JP2023150986A - Water treatment control apparatus and water quality monitoring method - Google Patents

Water treatment control apparatus and water quality monitoring method Download PDF

Info

Publication number
JP2023150986A
JP2023150986A JP2022060360A JP2022060360A JP2023150986A JP 2023150986 A JP2023150986 A JP 2023150986A JP 2022060360 A JP2022060360 A JP 2022060360A JP 2022060360 A JP2022060360 A JP 2022060360A JP 2023150986 A JP2023150986 A JP 2023150986A
Authority
JP
Japan
Prior art keywords
water
toc
inorganic carbon
supplied
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022060360A
Other languages
Japanese (ja)
Inventor
悠介 高橋
Yusuke Takahashi
勇規 中村
Yuki Nakamura
尚哉 吉永
Naoya Yoshinaga
一重 高橋
Kazushige Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2022060360A priority Critical patent/JP2023150986A/en
Publication of JP2023150986A publication Critical patent/JP2023150986A/en
Pending legal-status Critical Current

Links

Images

Abstract

To make it possible to accurately measure a total organic carbon (TOC) concentration without being influenced by an inorganic carbon (IC) component contained in water of a monitoring target, in a water treatment control device monitoring and evaluating water supplied to a water treatment system for an operation control of the water treatment system.SOLUTION: A water treatment control device (20) is provided with equipment (31, 33, 34, 36) that performs treatment on the target water to which water to be supplied to the water treatment control system is supplied, an evaluation pure water production section (21) that executes unit operations for removing a TOC component, measurement means (22) that measures the TOC concentration of water to be measured obtained from measurement points in the evaluation pure water production section (21), and inorganic carbon removing means (32, 35, 37) for removing the inorganic carbon contained in the water to be measured that is supplied to the measuring means (22). An inorganic carbon concentration of the water to be measured supplied to the measuring means (22) is 10 times or less by weight the TOC concentration measured value by the measuring means (22).SELECTED DRAWING: Figure 1

Description

本発明は、水処理システムによって超純水製造などの水処理を行う際に用いられる水処理管理装置及び水質監視方法に関する。 The present invention relates to a water treatment management device and a water quality monitoring method used when performing water treatment such as ultrapure water production using a water treatment system.

例えば原水から超純水を生成する超純水製造システムなどの水処理システムでは、水処理システムに供給される原水の水質にも関心を払う必要がある。例えば超純水製造システムでは、原水に含まれる有機物質(TOC(全有機炭素:Total Organic Carbon)成分)を除去するために逆浸透膜(RO)処理や紫外線(UV)酸化処理を行なっている。しかしながら、有機物の成分には、これらの処理によって除去しやすい成分とそうではない成分とが存在する。 For example, in water treatment systems such as ultrapure water production systems that generate ultrapure water from raw water, it is necessary to pay attention to the quality of the raw water supplied to the water treatment system. For example, in ultrapure water production systems, reverse osmosis (RO) treatment and ultraviolet (UV) oxidation treatment are performed to remove organic substances (TOC (Total Organic Carbon) components) contained in raw water. . However, among the organic components, there are components that are easily removed by these treatments and components that are not.

超純水製造システムに供給される原水としては、これまで、水道水や自来水、工業用水などが使用されてきた。近年では水資源の有効利用を図るため、工場排水などを一次処理して再利用する再生水や回収水を原水として使用するようになってきている。工業用水などと異なって再生水や回収水の水質は安定しない可能性があり、また、再生水や回収水は予期しない有機物を突発的に含む可能性がある。万が一、除去しにくい有機物が原水に混入すると、超純水製造システム出口の処理水質に影響を及ぼす恐れがある。特に、処理能力の大きい超純水製造システムの場合、そのシステムに供給される原水での水質の変化の影響が出口に及ぶまでに時間がかかるので、出口から得られる処理水の水質における変化を検知してから原水の水質変化に対応することは適切ではない。超純水製造システムにおける原水の水質を監視し、水質に応じて超純水製造システムの運転を適切に管理することの重要性がより高まってきている。 Until now, tap water, local water, industrial water, etc. have been used as the raw water supplied to ultrapure water production systems. In recent years, in order to use water resources more effectively, reclaimed water or recovered water, which is obtained by first treating and reusing industrial wastewater, has been used as raw water. Unlike industrial water, the quality of reclaimed water or recovered water may not be stable, and reclaimed or recovered water may suddenly contain unexpected organic matter. In the unlikely event that organic substances that are difficult to remove are mixed into the raw water, the quality of the treated water at the outlet of the ultrapure water production system may be affected. In particular, in the case of ultrapure water production systems with large processing capacity, it takes time for the effects of changes in water quality in the raw water supplied to the system to reach the outlet, so changes in the quality of the treated water obtained from the outlet are It is not appropriate to respond to changes in raw water quality after detection. It is becoming increasingly important to monitor the quality of raw water in an ultrapure water production system and to appropriately manage the operation of the ultrapure water production system depending on the water quality.

原水の水質を監視し、超純水製造システムなどの水処理システムの運転を適切に管理するために、水処理システムとは別個に設けられる装置を用いることが提案されている。水処理システムとは別個に設けられるこの装置のことをここでは水処理管理装置と総称することにする。水処理管理装置は、TOC(全有機炭素)成分を取り除くために必要な単位操作を実行する機器と、TOC濃度を測定する測定手段とから構成される。水処理管理装置において、TOC成分を取り除く処理を行った後の処理水のTOC濃度が依然として高ければ、一般的なTOC除去操作によっては除去しにくい有機種が原水には含まれていると判断することができる。 In order to monitor the quality of raw water and appropriately manage the operation of a water treatment system such as an ultrapure water production system, it has been proposed to use a device that is provided separately from the water treatment system. This device provided separately from the water treatment system will be collectively referred to as a water treatment management device herein. The water treatment management device consists of equipment that performs the unit operations necessary to remove TOC (total organic carbon) components, and measurement means that measure the TOC concentration. If the TOC concentration in the treated water is still high after treatment to remove TOC components in the water treatment management equipment, it is determined that the raw water contains organic species that are difficult to remove using standard TOC removal operations. be able to.

