WO2019155672A1 - Fine particle management method for ultrapure water production system - Google Patents

Fine particle management method for ultrapure water production system Download PDF

Info

Publication number
WO2019155672A1
WO2019155672A1 PCT/JP2018/034111 JP2018034111W WO2019155672A1 WO 2019155672 A1 WO2019155672 A1 WO 2019155672A1 JP 2018034111 W JP2018034111 W JP 2018034111W WO 2019155672 A1 WO2019155672 A1 WO 2019155672A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrapure water
membrane
fine particle
fine particles
bed ion
Prior art date
Application number
PCT/JP2018/034111
Other languages
French (fr)
Japanese (ja)
Inventor
みどり 宮地
洋一 宮▲崎▼
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201880060242.6A priority Critical patent/CN111108069A/en
Priority to KR1020207007350A priority patent/KR102613112B1/en
Publication of WO2019155672A1 publication Critical patent/WO2019155672A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to a particle management method for an ultrapure water production system, and more particularly, to a particle management method for an ultrapure water production system that can maintain a reduced number of particles in ultrapure water.
  • the ultrapure water production equipment used in the electronics industry is largely divided into a pretreatment device that removes turbidity from normal water such as industrial water and tap water, and a large amount of purified water from the pretreatment device.
  • a primary pure water device for producing pure water from which impurities are partially removed and a secondary pure water device (subsystem) for producing ultrapure water from which the primary pure water has been further refined to remove impurities completely. Consists of.
  • the secondary pure water device is basically a low-pressure ultraviolet (UV) irradiation oxidizer that decomposes organic matter, and a non-regenerative mixed bed filled with an ion exchange resin that adsorbs and removes ionic impurities.
  • a basic ion exchange device and an ultrafiltration membrane (UF membrane) separation device for completely removing fine particles are provided as basic components, and the purity of water is further increased to ultrapure water.
  • TOC is decomposed into an organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low pressure UV lamp.
  • the decomposed organic acid and CO 2 are removed by a subsequent ion exchange resin.
  • fine particles such as outflow particles of the ion exchange resin are removed.
  • nanometer-size fine particle removal processing has been performed by installing a fine particle removal film such as a UF membrane at the end of the subsystem.
  • semiconductor products have become more sophisticated and refined. Accordingly, the management of fine particles is becoming stricter. For example, in a semiconductor factory, the control value is often set to 1 particle / mL or less of particles having a diameter of 50 nm or more. For this reason, the number of fine particles in ultrapure water is measured and managed at the outlet of the UF membrane separator of the subsystem.
  • the sub-system 21 includes a sub tank 22 for storing the primary pure water W, a pump 24 provided at the base end portion of the supply line 23 of the primary pure water W stored in the tank 22, and the pump 24, a heat exchanger 25, a low-pressure UV irradiation oxidizer 26, a non-regenerative mixed bed ion exchanger 27, and a UF membrane separator 28 provided in the subsequent stage.
  • a fine particle meter (PC) 29 as an off-line monitor is provided on the outlet side of the UF membrane separation device 28.
  • PC fine particle meter
  • the pump 24 is operated, and the primary pure water W in the sub-tank 22 is converted into the heat exchanger 25, the low-pressure UV irradiation oxidizer 26, and the non-regenerative mixed bed ion exchanger 27. And the UF membrane separator 28 are sequentially passed, and the obtained ultrapure water W1 is sent to the use point POU. On the other hand, the ultrapure water W1 that has not been used at the use point POU is returned to the sub tank 22 via the circulation line 23A and processed again.
  • the number of fine particles in the ultrapure water W1 is managed by the fine particle meter 29 on the outlet side of the UF membrane separation device 28, while the non-regenerative mixed bed ion exchange device 27
  • the ion load on the outlet side was measured with a conductivity meter, a specific resistance meter or the like, and was periodically exchanged when it became larger than a predetermined value.
  • a conductivity meter, a specific resistance meter or the like was measured with a conductivity meter, a specific resistance meter or the like, and was periodically exchanged when it became larger than a predetermined value.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for managing fine particles of an ultrapure water production system capable of maintaining a state in which the number of fine particles in ultrapure water is reduced. To do.
  • the present invention provides fine particles of an ultrapure water production system in which primary pure water produced by a primary pure water system is treated by a subsystem having a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order.
  • a management method wherein the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane device is monitored by measuring the number of fine particles, and the treated water fine particles of the non-regenerative mixed bed ion exchange device A non-regenerative mixed bed ion exchanger is replaced when the number of treated water particles in the non-regenerative mixed bed ion exchanger exceeds a predetermined value.
  • a fine particle management method for a water production system is provided (Invention 1).
  • invention 1 by measuring and managing the number of fine particles of the treated water of the non-regenerative type mixed bed ion exchange device by the fine particle number measuring means, ultrapure water at the outlet of the fine particle removal membrane device It is possible to stably reduce the number of fine particles. This is presumed to be due to the following reasons. That is, when the fine particles in ultrapure water are managed only on the outlet side of the fine particle removal membrane device, the increase in fine particles can be detected when the fine particle leaks from the fine particle removal membrane device. The supply of ultrapure water having an increased number of fine particles cannot be prevented in advance.
  • the present inventors It was found that when the number of treated water particles in the mixed bed type ion exchanger increased, the particles easily leaked into the ultrapure water at the outlet of the particle removing membrane device. Therefore, by controlling the increase in the treated water particulates in this non-regenerative mixed bed ion exchange device, and confirming the number of particulates in the ultrapure water at the outlet of the particulate removal membrane device, Can be stably supplied with the number of fine particles reduced.
  • the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed bed ion exchanger, and an ultrafiltration membrane (UF membrane) separator as the particulate removal membrane device. It is preferable to prepare in this order (Invention 2).
  • the subsystem is a low-pressure ultraviolet (UV) irradiation oxidizer, a catalyst resin (hydrogen peroxide removal) device, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and It is preferable to provide an ultrafiltration membrane (UF membrane) separation device as the fine particle removal membrane device in this order (Invention 3).
  • the said subsystem is ultrafiltration as a low-pressure ultraviolet-ray (UV) irradiation oxidation apparatus, a non-regenerative mixed bed type ion exchange apparatus, a membrane-type deaeration apparatus, and the said fine particle removal membrane apparatus. It is preferable to provide a membrane (UF membrane) separation device in this order (Invention 4).
  • the non-regenerative mixed bed type ion exchange device arranged in the front stage of the ultrafiltration membrane (UF membrane) separator is colloidal silica compared to ions such as sodium and chlorine. And so on, and the fine particles flow out from the ruptured part of the ultrafiltration membrane (UF membrane) separator and increase the number of fine particles in ultrapure water.
  • the non-regenerative mixed bed ion exchanger is replaced, and the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane apparatus
  • the particle number measuring means is a particle meter, and the number of treated water particles in the non-regenerative mixed bed ion exchanger and the ultrapure water at the outlet of the particle removal membrane device It is preferable to measure the number of particles inside by switching one particle meter (Invention 5).
  • the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removal membrane device are measured with one particle meter. be able to.
  • the fine particle number measuring means is a fine particle meter, and a fine particle meter is provided on each of the outlet side of the non-regenerative mixed bed ion exchanger and the outlet side of the fine particle removal membrane device.
