly decomposed although they are low in intensity. On the other hand, ultraviolet rays having a wavelength of 254 nm react with H 2 O 2 to generate hydroxyl radicals (.OH) to decompose organic substances. In the ultraviolet irradiation apparatus used in the water treatment apparatus according to the present invention, for example, a mercury lamp that generates ultraviolet rays having a wavelength of 185 nm and a wavelength of 254 nm is used as an ultraviolet ray source. It is also possible to use an LED (light emitting diode).
 ところで、被処理水の溶存酸素濃度が高い場合、紫外線照射装置30の出口水における溶存酸素濃度を例えば0.1mg/L以下にしようとすると、有機物の分解に必要な十分な量のH22を添加できず、結果として、TOC除去率が向上しないことがある。そのようなときは、過酸化水素添加装置20の前段に、被処理水の溶存酸素濃度を低減する脱酸素装置を設けることが好ましい。図2に示した水処理装置は、図1に示した水処理装置において、紫外線酸化処理を行う紫外線照射装置30として、波長185nmの成分を含む紫外線を発生する紫外線酸化装置31を使用し、過酸化水素添加装置20の前段に脱酸素装置10を設けたものである。脱酸素装置10としては、水に溶存する酸素(O2)を除去できるものであれば任意のものを用いることができるが、例えば、真空脱気装置、膜脱気装置および窒素脱気装置のいずれかを用いることができる。真空脱気装置、膜脱気装置および窒素脱気装置は、水中の溶存酸素濃度を低減すると同時に揮発性有機物や炭酸などを気相中に除去し、これらの水中の濃度を低減することができる点で好ましい。その他の脱酸素装置として、水素(H2)を添加した上でパラジウム(Pd)触媒によって酸素を水素と反応させて水とすることにより酸素を除去するものを用いることもできる。 By the way, when the dissolved oxygen concentration of the water to be treated is high, if the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30 is set to be, for example, 0.1 mg / L or less, a sufficient amount of H 2 O necessary for the decomposition of the organic matter. 2 can not be added, as a result, sometimes TOC removal rate is not improved. In such a case, it is preferable to provide a deoxygenation device that reduces the dissolved oxygen concentration of the water to be treated before the hydrogen peroxide addition device 20. The water treatment apparatus shown in FIG. 2 uses an ultraviolet oxidation apparatus 31 that generates ultraviolet rays containing a component having a wavelength of 185 nm as the ultraviolet irradiation apparatus 30 that performs ultraviolet oxidation treatment in the water treatment apparatus shown in FIG. The deoxygenation device 10 is provided in the preceding stage of the hydrogen oxide addition device 20. As the deoxygenation device 10, any device that can remove oxygen (O 2 ) dissolved in water can be used. For example, a vacuum degassing device, a membrane degassing device, and a nitrogen degassing device can be used. Either can be used. Vacuum deaerators, membrane deaerators, and nitrogen deaerators can reduce dissolved oxygen concentration in water and at the same time remove volatile organics, carbon dioxide, etc. in the gas phase and reduce their concentration in water This is preferable. As another deoxygenation device, a device that removes oxygen by adding hydrogen (H 2 ) and then reacting oxygen with hydrogen using a palladium (Pd) catalyst to form water can also be used.
 水中の溶存酸素濃度は、大気圧下で飽和したときに7~8mg/L程度である。溶存酸素濃度が低い超純水であっても、大気に曝されると直ちに酸素が溶け込み、溶存酸素濃度が上昇する。したがって、一般に、各種の工程から排出される排水中の溶存酸素濃度は1mg/Lを超え、多くの場合、大気圧下での飽和量に近い値となる。本発明者らの知見によれば、溶存酸素濃度が1mg/Lを超えると、H22を添加して紫外線酸化処理を行っても、必ずしもTOC除去率の向上が見られなかった。そこで本発明に基づく水処理装置では、脱酸素装置10を設ける場合には、脱酸素装置10の出口水の溶存酸素濃度が1mg/L以下となるようにすることが好ましい。溶存酸素は紫外線を吸収するため、溶存酸素濃度が高い場合には、本来は有機物の分解反応に利用されるはずの紫外線量が減少し、有機物分解が進行しにくくなる。その一方で、溶存酸素をある程度除去することにより、紫外線が吸収されることの影響を少なくすることができる。その結果、紫外線が効率的に有機物と反応してTOC除去率が向上する。また紫外線とH22が効率的に反応し、ヒドロキシルラジカルが生成することで、ヒドロキシルラジカルが有機物と反応してTOC除去率が向上する。したがって、脱酸素装置10の出口水の溶存酸素濃度を1mg/L以下とすることによって、目安としては、大気圧下での飽和量の1/10以下とすることによって、本発明の効果がより顕著に発揮されることとなる。より好ましくは、脱酸素装置10の出口水の溶存酸素濃度を0.5mg/L以下、さらに好ましくは0.1mg/L以下とする。極低濃度、例えばμg/Lまで溶存酸素を低減してもよいが、μg/Lのオーダーまで高度に脱酸素処理を行ったとしても、得られるTOC除去性能に大きな差異は生じない。脱酸素処理に要するコストとTOC除去率とからなる費用対効果を考慮すると、脱酸素装置10の出口水の溶存酸素濃度を0.05mg/L以上1mg/L以下とすることが好ましい。 The dissolved oxygen concentration in water is about 7 to 8 mg / L when saturated at atmospheric pressure. Even if ultra-pure water with a low dissolved oxygen concentration is exposed to the atmosphere, oxygen immediately dissolves and the dissolved oxygen concentration increases. Therefore, generally, the dissolved oxygen concentration in the waste water discharged from various processes exceeds 1 mg / L, and in many cases, becomes a value close to the saturation amount under atmospheric pressure. According to the knowledge of the present inventors, when the dissolved oxygen concentration exceeded 1 mg / L, the improvement in the TOC removal rate was not necessarily observed even when H 2 O 2 was added and the ultraviolet oxidation treatment was performed. Therefore, in the water treatment apparatus according to the present invention, when the deoxygenation apparatus 10 is provided, it is preferable that the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 1 mg / L or less. Since dissolved oxygen absorbs ultraviolet rays, when the dissolved oxygen concentration is high, the amount of ultraviolet rays that should originally be used for the decomposition reaction of organic matter decreases, and organic matter decomposition becomes difficult to proceed. On the other hand, by removing dissolved oxygen to some extent, the influence of absorption of ultraviolet rays can be reduced. As a result, the ultraviolet rays efficiently react with the organic matter, and the TOC removal rate is improved. In addition, ultraviolet rays and H 2 O 2 react efficiently to generate hydroxyl radicals, whereby the hydroxyl radicals react with organic substances and the TOC removal rate is improved. Therefore, by setting the dissolved oxygen concentration of the outlet water of the deoxygenation device 10 to 1 mg / L or less, as a guideline, the effect of the present invention is further improved by setting it to 1/10 or less of the saturation amount under atmospheric pressure. It will be demonstrated remarkably. More preferably, the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 0.5 mg / L or less, and more preferably 0.1 mg / L or less. Although dissolved oxygen may be reduced to an extremely low concentration, for example, μg / L, even if highly deoxygenated to the order of μg / L, there is no significant difference in the obtained TOC removal performance. Considering the cost-effectiveness composed of the cost required for the deoxygenation treatment and the TOC removal rate, it is preferable that the dissolved oxygen concentration in the outlet water of the deoxygenation apparatus 10 is 0.05 mg / L or more and 1 mg / L or less.