特許文献1は、TOC成分を取り除くために必要な単位操作を実行する機器を組み合わせて構成された評価用純水製造部と、評価用純水製造部における複数の測定点におけるTOC濃度を測定する測定手段とを有する水処理管理装置を用いて、水処理システムに供給される原水の水質を監視して評価することを開示している。評価用純水製造部は、水処理システムとは非等価な純水製造システムであって、TOC成分を取り除くために、例えば、逆浸透膜装置や紫外線照射装置、イオン交換装置などの機器を備えている。特許文献1の水処理管理装置では、評価用純水製造部に設けられるイオン交換装置として非再生型の混床のイオン交換装置であるカートリッジポリッシャーを用いる場合は、原水中のイオン性不純物の濃度が高いときにその交換頻度が高くなる、という課題がある。 Patent Document 1 discloses an evaluation pure water production section configured by combining equipment that performs unit operations necessary to remove TOC components, and measures TOC concentration at a plurality of measurement points in the evaluation pure water production section. The present disclosure discloses monitoring and evaluating the quality of raw water supplied to a water treatment system using a water treatment management device having a measuring means. The evaluation pure water production department is a pure water production system that is not equivalent to a water treatment system, and is equipped with equipment such as a reverse osmosis membrane device, an ultraviolet irradiation device, and an ion exchange device in order to remove TOC components. ing. In the water treatment management device of Patent Document 1, when a cartridge polisher, which is a non-regenerative mixed bed ion exchange device, is used as the ion exchange device installed in the evaluation pure water production section, the concentration of ionic impurities in the raw water is There is a problem in that the frequency of replacement increases when the

特許文献2は、メインの超純水製造システムと等価に構成されているサブの超純水製造システムを使用し、サブの超純水製造システムの出口水のTOC濃度を検出して原水の水質を判断し、メインの超純水製造システムの運転管理を行っている。サブの超純水製造システムはメインの超純水製造システムと等価であるため、メインの超純水製造システムにおいて例えば逆浸透膜装置の前段にイオン交換装置などからなる前処理装置が設けられている場合にはサブの超純水製造システムにも同様の前処理装置を設ける必要が生じ、サブの超純水製造システムの規模が大きくなってサブの超純水製造システムの設置スペースに制約が生じることがある。また、前処理装置を設ける場合には、前処理装置において必要となるメンテナンス工程、例えば再生式のイオン交換装置の再生工程を実施することとなるので、サブの超純水製造システムの運用方法が複雑なものとなったり運用コストが上昇する。 Patent Document 2 uses a sub ultrapure water production system configured equivalently to the main ultrapure water production system, detects the TOC concentration of the outlet water of the sub ultrapure water production system, and determines the quality of the raw water. The company makes decisions and manages the operation of the main ultrapure water production system. Since the sub ultrapure water production system is equivalent to the main ultrapure water production system, a pretreatment device such as an ion exchange device is installed in the main ultrapure water production system, for example, before the reverse osmosis membrane device. If the sub-ultra-pure water production system has a similar pre-treatment device, the scale of the sub-ultra-pure water production system becomes large and the installation space of the sub-ultra-pure water production system is restricted. This may occur. In addition, when a pre-treatment device is installed, the maintenance process required for the pre-treatment device, such as the regeneration process of a regenerative ion exchange device, will be performed, so the operation method of the sub-ultra pure water production system will be changed. This increases complexity and operational costs.

特許文献3は、紫外線照射装置と、紫外線照射装置の後段に設けられた脱イオン装置とを有し、紫外線照射装置に供給される原水及び脱イオン装置の出口水のTOC濃度を測定する監視装置を開示している。紫外線照射装置で行われる紫外線酸化処理では、処理対象の水にイオンや不純物が含まれるとTOCの分解除去効率が低下するが、特許文献3に記載された監視装置では、紫外線照射装置に前段にイオンや不純物を除去するための装置が設けられておらず、原水の水質によっては紫外線照射装置での本来のTOC分解除去性能を十分には得られなくなり、原水の水質を適切に評価できなくなることがある。 Patent Document 3 discloses a monitoring device that includes an ultraviolet irradiation device and a deionization device provided after the ultraviolet irradiation device, and measures the TOC concentration of raw water supplied to the ultraviolet irradiation device and outlet water of the deionization device. is disclosed. In ultraviolet oxidation treatment carried out with an ultraviolet irradiation device, if the water to be treated contains ions or impurities, the decomposition and removal efficiency of TOC decreases, but in the monitoring device described in Patent Document 3, the ultraviolet irradiation device is There is no equipment installed to remove ions and impurities, and depending on the quality of the raw water, the UV irradiation equipment may not be able to adequately decompose and remove TOC, making it impossible to properly evaluate the quality of the raw water. There is.

特開2019-155275号公報Japanese Patent Application Publication No. 2019-155275 特開2016-107249号公報Japanese Patent Application Publication No. 2016-107249 特開2020-159961号公報Japanese Patent Application Publication No. 2020-159961

水処理装置に供給される原水の水質を監視して水処理システムの運転を適切に管理するために、水処理システムとは別個に設けられる水処理管理装置は、上述した特許文献1~3にも記載されるように、水におけるTOC濃度を測定する手段を備えている。試料水中のTOC濃度を測定するTOC測定装置としては、試料水中のTOC成分を何らかの方法で酸化して炭酸(二酸化炭素)とし、発生した炭酸の濃度を何らかの方法で測定してTOC濃度に換算するものが一般的である。近年は、紫外線酸化処理によって試料水中のTOC成分を分解し、TOCの分解によって発生する炭酸量を定量してTOC濃度に変換する測定装置が広く用いられている。この場合の炭酸量の定量方法としては、試料水の導電率と、試料水に対して紫外線酸化処理を行ったのちの導電率とを測定し、導電率の差を炭酸濃度に換算する方法が一般的に用いられている。しかしながらこの方法では、炭酸以外の導電性を示すイオンなどが試料水に含まれている場合、それらのイオンなどがTOC濃度測定に影響を及ぼす。試料水に含まれるイオンの濃度の左右されないTOC濃度測定方法として、ガス透過膜を利用して導電率測定を行う方法がある。ガス透過膜を用いる方法は
、紫外線酸化処理によって炭酸を発生させたのち炭酸のみをガス透過膜によって分離して脱イオン水に溶解させ、炭酸を溶解させた脱イオン水の導電率を計測してTOC濃度に換算するものである。ガス透過膜を利用する方法は、他のイオンの影響を受けずに試料水のTOC濃度を測定することができる方法である。
In order to appropriately manage the operation of the water treatment system by monitoring the quality of raw water supplied to the water treatment device, water treatment management devices provided separately from the water treatment system are described in Patent Documents 1 to 3 mentioned above. as also described, includes means for measuring TOC concentration in water. A TOC measurement device that measures the TOC concentration in sample water uses some method to oxidize the TOC component in sample water to carbonic acid (carbon dioxide), then measures the concentration of the generated carbonic acid in some way and converts it to TOC concentration. Things are common. In recent years, measurement devices that decompose TOC components in sample water by ultraviolet oxidation treatment, quantify the amount of carbon dioxide generated by the decomposition of TOC, and convert it into TOC concentration have been widely used. In this case, the method for quantifying the amount of carbonic acid is to measure the electrical conductivity of the sample water and the electrical conductivity after UV oxidation treatment of the sample water, and convert the difference in electrical conductivity into the carbonic acid concentration. Commonly used. However, in this method, if the sample water contains conductive ions other than carbonic acid, these ions will affect the TOC concentration measurement. As a TOC concentration measurement method that is not affected by the concentration of ions contained in sample water, there is a method of measuring conductivity using a gas permeable membrane. The method using a gas-permeable membrane involves generating carbonic acid through ultraviolet oxidation treatment, separating only the carbonic acid using a gas-permeable membrane, dissolving it in deionized water, and measuring the conductivity of the deionized water in which carbonic acid has been dissolved. This is converted into TOC concentration. A method using a gas permeable membrane is a method that allows the TOC concentration of sample water to be measured without being affected by other ions.

