JP7143595B2 - Particle control method for ultrapure water production system - Google Patents

Particle control method for ultrapure water production system Download PDF

Info

Publication number
JP7143595B2
JP7143595B2 JP2018019853A JP2018019853A JP7143595B2 JP 7143595 B2 JP7143595 B2 JP 7143595B2 JP 2018019853 A JP2018019853 A JP 2018019853A JP 2018019853 A JP2018019853 A JP 2018019853A JP 7143595 B2 JP7143595 B2 JP 7143595B2
Authority
JP
Japan
Prior art keywords
ultrapure water
membrane
ion exchange
fine particles
bed ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018019853A
Other languages
Japanese (ja)
Other versions
JP2019136628A (en
Inventor
みどり 宮地
洋一 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018019853A priority Critical patent/JP7143595B2/en
Priority to CN201880060242.6A priority patent/CN111108069A/en
Priority to PCT/JP2018/034111 priority patent/WO2019155672A1/en
Priority to KR1020207007350A priority patent/KR102613112B1/en
Priority to TW107132793A priority patent/TW201936513A/en
Publication of JP2019136628A publication Critical patent/JP2019136628A/en
Application granted granted Critical
Publication of JP7143595B2 publication Critical patent/JP7143595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、超純水製造システムの微粒子管理方法に関し、特に超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法に関する。 TECHNICAL FIELD The present invention relates to a fine particle control method for an ultrapure water production system, and more particularly to a fine particle control method for an ultrapure water production system capable of maintaining a reduced number of fine particles in ultrapure water.

電子産業分野で使用される超純水の製造装置は大きく分けて、工業用水や水道水など通常の水から濁質等を除去する前処理装置と、前処理装置の処理水を精製して大部分の不純物を除去した純水を製造する一次純水装置と、一次純水をさらに高度に精製して不純物をほぼ完全に除去した超純水を製造する二次純水装置(サブシステム)とからなる。 Ultrapure water production equipment used in the electronics industry can be broadly divided into pretreatment equipment that removes turbidity from ordinary water such as industrial water and tap water, and A primary pure water system that produces pure water from which impurities are partially removed, and a secondary pure water system (subsystem) that produces ultrapure water by further purifying the primary pure water to remove impurities almost completely. consists of

このうち、二次純水装置(サブシステム)は、基本的には有機物を分解する低圧紫外線(UV)照射酸化装置、イオン性不純物を吸着除去するイオン交換樹脂を充填した非再生型の混床式イオン交換装置及び微粒子を完全に除去するための限外濾過膜(UF膜)分離装置を基本構成として備え、水の純度をより一層高めて超純水にする。ここで、低圧UV照射酸化装置では、低圧UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCOにまで分解する。分解された有機酸及びCOは後段のイオン交換樹脂で除去される。UF膜分離装置では、イオン交換樹脂の流出粒子などの微小粒子が除去される。このように従来は、サブシステムの末端にUF膜等の微粒子除去膜を設置することで、ナノメートルサイズの微粒子除去処理を行っていたが、近年、半導体製品の高性能化、微細化の進展に伴い、微粒子管理が厳しくなっており、例えば、半導体工場ではφ50nm以上の粒子が1個/mL以下に管理値が設定されることも多い。このためサブシステムのUF膜分離装置の出口で超純水中の微粒子数を測定し、管理することが行われている。 Of these, the secondary pure water system (subsystem) is basically a low-pressure ultraviolet (UV) irradiation oxidizer that decomposes organic matter, and a non-regenerative mixed bed filled with ion exchange resin that adsorbs and removes ionic impurities. An ion exchange device and an ultrafiltration membrane (UF membrane) separation device for completely removing fine particles are provided as a basic configuration, and the purity of water is further increased to obtain ultrapure water. Here, in the low-pressure UV irradiation oxidation apparatus, TOC is decomposed into organic acids and further to CO 2 by ultraviolet rays with a wavelength of 185 nm emitted from a low-pressure UV lamp. The decomposed organic acid and CO2 are removed by the subsequent ion exchange resin. UF membrane separators remove fine particles such as ion exchange resin effluent particles. In this way, in the past, nanometer-sized particles were removed by installing a particle removal membrane such as a UF membrane at the end of the subsystem, but in recent years, semiconductor products have become more sophisticated and miniaturized. Accordingly, fine particle control is becoming more stringent. For example, in semiconductor factories, the control value is often set to 1 particle/mL or less for particles with a diameter of 50 nm or more. For this reason, the number of fine particles in the ultrapure water is measured and controlled at the outlet of the UF membrane separator of the subsystem.