  • a fine particle meter is provided on each of the outlet side of the non-regenerative mixed bed ion exchanger and the outlet side of the fine particle removal membrane device.
  • the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removing membrane device can be measured independently.
  • the present invention measures the number of fine particles of treated water in a non-regenerative type mixed bed type ion exchange device, and when the number of fine particles exceeds a predetermined value, replaces the non-regenerative type mixed bed type ion exchange device to remove fine particles.
  • the subsystem to which the particulate management method of the ultrapure water production system of the present embodiment can be applied has basically the same configuration as that shown in FIG. That is, in FIG. 1, the sub-system 1 includes a sub-tank 2 for storing the primary pure water W, a pump 4 provided at the base end portion of the supply line 3 of the primary pure water W stored in the sub-tank 2, A heat exchanger 5, a low-pressure UV irradiation oxidizer 6, a non-regenerative mixed bed ion exchanger 7, and an ultrafiltration membrane (UF membrane) separator 8 as a fine particle removal membrane device provided at the subsequent stage of the pump 4.
  • UF membrane ultrafiltration membrane
  • a fine particle meter (PC) 9 is connected to the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7 to measure the number of fine particles in a switchable manner.
  • the fine particle counter 9 “K-LAMIC” (trade name) manufactured by Kurita Kogyo Co., Ltd., “UDI-50” (trade name) manufactured by PMS, etc. can be used.
  • the pump 4 is operated and the primary pure water W in the sub-tank 2 is sequentially transferred to the heat exchanger 5, the low-pressure UV irradiation oxidizer 6, and the non-regenerative mixed bed ion exchanger 7.
  • Water is passed through and the treated water W2 of the non-regenerative mixed bed ion exchange device 7 is passed through the UF membrane separation device 8 to obtain ultrapure water W1.
  • the obtained ultrapure water W1 is supplied to the use point POU.
  • the ultrapure water W1 that has not been used at the use point POU is returned to the sub tank 2 via the circulation line 3A and is processed again.
  • ultrapure water W1 in the present embodiment resistivity: 18.1 M ⁇ ⁇ cm or more, fine particles: particle size of 50 nm or more and 1000 / L or less, viable bacteria: 1 / L or less, TOC (Total Organic Carbon ): 1 ⁇ g / L or less, Total silicon: 0.1 ⁇ g / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less, Hydrogen peroxide: 30 ⁇ g / L or less, Water temperature: 25 ⁇ 2 ° C. Is preferred.
  • the fine particle counter 9 is appropriately switched between the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7 at predetermined timings, The number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separation device 8 and the number of fine particles of the treated water W2 of the non-regenerative mixed bed ion exchange device 7 are measured.
  • the operation of the sub-system 1 is performed. Continue to supply ultrapure water W1 to the use point POU.
  • the number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separation device 8 can be maintained at 1 / mL or less, and the ultrapure water W1 with the number of fine particles exceeding the reference value is supplied to the use point POU. Can be prevented in advance. Even if such management is performed, if the number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separator 8 exceeds 1 / mL, it is determined that the UF membrane separator 8 has been broken. The UF membrane separation device 8 may be replaced.
  • the increase in the number of fine particles on the outlet side of the non-regenerative mixed bed ion exchange device 7, that is, the inlet side of the UF membrane separation device 8 is mainly caused by colloidal silica particles.
  • the non-regenerative mixed bed ion exchange apparatus 7 is provided with means for measuring an ion load such as a conductivity meter and a specific resistance meter on the outlet side thereof to measure the ion load, which becomes larger than a predetermined value.
  • the colloidal silica particles flow into the UF membrane separation device 8.
  • the non-regenerative mixed bed ion exchange device 7 by controlling the number of treated water fine particles in the non-regenerative mixed bed ion exchange device 7 as in the present embodiment, it is possible to control the fine particles before they reach the outlet of the UF membrane separation device 8. Since the regenerative mixed bed type ion exchange device 7 can be exchanged, the number of fine particles of the ultrapure water W1 at the outlet of the UF membrane separation device 8 can be stabilized. Then, it may be confirmed by measuring with the fine particle meter 9 that the number of fine particles of the ultrapure water W1 does not increase.
  • the first particle counter 9A is provided on the outlet side of the UF membrane separation device 8 and the second particle counter 9B is provided on the outlet side of the non-regenerative mixed bed ion exchanger 7.
  • a configuration may be employed in which the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 and the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separation device 8 are independently measured.
  • the fine particle counter 9 and the like may be an online monitor using a centrifugal filtration method instead of an offline monitor.
  • the subsystem 1 is not limited to those of the first and second embodiments described above, and can be applied to various subsystems.
  • a non-regenerative mixed bed ion exchange device 7 and an ultrafiltration membrane (UF membrane) separation device 8 in this order can be suitably applied.
  • the subsystem 1 for example, as shown in FIG.
  • a membrane deaerator 12 is provided between a non-regenerative mixed bed ion exchanger 7 and an ultrafiltration membrane (UF membrane) separator 8 It can be suitably applied to.
  • the particle number measuring means such as the particle counter 9 is in front of the UF membrane separation device 8 on the outlet side of the non-regenerative mixed bed ion exchange device 7, other elements such as the membrane deaeration device 12 are used. In such a case, the number of fine particles may be measured at the outlet side of another element, or may be measured immediately after the non-regenerative mixed bed ion exchange device 7.
  • Example 1 The ultrapure water production system shown in FIG. 1 was used to produce ultrapure water using city water as raw water.
  • the low pressure UV irradiation oxidizer 6 constituting the subsystem 1 is a product of Japan Photoscience
  • the non-regenerative mixed bed ion exchanger 7 is “KR-FM” manufactured by Kurita Kogyo Co., Ltd.
  • a UF membrane separator “KU-1510-HP-H” manufactured by Kurita Kogyo Co., Ltd. was used as 8
  • K-LAMIC manufactured by Kurita Kogyo Co., Ltd. was used as the fine particle counter 9.
  • the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 and the ultrapure water W1 at the outlet of the UF membrane separation device 8 is monitored.
  • the number of fine particles of the treated water W2 of the non-regenerative type mixed bed ion exchanger 7 exceeds 10 / mL
  • the result of repeating the operation of replacing the non-regenerative type mixed bed ion exchanger 7 is a result of the UF membrane separation device.
  • the number of fine particles of the ultrapure water W1 at the outlet of 8 did not exceed 1 / mL. This is considered to be because the number of fine particles caused by colloidal silica or the like in the treated water W2 flowing into the UF membrane separation device 8 can be suppressed.
  • Example 1 without measuring the number of fine particles of the treated water W2 of the non-regenerative mixed-bed ion exchanger 7, the specific resistance value is measured by a specific resistance meter, and the ion load is determined from the specific resistance value.
  • the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separator 8 is one over time. The tendency which exceeded / mL was shown. This is presumably because the UF membrane separation device 8 was partially broken due to deterioration with time and colloidal silica leaked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A sub-system 1 comprising: a sub-tank 2 for storing primary pure water W; a pump 4 provided at a base end portion of a supply line 3 for the primary pure water W stored in the tank 2; a heat exchanger 5 provided in the subsequent stage of the pump 4; a low-pressure ultraviolet (UV) irradiation oxidation device 6; a non-regenerative mixed-bed ion exchange device 7; and an ultrafiltration membrane (UF membrane) separation device 8 as a fine particle removal membrane device. In addition, a fine particle counter 9 which is a means for counting the number of fine particles is provided so as to be switchable between the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed-bed ion exchange device 7. This fine particle management method for an ultrapure water production system can maintain the number of fine particles in ultrapure water to be reduced.