試料水におけるTOC濃度の測定方法は、試料水中のTOC成分を酸化させて炭酸を発生させるので、試料水中の無機炭素(IC;Inorganic Carbon)成分の影響を受け、TOC成分の酸化分解で発生した炭酸量を測定するときに実際に測定される炭酸量は、無機炭素成分に由来するものも含むこととなる。試料水あるいは原水に含まれる無機炭素成分は、基本的には、二酸化炭素、炭酸イオン、炭酸水素イオンかそれらの塩であると考えられる。実際のTOC濃度装置では、紫外線酸化処理後に測定される炭酸量から全炭素(TC:Total Carbon)濃度を求め、これとは別に紫外線酸化を行う前の試料水から無機炭素濃度を求め、全炭素濃度から無機炭素濃度を差し引くことによってTOC濃度としていることが多い。このようなTOC測定装置を用いて微量のTOC濃度、例えばμg/LオーダーのTOC濃度を測定する場合、試料水中の炭酸濃度が高い場合には、TOC濃度測定の精度が悪化する。試料水中の炭酸成分を除去する装置と組み合わせる方法もあるが、その場合には、炭酸除去装置から溶出するTOC成分がTOC測定値に影響を及ぼす恐れがある。上述の特許文献1~3に記載されたいずれの技術においてもTOC測定時における無機炭素成分の影響についての考慮はされておらず、その結果、TOC濃度の測定やTOC濃度に基づく水処理システムの管理が難しくなることがある。 The TOC concentration measurement method in sample water oxidizes the TOC component in the sample water to generate carbonic acid, so it is affected by the inorganic carbon (IC) component in the sample water, and the amount of carbon dioxide generated due to oxidative decomposition of the TOC component is affected by the inorganic carbon (IC) component in the sample water. The amount of carbonic acid actually measured when measuring the amount of carbonic acid includes that derived from inorganic carbon components. Inorganic carbon components contained in sample water or raw water are basically considered to be carbon dioxide, carbonate ions, bicarbonate ions, or salts thereof. In an actual TOC concentration device, the total carbon (TC) concentration is determined from the amount of carbon dioxide measured after ultraviolet oxidation treatment, and the inorganic carbon concentration is also determined from the sample water before ultraviolet oxidation. The TOC concentration is often obtained by subtracting the inorganic carbon concentration from the concentration. When measuring a minute amount of TOC concentration, for example, a TOC concentration on the order of μg/L, using such a TOC measurement device, if the carbonate concentration in the sample water is high, the accuracy of TOC concentration measurement deteriorates. There is also a method in which the method is combined with a device that removes carbonic acid components from the sample water, but in that case, there is a possibility that TOC components eluted from the carbonic acid removing device may affect the TOC measurement value. None of the techniques described in Patent Documents 1 to 3 mentioned above take into consideration the influence of inorganic carbon components during TOC measurement, and as a result, it is difficult to measure TOC concentration or to develop a water treatment system based on TOC concentration. Management can be difficult.

本発明の目的は、水処理システムの運転管理のために水処理システムに供給される水を監視し評価する水処理管理装置及び水質監視方法であって、監視対象の水に含まれる無機炭素(IC)成分に影響されることなく全有機炭素(TOC)濃度を正確に測定できる水処理管理装置及び水質監視方法を提供することにある。 An object of the present invention is to provide a water treatment management device and a water quality monitoring method for monitoring and evaluating water supplied to a water treatment system for the purpose of operational management of the water treatment system. An object of the present invention is to provide a water treatment management device and a water quality monitoring method that can accurately measure total organic carbon (TOC) concentration without being affected by IC) components.

本発明の水処理管理装置は、水処理システムに供給されるべき水が対象水として供給されて対象水に対する処理を実行する機器を備え、TOC成分を除去するための単位操作を実行する評価用純水製造部と、測定対象の水のTOC濃度を測定する測定手段と、を備え、水処理システムの運転管理に用いられる水処理管理装置において、評価用純水製造部に設けられて測定対象の水に含まれる無機炭素を除去する無機炭素除去手段を備え、評価用純水製造部において、機器として、逆浸透膜装置と、紫外線照射装置と、少なくともアニオン交換体を含むイオン交換体が充填されたイオン交換体充填装置とが少なくとも設けられて対象水が逆浸透膜装置、紫外線照射装置及びイオン交換体充填装置の順で通水処理され、測定対象の水は、対象水及び少なくとも1つの機器の処理水の少なくとも一方であり、無機炭素除去手段は、単独でまたは逆浸透膜装置と協働して、測定対象の水に含まれる無機炭素を除去し、測定手段に供給される測定対象の水の無機炭素濃度が、測定手段におけるTOC濃度測定値の10重量倍以下であることを特徴とする。 The water treatment management device of the present invention is equipped with a device that performs treatment on the target water when water to be supplied to the water treatment system is supplied as target water, and is for evaluation that executes a unit operation for removing TOC components. In a water treatment management device used for operational management of a water treatment system, which includes a pure water production section and a measuring means for measuring the TOC concentration of the water to be measured, the water treatment management device is provided in the evaluation pure water production section to measure the TOC concentration of the water to be measured. Equipped with an inorganic carbon removal means for removing inorganic carbon contained in water, the evaluation pure water production department is equipped with equipment such as a reverse osmosis membrane device, an ultraviolet irradiation device, and an ion exchanger containing at least an anion exchanger. The target water is passed through the reverse osmosis membrane device, the ultraviolet irradiation device, and the ion exchanger filling device in this order, and the water to be measured is provided with at least the target water and at least one ion exchanger filling device. The inorganic carbon removal means, which is at least one of the treated water of the equipment, removes inorganic carbon contained in the water to be measured, either alone or in cooperation with a reverse osmosis membrane device, and removes the inorganic carbon contained in the water to be measured, which is supplied to the measurement means. The inorganic carbon concentration of the water is 10 times or less by weight the TOC concentration measured by the measuring means.

本発明の水質監視方法は、水処理システムに供給されるべき水を対象水として対象水の水質を監視する水質監視方法であって、水処理システムとは別個に設けられてTOC成分を除去するための単位操作を実行する評価用純水製造部に対象水を供給する工程と、評価用純水製造部の入口及び出口を含んでよい評価用純水製造部における1以上の測定点における測定対象の水のTOC濃度を測定手段により測定する工程と、測定手段に供給される測定対象の水の無機炭素濃度が、測定手段におけるTOC濃度測定値の10重量倍以下であるように、無機炭素を除去する工程と、を有する。 The water quality monitoring method of the present invention is a water quality monitoring method for monitoring the water quality of target water using water to be supplied to a water treatment system as target water, and is provided separately from the water treatment system to remove TOC components. a step of supplying target water to a pure water production section for evaluation that performs a unit operation for the purpose of the test, and measurement at one or more measurement points in the pure water production section for evaluation, which may include an inlet and an outlet of the pure water production section for evaluation. A step of measuring the TOC concentration of the target water by a measuring means, and a step of measuring the TOC concentration of the target water by measuring the inorganic carbon concentration so that the inorganic carbon concentration of the target water supplied to the measuring means is 10 times by weight or less the TOC concentration measured value by the measuring means. and a step of removing.