このサブシステムの代表的な例を図5に示す。図5において、サブシステム21は、一次純水Wを貯留するためのサブタンク22と、このタンク22に貯留した一次純水Wの供給ライン23の基端部に設けられたポンプ24と、このポンプ24の後段に設けられた熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28とを有する。そして、UF膜分離装置28の出口側にオフラインモニターとしての微粒子計(PC)29が設けられている。 A representative example of this subsystem is shown in FIG. 5, a sub-system 21 includes a sub-tank 22 for storing primary pure water W, a pump 24 provided at the base end of a supply line 23 for the primary pure water W stored in this tank 22, and this pump 24, a heat exchanger 25, a low-pressure UV irradiation oxidation device 26, a non-regenerative mixed-bed ion exchange device 27, and a UF membrane separation device 28. A particle counter (PC) 29 as an off-line monitor is provided on the exit side of the UF membrane separation device 28 .

上述したようなサブシステム21の運転中は、ポンプ24を稼動して、サブタンク22内の一次純水Wを熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28に順次通水し、得られた超純水W1をユースポイントPOUに送る。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン23Aを経てサブタンク22に返送され、再度処理される。 During operation of the sub-system 21 as described above, the pump 24 is operated to transfer the primary pure water W in the sub-tank 22 to the heat exchanger 25, the low-pressure UV irradiation oxidizer 26, and the non-regenerative mixed-bed ion exchanger 27. and the UF membrane separator 28, and the obtained ultrapure water W1 is sent to the point of use POU. On the other hand, the ultrapure water W1 not used at the point of use POU is returned to the sub-tank 22 via the circulation line 23A and processed again.

従来の図5に示すようなサブシステム21では、超純水W1中の微粒子数をUF膜分離装置28の出口側の微粒子計29により管理する一方、非再生型混床式イオン交換装置27は、その出口側のイオン負荷を導電率計や比抵抗計などにより計測し、これが所定の値よりも大きくなったら定期的に交換していた。しかしながら、このような管理方法によっても超純水W1中に微粒子がリークし、超純水W1中の微粒子数を低減化した状態に維持することができないことがある、という問題点があった。 In the conventional subsystem 21 as shown in FIG. 5, the number of fine particles in the ultrapure water W1 is controlled by the fine particle counter 29 on the outlet side of the UF membrane separation device 28, while the non-regenerative mixed bed ion exchange device 27 , the ion load on the outlet side is measured by a conductivity meter, a resistivity meter, etc., and if this exceeds a predetermined value, it is replaced periodically. However, even with such a management method, there is a problem that fine particles may leak into the ultrapure water W1, and the number of fine particles in the ultrapure water W1 may not be maintained in a reduced state.

本発明は上記問題点に鑑みてなされたものであり、超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a fine particle control method for an ultrapure water production system capable of maintaining a reduced number of fine particles in ultrapure water. do.

上記目的に鑑み本発明は、一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、超純水製造システムの微粒子管理方法を提供する(発明1)。 In view of the above object, the present invention provides fine particles for an ultrapure water production system in which primary pure water produced in a primary pure water system is treated by a subsystem comprising a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order. In the management method, the number of fine particles in the ultrapure water at the outlet of the fine particle removal membrane device is monitored by measuring the number of fine particles with a fine particle number measuring means, and the fine particles in the treated water of the non-regenerative mixed bed ion exchange device number is measured by a fine particle number measuring means, and when the number of fine particles in the treated water of the non-regenerative mixed bed ion exchange device exceeds a predetermined value, the non-regenerative mixed bed ion exchange device is replaced, ultra-pure A fine particle control method for a water production system is provided (Invention 1).

かかる発明(発明1)によれば、非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して管理することにより、微粒子除去膜装置の出口の超純水中の微粒子数を安定して低減化することが可能となる。これは以下のような理由によると推測される。すなわち、超純水中の微粒子を微粒子除去膜装置の出口側のみで管理した場合、微粒子除去膜装置から微粒子がリークした時点で微粒子の増加を検知することができるが、これでは基準値よりも微粒子数が増加した超純水が供給されるのを未然に防止することができない。そこで、本発明者らが非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置で処理して得られる超純水中の微粒子数の関連性を調査した結果、非再生型混床式イオン交換装置の処理水の微粒子数が増加すると、微粒子除去膜装置の出口の超純水に微粒子がリークしやすいことがわかった。そこで、この非再生型混床式イオン交換装置の処理水の微粒子の増加を管理するとともに、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、得られる超純水中の微粒子数を低減化した状態で安定して供給することができる。 According to this invention (Invention 1), the number of fine particles in the treated water of the non-regenerative mixed-bed ion exchange device is measured and managed by the fine particle number measuring means, whereby the ultrapure water at the outlet of the fine particle removal membrane device It is possible to stably reduce the number of fine particles of It is presumed that this is due to the following reasons. In other words, when fine particles in ultrapure water are controlled only on the outlet side of the fine particle removal membrane device, it is possible to detect an increase in fine particles when they leak from the fine particle removal membrane device. It is not possible to prevent the supply of ultrapure water with an increased number of fine particles. Therefore, the inventors of the present invention investigated the relationship between the number of fine particles in the treated water of the non-regenerative mixed-bed ion exchange device and the number of fine particles in the ultrapure water obtained by treatment with the fine particle removal membrane device. It was found that when the number of fine particles in the treated water of the mixed-bed ion exchange device increases, fine particles tend to leak into the ultrapure water at the outlet of the fine particle removal membrane device. Therefore, by controlling the increase in fine particles in the treated water of the non-regenerative mixed bed ion exchange device and by checking the number of fine particles in the ultrapure water at the outlet of the fine particle removal membrane device, the ultrapure water obtained can be stably supplied in a state in which the number of fine particles is reduced.