Description

超純水製造システムの微粒子管理方法Particle management method for ultrapure water production system
 本発明は、超純水製造システムの微粒子管理方法に関し、特に超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法に関する。 The present invention relates to a particle management method for an ultrapure water production system, and more particularly, to a particle management method for an ultrapure water production system that can maintain a reduced number of particles in ultrapure water.
 電子産業分野で使用される超純水の製造装置は大きく分けて、工業用水や水道水など通常の水から濁質等を除去する前処理装置と、前処理装置の処理水を精製して大部分の不純物を除去した純水を製造する一次純水装置と、一次純水をさらに高度に精製して不純物をほぼ完全に除去した超純水を製造する二次純水装置(サブシステム)とからなる。 The ultrapure water production equipment used in the electronics industry is largely divided into a pretreatment device that removes turbidity from normal water such as industrial water and tap water, and a large amount of purified water from the pretreatment device. A primary pure water device for producing pure water from which impurities are partially removed, and a secondary pure water device (subsystem) for producing ultrapure water from which the primary pure water has been further refined to remove impurities completely. Consists of.
 このうち、二次純水装置(サブシステム)は、基本的には有機物を分解する低圧紫外線(UV)照射酸化装置、イオン性不純物を吸着除去するイオン交換樹脂を充填した非再生型の混床式イオン交換装置及び微粒子を完全に除去するための限外濾過膜(UF膜)分離装置を基本構成として備え、水の純度をより一層高めて超純水にする。ここで、低圧UV照射酸化装置では、低圧UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCOにまで分解する。分解された有機酸及びCOは後段のイオン交換樹脂で除去される。UF膜分離装置では、イオン交換樹脂の流出粒子などの微小粒子が除去される。このように従来は、サブシステムの末端にUF膜等の微粒子除去膜を設置することで、ナノメートルサイズの微粒子除去処理を行っていたが、近年、半導体製品の高性能化、微細化の進展に伴い、微粒子管理が厳しくなっており、例えば、半導体工場ではφ50nm以上の粒子が1個/mL以下に管理値が設定されることも多い。このためサブシステムのUF膜分離装置の出口で超純水中の微粒子数を測定し、管理することが行われている。 Of these, the secondary pure water device (subsystem) is basically a low-pressure ultraviolet (UV) irradiation oxidizer that decomposes organic matter, and a non-regenerative mixed bed filled with an ion exchange resin that adsorbs and removes ionic impurities. A basic ion exchange device and an ultrafiltration membrane (UF membrane) separation device for completely removing fine particles are provided as basic components, and the purity of water is further increased to ultrapure water. Here, in the low pressure UV irradiation oxidizer, TOC is decomposed into an organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low pressure UV lamp. The decomposed organic acid and CO 2 are removed by a subsequent ion exchange resin. In the UF membrane separator, fine particles such as outflow particles of the ion exchange resin are removed. Conventionally, nanometer-size fine particle removal processing has been performed by installing a fine particle removal film such as a UF membrane at the end of the subsystem. However, in recent years, semiconductor products have become more sophisticated and refined. Accordingly, the management of fine particles is becoming stricter. For example, in a semiconductor factory, the control value is often set to 1 particle / mL or less of particles having a diameter of 50 nm or more. For this reason, the number of fine particles in ultrapure water is measured and managed at the outlet of the UF membrane separator of the subsystem.
 このサブシステムの代表的な例を図5に示す。図5において、サブシステム21は、一次純水Wを貯留するためのサブタンク22と、このタンク22に貯留した一次純水Wの供給ライン23の基端部に設けられたポンプ24と、このポンプ24の後段に設けられた熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28とを有する。そして、UF膜分離装置28の出口側にオフラインモニターとしての微粒子計(PC)29が設けられている。 A typical example of this subsystem is shown in FIG. In FIG. 5, the sub-system 21 includes a sub tank 22 for storing the primary pure water W, a pump 24 provided at the base end portion of the supply line 23 of the primary pure water W stored in the tank 22, and the pump 24, a heat exchanger 25, a low-pressure UV irradiation oxidizer 26, a non-regenerative mixed bed ion exchanger 27, and a UF membrane separator 28 provided in the subsequent stage. A fine particle meter (PC) 29 as an off-line monitor is provided on the outlet side of the UF membrane separation device 28.
 上述したようなサブシステム21の運転中は、ポンプ24を稼動して、サブタンク22内の一次純水Wを熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28に順次通水し、得られた超純水W1をユースポイントPOUに送る。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン23Aを経てサブタンク22に返送され、再度処理される。 During the operation of the sub-system 21 as described above, the pump 24 is operated, and the primary pure water W in the sub-tank 22 is converted into the heat exchanger 25, the low-pressure UV irradiation oxidizer 26, and the non-regenerative mixed bed ion exchanger 27. And the UF membrane separator 28 are sequentially passed, and the obtained ultrapure water W1 is sent to the use point POU. On the other hand, the ultrapure water W1 that has not been used at the use point POU is returned to the sub tank 22 via the circulation line 23A and processed again.
 従来の図5に示すようなサブシステム21では、超純水W1中の微粒子数をUF膜分離装置28の出口側の微粒子計29により管理する一方、非再生型混床式イオン交換装置27は、その出口側のイオン負荷を導電率計や比抵抗計などにより計測し、これが所定の値よりも大きくなったら定期的に交換していた。しかしながら、このような管理方法によっても超純水W1中に微粒子がリークし、超純水W1中の微粒子数を低減化した状態に維持することができないことがある、という問題点があった。 In the conventional subsystem 21 as shown in FIG. 5, the number of fine particles in the ultrapure water W1 is managed by the fine particle meter 29 on the outlet side of the UF membrane separation device 28, while the non-regenerative mixed bed ion exchange device 27 The ion load on the outlet side was measured with a conductivity meter, a specific resistance meter or the like, and was periodically exchanged when it became larger than a predetermined value. However, even with such a management method, there is a problem that the fine particles leak into the ultrapure water W1 and the number of fine particles in the ultrapure water W1 may not be maintained.
 本発明は上記問題点に鑑みてなされたものであり、超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for managing fine particles of an ultrapure water production system capable of maintaining a state in which the number of fine particles in ultrapure water is reduced. To do.
 上記目的に鑑み本発明は、一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、超純水製造システムの微粒子管理方法を提供する(発明1)。 In view of the above-mentioned object, the present invention provides fine particles of an ultrapure water production system in which primary pure water produced by a primary pure water system is treated by a subsystem having a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order. A management method, wherein the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane device is monitored by measuring the number of fine particles, and the treated water fine particles of the non-regenerative mixed bed ion exchange device A non-regenerative mixed bed ion exchanger is replaced when the number of treated water particles in the non-regenerative mixed bed ion exchanger exceeds a predetermined value. A fine particle management method for a water production system is provided (Invention 1).