本発明によれば、水処理システムの運転管理のために水処理システムに供給される水を監視し評価する水処理管理装置及び水質監視方法において、監視対象の水に含まれる無機炭素成分に影響されることなくTOC濃度を正確に測定できるようになる。 According to the present invention, in a water treatment management device and a water quality monitoring method for monitoring and evaluating water supplied to a water treatment system for operation management of the water treatment system, an influence on inorganic carbon components contained in water to be monitored is provided. It becomes possible to accurately measure TOC concentration without being affected.

本発明の第1の実施形態の水処理管理装置の構成を示す図である。1 is a diagram showing the configuration of a water treatment management device according to a first embodiment of the present invention. 第2の実施形態の水処理管理装置の構成を示す図である。It is a figure showing the composition of the water treatment management device of a 2nd embodiment. 第3の実施形態の水処理管理装置の構成を示す図である。It is a figure showing the composition of the water treatment management device of a 3rd embodiment. 第4の実施形態の水処理管理装置の構成を示す図である。It is a figure showing the composition of the water treatment management device of a 4th embodiment.

次に、本発明の実施を実施するための形態について、図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態の水処理管理装置を示している。例えば超純水製造システムなどの水処理システム10があるとして、本発明に基づく水処理管理装置20は、水処理システム10の運転管理のために使用されるものであり、水処理システム10に供給されるべき原水の配管に接続してこの原水を対象水として、対象水の水質を監視し評価する。原水は、例えば工業用水であったり回収水であったりするが、以下の説明では、水処理システム10に供給されるべき水を広く原水と呼ぶこととする。水処理システム10に対しては、異なる供給源からの原水を切り替えて供給することができるようになっていてもよい。図示した例では2系統の原水を切り替えて(あるいは混合して)水処理システム10に供給できるようになっている。そのため、2系統の原水の配管にそれぞれ弁11,12が設けられ、弁11,12の出口側でこれらの配管が合流し、合流点Cと水処理システム10との間にさらに弁15が設けられている。そして合流点Cと弁15との間の位置から原水を水処理管理装置20に供給するための配管16が分岐している。弁15は、水処理システム10への原水の供給を遮断した状態においても原水の水質の監視や評価を可能とするために設けられている。例えば水処理管理装置20は、対象水である原水中における難分解性TOC成分の存在の確認やその濃度の監視を行い、得られた結果に基づいて弁11,12,15の開閉を制御することによって、どの供給源からの原水をどれだけの流量で水処理システム10に供給するかを制御することができる。ここで難分解性TOC成分とは、逆浸透膜処理や紫外線酸化処理では除去することが難しいTOC成分、特に、一般的な紫外線酸化処理によって分解除去することが難しいTOC成分のことである。
[First embodiment]
FIG. 1 shows a water treatment management device according to a first embodiment of the present invention. For example, assuming that there is a water treatment system 10 such as an ultrapure water production system, the water treatment management device 20 based on the present invention is used for operational management of the water treatment system 10 and supplies water to the water treatment system 10. The water quality of the target water is monitored and evaluated using this raw water as the target water. Raw water may be, for example, industrial water or recovered water, but in the following explanation, the water to be supplied to the water treatment system 10 will be broadly referred to as raw water. The water treatment system 10 may be configured to be able to switch and supply raw water from different sources. In the illustrated example, two systems of raw water can be switched (or mixed) and supplied to the water treatment system 10. Therefore, valves 11 and 12 are provided in the two systems of raw water pipes, and these pipes merge on the outlet sides of valves 11 and 12, and a valve 15 is further provided between the confluence point C and the water treatment system 10. It is being A pipe 16 for supplying raw water to the water treatment management device 20 branches from a position between the confluence C and the valve 15. The valve 15 is provided to enable monitoring and evaluation of the quality of raw water even when the supply of raw water to the water treatment system 10 is cut off. For example, the water treatment management device 20 confirms the presence of persistent TOC components in raw water, which is the target water, and monitors its concentration, and controls the opening and closing of the valves 11, 12, and 15 based on the obtained results. By doing so, it is possible to control which supply source and at what flow rate raw water is supplied to the water treatment system 10. Here, the persistent TOC component refers to a TOC component that is difficult to remove by reverse osmosis membrane treatment or ultraviolet oxidation treatment, particularly a TOC component that is difficult to decompose and remove by general ultraviolet oxidation treatment.

水処理管理装置20は、大別すると、評価用純水製造部21とTOC(全有機炭素)測定装置22とを備えている。評価用純水製造部21は、配管16を介して対象水が供給されてこの対象水から純水を製造する装置であって、対象水に対する処理を行う複数種類の機器を組み合わせて構成されている。これらの機器の中には、TOC成分を除去するための単位操作を実行するものが含まれる。本発明に基づく水処理管理装置20の評価用純水製造部21は、対象水に対する処理を行う機器として、逆浸透膜装置(RO)31と、逆浸透膜装置31によって処理された水が供給されて紫外線酸化処理を行う紫外線照射装置(UV)33と、イオン交換体が充填されて紫外線照射装置33の出口水が供給される脱イオン装置とを少なくとも備えている。脱イオン装置に充填されるイオン交換体は、少なくともアニオン交換体を含んでいる。第1の実施形態の水処理管理装置20では、脱イオン装置は、アニオン交換樹脂とカチオン交換樹脂とを混床で充填したカートリッジポリッシャー(CP)34である。 Roughly divided, the water treatment management device 20 includes an evaluation pure water production section 21 and a TOC (total organic carbon) measuring device 22. The evaluation pure water production unit 21 is a device that is supplied with target water through the piping 16 and produces pure water from the target water, and is configured by combining multiple types of equipment that process the target water. There is. Some of these devices include those that perform unit operations to remove TOC components. The evaluation pure water production unit 21 of the water treatment management device 20 based on the present invention includes a reverse osmosis membrane device (RO) 31 as a device for treating target water, and water treated by the reverse osmosis membrane device 31 is supplied. It is equipped with at least an ultraviolet irradiation device (UV) 33 that performs ultraviolet oxidation treatment, and a deionization device filled with an ion exchanger and supplied with water from the outlet of the ultraviolet irradiation device 33. The ion exchanger filled in the deionization device contains at least an anion exchanger. In the water treatment management device 20 of the first embodiment, the deionization device is a cartridge polisher (CP) 34 filled with a mixed bed of anion exchange resin and cation exchange resin.