 図3は、本発明に基づく水処理装置の別の構成例を示している。本発明に基づく水処理装置は、紫外線酸化処理によって被処理水中のTOC成分を分解しTOCを除去するものであるが、被処理水中のTOC濃度が高い場合には、紫外線酸化処理の負荷が大きくなりすぎるので、紫外線酸化処理を行う前に、具体的にはH22を添加する前に、被処理水のTOCを低減することが好ましい。図3に示した水処理装置は、図2に示す水処理装置において、脱酸素装置10の前段に逆浸透装置15を設けたものである。被処理水はまず逆浸透装置15に供給されてそこでTOCが低減され、その後、脱酸素装置10に供給される。その結果、図3に示される水処理装置では、紫外線酸化装置31におけるTOC除去の負荷が軽減される。逆浸透装置15として、逆浸透膜が多段に設置された多段処理装置を用いることが好ましい。多段に設けられた逆浸透膜を用いることにより、さらにTOCを排除して、紫外線酸化処理の負荷を低減することができる。 FIG. 3 shows another configuration example of the water treatment apparatus according to the present invention. Although the water treatment apparatus based on this invention decomposes | disassembles the TOC component in to-be-processed water by ultraviolet oxidation treatment, and removes TOC, when the TOC density | concentration in to-be-processed water is high, the load of ultraviolet-ray oxidation treatment is large. Therefore, it is preferable to reduce the TOC of the water to be treated before the ultraviolet oxidation treatment, specifically, before adding H 2 O 2 . The water treatment apparatus shown in FIG. 3 is the same as the water treatment apparatus shown in FIG. 2 except that a reverse osmosis device 15 is provided upstream of the deoxygenation device 10. The treated water is first supplied to the reverse osmosis device 15 where the TOC is reduced, and then supplied to the deoxygenation device 10. As a result, in the water treatment apparatus shown in FIG. 3, the load of removing the TOC in the ultraviolet oxidation apparatus 31 is reduced. As the reverse osmosis device 15, it is preferable to use a multistage treatment apparatus in which reverse osmosis membranes are installed in multiple stages. By using reverse osmosis membranes provided in multiple stages, it is possible to further eliminate TOC and reduce the load of ultraviolet oxidation treatment.
 逆浸透装置15に設けられる逆浸透膜としては、TOC除去能力が高い、例えば海水の淡水化などの用いられるような高阻止率の逆浸透膜を用いることが好ましい。具体的には、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下であることを特徴するものである。本発明に基づく水処理装置において使用することができる逆浸透膜としては、例えば、Hydranautics社によるSWCシリーズの膜、東レ社によるTM800シリーズの膜、DOW社によるSW30シリーズの膜、栗田工業社によるHR-ROシリーズの膜などが挙げられる。より具体的には、逆浸透膜として、Hydranautics社製のSWC5MAX(0.32m3/m2/d)、Hydranautics社製のSWC6MAX(0.43m3/m2/d)、DOW社製のSW30ULE(0.39m3/m2/d)、DOW社製のSW30HRLE(0.25m3/m2/d)、東レ社製のTM820V(0.32m3/m2/d)、東レ社製のTM820K(0.20m3/m2/d)、栗田工業社製のHR-RO(0.36m3/m2/d)などを用いることができる。ここでかっこ書きにした数値は、その逆浸透膜における有効圧力1MPaあたりの透過流束である。 As the reverse osmosis membrane provided in the reverse osmosis device 15, it is preferable to use a reverse osmosis membrane having a high TOC removal capability, such as a high rejection rate used for seawater desalination, for example. Specifically, the permeation flux per effective pressure of 1 MPa is 0.5 m 3 / m 2 / d or less. Examples of the reverse osmosis membrane that can be used in the water treatment apparatus according to the present invention include, for example, SWC series membrane by Hydranautics, TM800 series membrane by Toray, SW30 series membrane by DOW, HR by Kurita -RO series membranes. More specifically, as a reverse osmosis membrane, SWC5MAX (0.32 m 3 / m 2 / d) manufactured by Hydranautics, SWC6MAX (0.43 m 3 / m 2 / d) manufactured by Hydranautics, SW30ULE manufactured by DOW (0.39 m 3 / m 2 / d), SW30HRLE (0.25 m 3 / m 2 / d) manufactured by DOW, TM820V (0.32 m 3 / m 2 / d) manufactured by Toray, manufactured by Toray TM820K (0.20 m 3 / m 2 / d), Kurita Kogyo HR-RO (0.36 m 3 / m 2 / d), and the like can be used. The numerical value parenthesized here is the permeation flux per effective pressure of 1 MPa in the reverse osmosis membrane.
 なお、透過流束は、透過水量を膜面積で割ったものである。「有効圧力」とは、JIS K3802:2015「膜用語」に記載の、平均操作圧から浸透圧差および二次側圧を差し引いた、膜に働く有効な圧である。なお、平均操作圧は、膜の一次側における膜供給水の圧力すなわち運転圧力と濃縮水の圧力すなわち濃縮水出口圧力との平均値であって、以下の式により表される。 The permeation flux is the permeated water amount divided by the membrane area. The “effective pressure” is an effective pressure acting on the membrane obtained by subtracting the osmotic pressure difference and the secondary side pressure from the average operating pressure described in JIS K3802: 2015 “Membrane terminology”. The average operating pressure is an average value of the pressure of the membrane supply water on the primary side of the membrane, that is, the operating pressure, and the pressure of the concentrated water, that is, the concentrated water outlet pressure, and is expressed by the following equation.