 かかる発明(発明1)によれば、非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して管理することにより、微粒子除去膜装置の出口の超純水中の微粒子数を安定して低減化することが可能となる。これは以下のような理由によると推測される。すなわち、超純水中の微粒子を微粒子除去膜装置の出口側のみで管理した場合、微粒子除去膜装置から微粒子がリークした時点で微粒子の増加を検知することができるが、これでは基準値よりも微粒子数が増加した超純水が供給されるのを未然に防止することができない。そこで、本発明者らが非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置で処理して得られる超純水中の微粒子数の関連性を調査した結果、非再生型混床式イオン交換装置の処理水の微粒子数が増加すると、微粒子除去膜装置の出口の超純水に微粒子がリークしやすいことがわかった。そこで、この非再生型混床式イオン交換装置の処理水の微粒子の増加を管理するとともに、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、得られる超純水中の微粒子数を低減化した状態で安定して供給することができる。 According to this invention (Invention 1), by measuring and managing the number of fine particles of the treated water of the non-regenerative type mixed bed ion exchange device by the fine particle number measuring means, ultrapure water at the outlet of the fine particle removal membrane device It is possible to stably reduce the number of fine particles. This is presumed to be due to the following reasons. That is, when the fine particles in ultrapure water are managed only on the outlet side of the fine particle removal membrane device, the increase in fine particles can be detected when the fine particle leaks from the fine particle removal membrane device. The supply of ultrapure water having an increased number of fine particles cannot be prevented in advance. Therefore, as a result of investigating the relationship between the number of treated water particles in the non-regenerative mixed-bed ion exchanger and the number of particles in ultrapure water obtained by processing with the particle removal membrane device, the present inventors It was found that when the number of treated water particles in the mixed bed type ion exchanger increased, the particles easily leaked into the ultrapure water at the outlet of the particle removing membrane device. Therefore, by controlling the increase in the treated water particulates in this non-regenerative mixed bed ion exchange device, and confirming the number of particulates in the ultrapure water at the outlet of the particulate removal membrane device, Can be stably supplied with the number of fine particles reduced.
 上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明2)。また、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明3)。さらに、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明4)。 In the above invention (Invention 1), the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed bed ion exchanger, and an ultrafiltration membrane (UF membrane) separator as the particulate removal membrane device. It is preferable to prepare in this order (Invention 2). In the above invention (Invention 1), the subsystem is a low-pressure ultraviolet (UV) irradiation oxidizer, a catalyst resin (hydrogen peroxide removal) device, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and It is preferable to provide an ultrafiltration membrane (UF membrane) separation device as the fine particle removal membrane device in this order (Invention 3). Furthermore, in the said invention (invention 1), the said subsystem is ultrafiltration as a low-pressure ultraviolet-ray (UV) irradiation oxidation apparatus, a non-regenerative mixed bed type ion exchange apparatus, a membrane-type deaeration apparatus, and the said fine particle removal membrane apparatus. It is preferable to provide a membrane (UF membrane) separation device in this order (Invention 4).
 かかる発明(発明2~4)によれば、限外濾過膜(UF膜)分離装置の前段に配置された非再生型混床式イオン交換装置は、ナトリウムや塩素などのイオンに比べてコロイダルシリカなどの微粒子が破過しやすく、この微粒子が限外濾過膜(UF膜)分離装置の破断部分から流出して超純水中の微粒子数の増加をきたすので、非再生型混床式イオン交換装置の処理水の微粒子数を管理して該微粒子数が所定の値を上回ったら、非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。 According to such inventions (Inventions 2 to 4), the non-regenerative mixed bed type ion exchange device arranged in the front stage of the ultrafiltration membrane (UF membrane) separator is colloidal silica compared to ions such as sodium and chlorine. And so on, and the fine particles flow out from the ruptured part of the ultrafiltration membrane (UF membrane) separator and increase the number of fine particles in ultrapure water. When the number of fine particles in the treated water of the apparatus is controlled and the number of fine particles exceeds a predetermined value, the non-regenerative mixed bed ion exchanger is replaced, and the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane apparatus By confirming the above, it is possible to prevent the ultrapure water having an increased number of fine particles from being supplied.
 上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水の微粒子数と前記微粒子除去膜装置の出口の超純水中の微粒子数とを1台の微粒子計を切り替えることで計測することが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the particle number measuring means is a particle meter, and the number of treated water particles in the non-regenerative mixed bed ion exchanger and the ultrapure water at the outlet of the particle removal membrane device It is preferable to measure the number of particles inside by switching one particle meter (Invention 5).
 かかる発明(発明5)によれば、1台の微粒子計で非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数とを計測することができる。 According to this invention (Invention 5), the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removal membrane device are measured with one particle meter. be able to.
 上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水の微粒子数及び前記微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ計測することが好ましい(発明6)。 In the above inventions (Inventions 1 to 4), the fine particle number measuring means is a fine particle meter, and a fine particle meter is provided on each of the outlet side of the non-regenerative mixed bed ion exchanger and the outlet side of the fine particle removal membrane device. Thus, it is preferable to measure the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removing membrane device (Invention 6).
 かかる発明(発明6)によれば、非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ独立して計測することができる。 According to this invention (Invention 6), the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removing membrane device can be measured independently. .
 本発明は、非再生型混床式イオン交換装置の処理水の微粒子数を計測して、該微粒子数が所定の値を超えたら非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。 The present invention measures the number of fine particles of treated water in a non-regenerative type mixed bed type ion exchange device, and when the number of fine particles exceeds a predetermined value, replaces the non-regenerative type mixed bed type ion exchange device to remove fine particles. By confirming the number of fine particles in the ultrapure water at the outlet of the membrane device, it is possible to prevent the supply of ultrapure water having an increased number of fine particles.
本発明の第一の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。It is the schematic which shows the ultrapure water manufacturing system which can apply the particulate management method of the ultrapure water manufacturing system by 1st embodiment of this invention. 本発明の第二の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。It is the schematic which shows the ultrapure water manufacturing system which can apply the particulate management method of the ultrapure water manufacturing system by 2nd embodiment of this invention. 本発明の第三の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。It is the schematic which shows the ultrapure water manufacturing system which can apply the particulate management method of the ultrapure water manufacturing system by 3rd embodiment of this invention. 本発明の第四の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。It is the schematic which shows the ultrapure water manufacturing system which can apply the particulate management method of the ultrapure water manufacturing system by 4th embodiment of this invention. 従来の超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。It is the schematic which shows the ultrapure water manufacturing system which can apply the particulate management method of the conventional ultrapure water manufacturing system.