TOC測定装置22は、評価用純水製造部21内の1以上の測定点における水のTOC濃度を測定する装置である。測定点には、評価用純水製造部21の入口や出口が含まれていてもよく、その場合、TOC測定装置22は、評価用純水製造部21に供給される対象水そのもののTOC濃度や、評価用純水製造部21の出口水のTOC濃度を測定することになる。TOC測定装置22として、市販のオンライン用のTOC測定装置あるいはTOC濃度計、TOC計などを使用することができる。超純水製造システムである水処理システム10の運転管理を行う場合、評価用純水製造部21の出口水(図1に示す例ではカートリッジポリシャー34の処理水)のTOC濃度と、逆浸透膜装置31によって処理されて紫外線照射装置33によって処理される前の水のTOC濃度との少なくとも一方をTOC測定装置22で測定することが好ましい。ところで、測定対象となる水におけるTOC濃度が例えばμg/L程度と低い場合、そこに含まれるIC(無機炭素)濃度が高い場合に、TOC測定装置22によって測定されるTOC濃度の精度が低下することが分かっている。本発明者らは、測定対象の水のIC濃度が、その水をTOC測定装置22で測定したときに得られるTOC濃度値に比べて10重量倍以下であれば、TOC測定装置22によるTOC濃度測定の誤差が小さくなり、水処理システム10の運転管理を安定的に行えることを見出した。測定対象の水のIC濃度は、TOC測定装置22によるTOC濃度測定値の6重量倍以下であることが好ましく、3重量倍以下であることがより好ましい。 The TOC measurement device 22 is a device that measures the TOC concentration of water at one or more measurement points within the evaluation pure water production section 21. The measurement points may include the inlet and outlet of the pure water production section 21 for evaluation, and in that case, the TOC measurement device 22 measures the TOC concentration of the target water itself supplied to the pure water production section 21 for evaluation. Also, the TOC concentration of the outlet water of the evaluation pure water production section 21 is measured. As the TOC measuring device 22, a commercially available online TOC measuring device, a TOC concentration meter, a TOC meter, or the like can be used. When managing the operation of the water treatment system 10, which is an ultrapure water production system, the TOC concentration of the outlet water of the evaluation pure water production section 21 (in the example shown in FIG. 1, the treated water of the cartridge polisher 34) and the reverse osmosis membrane It is preferable that the TOC measuring device 22 measure at least one of the TOC concentration of the water treated by the device 31 and before being treated by the ultraviolet irradiation device 33. By the way, when the TOC concentration in the water to be measured is low, for example about μg/L, and when the IC (inorganic carbon) concentration contained therein is high, the accuracy of the TOC concentration measured by the TOC measuring device 22 decreases. I know that. The present inventors believe that if the IC concentration of the water to be measured is 10 times or less by weight compared to the TOC concentration value obtained when the water is measured with the TOC measuring device 22, the TOC concentration measured by the TOC measuring device 22 is It has been found that measurement errors are reduced and the operation of the water treatment system 10 can be managed stably. The IC concentration of the water to be measured is preferably 6 times or less, more preferably 3 times or less by weight, the TOC concentration measured by the TOC measuring device 22.

そこで第1の実施形態の水処理管理装置20では、評価用純水製造部21は、逆浸透膜を備え配管16を介して対象水が供給される逆浸透膜装置31と、逆浸透膜装置31の出口に接続されて逆浸透膜の透過水が供給される電気式脱イオン水製造装置(以下、EDI装置とも呼ぶ)32と、EDI装置32の出口に接続してEDI装置32からの処理水に対して紫外線酸化処理を行う紫外線照射装置33と、イオン交換体が充填されて紫外線照射装置33の処理水が供給される脱イオン装置とを少なくとも備えている。脱イオン装置に充填されるイオン交換体は、少なくともアニオン交換体を含んでいる。図1に示す水処理管理装置20では、脱イオン装置は、アニオン交換樹脂とカチオン交換樹脂とを混床で充填したカートリッジポリッシャー(CP)34である。EDI装置32の処理水の一部が分岐して弁52を介してTOC測定装置22に供給される。また、評価用純水製造部21の出口水の一部が分岐して弁54を介してTOC測定装置22に供給される。弁52,54の開閉を制御することによって、TOC測定装置22により、EDI装置32の処理水のTOC濃度と評価用純水製造部21の出口水のTOC濃度とを切り替えて測定することができる。評価用純水製造部21の出口水の残りの部分は回収または排出される。評価用純水製造部21において逆浸透膜装置31はTOC成分を除去するために設けられているから、以下の説明では、逆浸透膜装置31から排出される2種類の水、すなわち逆浸透膜を透過した水と濃縮水のうち、逆浸透膜を透過した水を逆浸透膜装置31の処理水とする。 Therefore, in the water treatment management device 20 of the first embodiment, the evaluation pure water production section 21 includes a reverse osmosis membrane device 31 equipped with a reverse osmosis membrane and to which target water is supplied via the piping 16, and a reverse osmosis membrane device An electrodeionized water production device (hereinafter also referred to as an EDI device) 32 is connected to the outlet of the EDI device 31 and is supplied with permeated water from the reverse osmosis membrane; It includes at least an ultraviolet irradiation device 33 that performs ultraviolet oxidation treatment on water, and a deionization device filled with an ion exchanger and to which treated water of the ultraviolet irradiation device 33 is supplied. The ion exchanger filled in the deionization device contains at least an anion exchanger. In the water treatment management device 20 shown in FIG. 1, the deionization device is a cartridge polisher (CP) 34 filled with a mixed bed of anion exchange resin and cation exchange resin. A portion of the treated water from the EDI device 32 is branched off and supplied to the TOC measuring device 22 via the valve 52 . Further, a part of the outlet water of the evaluation pure water production section 21 is branched and supplied to the TOC measuring device 22 via the valve 54. By controlling the opening and closing of the valves 52 and 54, the TOC measurement device 22 can switch and measure the TOC concentration of the treated water of the EDI device 32 and the TOC concentration of the outlet water of the evaluation pure water production section 21. . The remaining portion of the outlet water of the pure water production section 21 for evaluation is collected or discharged. Since the reverse osmosis membrane device 31 is provided in the evaluation pure water production section 21 to remove TOC components, in the following explanation, two types of water discharged from the reverse osmosis membrane device 31, namely the reverse osmosis membrane Of the water that has passed through and the concentrated water, the water that has passed through the reverse osmosis membrane is used as the treated water of the reverse osmosis membrane device 31.