上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明2)。また、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明3)。さらに、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明4)。 In the above invention (invention 1), the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidation device, a non-regenerative mixed-bed ion exchange device, and an ultrafiltration membrane (UF membrane) separation device as the fine particle removal membrane device. It is preferable to prepare in this order (Invention 2). Further, in the above invention (Invention 1), the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidation device, a catalyst resin (hydrogen peroxide removal) device, a membrane deaerator, a non-regenerative mixed bed ion exchange device, and It is preferable to provide an ultrafiltration membrane (UF membrane) separation device as the fine particle removal membrane device in this order (Invention 3). Further, in the above invention (Invention 1), the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidation device, a non-regenerative mixed-bed ion exchange device, a membrane degassing device, and an ultrafiltration device as the fine particle removal membrane device. It is preferable to provide the membrane (UF membrane) separation device in this order (Invention 4).

かかる発明(発明2~4)によれば、限外濾過膜(UF膜)分離装置の前段に配置された非再生型混床式イオン交換装置は、ナトリウムや塩素などのイオンに比べてコロイダルシリカなどの微粒子が破過しやすく、この微粒子が限外濾過膜(UF膜)分離装置の破断部分から流出して超純水中の微粒子数の増加をきたすので、非再生型混床式イオン交換装置の処理水の微粒子数を管理して該微粒子数が所定の値を上回ったら、非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。 According to such inventions (inventions 2 to 4), the non-regenerative mixed-bed ion exchange device arranged in the preceding stage of the ultrafiltration membrane (UF membrane) separation device has colloidal silica compared to ions such as sodium and chlorine. Fine particles such as the When the number of fine particles in the treated water of the device is controlled and the number of fine particles exceeds a predetermined value, the non-regenerative mixed bed ion exchange device is replaced, and the number of fine particles in the ultrapure water at the outlet of the fine particle removal membrane device By confirming the above, supply of ultrapure water with an increased number of fine particles can be prevented.

上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水の微粒子数と前記微粒子除去膜装置の出口の超純水中の微粒子数とを1台の微粒子計を切り替えることで計測することが好ましい(発明5)。 In the above inventions (inventions 1 to 4), the particle number measuring means is a particle counter, and It is preferable to measure the number of fine particles inside by switching one fine particle counter (Invention 5).

かかる発明(発明5)によれば、1台の微粒子計で非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数とを計測することができる。 According to this invention (invention 5), one particle counter measures the number of particles in the treated water of the non-regenerative mixed bed ion exchange device and the number of particles in the ultrapure water at the outlet of the particle removal membrane device. be able to.

上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水の微粒子数及び前記微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ計測することが好ましい(発明6)。 In the above inventions (inventions 1 to 4), the means for measuring the number of particles is a particle counter, and the particle counters are provided on the outlet side of the non-regenerative mixed bed ion exchange device and on the outlet side of the particle removal membrane device, respectively. Then, it is preferable to measure the number of fine particles in the treated water of the non-regenerative mixed bed ion exchange device and the number of fine particles in the ultrapure water at the outlet of the fine particle removal membrane device (Invention 6).

かかる発明(発明6)によれば、非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ独立して計測することができる。 According to this invention (invention 6), the number of fine particles in the treated water of the non-regenerative mixed bed ion exchange device and the number of fine particles in the ultrapure water at the outlet of the fine particle removal membrane device can be measured independently. .

本発明は、非再生型混床式イオン交換装置の処理水の微粒子数を計測して、該微粒子数が所定の値を超えたら非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。 In the present invention, the number of fine particles in the treated water of the non-regenerative mixed bed ion exchange device is measured, and when the number of fine particles exceeds a predetermined value, the non-regenerative mixed bed ion exchange device is replaced to remove fine particles. By checking the number of fine particles in the ultrapure water at the outlet of the membrane device, it is possible to prevent supply of ultrapure water with an increased number of fine particles.