 以下、本発明の第一の実施形態による超純水製造システムの微粒子管理方法について図1を参照にして詳細に説明する。 Hereinafter, the fine particle management method of the ultrapure water production system according to the first embodiment of the present invention will be described in detail with reference to FIG.
 本実施形態の超純水製造システムの微粒子管理方法を適用可能なサブシステムは、前述した図5に示すものと基本的には同じ構成を有する。すなわち、図1において、サブシテム1は、一次純水Wを貯留するためのサブタンク2と、このサブタンク2に貯留した一次純水Wの供給ライン3の基端部に設けられたポンプ4と、このポンプ4の後段に設けられた熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7及び微粒子除去膜装置としての限外濾過膜(UF膜)分離装置8とを有する。そして、UF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側にそれぞれ切替可能に微粒子数を計測する手段である微粒子計(PC)9が接続されている。この微粒子計9としては、栗田工業社製「K-LAMIC」(商品名)、PMS社製「UDI-50」(商品名)などを用いることができる。 The subsystem to which the particulate management method of the ultrapure water production system of the present embodiment can be applied has basically the same configuration as that shown in FIG. That is, in FIG. 1, the sub-system 1 includes a sub-tank 2 for storing the primary pure water W, a pump 4 provided at the base end portion of the supply line 3 of the primary pure water W stored in the sub-tank 2, A heat exchanger 5, a low-pressure UV irradiation oxidizer 6, a non-regenerative mixed bed ion exchanger 7, and an ultrafiltration membrane (UF membrane) separator 8 as a fine particle removal membrane device provided at the subsequent stage of the pump 4. Have. A fine particle meter (PC) 9 is connected to the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7 to measure the number of fine particles in a switchable manner. As the fine particle counter 9, “K-LAMIC” (trade name) manufactured by Kurita Kogyo Co., Ltd., “UDI-50” (trade name) manufactured by PMS, etc. can be used.
 上述したようなサブシステム1の運転時には、ポンプ4を稼動してサブタンク2内の一次純水Wを熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7に順次通水し、非再生型混床式イオン交換装置7の処理水W2をUF膜分離装置8に通水して超純水W1を得る。そして、得られた超純水W1をユースポイントPOUに供給する。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン3Aを経てサブタンク2に返送され、再度処理される。 During the operation of the sub-system 1 as described above, the pump 4 is operated and the primary pure water W in the sub-tank 2 is sequentially transferred to the heat exchanger 5, the low-pressure UV irradiation oxidizer 6, and the non-regenerative mixed bed ion exchanger 7. Water is passed through and the treated water W2 of the non-regenerative mixed bed ion exchange device 7 is passed through the UF membrane separation device 8 to obtain ultrapure water W1. Then, the obtained ultrapure water W1 is supplied to the use point POU. On the other hand, the ultrapure water W1 that has not been used at the use point POU is returned to the sub tank 2 via the circulation line 3A and is processed again.
 なお、本実施形態における超純水W1としては、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。 In addition, as the ultrapure water W1 in the present embodiment, resistivity: 18.1 MΩ · cm or more, fine particles: particle size of 50 nm or more and 1000 / L or less, viable bacteria: 1 / L or less, TOC (Total Organic Carbon ): 1 μg / L or less, Total silicon: 0.1 μg / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less, Hydrogen peroxide: 30 μg / L or less, Water temperature: 25 ± 2 ° C. Is preferred.
 次にこのような超純水製造システムの微粒子管理方法について説明する。
[通常時運転]
 上述したような超純水の製造工程において、微粒子計9をUF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側とにそれぞれ所定のタイミングで適宜切り替えることで、UF膜分離装置8の出口側の超純水W1の微粒子数と、非再生型混床式イオン交換装置7の処理水W2の微粒子数を測定する。そして、超純水W1の微粒子数が1個/mL以下であり、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mL以下であれば、サブシテム1の運転を継続して、超純水W1をユースポイントPOUへ供給する。
Next, a particle management method for such an ultrapure water production system will be described.
[Normal operation]
In the manufacturing process of ultrapure water as described above, the fine particle counter 9 is appropriately switched between the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7 at predetermined timings, The number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separation device 8 and the number of fine particles of the treated water W2 of the non-regenerative mixed bed ion exchange device 7 are measured. If the number of fine particles in the ultrapure water W1 is 1 / mL or less and the number of particles in the treated water W2 of the non-regenerative mixed bed ion exchange apparatus 7 is 10 / mL or less, the operation of the sub-system 1 is performed. Continue to supply ultrapure water W1 to the use point POU.
[微粒子数管理運転]
 一方、オフラインモニターである微粒子計9で計測されたUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mL以下であっても、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、サブシテム1の運転を一旦停止し、非再生型混床式イオン交換装置7を交換する。これによりUF膜分離装置8の出口側の超純水W1の微粒子数を1個/mL以下に保持することができ、微粒子数が基準値を超えた超純水W1がユースポイントPOUへ供給されるのを未然に防止することができる。なお、このような管理を行ってもUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mLを超える場合には、UF膜分離装置8に破断が生じたと判断して、UF膜分離装置8を交換するなどすればよい。
[Particle count control]
On the other hand, even if the number of fine particles in the ultrapure water W1 on the outlet side of the UF membrane separation device 8 measured by the fine particle meter 9 which is an offline monitor is 1 / mL or less, the non-regenerative mixed bed ion exchange device 7 is used. When the number of fine particles in the treated water W2 exceeds 10 / mL, the operation of the sub-system 1 is temporarily stopped, and the non-regenerative mixed bed ion exchanger 7 is replaced. As a result, the number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separation device 8 can be maintained at 1 / mL or less, and the ultrapure water W1 with the number of fine particles exceeding the reference value is supplied to the use point POU. Can be prevented in advance. Even if such management is performed, if the number of fine particles of the ultrapure water W1 on the outlet side of the UF membrane separator 8 exceeds 1 / mL, it is determined that the UF membrane separator 8 has been broken. The UF membrane separation device 8 may be replaced.
<作用機構>
 このような効果が得られるのは以下のような作用機構による。すなわち、一般にイオン交換装置では、溶解性シリカは非常に除去しやすいのに対し、コロイダルシリカはホウ素よりも非常に除去しにくい(破過しやすい)ことが報告されている(「UPW Micro 2017,UPW IRDS and SEMI update」Slava Libmanら)。そして、このホウ素は、一次純水W中に含まれているナトリウムイオン(Na)、塩素イオン(Cl)あるいは炭酸イオン(HCO )よりも非常に除去しにくい(破過しやすい)。すなわち、コロイダルシリカは、ナトリウムイオン(Na)、塩素イオン(Cl)、炭酸イオン(HCO )よりもはるかに破過しやすいことになる。
<Action mechanism>
Such an effect is obtained by the following mechanism. That is, it is generally reported that in an ion exchange apparatus, soluble silica is very easy to remove, whereas colloidal silica is much more difficult to remove (easy to break through) than boron ("UPW Micro 2017, UPW IRDS and SEMI update "Slava Libman et al.). This boron is much more difficult to remove (easy to break through) than sodium ions (Na + ), chlorine ions (Cl ) or carbonate ions (HCO 3 ) contained in the primary pure water W. . That is, colloidal silica is much easier to break through than sodium ions (Na + ), chlorine ions (Cl ), and carbonate ions (HCO 3 ).