  平均操作圧=(運転圧力+濃縮水出口圧力)/2
 有効圧力1MPaあたりの透過流束は、膜メーカーのカタログに記載の情報、例えば、透過水量、膜面積、評価時の回収率、NaCl濃度などから計算することができる。また、1つまたは複数の圧力容器に同一の透過流束である膜が複数本装填されている場合、圧力容器の平均操作圧/2次側圧力、原水水質、透過水量、膜本数などの情報より、装填された膜の透過流束を計算することができる。
Average operating pressure = (Operating pressure + Condensate outlet pressure) / 2
The permeation flux per effective pressure of 1 MPa can be calculated from information described in the catalog of the membrane manufacturer, for example, the amount of permeated water, membrane area, recovery rate during evaluation, NaCl concentration, and the like. In addition, when one or more pressure vessels are loaded with a plurality of membranes having the same permeation flux, information such as the average operating pressure / secondary pressure of the pressure vessel, raw water quality, amount of permeated water, number of membranes, etc. Thus, the permeation flux of the loaded membrane can be calculated.
 逆浸透膜の膜形状としては、特に限定されるものではなく、例えば、環状型、平膜型、スパイラル型、中空糸型などが挙げられ、スパイラル型については、4インチ型、8インチ型、16インチ型などのいずれでもあってもよい。 The membrane shape of the reverse osmosis membrane is not particularly limited, and examples thereof include an annular type, a flat membrane type, a spiral type, and a hollow fiber type. The spiral type includes a 4-inch type, an 8-inch type, Any of a 16-inch type or the like may be used.
 図3に示した水処理装置では、脱酸素装置10の前段に逆浸透装置15を設けているが、紫外線酸化処理の負荷を低減するための逆浸透装置15の位置は、過酸化水素添加装置20の入口側であればいずれであってもよい。したがって、図4に示すように、脱酸素装置10と逆浸透装置15の位置を入れ替え、被処理水がまず脱酸素装置10に供給され、脱酸素装置10の出口水が逆浸透装置15を経て過酸化水素添加装置20に供給されるようにしてもよい。さらに、脱酸素装置10を設けない構成においても逆浸透装置15を設けることは有効である。図5は、脱酸素装置10を設けることなく過酸化水素添加装置20の入口に逆浸透装置15を接続し、逆浸透装置15によりTOCが低減された被処理水が過酸化水素添加装置20に供給されるようにした水処理装置を示している。 In the water treatment apparatus shown in FIG. 3, the reverse osmosis device 15 is provided in the preceding stage of the deoxygenation device 10, but the position of the reverse osmosis device 15 for reducing the load of the ultraviolet oxidation treatment is located at the hydrogen peroxide addition device. Any of the 20 entrance sides may be used. Therefore, as shown in FIG. 4, the positions of the deoxygenation device 10 and the reverse osmosis device 15 are switched, and the treated water is first supplied to the deoxygenation device 10, and the outlet water of the deoxygenation device 10 passes through the reverse osmosis device 15. You may make it supply to the hydrogen peroxide addition apparatus 20. FIG. Furthermore, it is effective to provide the reverse osmosis device 15 even in a configuration in which the deoxygenation device 10 is not provided. In FIG. 5, the reverse osmosis device 15 is connected to the inlet of the hydrogen peroxide addition device 20 without providing the deoxygenation device 10, and the water to be treated whose TOC is reduced by the reverse osmosis device 15 is supplied to the hydrogen peroxide addition device 20. 1 shows a water treatment device to be supplied.
 本発明においては、紫外線照射装置の出口側に、紫外線酸化処理での分解生成物や被処理水に由来するイオン性不純物を除去するためのイオン交換装置を設けるようにしてもよい。図6に示す水処理装置では、図3に示す水処理装置に対し、さらに、紫外線酸化装置31の出口水が供給されるイオン交換装置35が設けられている。イオン交換装置35からの出口水が、この水処理装置で処理されて外部に供給される水ということになる。 In the present invention, an ion exchange device may be provided on the exit side of the ultraviolet irradiation device to remove ionic impurities derived from decomposition products and water to be treated in the ultraviolet oxidation treatment. In the water treatment device shown in FIG. 6, an ion exchange device 35 to which outlet water of the ultraviolet oxidation device 31 is supplied is further provided to the water treatment device shown in FIG. 3. The outlet water from the ion exchange device 35 is treated with this water treatment device and is supplied to the outside.
 被処理水に含まれる有機物には、紫外線酸化処理を受ける前の段階からイオン性である物質も含まれるが、H22を添加して行う紫外線酸化処理によって、各種の有機酸や炭酸などのイオン性物質が生成する。イオン交換装置35は、これらのイオン性物質を除去する。イオン交換装置35は、例えば、イオン交換樹脂が充填されたイオン交換塔で構成される。紫外線酸化装置31の出口水におけるイオン性不純物の濃度が大きい場合には、再生型のイオン交換装置を用いることが好ましい。紫外線酸化処理による反応生成物である有機酸や炭酸は水中では陰イオンの形態をとるので、イオン交換装置35に用いられるイオン交換樹脂は、少なくとも陰イオン交換樹脂である。有機酸や炭酸は弱酸であるため、これらを確実に除去するために、陰イオン交換樹脂として強塩基性陰イオン交換樹脂を用いることが好ましい。さらに、イオン交換樹脂として、陰イオン交換樹脂と陽イオン交換樹脂との混合樹脂を用いたり、イオン交換塔として、混合樹脂が充填された混床式イオン交換塔を用いることによって、高純度の処理水を得ることができる。 The organic matter contained in the water to be treated includes substances that are ionic from the stage prior to being subjected to the ultraviolet oxidation treatment, but various organic acids, carbonic acid, etc. are obtained by the ultraviolet oxidation treatment performed by adding H 2 O 2. Ionic substances are produced. The ion exchange device 35 removes these ionic substances. The ion exchange device 35 is composed of, for example, an ion exchange tower filled with an ion exchange resin. When the concentration of ionic impurities in the outlet water of the ultraviolet oxidizer 31 is high, it is preferable to use a regenerative ion exchanger. Since the organic acid and carbonic acid which are reaction products by the ultraviolet oxidation treatment take the form of anions in water, the ion exchange resin used in the ion exchange device 35 is at least an anion exchange resin. Since organic acids and carbonic acids are weak acids, it is preferable to use a strongly basic anion exchange resin as an anion exchange resin in order to remove them reliably. Furthermore, by using a mixed resin of an anion exchange resin and a cation exchange resin as an ion exchange resin, or using a mixed bed type ion exchange tower filled with a mixed resin as an ion exchange tower, a high-purity treatment is performed. You can get water.