本発明の第一の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an ultrapure water production system to which a fine particle control method for an ultrapure water production system according to a first embodiment of the present invention can be applied; 本発明の第二の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。FIG. 2 is a schematic diagram showing an ultrapure water production system to which the method for controlling fine particles in an ultrapure water production system according to a second embodiment of the present invention can be applied; 本発明の第三の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。FIG. 10 is a schematic diagram showing an ultrapure water production system to which a method for controlling fine particles for an ultrapure water production system according to a third embodiment of the present invention can be applied; 本発明の第四の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。FIG. 11 is a schematic diagram showing an ultrapure water production system to which the fine particle control method for an ultrapure water production system according to a fourth embodiment of the present invention can be applied; 従来の超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。FIG. 2 is a schematic diagram showing an ultrapure water production system to which a conventional particle control method for ultrapure water production systems can be applied;

以下、本発明の第一の実施形態による超純水製造システムの微粒子管理方法について図1を参照にして詳細に説明する。 Hereinafter, a fine particle control method for an ultrapure water production system according to a first embodiment of the present invention will be described in detail with reference to FIG.

本実施形態の超純水製造システムの微粒子管理方法を適用可能なサブシステムは、前述した図5に示すものと基本的には同じ構成を有する。すなわち、図1において、サブシテム1は、一次純水Wを貯留するためのサブタンク2と、このサブタンク2に貯留した一次純水Wの供給ライン3の基端部に設けられたポンプ4と、このポンプ4の後段に設けられた熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7及び微粒子除去膜装置としての限外濾過膜(UF膜)分離装置8とを有する。そして、UF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側にそれぞれ切替可能に微粒子数を計測する手段である微粒子計(PC)9が接続されている。この微粒子計9としては、栗田工業社製「K-LAMIC」(商品名)、PMS社製「UDI-50」(商品名)などを用いることができる。 A subsystem to which the fine particle control method of the ultrapure water production system of this embodiment can be applied has basically the same configuration as that shown in FIG. That is, in FIG. 1, a sub-system 1 includes a sub-tank 2 for storing primary pure water W, a pump 4 provided at the proximal end of a supply line 3 for the primary pure water W stored in the sub-tank 2, and A heat exchanger 5 provided after the pump 4, a low-pressure UV irradiation oxidation device 6, a non-regenerative mixed bed ion exchange device 7, and an ultrafiltration membrane (UF membrane) separation device 8 as a fine particle removal membrane device. have. Particle counters (PC) 9, which are means for measuring the number of particles, are connected switchably to the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7, respectively. As the particle counter 9, "K-LAMIC" (trade name) manufactured by Kurita Water Industries Ltd., "UDI-50" (trade name) manufactured by PMS, etc. can be used.

上述したようなサブシステム1の運転時には、ポンプ4を稼動してサブタンク2内の一次純水Wを熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7に順次通水し、非再生型混床式イオン交換装置7の処理水W2をUF膜分離装置8に通水して超純水W1を得る。そして、得られた超純水W1をユースポイントPOUに供給する。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン3Aを経てサブタンク2に返送され、再度処理される。 During the operation of the sub-system 1 as described above, the pump 4 is operated to transfer the primary pure water W in the sub-tank 2 to the heat exchanger 5, the low-pressure UV irradiation oxidizer 6, and the non-regenerative mixed-bed ion exchanger 7 in sequence. The treated water W2 from the non-regenerative mixed-bed ion exchange device 7 is passed through the UF membrane separation device 8 to obtain ultrapure water W1. Then, the obtained ultrapure water W1 is supplied to the point of use POU. On the other hand, the ultrapure water W1 not used at the point of use POU is returned to the sub-tank 2 through the circulation line 3A and processed again.

なお、本実施形態における超純水W1としては、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。 In addition, as the ultrapure water W1 in this embodiment, resistivity: 18.1 MΩ cm or more, fine particles: 1000 / L or less with a particle size of 50 nm or more, viable bacteria: 1 / L or less, TOC (Total Organic Carbon ): 1 μg/L or less Total silicon: 0.1 μg/L or less Metals: 1 ng/L or less Ions: 10 ng/L or less Hydrogen peroxide: 30 μg/L or less Water temperature: 25±2°C is preferred.

次にこのような超純水製造システムの微粒子管理方法について説明する。
[通常時運転]
上述したような超純水の製造工程において、微粒子計9をUF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側とにそれぞれ所定のタイミングで適宜切り替えることで、UF膜分離装置8の出口側の超純水W1の微粒子数と、非再生型混床式イオン交換装置7の処理水W2の微粒子数を測定する。そして、超純水W1の微粒子数が1個/mL以下であり、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mL以下であれば、サブシテム1の運転を継続して、超純水W1をユースポイントPOUへ供給する。
Next, a fine particle control method for such an ultrapure water production system will be described.
[Normal operation]
In the process of producing ultrapure water as described above, by appropriately switching the particle counter 9 between the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7 at a predetermined timing, The number of fine particles in the ultrapure water W1 on the outlet side of the UF membrane separation device 8 and the number of fine particles in the treated water W2 of the non-regenerative mixed-bed ion exchange device 7 are measured. Then, if the number of fine particles in the ultrapure water W1 is 1/mL or less and the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 is 10/mL or less, the sub system 1 is operated. Ultrapure water W1 is continuously supplied to the point of use POU.