 そこで、本発明者らが検討した結果、非再生型混床式イオン交換装置7の出口側、すなわちUF膜分離装置8の入口側における微粒子数の増加は、主にコロイダルシリカ粒子に起因することがわかった。従来、非再生型混床式イオン交換装置7は、その出口側に導電率計や比抵抗計などのイオン負荷を計測する手段を設けてイオン負荷を計測し、これが所定の値よりも大きくなったら定期的に交換していたが、これではコロイダルシリカの微粒子はUF膜分離装置8に流入してしまう。これに対し本実施形態のように非再生型混床式イオン交換装置7の処理水の微粒子数に視点をおいて管理することで、微粒子がUF膜分離装置8の出口に到達する前に非再生型混床式イオン交換装置7を交換することができるので、UF膜分離装置8の出口における超純水W1の微粒子数の安定化を図ることができる。そして、超純水W1の微粒子数が増加しないことを微粒子計9により計測して確認すればよい。 Therefore, as a result of the study by the present inventors, the increase in the number of fine particles on the outlet side of the non-regenerative mixed bed ion exchange device 7, that is, the inlet side of the UF membrane separation device 8 is mainly caused by colloidal silica particles. I understood. Conventionally, the non-regenerative mixed bed ion exchange apparatus 7 is provided with means for measuring an ion load such as a conductivity meter and a specific resistance meter on the outlet side thereof to measure the ion load, which becomes larger than a predetermined value. However, the colloidal silica particles flow into the UF membrane separation device 8. On the other hand, by controlling the number of treated water fine particles in the non-regenerative mixed bed ion exchange device 7 as in the present embodiment, it is possible to control the fine particles before they reach the outlet of the UF membrane separation device 8. Since the regenerative mixed bed type ion exchange device 7 can be exchanged, the number of fine particles of the ultrapure water W1 at the outlet of the UF membrane separation device 8 can be stabilized. Then, it may be confirmed by measuring with the fine particle meter 9 that the number of fine particles of the ultrapure water W1 does not increase.
 以上、本発明の第一の実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、図2に示すようにUF膜分離装置8の出口側に第一の微粒子計9Aを設けるとともに非再生型混床式イオン交換装置7の出口側に第二の微粒子計9Bを設けて、非再生型混床式イオン交換装置7の処理水W2の微粒子数と、UF膜分離装置8の出口の超純水W1の微粒子数とをそれぞれ独立して計測する構成としても良い。また、微粒子数計測手段は、微粒子計9などはオフラインモニターでなく、遠心ろ過法を利用したオンラインモニターとしても良い。 As mentioned above, although 1st embodiment of this invention has been described with reference to an accompanying drawing, this invention is not restricted to the said embodiment, A various change implementation is possible. For example, as shown in FIG. 2, the first particle counter 9A is provided on the outlet side of the UF membrane separation device 8 and the second particle counter 9B is provided on the outlet side of the non-regenerative mixed bed ion exchanger 7. A configuration may be employed in which the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 and the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separation device 8 are independently measured. In addition, as for the fine particle count measuring means, the fine particle counter 9 and the like may be an online monitor using a centrifugal filtration method instead of an offline monitor.
 また、サブシステム1としては、前述した第一及び第二の実施形態のものに限らず種々のサブシステムに適用可能である。例えば、図3に示すように低圧紫外線(UV)照射酸化装置6の後段に白金族金属などを担持したイオン交換樹脂を充填した触媒樹脂(過酸化水素除去)装置10、膜式脱気装置11を設け、その後段に非再生型混床式イオン交換装置7及び限外濾過膜(UF膜)分離装置8をこの順に備えるものにも好適に適用可能である。さらに、サブシステム1として、例えば、図4に示すように非再生型混床式イオン交換装置7と限外濾過膜(UF膜)分離装置8の間に膜式脱気装置12を設けたものにも好適に適用可能である。この場合、微粒子計9などの微粒子数計測手段は、非再生型混床式イオン交換装置7の出口側でUF膜分離装置8より前であれば、膜式脱気装置12などの他のエレメントが介在していてもよく、その場合、他のエレメントの出口側で微粒子数を計測してもよいし、非再生型混床式イオン交換装置7の直後で計測してもよい。 Further, the subsystem 1 is not limited to those of the first and second embodiments described above, and can be applied to various subsystems. For example, as shown in FIG. 3, a catalyst resin (hydrogen peroxide removal) device 10 and a membrane type deaeration device 11 in which an ion exchange resin carrying a platinum group metal or the like is placed downstream of the low pressure ultraviolet (UV) irradiation oxidizer 6. And a non-regenerative mixed bed ion exchange device 7 and an ultrafiltration membrane (UF membrane) separation device 8 in this order can be suitably applied. Further, as the subsystem 1, for example, as shown in FIG. 4, a membrane deaerator 12 is provided between a non-regenerative mixed bed ion exchanger 7 and an ultrafiltration membrane (UF membrane) separator 8 It can be suitably applied to. In this case, if the particle number measuring means such as the particle counter 9 is in front of the UF membrane separation device 8 on the outlet side of the non-regenerative mixed bed ion exchange device 7, other elements such as the membrane deaeration device 12 are used. In such a case, the number of fine particles may be measured at the outlet side of another element, or may be measured immediately after the non-regenerative mixed bed ion exchange device 7.
 以下の具体的実施例により本発明をさらに詳細に説明する。 The present invention will be described in more detail by the following specific examples.
[実験例1]
 図1に示す超純水製造システムにより、市水を原水として超純水の製造を行った。なお、サブシステム1を構成する低圧UV照射酸化装置6としては日本フォトサイエンス社製品を、非再生型混床式イオン交換装置7としては栗田工業社製「KR-FM」を、UF膜分離装置8としては栗田工業社製「KU-1510-HP-H」を、微粒子計9としては栗田工業社製「K-LAMIC」をそれぞれ使用した。
[Experimental Example 1]
The ultrapure water production system shown in FIG. 1 was used to produce ultrapure water using city water as raw water. The low pressure UV irradiation oxidizer 6 constituting the subsystem 1 is a product of Japan Photoscience, the non-regenerative mixed bed ion exchanger 7 is “KR-FM” manufactured by Kurita Kogyo Co., Ltd., and a UF membrane separator. “KU-1510-HP-H” manufactured by Kurita Kogyo Co., Ltd. was used as 8, and “K-LAMIC” manufactured by Kurita Kogyo Co., Ltd. was used as the fine particle counter 9.
 上記超純水の製造システムでの超純水の製造工程において、非再生型混床式イオン交換装置7の処理水W2及びUF膜分離装置8の出口の超純水W1の微粒子数を監視し、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が1個/mLを超えることはなかった。これはUF膜分離装置8への流入する処理水W2中のコロイダルシリカなどに起因する微粒子数を抑制することができるためであると考えられる。 In the ultrapure water production process in the ultrapure water production system, the number of fine particles in the treated water W2 of the non-regenerative mixed bed ion exchange device 7 and the ultrapure water W1 at the outlet of the UF membrane separation device 8 is monitored. When the number of fine particles of the treated water W2 of the non-regenerative type mixed bed ion exchanger 7 exceeds 10 / mL, the result of repeating the operation of replacing the non-regenerative type mixed bed ion exchanger 7 is a result of the UF membrane separation device. The number of fine particles of the ultrapure water W1 at the outlet of 8 did not exceed 1 / mL. This is considered to be because the number of fine particles caused by colloidal silica or the like in the treated water W2 flowing into the UF membrane separation device 8 can be suppressed.
[比較例1]
 実施例1において、非再生型混床式イオン交換装置7の処理水W2の微粒子数を計測することなく、比抵抗計により比抵抗値を測定し、この比抵抗値からイオン負荷を判断し、イオン負荷が所定の値を超えたら非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が時間の経過とともに1個/mLを超える傾向を示した。これはUF膜分離装置8の経時劣化により部分的に破断が生じ、コロイダルシリカがリークしたためであると考えられる。
[Comparative Example 1]
In Example 1, without measuring the number of fine particles of the treated water W2 of the non-regenerative mixed-bed ion exchanger 7, the specific resistance value is measured by a specific resistance meter, and the ion load is determined from the specific resistance value. As a result of repeating the operation of replacing the non-regenerative mixed bed ion exchanger 7 when the ion load exceeds a predetermined value, the number of fine particles in the ultrapure water W1 at the outlet of the UF membrane separator 8 is one over time. The tendency which exceeded / mL was shown. This is presumably because the UF membrane separation device 8 was partially broken due to deterioration with time and colloidal silica leaked.
1 サブシテム
2 サブタンク
3 供給ライン
3A 循環ライン
4 ポンプ
5 熱交換器
6 低圧紫外線(UV)照射酸化装置
7 非再生型混床式イオン交換装置
8 限外濾過膜(UF膜)分離装置(微粒子除去膜装置)
9,9A,9B 微粒子計(微粒子数計測手段)
POU ユースポイント
W 一次純水
W1 超純水
W2 非再生型混床式イオン交換装置の処理水
DESCRIPTION OF SYMBOLS 1 Subsystem 2 Subtank 3 Supply line 3A Circulation line 4 Pump 5 Heat exchanger 6 Low pressure ultraviolet (UV) irradiation oxidation apparatus 7 Non-regenerative mixed bed type ion exchange apparatus 8 Ultrafiltration membrane (UF membrane) separation device (fine particle removal membrane) apparatus)
9, 9A, 9B Fine particle meter (particle number measuring means)
POU use point W Primary pure water W1 Ultra pure water W2 Non-regenerative mixed-bed ion exchanger treated water