 ところで、紫外線酸化装置31の出口水に含まれる過剰なH22は、イオン交換装置35内のイオン交換樹脂を酸化劣化させるおそれがある。そのため、イオン交換装置35の前段でH22を除去することが好ましい。図7に示す水処理装置は、図6に示す水処理装置において、紫外線酸化装置31とイオン交換装置35との間に、水中のH22を分解する過酸化水素分解装置37を設けたものである。紫外線酸化装置31の出口水は、過酸化水素分解装置37を通って過酸化水素が除去され、その後、イオン交換装置35に供給される。過酸化水素分解装置35は、例えば、活性炭が充填された分解塔である。低コストで効果的にH22を分解できるものとして、活性炭を用いることが好ましい。あるいは、過酸化水素分解装置37において、パラジウム(Pd)触媒を用いてH22を分解するようにすることもできる。 Incidentally, excessive H 2 O 2 contained in the outlet water of the ultraviolet oxidizer 31 may oxidize and degrade the ion exchange resin in the ion exchanger 35. Therefore, it is preferable to remove H 2 O 2 before the ion exchange device 35. The water treatment apparatus shown in FIG. 7 is provided with a hydrogen peroxide decomposition apparatus 37 for decomposing H 2 O 2 in water between the ultraviolet oxidation apparatus 31 and the ion exchange apparatus 35 in the water treatment apparatus shown in FIG. Is. Hydrogen peroxide is removed from the outlet water of the ultraviolet oxidation device 31 through the hydrogen peroxide decomposition device 37, and then supplied to the ion exchange device 35. The hydrogen peroxide decomposition device 35 is, for example, a decomposition tower filled with activated carbon. It is preferable to use activated carbon as one that can effectively decompose H 2 O 2 at low cost. Alternatively, the hydrogen peroxide decomposition device 37 can decompose H 2 O 2 using a palladium (Pd) catalyst.
 以上、本発明に基づく水処理装置に種々の構成例を説明したが、これらの水処理装置は、例えば、TOC濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える被処理水中の有機物を分解処理するために用いることできる。本発明によれば、後述する実施例から明らかになるように、mg/LのオーダーでTOCを含む被処理水を高いTOC除去率で処理することができる。 As mentioned above, although various structural examples were demonstrated to the water treatment apparatus based on this invention, these water treatment apparatuses, for example, have a TOC concentration of 0.1 mg / L or more and a dissolved oxygen concentration exceeding 1 mg / L. It can be used for decomposing organic matter in the treated water. According to the present invention, as will become clear from Examples described later, water to be treated containing TOC in the order of mg / L can be treated with a high TOC removal rate.
 本発明において被処理水は、例えば、工程排水に由来するものである。本発明の水処理方法は、工程排水、特に半導体製造工程など超純水を使用する工程から排出される排水を回収して処理するために用いられる。本発明の水処理方法によって処理された水は、超純水を生成するための原水として用いることができる。したがって、本発明の水処理方法は、超純水を使用する工程からの排水を回収して処理し、循環再利用のために超純水を生成するために使用することができる。 In the present invention, the water to be treated is derived from, for example, process waste water. The water treatment method of the present invention is used to collect and treat process wastewater, particularly wastewater discharged from a process using ultrapure water such as a semiconductor manufacturing process. The water treated by the water treatment method of the present invention can be used as raw water for producing ultrapure water. Therefore, the water treatment method of the present invention can be used to collect and treat waste water from the process of using ultrapure water and generate ultrapure water for circulation reuse.
 図8は、本発明に基づく水処理装置の応用例を示している。本発明に基づく水処理装置81は、超純水を使用する工程である超純水使用プロセス83から回収した回収水を被処理水とし、これを処理して有機物を低減した回収水を生成する。超純水使用プロセス83で使用する超純水は、一次純水が供給される超純水製造装置82によって製造されるが、水処理装置81からの有機物を低減した回収水は、一次純水と混合されて超純水製造装置82に供給される。図8に示すシステムでは、水処理装置81を介して超純水の回収再利用が実現しており、超純水使用プロセス83で消費されて回収できなかった超純水の分だけ一次純水を超純水製造装置82に供給すればよいので、大幅な節水を実現することができる。 FIG. 8 shows an application example of the water treatment apparatus according to the present invention. The water treatment device 81 according to the present invention uses recovered water collected from the ultrapure water use process 83, which is a process of using ultrapure water, as treated water, and generates recovered water with reduced organic matter by treating this water. . The ultrapure water used in the ultrapure water use process 83 is produced by the ultrapure water production apparatus 82 to which the primary pure water is supplied. The recovered water from which the organic substances from the water treatment apparatus 81 are reduced is the primary pure water. And supplied to the ultrapure water production apparatus 82. In the system shown in FIG. 8, the ultrapure water is recovered and reused through the water treatment device 81, and the primary pure water is consumed by the ultrapure water that is consumed in the ultrapure water use process 83 and cannot be recovered. Can be supplied to the ultrapure water production apparatus 82, so that significant water saving can be realized.
 次に、本発明を完成させるために本発明者らが行った実験結果を説明することにより、本発明をさらに詳しく説明する。 Next, the present invention will be described in more detail by explaining the results of experiments conducted by the present inventors in order to complete the present invention.
 [実験例1]
 図7に示す構成の装置を組み立てた。この装置は、純水に対して膜脱気による脱酸素処理を行ったのちに、イソプロピルアルコール(CH3CH(OH)CH3;IPA)を添加し、さらにH22を添加し、IPAとH22が添加された水に対して紫外線酸化処理を行うようにしたものである。ここで用いる純水の水質は、抵抗率が1MΩ・cm以上、TOCが3μg/L以下、溶存酸素濃度が7.8mg/L、H22濃度が1μg/L以下であった。この装置は、IPAを有機物(TOC成分)として含む純水を被処理水として、この被処理水に含まれる有機物を分解処理する装置であり、IPAを添加する前の膜脱気による脱酸素処理は被処理水の溶存酸素濃度を低減するための処理であると言える。膜脱気によっては水中のIPAは一般に除去されないことを考えれば、図9に示す装置により、IPAを含む被処理水を脱酸素処理に供給して脱酸素処理を行い、その後H22を添加して紫外線酸化処理を行う場合と同じ結果が得られることになる。
[Experimental Example 1]
An apparatus having the configuration shown in FIG. 7 was assembled. In this apparatus, after performing deoxygenation treatment by deaeration on pure water, isopropyl alcohol (CH 3 CH (OH) CH 3 ; IPA) is added, H 2 O 2 is further added, and IPA is added. And H 2 O 2 are added to the water. The pure water used here had a resistivity of 1 MΩ · cm or more, a TOC of 3 μg / L or less, a dissolved oxygen concentration of 7.8 mg / L, and a H 2 O 2 concentration of 1 μg / L or less. This device uses pure water containing IPA as an organic substance (TOC component) as water to be treated, and decomposes the organic matter contained in the water to be treated. Deoxygenation treatment is performed by membrane deaeration before adding IPA. Can be said to be a treatment for reducing the dissolved oxygen concentration of the water to be treated. In some membrane degassing given that the IPA in water is generally not removed by the apparatus shown in FIG. 9, by supplying the water to be treated containing the IPA to deoxygenated carrying out deoxygenation process, then H 2 O 2 The same result as that obtained when the ultraviolet oxidation treatment is performed after the addition is obtained.