[微粒子数管理運転]
一方、オフラインモニターである微粒子計9で計測されたUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mL以下であっても、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、サブシテム1の運転を一旦停止し、非再生型混床式イオン交換装置7を交換する。これによりUF膜分離装置8の出口側の超純水W1の微粒子数を1個/mL以下に保持することができ、微粒子数が基準値を超えた超純水W1がユースポイントPOUへ供給されるのを未然に防止することができる。なお、このような管理を行ってもUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mLを超える場合には、UF膜分離装置8に破断が生じたと判断して、UF膜分離装置8を交換するなどすればよい。
[Particle number control operation]
On the other hand, even if the number of fine particles in the ultrapure water W1 on the outlet side of the UF membrane separation device 8 measured by the fine particle counter 9, which is an offline monitor, is 1/mL or less, the non-regenerative mixed bed ion exchange device 7 When the number of fine particles in the treated water W2 exceeds 10/mL, the operation of the sub-system 1 is temporarily stopped and the non-regenerative mixed bed ion exchanger 7 is replaced. As a result, the number of fine particles in the ultrapure water W1 on the outlet side of the UF membrane separation device 8 can be kept at 1/mL or less, and the ultrapure water W1 with the number of fine particles exceeding the reference value is supplied to the point of use POU. can be prevented from occurring. If the number of fine particles in the ultrapure water W1 on the outlet side of the UF membrane separation device 8 exceeds 1/mL even after such management, it is determined that the UF membrane separation device 8 has broken. , the UF membrane separation device 8 may be replaced.

<作用機構>
このような効果が得られるのは以下のような作用機構による。すなわち、一般にイオン交換装置では、溶解性シリカは非常に除去しやすいのに対し、コロイダルシリカはホウ素よりも非常に除去しにくい(破過しやすい)ことが報告されている(「UPW Micro 2017,UPW IRDS and SEMI update」Slava Libmanら)。そして、このホウ素は、一次純水W中に含まれているナトリウムイオン(Na)、塩素イオン(Cl)あるいは炭酸イオン(HCO )よりも非常に除去しにくい(破過しやすい)。すなわち、コロイダルシリカは、ナトリウムイオン(Na)、塩素イオン(Cl)、炭酸イオン(HCO )よりもはるかに破過しやすいことになる。
<Mechanism of action>
Such an effect is obtained by the following action mechanism. That is, it has been reported that soluble silica is generally very easy to remove in an ion exchange device, whereas colloidal silica is much harder to remove (easy to break through) than boron ("UPW Micro 2017, UPW IRDS and SEMI update, Slava Libman et al.). And this boron is much more difficult to remove than sodium ions (Na + ), chloride ions (Cl ) or carbonate ions (HCO 3 ) contained in the primary pure water W (easy to break through). . That is, colloidal silica is much easier to break through than sodium ions (Na + ), chloride ions (Cl ), and carbonate ions (HCO 3 ).

そこで、本発明者らが検討した結果、非再生型混床式イオン交換装置7の出口側、すなわちUF膜分離装置8の入口側における微粒子数の増加は、主にコロイダルシリカ粒子に起因することがわかった。従来、非再生型混床式イオン交換装置7は、その出口側に導電率計や比抵抗計などのイオン負荷を計測する手段を設けてイオン負荷を計測し、これが所定の値よりも大きくなったら定期的に交換していたが、これではコロイダルシリカの微粒子はUF膜分離装置8に流入してしまう。これに対し本実施形態のように非再生型混床式イオン交換装置7の処理水の微粒子数に視点をおいて管理することで、微粒子がUF膜分離装置8の出口に到達する前に非再生型混床式イオン交換装置7を交換することができるので、UF膜分離装置8の出口における超純水W1の微粒子数の安定化を図ることができる。そして、超純水W1の微粒子数が増加しないことを微粒子計9により計測して確認すればよい。 Therefore, as a result of investigation by the present inventors, it was found that the increase in the number of fine particles on the outlet side of the non-regenerative mixed bed ion exchange device 7, that is, on the inlet side of the UF membrane separation device 8, is mainly caused by colloidal silica particles. I found out. Conventionally, the non-regenerative mixed-bed ion exchange apparatus 7 measures the ion load by providing a means for measuring the ion load such as a conductivity meter or a resistivity meter on the outlet side, and measures the ion load when it exceeds a predetermined value. However, the colloidal silica microparticles would flow into the UF membrane separation device 8. On the other hand, by controlling the number of fine particles in the treated water of the non-regenerative mixed bed ion exchange device 7 as in the present embodiment, the fine particles are prevented from reaching the outlet of the UF membrane separation device 8 by Since the regenerative mixed-bed ion exchange device 7 can be replaced, the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separation device 8 can be stabilized. Then, it can be confirmed by measuring with the particle counter 9 that the number of particles in the ultrapure water W1 does not increase.