Claims (6)

  1.  一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、
     前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、
     前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、
     超純水製造システムの微粒子管理方法。
    A method for managing fine particles of an ultrapure water production system in which primary pure water produced by a primary pure water system is processed by a subsystem comprising a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order,
    While monitoring the number of fine particles in ultrapure water at the outlet of the fine particle removal film device by measuring the number of fine particles,
    When the number of fine particles of treated water of the non-regenerative type mixed bed ion exchange apparatus is measured by a fine particle number measuring means, and the number of fine particles of treated water of the non-regenerative type mixed bed ion exchange apparatus exceeds a predetermined value, Replacing the non-regenerative mixed bed ion exchanger
    Particle management method for ultrapure water production system.
  2.  前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 The sub-system includes a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed-bed ion exchanger, and an ultrafiltration membrane (UF membrane) separator as the particulate removal membrane device in this order. Particle management method for ultrapure water production system.
  3.  前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 The sub-system is a low-pressure ultraviolet (UV) irradiation oxidizer, a catalyst resin (hydrogen peroxide removal) device, a membrane deaeration device, a non-regenerative mixed bed ion exchange device, and an ultrafiltration membrane as the particulate removal membrane device The fine particle management method for an ultrapure water production system according to claim 1, comprising a (UF membrane) separation device in this order.
  4.  前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。 The subsystem includes a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed bed ion exchanger, a membrane deaerator, and an ultrafiltration membrane (UF membrane) separator as the particulate removal membrane device in this order. The fine particle management method of the ultrapure water production system according to claim 1.
  5.  前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水の微粒子数と前記微粒子除去膜装置の出口の超純水中の微粒子数とを1台の微粒子計を切り替えることで計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。 The fine particle number measuring means is a fine particle meter, and the number of fine particles in treated water of the non-regenerative mixed bed ion exchange device and the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane device are set as one fine particle meter. The method for managing fine particles in an ultrapure water production system according to any one of claims 1 to 4, wherein the measurement is performed by switching between the two.
  6.  前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水の微粒子数及び前記微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。 The fine particle number measuring means is a fine particle meter, and a non-regenerative mixed bed ion exchange is provided by providing a fine particle meter on each of an outlet side of the non-regenerative type mixed bed ion exchange device and an outlet side of the fine particle removal membrane device. The method for managing fine particles in an ultrapure water production system according to any one of claims 1 to 4, wherein the number of fine particles of treated water in the apparatus and the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane device are respectively measured. .
PCT/JP2018/034111 2018-02-07 2018-09-14 Fine particle management method for ultrapure water production system WO2019155672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880060242.6A CN111108069A (en) 2018-02-07 2018-09-14 Particle management method for ultrapure water production system
KR1020207007350A KR102613112B1 (en) 2018-02-07 2018-09-14 How to manage particulates in ultrapure water manufacturing systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019853A JP7143595B2 (en) 2018-02-07 2018-02-07 Particle control method for ultrapure water production system
JP2018-019853 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019155672A1 true WO2019155672A1 (en) 2019-08-15