 図7に示す装置において、純水は脱酸素装置である膜脱気モジュール11に供給される。膜脱気モジュール11としてはセルガード製「リキセルG284」を用い、膜脱気モジュール11の気相側をポンプ12で減圧にして、溶存酸素濃度が所定濃度となるように脱気処理を施した。膜脱気モジュール11を通過して溶存酸素濃度を低減した水に対し、貯槽51およびポンプ52を介して所定量のIPAをTOC成分として添加した。これにより、溶存酸素濃度が低減された被処理水が生成したことになる。さらにこの被処理水に対し、貯槽21およびポンプ22を介し、所定量のH22を添加した。H22を添加された被処理水の一部を分岐して、その溶存酸素濃度およびTOC濃度をそれぞれ溶存酸素計(DO計)56およびTOC計57でオンライン測定した。DO計56としてはTOAエレクトロニクス社製DO-30Aを用い、TOC計57としてはシーバース社製のSIEVERS900型TOC計を用いた。DO計56での溶存酸素濃度は、膜脱気モジュール11の出口水における溶存酸素濃度、すなわち紫外線酸化装置31の入口での溶存酸素濃度となる。TOC計57でのTOC測定値TOC0は、被処理水のTOC濃度となる。 In the apparatus shown in FIG. 7, pure water is supplied to the membrane deaeration module 11 which is a deoxygenation apparatus. As the membrane degassing module 11, “Lixel G284” manufactured by Celgard was used, and the gas phase side of the membrane degassing module 11 was depressurized by the pump 12, and the degassing treatment was performed so that the dissolved oxygen concentration became a predetermined concentration. A predetermined amount of IPA was added as a TOC component through the storage tank 51 and the pump 52 to the water having passed through the membrane degassing module 11 and having a reduced dissolved oxygen concentration. Thereby, the to-be-processed water with which dissolved oxygen concentration was reduced produced | generated. Further, a predetermined amount of H 2 O 2 was added to the water to be treated via the storage tank 21 and the pump 22. A part of the water to be treated to which H 2 O 2 was added was branched, and the dissolved oxygen concentration and the TOC concentration were measured online with a dissolved oxygen meter (DO meter) 56 and a TOC meter 57, respectively. A DO-30A manufactured by TOA Electronics was used as the DO meter 56, and a SIEVERS 900 TOC meter manufactured by Seaverse was used as the TOC meter 57. The dissolved oxygen concentration in the DO meter 56 is the dissolved oxygen concentration in the outlet water of the membrane degassing module 11, that is, the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31. The TOC measurement value TOC0 at the TOC meter 57 is the TOC concentration of the water to be treated.
 H22が添加された被処理水のうち分岐しなかった方の水を紫外線酸化装置31に供給した。紫外線酸化装置31としては日本フォトサイエンス社製JPW-2を使用し、紫外線酸化装置31内には、紫外線ランプとして、波長254nmの光と波長185nmの光の両方を発生する低圧紫外線ランプ(日本フォトサイエンス社製の165Wの紫外線ランプAZ-9000W)を4本配置した。紫外線酸化装置31の出口水の溶存酸素濃度をDO計41で測定するとともに、紫外線酸化装置31の出口水の一部を分岐し、イオン交換装置35に通水し、イオン交換装置35からの出口水すなわちこの水処理装置における処理水のTOC濃度TOC1をTOC計58によって測定した。DO計41としては、TOAエレクトロニクス社製DO-30Aを用い、TOC計58としては、シーバース社製のSIEVERS900型TOC計を用いた。 Of the water to be treated to which H 2 O 2 was added, the water that was not branched was supplied to the ultraviolet oxidizer 31. JPW-2 manufactured by Nippon Photo Science Co., Ltd. is used as the ultraviolet oxidizer 31, and the ultraviolet oxidizer 31 is a low-pressure ultraviolet lamp that generates both light of wavelength 254 nm and light of wavelength 185 nm. Four 165W ultraviolet lamps AZ-9000W (Science) were arranged. The dissolved oxygen concentration in the outlet water of the ultraviolet oxidizer 31 is measured by the DO meter 41, a part of the outlet water of the ultraviolet oxidizer 31 is branched and passed through the ion exchanger 35, and the outlet from the ion exchanger 35 The TOC concentration TOC1 of water, that is, the TOC concentration TOC1 of the treated water in this water treatment apparatus was measured. As the DO meter 41, DO-30A manufactured by TOA Electronics was used, and as the TOC meter 58, a SIEVERS900 type TOC meter manufactured by Seaverse was used.
 イオン交換装置35としては、混床式イオン交換装置を用いた。混床式イオン交換装置は、アクリル樹脂製の円筒容器(内径25mm、高さ1000mm)を有し、この容器内に混床のイオン交換樹脂(EG-5A:オルガノ社製)を300mL充填したものである。このとき、イオン交換樹脂層の高さは約600mmとなった。 As the ion exchange device 35, a mixed bed type ion exchange device was used. The mixed bed type ion exchange apparatus has a cylindrical container made of acrylic resin (inner diameter 25 mm, height 1000 mm), and 300 mL of mixed bed ion exchange resin (EG-5A: manufactured by Organo Corporation) is filled in the container. It is. At this time, the height of the ion exchange resin layer was about 600 mm.
 この水処理装置におけるTOC除去率を以下の計算式により定義する:
 TOC除去率(%)=((TOC0-TOC1)/TOC0)×100
 上述のように、TOC0は、被処理水のTOC濃度、すなわちTOC計57で測定されたTOC濃度であり、TOC1は、イオン交換装置35からの処理水のTOC濃度、すなわちTOC計58によって測定されたTOC濃度である。
The TOC removal rate in this water treatment device is defined by the following calculation formula:
TOC removal rate (%) = ((TOC0−TOC1) / TOC0) × 100
As described above, TOC0 is the TOC concentration of the water to be treated, that is, the TOC concentration measured by the TOC meter 57, and TOC1 is measured by the TOC concentration of the treated water from the ion exchange device 35, that is, the TOC meter 58. TOC concentration.