以上、本発明の第一の実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、図2に示すようにUF膜分離装置8の出口側に第一の微粒子計9Aを設けるとともに非再生型混床式イオン交換装置7の出口側に第二の微粒子計9Bを設けて、非再生型混床式イオン交換装置7の処理水W2の微粒子数と、UF膜分離装置8の出口の超純水W1の微粒子数とをそれぞれ独立して計測する構成としても良い。また、微粒子数計測手段は、微粒子計9などはオフラインモニターでなく、遠心ろ過法を利用したオンラインモニターとしても良い。 As described above, the first embodiment of the present invention has been described with reference to the attached drawings, but the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, as shown in FIG. 2, a first particle counter 9A is provided on the outlet side of the UF membrane separation device 8 and a second particle counter 9B is provided on the outlet side of the non-regenerative mixed bed ion exchange device 7, The number of fine particles in the treated water W2 of the non-regenerative mixed-bed ion exchange device 7 and the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separation device 8 may be measured independently. Further, the particle number measuring means may be an online monitor using a centrifugal filtration method instead of an offline monitor such as the particle counter 9 .

また、サブシステム1としては、前述した第一及び第二の実施形態のものに限らず種々のサブシステムに適用可能である。例えば、図3に示すように低圧紫外線(UV)照射酸化装置6の後段に白金族金属などを担持したイオン交換樹脂を充填した触媒樹脂(過酸化水素除去)装置10、膜式脱気装置11を設け、その後段に非再生型混床式イオン交換装置7及び限外濾過膜(UF膜)分離装置8をこの順に備えるものにも好適に適用可能である。さらに、サブシステム1として、例えば、図4に示すように非再生型混床式イオン交換装置7と限外濾過膜(UF膜)分離装置8の間に膜式脱気装置12を設けたものにも好適に適用可能である。この場合、微粒子計9などの微粒子数計測手段は、非再生型混床式イオン交換装置7の出口側でUF膜分離装置8より前であれば、膜式脱気装置12などの他のエレメントが介在していてもよく、その場合、他のエレメントの出口側で微粒子数を計測してもよいし、非再生型混床式イオン交換装置7の直後で計測してもよい。 Also, the subsystem 1 is not limited to those of the first and second embodiments described above, and can be applied to various subsystems. For example, as shown in FIG. 3, a catalyst resin (hydrogen peroxide removal) device 10 and a membrane degassing device 11 are filled with an ion-exchange resin carrying platinum group metal or the like in the latter stage of a low-pressure ultraviolet (UV) irradiation oxidation device 6. is provided, followed by a non-regenerative mixed bed ion exchange device 7 and an ultrafiltration membrane (UF membrane) separation device 8 in this order. Furthermore, as the subsystem 1, for example, as shown in FIG. It is also suitably applicable to In this case, if the means for measuring the number of fine particles such as the fine particle counter 9 is on the exit side of the non-regenerative mixed bed ion exchange device 7 and before the UF membrane separation device 8, other elements such as the membrane deaerator 12 may intervene, in which case the number of fine particles may be measured on the exit side of another element, or may be measured immediately after the non-regenerative mixed bed ion exchange device 7 .

以下の具体的実施例により本発明をさらに詳細に説明する。 The following specific examples further illustrate the invention.

[実験例1]
図1に示す超純水製造システムにより、市水を原水として超純水の製造を行った。なお、サブシステム1を構成する低圧UV照射酸化装置6としては日本フォトサイエンス社製品を、非再生型混床式イオン交換装置7としては栗田工業社製「KR-FM」を、UF膜分離装置8としては栗田工業社製「KU-1510-HP-H」を、微粒子計9としては栗田工業社製「K-LAMIC」をそれぞれ使用した。
[Experimental example 1]
Ultrapure water was produced using city water as raw water by the ultrapure water production system shown in FIG. The low-pressure UV irradiation oxidation device 6 constituting the subsystem 1 is a product of Nippon Photo Science Co., Ltd., the non-regenerative mixed bed ion exchange device 7 is Kurita Water Industries Ltd.'s "KR-FM", and the UF membrane separation device. As 8, "KU-1510-HP-H" manufactured by Kurita Water Industries Ltd. was used, and as particle counter 9, "K-LAMIC" manufactured by Kurita Water Industries Ltd. was used.