図1に示す水処理管理装置20においてEDI装置32は、逆浸透膜装置31の処理水に含まれる無機炭素成分を除去するために設けられている。EDI装置32は、イオン交換体が充填された脱塩室を備え、電気泳動と電気透析とを組み合わせて脱イオン水の生成を行う装置であり、処理対象の水が脱塩室に供給されてイオン交換体によるその水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。脱塩室において脱塩処理がなされた水が、EDI装置32の処理水として、脱塩室から排出される。したがってEDI装置32は、イオン交換体充填装置の範疇に含まれる。 In the water treatment management device 20 shown in FIG. 1, the EDI device 32 is provided to remove inorganic carbon components contained in the water treated by the reverse osmosis membrane device 31. The EDI device 32 is a device that includes a desalination chamber filled with an ion exchanger and generates deionized water by combining electrophoresis and electrodialysis, and water to be treated is supplied to the desalination chamber. This device simultaneously deionizes (desalts) the water using an ion exchanger and regenerates the ion exchanger. The water that has been desalinated in the desalination chamber is discharged from the desalination chamber as treated water of the EDI device 32. Therefore, the EDI device 32 is included in the category of an ion exchanger filling device.

EDI装置32は、炭酸に代表される無機炭素成分を効率的に除去できる一方、非イオン性のTOC成分を除去しないか、除去するとしても限定的である。したがって、EDI装置32の処理水のTOC濃度を逆浸透膜装置31の処理水でのTOC濃度として扱うことができ、しかも、EDI装置32によって無機炭素成分が除去されるので、EDI装置32の処理水のTOC濃度を測定することによって、逆浸透膜装置31の処理水におけるTOC濃度を安定してより正確に測定することが可能になる。無機炭素成分の除去に、イオン交換樹脂などが単に充填されている一般的なイオン交換樹脂塔などのイオン交換体充填装置を用いることも可能であるが、処理対象の水におけるイオン負荷が高いと短時間で無機炭素成分がリークするようになり、イオン交換体の頻繁な再生や交換が必要となる。一方、EDI装置32は連続再生式の装置であって、脱塩室において脱塩とイオン交換体の再生とが同時並行的に進行するので、一般的なイオン交換樹脂塔などにおいては必要となる再生処理を必要としない。EDI装置32を用いることにより、無機炭素負荷が比較的高い場合においても長期間にわたって安定して無機炭素成分を除去することが可能になる。 While the EDI device 32 can efficiently remove inorganic carbon components represented by carbonic acid, it does not remove nonionic TOC components, or even if it removes them, it does so only to a limited extent. Therefore, the TOC concentration of the water treated by the EDI device 32 can be treated as the TOC concentration of the water treated by the reverse osmosis membrane device 31, and since inorganic carbon components are removed by the EDI device 32, the By measuring the TOC concentration of water, it becomes possible to stably and more accurately measure the TOC concentration in the water treated by the reverse osmosis membrane device 31. It is also possible to use an ion exchanger packing device such as a general ion exchange resin tower that is simply filled with ion exchange resin to remove inorganic carbon components, but if the ion load in the water to be treated is high. Inorganic carbon components begin to leak in a short period of time, requiring frequent regeneration or replacement of the ion exchanger. On the other hand, the EDI device 32 is a continuous regeneration type device, and desalination and regeneration of the ion exchanger proceed simultaneously in the demineralization chamber, which is necessary in a general ion exchange resin column. Does not require regeneration processing. By using the EDI device 32, it is possible to stably remove inorganic carbon components over a long period of time even when the inorganic carbon load is relatively high.

TOC濃度測定における誤差要因となる無機炭素成分を除去するために用いられるEDI装置32の設置位置は、特に制約されるものではないが、図1に示すように逆浸透膜装置31の後段であって紫外線照射装置33の前段であることが好ましい。図1に示した水処理管理装置20では、逆浸透膜装置31とEDI装置32とによって被処理水中のイオン成分を高度に除去することができるため、紫外線照射装置33におけるTOC分解効率を高めることができるとともに、紫外線照射装置33の後段に配置されるカートリッジポリッシャー34などのイオン交換体充填装置におけるイオン負荷を軽減することができ、このイオン交換体充填装置の頻繁な再生や交換が不要となる。第1の実施形態において、カートリッジポリッシャー34の代わりにさらなるEDI装置を設けてもよい。 The installation position of the EDI device 32, which is used to remove inorganic carbon components that cause errors in TOC concentration measurement, is not particularly limited, but as shown in FIG. It is preferable that the ultraviolet ray irradiation device 33 be provided before the ultraviolet irradiation device 33. In the water treatment management device 20 shown in FIG. 1, since the reverse osmosis membrane device 31 and the EDI device 32 can highly remove ionic components in the water to be treated, the TOC decomposition efficiency in the ultraviolet irradiation device 33 can be improved. At the same time, it is possible to reduce the ion load on the ion exchanger filling device such as the cartridge polisher 34 placed after the ultraviolet irradiation device 33, and it becomes unnecessary to frequently regenerate or replace the ion exchanger filling device. . In the first embodiment, the cartridge polisher 34 may be replaced by a further EDI device.

[第2の実施形態]
水処理管理装置20に供給される対象水における無機炭素成分は、通常、炭酸成分であるので、無機炭素の除去のために脱気装置を用いることができる。脱気装置としては、例えば脱炭酸膜装置を用いることができる。脱気装置の設置場所には特に制限はないが、逆浸透膜装置31の前段とすることが好ましい。逆浸透膜装置31と紫外線照射装置33との間となる位置に脱気装置を設けてもよい。脱気装置を設けた場合には、逆浸透膜装置31の後段であって紫外線照射装置33の前段の位置にはEDI装置32を設けなくてもよい。逆浸透膜装置31の前段に脱気装置を設ける場合、水処理管理装置では、脱気装置の処理水のTOC濃度、逆浸透膜装置32の処理水のTOC濃度、及び評価用純水製造部21の出口水のTOC濃度のうちの少なくとも1つのTOC濃度を測定することが好ましい。無機炭素のうち炭酸塩及び炭酸水素塩の形態のものも脱気装置によって効率よく除去するために、脱気装置の前段にpH調整手段を設け、脱気装置に供給される水の液性を酸性側に調整することもできる。
[Second embodiment]
Since the inorganic carbon component in the target water supplied to the water treatment management device 20 is usually a carbonic acid component, a deaerator can be used to remove the inorganic carbon. As the degassing device, for example, a decarbonation membrane device can be used. Although there is no particular restriction on the installation location of the deaeration device, it is preferable to install it in the front stage of the reverse osmosis membrane device 31. A degassing device may be provided at a position between the reverse osmosis membrane device 31 and the ultraviolet irradiation device 33. When a deaeration device is provided, it is not necessary to provide the EDI device 32 at a position downstream of the reverse osmosis membrane device 31 and upstream of the ultraviolet irradiation device 33. When a deaeration device is provided upstream of the reverse osmosis membrane device 31, the water treatment management device measures the TOC concentration of the treated water of the deaeration device, the TOC concentration of the treated water of the reverse osmosis membrane device 32, and the pure water production section for evaluation. Preferably, the TOC concentration of at least one of the 21 outlet water TOC concentrations is measured. In order to efficiently remove inorganic carbon in the form of carbonate and hydrogen carbonate using the deaerator, a pH adjustment means is provided upstream of the deaerator to adjust the liquid properties of the water supplied to the deaerator. It can also be adjusted to the acidic side.