 膜脱気モジュール11によって紫外線酸化装置31の入口の溶存酸素濃度を50μg/Lとなるように調整し、IPAの添加量を調整して被処理水のTOC濃度、すなわち紫外線酸化装置31の入口でのTOC濃度が500μg/Lであるようにした、この状態で、H22の添加量を0mg/L、2.5mg/L、5.0mg/L、10.0mg/Lに調整して、それぞれの場合について、TOC除去率と、紫外線酸化装置31の出口での溶存酸素濃度、すなわちDO計41での測られる溶存酸素濃度とを測定した。結果を表1に示す。なお紫外線酸化装置31への供給水量は800L/時間であった。この結果から、H22を添加することでTOC除去率が向上すること、および、被処理液のTOC濃度および紫外線酸化装置31の入口での溶存酸素濃度が一定であれば、H22を添加しすぎるとかえってTOC除去率が低下し紫外線酸化装置31の出口での溶存酸素濃度が上昇することが分かった。このことから、紫外線酸化装置31の出口での溶存酸素濃度を測定することによりH22の添加量を最適に制御できることが分かる。 The membrane deaeration module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 to 50 μg / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated, that is, at the inlet of the ultraviolet oxidizer 31. In this state, the amount of H 2 O 2 was adjusted to 0 mg / L, 2.5 mg / L, 5.0 mg / L, and 10.0 mg / L. In each case, the TOC removal rate and the dissolved oxygen concentration at the outlet of the ultraviolet oxidizer 31, that is, the dissolved oxygen concentration measured by the DO meter 41 were measured. The results are shown in Table 1. The amount of water supplied to the ultraviolet oxidizer 31 was 800 L / hour. From this result, if the TOC removal rate is improved by adding H 2 O 2 , and if the TOC concentration of the liquid to be treated and the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 are constant, H 2 O On the other hand , it was found that when 2 was added too much, the TOC removal rate was lowered and the dissolved oxygen concentration at the outlet of the ultraviolet oxidizer 31 was increased. From this, it can be seen that the amount of H 2 O 2 added can be optimally controlled by measuring the dissolved oxygen concentration at the outlet of the ultraviolet oxidizer 31.
 またこれとは別に、膜脱気モジュール11をバイパスすることにより溶存酸素濃度が7.8mg/Lとなるように調整し、H22の添加量を0mg/Lとして、TOC除去率と紫外線酸化装置31の出口での溶存酸素濃度とを測定した。その結果も表1に示す。この場合のTOC除去率が82%であったことから、被処理水中の溶存酸素濃度を低減し、かつH22が添加された被処理水に紫外線を照射することで、TOC除去率が向上することが分かった。 Separately, the membrane deaeration module 11 is bypassed to adjust the dissolved oxygen concentration to 7.8 mg / L, the H 2 O 2 addition amount is set to 0 mg / L, and the TOC removal rate and the ultraviolet light are adjusted. The dissolved oxygen concentration at the outlet of the oxidizer 31 was measured. The results are also shown in Table 1. Since the TOC removal rate in this case was 82%, the TOC removal rate was reduced by reducing the dissolved oxygen concentration in the treated water and irradiating the treated water added with H 2 O 2 with ultraviolet rays. It turns out that it improves.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実験例2]
 被処理水のTOC濃度、すなわち紫外線酸化装置31の入口でのTOC濃度を1000μg/Lとし、さらにH22添加量として20.0mg/Lの場合を追加したこと以外は実験例1と同条件で実験を行った。結果を表2に示す。これらからも、被処理水中の溶存酸素濃度を低減し、H22を添加することでTOC除去率が向上する結果が得られた。
[Experiment 2]
Same as Experimental Example 1 except that the TOC concentration of the water to be treated, that is, the TOC concentration at the inlet of the ultraviolet oxidizer 31, was 1000 μg / L, and the H 2 O 2 addition amount was 20.0 mg / L. The experiment was conducted under conditions. The results are shown in Table 2. From these results, it was found that the TOC removal rate was improved by reducing the dissolved oxygen concentration in the water to be treated and adding H 2 O 2 .
 またこれとは別に、膜脱気モジュール11をバイパスすることにより溶存酸素濃度が7.8mg/Lとなるように調整し、H22の添加量を0mg/L、2.5mg/Lとして、TOC除去率を測定した。これらの結果も表2に示す。膜脱気モジュール11をバイパスすることは、溶存酸素濃度を低減させずにほぼ大気圧下での飽和量のままとすることであるが、このように被処理液の溶存酸素濃度が高い場合には、H22を添加しても紫外線酸化処理におけるTOC除去率が向上しないことが分かった。 Separately, by adjusting the dissolved oxygen concentration to 7.8 mg / L by bypassing the membrane degassing module 11, the addition amount of H 2 O 2 is set to 0 mg / L and 2.5 mg / L. The TOC removal rate was measured. These results are also shown in Table 2. Bypassing the membrane deaeration module 11 means that the dissolved oxygen concentration is not reduced and the saturated amount at atmospheric pressure is maintained, but when the dissolved oxygen concentration of the liquid to be treated is high as described above. It was found that even when H 2 O 2 was added, the TOC removal rate in the ultraviolet oxidation treatment was not improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実験例3]
 紫外線酸化装置31の入口での溶存酸素濃度を500μg/L、H22添加量を0mg/L、1.5mg/L、2.5mg/L、5.0mg/Lとした以外は、実験例1と同様の条件で実験を行った。結果を表3に示す。
[Experiment 3]
The experiment was conducted except that the dissolved oxygen concentration at the entrance of the ultraviolet oxidizer 31 was 500 μg / L, and the H 2 O 2 addition amount was 0 mg / L, 1.5 mg / L, 2.5 mg / L, 5.0 mg / L. The experiment was performed under the same conditions as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実験例4]
 紫外線酸化装置31の入口での溶存酸素濃度を1000μg/L、H22添加量を0mg/L、1.5mg/L、2.0mg/L、2.5mg/Lとした以外は、実験例1と同様の条件で実験を行った。結果を表4に示す。
[Experimental Example 4]
The experiment was conducted except that the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 was 1000 μg / L, and the H 2 O 2 addition amount was 0 mg / L, 1.5 mg / L, 2.0 mg / L, and 2.5 mg / L. The experiment was performed under the same conditions as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実験例5]
 膜脱気モジュール11によって紫外線酸化装置31の入口の溶存酸素濃度を50μg/Lとなるように調整し、IPAの添加量を調整して被処理水のTOC濃度(紫外線酸化装置31の入口でのTOC濃度)が100μg/Lとなるようにした。この状態で、H22の添加量を0mg/L、0.2mg/L、0.4mg/Lに調整して、それぞれの場合についてTOC除去率を測定した。紫外線酸化装置31への供給水量は2000L/時間であった。なおそれ以外については実験例1と同様の条件で実験を行った。結果を表5に示す。
[Experimental Example 5]