上記超純水の製造システムでの超純水の製造工程において、非再生型混床式イオン交換装置7の処理水W2及びUF膜分離装置8の出口の超純水W1の微粒子数を監視し、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が1個/mLを超えることはなかった。これはUF膜分離装置8への流入する処理水W2中のコロイダルシリカなどに起因する微粒子数を抑制することができるためであると考えられる。 In the ultrapure water production process in the ultrapure water production system, the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 and the ultrapure water W1 at the outlet of the UF membrane separation device 8 is monitored. , When the number of fine particles in the treated water W2 of the non-regenerative mixed-bed ion exchange device 7 exceeds 10 / mL, the operation of replacing the non-regenerative mixed-bed ion exchange device 7 is repeated. As a result, the UF membrane separation device The number of fine particles in the ultrapure water W1 at the outlet of 8 did not exceed 1/mL. It is considered that this is because the number of fine particles caused by colloidal silica or the like in the treated water W2 flowing into the UF membrane separation device 8 can be suppressed.

[比較例1]
実施例1において、非再生型混床式イオン交換装置7の処理水W2の微粒子数を計測することなく、比抵抗計により比抵抗値を測定し、この比抵抗値からイオン負荷を判断し、イオン負荷が所定の値を超えたら非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が時間の経過とともに1個/mLを超える傾向を示した。これはUF膜分離装置8の経時劣化により部分的に破断が生じ、コロイダルシリカがリークしたためであると考えられる。
[Comparative Example 1]
In Example 1, without measuring the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7, the specific resistance value was measured with a resistivity meter, and the ion load was determined from this specific resistance value, As a result of repeating the work of replacing the non-regenerative mixed-bed ion exchange device 7 when the ion load exceeds a predetermined value, the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separation device 8 decreased to 1 with the passage of time. /mL. It is considered that this is because the UF membrane separation device 8 was partially broken due to deterioration over time, and colloidal silica leaked.

1 サブシテム
2 サブタンク
3 供給ライン
3A 循環ライン
4 ポンプ
5 熱交換器
6 低圧紫外線(UV)照射酸化装置
7 非再生型混床式イオン交換装置
8 限外濾過膜(UF膜)分離装置(微粒子除去膜装置)
9,9A,9B 微粒子計(微粒子数計測手段)
POU ユースポイント
W 一次純水
W1 超純水
W2 非再生型混床式イオン交換装置の処理水
1 Subsystem 2 Subtank 3 Supply line 3A Circulation line 4 Pump 5 Heat exchanger 6 Low-pressure ultraviolet (UV) irradiation oxidizer 7 Non-regenerative mixed-bed ion exchange device 8 Ultrafiltration membrane (UF membrane) separator (fine particle removal membrane Device)
9, 9A, 9B particle counter (fine particle number measuring means)
POU Point of use W Primary pure water W1 Ultrapure water W2 Treated water from non-regenerative mixed-bed ion exchange equipment

Claims (6)

一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、
前記微粒子除去膜装置の出口の超純水W1中の微粒子数と、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数とを微粒子数計測手段により計測して、前記超純水W1中の微粒子数が1個/mL以下でありかつ、前記処理水W2中の微粒子数が10個/mLを超えたら、前記サブシテムの運転を一旦停止し、前記非再生型混床式イオン交換装置を交換する、
超純水製造システムの微粒子管理方法。
A fine particle management method for an ultrapure water production system in which primary pure water produced in a primary pure water system is treated by a subsystem comprising a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order, comprising:
The number of particles in the ultrapure water W1 at the outlet of the particle removal membrane device and the number of particles in the treated water W2 of the non-regenerative mixed bed ion exchange device are measured by a particle number measuring means, and the ultrapure When the number of fine particles in the water W1 is 1/mL or less and the number of fine particles in the treated water W2 exceeds 10/mL, the operation of the subsystem is temporarily stopped, and the non-regenerative mixing replace the bed ion exchanger,
Particle control method for ultrapure water production system.
前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 2. A system according to claim 1, wherein said subsystem comprises a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed bed ion exchange device, and an ultrafiltration membrane (UF membrane) separation device as said particulate removal membrane device in this order. fine particle control method for ultrapure water production system. 前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 The subsystem includes a low-pressure ultraviolet (UV) irradiation oxidizer, a catalyst resin (hydrogen peroxide removal) device, a membrane deaerator, a non-regenerative mixed bed ion exchange device, and an ultrafiltration membrane as the fine particle removal membrane device. 2. The fine particle control method for an ultrapure water production system according to claim 1, wherein the (UF membrane) separation devices are provided in this order. 前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 The subsystem comprises a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed-bed ion exchange device, a membrane deaerator, and an ultrafiltration membrane (UF membrane) separation device as the particulate removal membrane device in this order. , The fine particle control method for an ultrapure water production system according to claim 1. 前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数と前記微粒子除去膜装置の出口の超純水W1中の微粒子数とを1台の微粒子計を切り替えることで計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。 The means for measuring the number of fine particles is a fine particle counter, and the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device and the number of fine particles in the ultrapure water W1 at the outlet of the fine particle removal membrane device are counted by one unit. 5. The method for managing fine particles in an ultrapure water production system according to any one of claims 1 to 4, wherein the measurement is performed by switching the fine particle meter of the. 前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数及び前記微粒子除去膜装置の出口の超純水W1中の微粒子数をそれぞれ計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。 The means for counting the number of particles is a particle counter, and a particle counter is provided on each of the exit side of the non-regenerative mixed bed ion exchange device and the exit side of the particulate removal membrane device. The ultrapure water production system according to any one of claims 1 to 4, wherein the number of particles in the treated water W2 of the device and the number of particles in the ultrapure water W1 at the outlet of the particle removal membrane device are respectively measured. Particulate control method.
JP2018019853A 2018-02-07 2018-02-07 Particle control method for ultrapure water production system Active JP7143595B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018019853A JP7143595B2 (en) 2018-02-07 2018-02-07 Particle control method for ultrapure water production system
CN201880060242.6A CN111108069A (en) 2018-02-07 2018-09-14 Particle management method for ultrapure water production system
PCT/JP2018/034111 WO2019155672A1 (en) 2018-02-07 2018-09-14 Fine particle management method for ultrapure water production system
KR1020207007350A KR102613112B1 (en) 2018-02-07 2018-09-14 How to manage particulates in ultrapure water manufacturing systems
TW107132793A TW201936513A (en) 2018-02-07 2018-09-18 Fine particle management method for ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019853A JP7143595B2 (en) 2018-02-07 2018-02-07 Particle control method for ultrapure water production system