Family

ID=67548625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034111 WO2019155672A1 (en) 2018-02-07 2018-09-14 Fine particle management method for ultrapure water production system

Country Status (5)

Country Link
JP (1) JP7143595B2 (en)
KR (1) KR102613112B1 (en)
CN (1) CN111108069A (en)
TW (1) TW201936513A (en)
WO (1) WO2019155672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496969B2 (en) 2020-07-20 2024-06-10 オルガノ株式会社 Operation and management method for ultrapure water production equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929251A (en) * 1995-07-17 1997-02-04 Kurita Water Ind Ltd Ultrapure water preparing apparatus
JP2010069460A (en) * 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2010227886A (en) * 2009-03-27 2010-10-14 Kurita Water Ind Ltd Apparatus for producing pure water
WO2015050125A1 (en) * 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
WO2017164361A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406912B2 (en) * 2003-01-23 2010-02-03 栗田工業株式会社 Method for producing ultrapure water and ion exchange resin for producing ultrapure water used therefor
US20080245737A1 (en) * 2007-04-03 2008-10-09 Siemens Water Technologies Corp. Method and system for providing ultrapure water
JP2013215679A (en) * 2012-04-09 2013-10-24 Nomura Micro Sci Co Ltd Ultrapure water production apparatus
JP2017200683A (en) * 2016-05-06 2017-11-09 野村マイクロ・サイエンス株式会社 Start-up method of ultra-pure water manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929251A (en) * 1995-07-17 1997-02-04 Kurita Water Ind Ltd Ultrapure water preparing apparatus
JP2010069460A (en) * 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2010227886A (en) * 2009-03-27 2010-10-14 Kurita Water Ind Ltd Apparatus for producing pure water
WO2015050125A1 (en) * 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
WO2017164361A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496969B2 (en) 2020-07-20 2024-06-10 オルガノ株式会社 Operation and management method for ultrapure water production equipment

Also Published As

Publication number Publication date
TW201936513A (en) 2019-09-16
KR20200117972A (en) 2020-10-14
CN111108069A (en) 2020-05-05
JP2019136628A (en) 2019-08-22
KR102613112B1 (en) 2023-12-12
JP7143595B2 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
CN110451704B (en) Method for treating fluorine-containing reuse water
WO2019155672A1 (en) Fine particle management method for ultrapure water production system
JP4034668B2 (en) Ultrapure water production system and operation method thereof
JP6722552B2 (en) Non-regenerative ion exchange resin cleaning device and ultrapure water production system
JP5962135B2 (en) Ultrapure water production equipment
CN218089218U (en) Ultrapure water purification system
JP2005288300A (en) Ultrapure water production apparatus
JP7405066B2 (en) Ultrapure water production equipment and ultrapure water production method
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP3966482B2 (en) Method for adjusting specific resistance of ultrapure water and pure water production apparatus using the same
JP3985500B2 (en) Ultrapure water supply method
WO2017145419A1 (en) Cleaning method for ultrapure water production system
JP2020037088A (en) Operational method of ultrapure water production apparatus
JP2003010849A (en) Secondary pure water making apparatus
JP2020116507A (en) Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
WO2020241476A1 (en) Ultrapure water production system and ultrapure water production method
JP6205865B2 (en) Operation management method for pure water production equipment
JP5257175B2 (en) Ultrapure water production equipment
JP7305960B2 (en) Operation method of ultrapure water production equipment
JP7103467B1 (en) Control method of electric deionization system and electric deionization system
US20230398499A1 (en) Method of cleaning ultrafiltration membrane module and management method of ultrapure water manufacturing system using same
JPH04108587A (en) Production of ultrapure water
JP2023150986A (en) Water treatment control apparatus and water quality monitoring method
JP2022094660A (en) Water quality measuring system and water quality measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905045

Country of ref document: EP

Kind code of ref document: A1