The membrane degassing module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizer 31 to 50 μg / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated (at the inlet of the ultraviolet oxidizer 31). The TOC concentration was set to 100 μg / L. In this state, the amount of H 2 O 2 added was adjusted to 0 mg / L, 0.2 mg / L, and 0.4 mg / L, and the TOC removal rate was measured in each case. The amount of water supplied to the ultraviolet oxidizer 31 was 2000 L / hour. In addition, it experimented on the conditions similar to Experimental example 1 about other than that. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 10  脱酸素装置
 15  逆浸透装置
 20  過酸化水素添加装置
 30  紫外線照射装置
 31  紫外線酸化装置
 40  制御装置
 41,56  溶存酸素(DO)計
DESCRIPTION OF SYMBOLS 10 Deoxygenation apparatus 15 Reverse osmosis apparatus 20 Hydrogen peroxide addition apparatus 30 Ultraviolet irradiation apparatus 31 Ultraviolet oxidation apparatus 40 Control apparatus 41,56 Dissolved oxygen (DO) meter

Claims (14)

  1.  被処理水に含まれる有機物を分解処理する水処理方法であって、
     前記被処理水に過酸化水素を添加する過酸化水素添加段階と、
     過酸化水素を添加された前記被処理水に対し紫外線を照射する紫外線照射段階と、
     前記紫外線照射段階からの出口水の溶存酸素濃度を測定する段階と、
     を有し、前記測定された溶存酸素濃度に基づいて前記過酸化水素添加段階における過酸化水素の添加量を制御する水処理方法。
    A water treatment method for decomposing organic matter contained in water to be treated,
    A hydrogen peroxide addition step of adding hydrogen peroxide to the treated water;
    An ultraviolet irradiation step of irradiating the water to be treated with hydrogen peroxide with ultraviolet rays;
    Measuring the dissolved oxygen concentration in the outlet water from the ultraviolet irradiation step;
    And a water treatment method for controlling an addition amount of hydrogen peroxide in the hydrogen peroxide addition step based on the measured dissolved oxygen concentration.
  2.  前記紫外線照射段階からの出口水の溶存酸素濃度が0.1mg/L以下となるように前記過酸化水素の添加量を制御する、請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the amount of hydrogen peroxide added is controlled so that the dissolved oxygen concentration in the outlet water from the ultraviolet irradiation stage is 0.1 mg / L or less.
  3.  前記紫外線照射段階において、波長が185nm以下である成分を含む紫外線を照射する、請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein in the ultraviolet irradiation step, ultraviolet rays containing a component having a wavelength of 185 nm or less are irradiated.
  4.  前記過酸化水素添加段階の前に、前記被処理水に含まれる有機物を逆浸透処理によって低減する段階をさらに有する、請求項1乃至3のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, further comprising a step of reducing organic substances contained in the water to be treated by reverse osmosis treatment before the hydrogen peroxide addition step.
  5.  前記逆浸透処理で用いる逆浸透膜は、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下である、請求項4に記載の水処理方法。 The water treatment method according to claim 4, wherein the reverse osmosis membrane used in the reverse osmosis treatment has a permeation flux per effective pressure of 1 MPa of 0.5 m 3 / m 2 / d or less.
  6.  前記水処理方法による処理が行われる前の前記被処理水は、全有機炭素濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える、請求項1乃至5のいずれか1項に記載の水処理方法。 The water to be treated before being treated by the water treatment method has a total organic carbon concentration of 0.1 mg / L or more and a dissolved oxygen concentration of more than 1 mg / L. The water treatment method according to item.
  7.  前記被処理水が工程排水に由来する、請求項1乃至6のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 6, wherein the water to be treated is derived from process wastewater.
  8.  前記工程排水は超純水を使用する工程からの排出される水であり、前記水処理方法により処理された水が、前記工程で使用する超純水を生成するための原水として用いられる、請求項7に記載の水処理方法。 The process wastewater is water discharged from a process using ultrapure water, and the water treated by the water treatment method is used as raw water for generating ultrapure water used in the process. Item 8. The water treatment method according to Item 7.
  9.  被処理水に含まれる有機物を分解処理する水処理装置であって、
     前記被処理水に過酸化水素を添加する過酸化水素添加装置と、
     前記過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射装置と、
     前記紫外線照射装置の出口水の溶存酸素濃度を測定する溶存酸素測定手段と、
     前記溶存酸素測定手段で測定された溶存酸素濃度に基づいて前記過酸化水素添加装置における過酸化水素の添加量を制御する制御手段と、
     を有する水処理装置。
    A water treatment apparatus for decomposing organic matter contained in water to be treated,
    A hydrogen peroxide addition device for adding hydrogen peroxide to the treated water;
    An ultraviolet irradiation device for irradiating the water to which the hydrogen peroxide is added with ultraviolet rays;
    Dissolved oxygen measuring means for measuring the dissolved oxygen concentration of the outlet water of the ultraviolet irradiation device;
    Control means for controlling the amount of hydrogen peroxide added in the hydrogen peroxide addition device based on the dissolved oxygen concentration measured by the dissolved oxygen measuring means;
    A water treatment device.
  10.  前記制御手段は、前記紫外線照射段階からの出口水の溶存酸素濃度が0.1mg/L以下となるように前記過酸化水素の添加量を制御する、請求項9に記載の水処理装置。 The water treatment apparatus according to claim 9, wherein the control means controls the amount of hydrogen peroxide added so that the dissolved oxygen concentration in the outlet water from the ultraviolet irradiation stage is 0.1 mg / L or less.
  11.  前記紫外線照射装置は、波長が185nm以下である成分を含む紫外線を照射する紫外線酸化装置である、請求項9または10に記載の水処理装置。 The water treatment apparatus according to claim 9 or 10, wherein the ultraviolet irradiation apparatus is an ultraviolet oxidation apparatus that irradiates ultraviolet rays including a component having a wavelength of 185 nm or less.