Publications (2)

Publication Number Publication Date
JP2019136628A JP2019136628A (en) 2019-08-22
JP7143595B2 true JP7143595B2 (en) 2022-09-29

Family

ID=67548625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019853A Active JP7143595B2 (en) 2018-02-07 2018-02-07 Particle control method for ultrapure water production system

Country Status (5)

Country Link
JP (1) JP7143595B2 (en)
KR (1) KR102613112B1 (en)
CN (1) CN111108069A (en)
TW (1) TW201936513A (en)
WO (1) WO2019155672A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496969B2 (en) 2020-07-20 2024-06-10 オルガノ株式会社 Operation and management method for ultrapure water production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069460A (en) 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2010227886A (en) 2009-03-27 2010-10-14 Kurita Water Ind Ltd Apparatus for producing pure water
WO2015050125A1 (en) 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
WO2017164361A1 (en) 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929251A (en) * 1995-07-17 1997-02-04 Kurita Water Ind Ltd Ultrapure water preparing apparatus
JP4406912B2 (en) * 2003-01-23 2010-02-03 栗田工業株式会社 Method for producing ultrapure water and ion exchange resin for producing ultrapure water used therefor
US20080245737A1 (en) * 2007-04-03 2008-10-09 Siemens Water Technologies Corp. Method and system for providing ultrapure water
JP2013215679A (en) * 2012-04-09 2013-10-24 Nomura Micro Sci Co Ltd Ultrapure water production apparatus
JP2017200683A (en) * 2016-05-06 2017-11-09 野村マイクロ・サイエンス株式会社 Start-up method of ultra-pure water manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069460A (en) 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2010227886A (en) 2009-03-27 2010-10-14 Kurita Water Ind Ltd Apparatus for producing pure water
WO2015050125A1 (en) 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
WO2017164361A1 (en) 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Also Published As

Publication number Publication date
WO2019155672A1 (en) 2019-08-15
TW201936513A (en) 2019-09-16
KR20200117972A (en) 2020-10-14
CN111108069A (en) 2020-05-05
JP2019136628A (en) 2019-08-22
KR102613112B1 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US10961144B2 (en) Method and apparatus for providing ultrapure water
JP5081690B2 (en) Production method of ultra pure water
JP2013215679A (en) Ultrapure water production apparatus
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP7143595B2 (en) Particle control method for ultrapure water production system
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP6722552B2 (en) Non-regenerative ion exchange resin cleaning device and ultrapure water production system
JP5962135B2 (en) Ultrapure water production equipment
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
JP2018122274A (en) Water treatment system, operation method therefor, and protection device
JP2018001072A (en) Cleaning method of electric demineralizer
JP2009112944A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2017056384A (en) Operational method of electric deionization apparatus
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
WO2022113431A1 (en) Ultrapure water production system and ultrapure water production method
JP3966482B2 (en) Method for adjusting specific resistance of ultrapure water and pure water production apparatus using the same
JP2005288300A (en) Ultrapure water production apparatus
WO2017145419A1 (en) Cleaning method for ultrapure water production system
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
WO2020241476A1 (en) Ultrapure water production system and ultrapure water production method
JP2020116507A (en) Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
JP2003010849A (en) Secondary pure water making apparatus
JP6205865B2 (en) Operation management method for pure water production equipment
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus
JP5895962B2 (en) Method for preventing boron contamination of ion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220624

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7143595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150