図2は、脱気装置を備えた、本発明の第2の実施形態の水処理管理装置20を示している。図2に示す水処理管理装置20は、図1に示す水処理管理装置20において、EDI装置32を取り除いてその代わりに逆浸透膜装置31の前段に膜脱気装置35を設け、さらに、カートリッジポリッシャー34の代わりにEDI装置36を設けたものである。したがって、図2に示す水処理管理装置20の評価用純水製造部21では、対象水は配管16から膜脱気装置35を介して逆浸透膜装置31に供給され、逆浸透膜装置31の処理水がそのまま紫外線照射装置33に供給され、紫外線照射装置33の処理水がEDI装置36に供給され、EDI装置36の処理水が評価用純水製造部21の出口水となっている。そして、膜脱気装置35の処理水の一部が分岐して弁55を介してTOC測定装置22に供給され、逆浸透膜装置31の処理水の一部が分岐して弁51を介してTOC測定装置22に供給され、評価用純水製造部21の出口水の一部が分岐して弁56を介してTOC測定装置22に供給される。弁51,55,56の開閉を制御することによって、TOC測定装置22により、膜脱気装置35の処理水のTOC濃度と逆浸透膜装置31の処理水のTOC濃度と評価用純水製造部21の出口水のTOC濃度とを切り替えて測定することができる。また図2に示す水処理管理装置20では、カートリッジポリッシャー34の代わりにEDI装置36を用いているので、イオン負荷が高い場合であっても安定してTOC成分を除去することが可能になる。 FIG. 2 shows a water treatment management device 20 according to a second embodiment of the invention, including a deaerator. The water treatment management device 20 shown in FIG. 2 is the same as the water treatment management device 20 shown in FIG. An EDI device 36 is provided in place of the polisher 34. Therefore, in the evaluation pure water production section 21 of the water treatment management device 20 shown in FIG. The treated water is supplied as it is to the ultraviolet irradiation device 33, the treated water of the ultraviolet irradiation device 33 is supplied to the EDI device 36, and the treated water of the EDI device 36 serves as the outlet water of the pure water production section 21 for evaluation. A portion of the treated water from the membrane deaerator 35 is branched off and supplied to the TOC measurement device 22 via the valve 55, and a portion of the treated water from the reverse osmosis membrane device 31 is branched off and supplied via the valve 51. A part of the outlet water of the pure water production section 21 for evaluation is branched and supplied to the TOC measurement device 22 via a valve 56 . By controlling the opening and closing of the valves 51, 55, and 56, the TOC measurement device 22 measures the TOC concentration of the treated water from the membrane deaerator 35, the TOC concentration of the treated water from the reverse osmosis membrane device 31, and the pure water production unit for evaluation. The TOC concentration of the outlet water of No. 21 can be switched and measured. Further, in the water treatment management device 20 shown in FIG. 2, since the EDI device 36 is used instead of the cartridge polisher 34, it is possible to stably remove TOC components even when the ion load is high.

[第3の実施形態]
図3は本発明の第3の実施形態の水処理管理装置20を示している。図3に示す水処理管理装置20は、図2に示すものと同様に脱気装置を備えたものであり、具体的には、図1に示す水処理管理装置20において逆浸透膜装置31の前段に膜脱気装置35を設け、評価用純水製造部21において、対象水が膜脱気装置35を介して逆浸透膜装置31に供給されるようにしたものである。このように膜脱気装置35を設ける場合、膜脱気装置35の処理水、逆浸透膜装置31の処理水、EDI装置32の処理水、カートリッジポリッシャー34の処理水のうちのいずれか1つのTOC濃度を測定することが好ましい。図3に示したものでは、膜脱気装置35の処理水の一部が分岐して弁55を介してTOC測定装置22に供給され、逆浸透膜装置31の処理水の一部が分岐して弁51を介してTOC測定装置22に供給され、EDI装置32の処理水の一部が分岐して弁52を介してTOC測定装置22に供給され、評価用純水製造部21の出口水の一部が分岐して弁54を介してTOC測定装置22に供給される。弁51,52,54,55の開閉を制御することによって、TOC測定装置22により、膜脱気装置35の処理水のTOC濃度と逆浸透膜装置31の処理水のTOC濃度とEDI装置32の処理水のTOC濃度と評価用純水製造部21の出口水のTOC濃度とを切り替えて測定することができる。図3に示す水処理管理装置20においても、膜脱気装置35の前段にpH調整手段を設けてもよく、その場合、膜脱気装置35に供給される水の液性を酸性側に調整することが好ましい。
[Third embodiment]
FIG. 3 shows a water treatment management device 20 according to a third embodiment of the present invention. The water treatment management device 20 shown in FIG. 3 is equipped with a degassing device like the one shown in FIG. 2, and specifically, in the water treatment management device 20 shown in FIG. A membrane deaerator 35 is provided at the front stage, and target water is supplied to the reverse osmosis membrane device 31 via the membrane deaerator 35 in the evaluation pure water production section 21. When the membrane deaerator 35 is provided in this way, any one of the treated water of the membrane deaerator 35, the treated water of the reverse osmosis membrane device 31, the treated water of the EDI device 32, and the treated water of the cartridge polisher 34 is used. Preferably, TOC concentration is measured. In the system shown in FIG. 3, a portion of the treated water from the membrane deaerator 35 is branched off and supplied to the TOC measuring device 22 via the valve 55, and a portion of the treated water from the reverse osmosis membrane device 31 is branched off. A part of the treated water of the EDI device 32 is branched and supplied to the TOC measuring device 22 via the valve 52, and the outlet water of the pure water production section 21 for evaluation is supplied to the TOC measuring device 22 via the valve 51. A portion thereof is branched and supplied to the TOC measuring device 22 via a valve 54. By controlling the opening and closing of the valves 51, 52, 54, and 55, the TOC measuring device 22 can measure the TOC concentration of the treated water from the membrane deaerator 35, the TOC concentration of the treated water from the reverse osmosis membrane device 31, and the TOC concentration of the EDI device 32. The TOC concentration of the treated water and the TOC concentration of the outlet water of the evaluation pure water production section 21 can be switched and measured. In the water treatment management device 20 shown in FIG. 3 as well, a pH adjusting means may be provided upstream of the membrane deaerator 35, and in that case, the liquidity of the water supplied to the membrane deaerator 35 is adjusted to the acidic side. It is preferable to do so.