  12.  逆浸透膜を有し前記被処理水に含まれる有機物を低減する逆浸透装置を前記過酸化水素添加装置の入口側に備える、請求項9乃至11のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 9 to 11, further comprising a reverse osmosis device that has a reverse osmosis membrane and reduces organic substances contained in the water to be treated on an inlet side of the hydrogen peroxide addition device.
  13.  前記逆浸透膜は、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下である、請求項12に記載の水処理装置。 The water treatment apparatus according to claim 12, wherein the reverse osmosis membrane has a permeation flux per effective pressure of 1 MPa of 0.5 m 3 / m 2 / d or less.
  14.  前記水処理装置に供給される前記被処理水は、全有機炭素濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える請求項9乃至13のいずれか1項に記載の水処理装置。 The to-be-treated water supplied to the water treatment device has a total organic carbon concentration of 0.1 mg / L or more and a dissolved oxygen concentration of more than 1 mg / L, according to any one of claims 9 to 13. Water treatment equipment.
PCT/JP2017/041215 2016-11-18 2017-11-16 Water treatment method and device WO2018092832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197014291A KR102233505B1 (en) 2016-11-18 2017-11-16 Water treatment method and apparatus
CN201780067211.9A CN109906206B (en) 2016-11-18 2017-11-16 Water treatment method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224969A JP6752693B2 (en) 2016-11-18 2016-11-18 Water treatment method and equipment
JP2016-224969 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018092832A1 true WO2018092832A1 (en) 2018-05-24

Family

ID=62145567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041215 WO2018092832A1 (en) 2016-11-18 2017-11-16 Water treatment method and device

Country Status (5)

Country Link
JP (1) JP6752693B2 (en)
KR (1) KR102233505B1 (en)
CN (1) CN109906206B (en)
TW (1) TWI732970B (en)
WO (1) WO2018092832A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454851A (en) * 2020-03-20 2020-07-28 苏州禾优泰源农业科技有限公司 Aerobic fermentation system for microorganisms
JP2022138429A (en) 2021-03-10 2022-09-26 オルガノ株式会社 Water treatment method and device
JP2022174865A (en) * 2021-05-12 2022-11-25 オルガノ株式会社 Pure water production device and pure water production method
CN113779504A (en) * 2021-09-07 2021-12-10 天津大学 Method for calculating optimal adding concentration of oxidant in ultraviolet advanced oxidation process based on primary free radicals
CN113860553B (en) * 2021-10-12 2022-07-19 江苏中电创新环境科技有限公司 Method for removing trace small-molecule organic matters in reclaimed water
JP2024042977A (en) * 2022-09-16 2024-03-29 オルガノ株式会社 Water treatment system and water treatment method
KR102553948B1 (en) 2023-02-14 2023-07-10 김기수 Water treatment apparatus for reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305297A (en) * 1992-04-30 1993-11-19 Kurita Water Ind Ltd Apparatus for treating acid drainage containing organic material
JPH10277572A (en) * 1997-04-03 1998-10-20 Japan Organo Co Ltd Removal of organic matter in water
JP2003236566A (en) * 2002-02-19 2003-08-26 Toshiba Corp Apparatus for controlling residual hydrogen peroxide concentration
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012321A (en) * 1975-03-25 1977-03-15 The United States Of America As Represented By The Secretary Of The Navy Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
CA1138529A (en) * 1978-11-24 1982-12-28 Patrick E. Fowles Method and apparatus for measuring hydrogen peroxide concentration in a solution
WO1997030939A1 (en) * 1996-02-20 1997-08-28 Nomura Micro Science Co., Ltd. Method and apparatus for producing ultrapure water
US6372699B1 (en) * 1997-12-22 2002-04-16 Kurita Water Industries Ltd. Cleaning solution for electronic materials and method for using same
JP5280038B2 (en) * 2007-11-06 2013-09-04 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
JP5454468B2 (en) * 2008-03-31 2014-03-26 栗田工業株式会社 Pure water production method and pure water production apparatus
CN101423310A (en) * 2008-11-14 2009-05-06 钱志刚 Circulative reuse treatment method of electric ultrapure water
JP5430983B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5499753B2 (en) 2010-02-18 2014-05-21 栗田工業株式会社 Water treatment method and apparatus
JP5512357B2 (en) 2010-04-05 2014-06-04 オルガノ株式会社 Pure water production method and apparatus
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP6228531B2 (en) * 2014-12-19 2017-11-08 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
CN105461128B (en) * 2015-12-18 2018-01-05 碳氢技术工程管理(武汉)有限公司 A kind of device and processing method of combined treatment high COD sewage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305297A (en) * 1992-04-30 1993-11-19 Kurita Water Ind Ltd Apparatus for treating acid drainage containing organic material
JPH10277572A (en) * 1997-04-03 1998-10-20 Japan Organo Co Ltd Removal of organic matter in water
JP2003236566A (en) * 2002-02-19 2003-08-26 Toshiba Corp Apparatus for controlling residual hydrogen peroxide concentration
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same

Also Published As

Publication number Publication date
TW201821371A (en) 2018-06-16
JP6752693B2 (en) 2020-09-09
JP2018079448A (en) 2018-05-24
CN109906206B (en) 2022-03-04
KR102233505B1 (en) 2021-03-29
CN109906206A (en) 2019-06-18
KR20190066059A (en) 2019-06-12
TWI732970B (en) 2021-07-11

Similar Documents

Publication Publication Date Title
WO2018092832A1 (en) Water treatment method and device
WO2018092831A1 (en) Water treatment method and device
TWI460136B (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US20200148563A1 (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP4932757B2 (en) Ultrapure water production method and ultrapure water production apparatus
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2016005829A (en) Method and apparatus for producing ultrapure water
JPH1199394A (en) Method for removing organic matter in water
JP5211414B2 (en) Ultrapure water production equipment
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP5512358B2 (en) Pure water production method and apparatus
JPH05305297A (en) Apparatus for treating acid drainage containing organic material
JPH1128482A (en) Production of pure water
US20210387878A1 (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method
JP2005161138A (en) Water treatment method and water treatment apparatus
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JP2024042977A (en) Water treatment system and water treatment method
JP2019107631A (en) UV oxidation treatment method
JP2000302413A (en) Apparatus for producing ozonous water
JP2003094075A (en) System and method for treating water
Jeong et al. A feasibility study on UV pretreatment for microfiltration and reverse osmosis membrane processes in wastewater reclamation
JP2017196558A (en) Decomposing apparatus of organic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871399

Country of ref document: EP

Kind code of ref document: A1