[第4の実施形態]
上述した第2及び第3の実施形態では、脱気装置の前段にpH調整手段を設けることができるが、逆浸透膜装置の前段にpH調整手段を設け、pH調整手段によりpHが調整された水が逆浸透膜装置に供給されるようにして、無機炭素の除去を促進することができる。pH調整手段は、逆浸透膜装置を協働して、測定対象の水に含まれる無機炭素を除去する。その場合、逆浸透膜装置に供給される水の液性をアルカリ側に調整することが好ましい。水に含まれる無機炭素は主として二酸化炭素(CO)、炭酸イオン(CO 2-)及び炭酸水素イオン(HCO )の形態で存在しており、それらの相互間の存在比はpHによって異なる。アルカリ側では多価イオンである炭酸イオンとして存在する割合が高くなり、逆浸透膜によって除去されやすくなる。逆浸透膜装置の前段にpH調整手段を設ける場合、逆浸透膜装置の後段に紫外線照射装置及びEDI装置をこの順で接続することが好ましく、そのように接続した場合、逆浸透膜装置の処理水のTOC濃度及びEDI装置の処理水のTOC濃度の少なくとも一方を測定することが好ましい。あるいは、逆浸透膜装置の後段にEDI装置、紫外線照射装置及びカートリッジポリッシャーをこの順で接続してもよく、そのように接続した場合、逆浸透膜装置の処理水のTOC濃度、EDI装置の処理水のTOC濃度及びカートリッジポリッシャーの処理水のTOC濃度の少なくとも1つを測定することが好ましい。
[Fourth embodiment]
In the second and third embodiments described above, the pH adjustment means can be provided upstream of the deaeration device, but the pH adjustment device is provided upstream of the reverse osmosis membrane device, and the pH is adjusted by the pH adjustment device. Water can be supplied to the reverse osmosis membrane device to facilitate the removal of inorganic carbon. The pH adjusting means cooperates with a reverse osmosis membrane device to remove inorganic carbon contained in the water to be measured. In that case, it is preferable to adjust the liquidity of the water supplied to the reverse osmosis membrane device to be alkaline. Inorganic carbon contained in water mainly exists in the form of carbon dioxide (CO 2 ), carbonate ion (CO 3 2− ), and hydrogen carbonate ion (HCO 3 ), and the abundance ratio among them varies depending on the pH. different. On the alkaline side, the proportion of carbonate ions, which are polyvalent ions, increases, making them easier to remove by the reverse osmosis membrane. When a pH adjustment means is provided before the reverse osmosis membrane device, it is preferable to connect an ultraviolet irradiation device and an EDI device after the reverse osmosis membrane device in this order. It is preferable to measure at least one of the TOC concentration of water and the TOC concentration of water treated by the EDI device. Alternatively, an EDI device, an ultraviolet irradiation device, and a cartridge polisher may be connected in this order after the reverse osmosis membrane device, and when connected in this way, the TOC concentration of the treated water of the reverse osmosis membrane device, the treatment of the EDI device It is preferable to measure at least one of the TOC concentration of water and the TOC concentration of water treated by a cartridge polisher.

図4は、本発明の第4の実施形態の水処理管理装置20を示している。図4に示す水処理管理装置20は、図2に示す水処理管理装置20において、膜脱気装置35を設ける代わりに逆浸透膜装置31の前段にpH調整手段であるpH調整装置37を設け、逆浸透膜装置31に供給される対象水のpHをpH調整装置37によって調整できるようにしたものである。TOC測定装置22に対しては、逆浸透膜装置31の処理水の一部が弁51を介して供給されるとともに、EDI装置36の処理水の一部が弁56を介して供給される。弁51,56の開閉を制御することによって、TOC測定装置22により、逆浸透膜装置31の処理水のTOC濃度と評価用純水製造部21の出口水のTOC濃度とを切り替えて測定することができる。 FIG. 4 shows a water treatment management device 20 according to a fourth embodiment of the present invention. The water treatment management device 20 shown in FIG. 4 is the same as the water treatment management device 20 shown in FIG. , the pH of the target water supplied to the reverse osmosis membrane device 31 can be adjusted by a pH adjustment device 37. A portion of the treated water from the reverse osmosis membrane device 31 is supplied to the TOC measuring device 22 via a valve 51, and a portion of the treated water from the EDI device 36 is supplied via a valve 56. By controlling the opening and closing of the valves 51 and 56, the TOC measurement device 22 switches and measures the TOC concentration of the treated water of the reverse osmosis membrane device 31 and the TOC concentration of the outlet water of the evaluation pure water production section 21. I can do it.

以上、本発明に基づく水処理管理装置20の例を説明した。水処理管理装置20においてTOC濃度が得られたら、そのTOC濃度に基づいて、水処理システム10に含まれる逆浸透膜装置や紫外線照射装置の運転条件(例えば、逆浸透膜装置における回収率や紫外線照射装置における紫外線照射量)を制御してもよく。そのように水処理システム10側の運転条件を制御する制御機構を水処理管理装置20内に設けてもよい。水処理システム10に対して複数の供給源からの原水の供給が可能な場合には、特許文献1にも記載されるように、水処理管理装置20で測定されたTOC濃度に基づいて、水処理システム10に実際に供給される原水を切り替えてもよい。さらに、水処理システム10の入口に供給される原水ではなく、原水から超純水を生成する途中の過程において水処理システム10の内部を流れる水を分岐してこれを対象水として水処理管理装置20に供給するようにしてもよい。例えば水処理システム10においてその入口側にフィルターや活性炭装置、一次純水システムなどが設けられる場合に、それらのフィルター、活性炭装置あるいは一次純水システムの出口水を水処理管理装置20に供給し、水処理システム10の運転管理を行うようにしてもよい。 The example of the water treatment management device 20 based on the present invention has been described above. Once the TOC concentration is obtained in the water treatment management device 20, based on the TOC concentration, the operating conditions of the reverse osmosis membrane device and the ultraviolet irradiation device included in the water treatment system 10 (for example, the recovery rate in the reverse osmosis membrane device, the The amount of ultraviolet irradiation in the irradiation device) may also be controlled. A control mechanism for controlling the operating conditions of the water treatment system 10 in this manner may be provided within the water treatment management device 20. When it is possible to supply raw water to the water treatment system 10 from a plurality of supply sources, as described in Patent Document 1, water is The raw water actually supplied to the treatment system 10 may be switched. Furthermore, instead of the raw water supplied to the inlet of the water treatment system 10, the water flowing inside the water treatment system 10 during the process of generating ultrapure water from raw water is branched and this water is used as target water for the water treatment management system. 20 may be supplied. For example, when a filter, an activated carbon device, a primary pure water system, etc. are provided on the inlet side of the water treatment system 10, the outlet water of these filters, activated carbon device, or primary pure water system is supplied to the water treatment management device 20, The operation of the water treatment system 10 may also be managed.

本発明に基づく水処理管理装置20では、酸化剤によって逆浸透膜が劣化することを防ぐために、逆浸透膜装置31の前段側に酸化剤除去手段を設けることがより好ましい。本発明では、測定対象の水に含まれる無機炭素(IC)濃度をTOC測定装置によって得られるTOC濃度値の10重量倍以下とするが、この条件を満たすように、水処理管理装置20を構成する各装置の運転条件を制御してもよい。例えば、EDI装置での電流値や通水流量値(SV値)、逆浸透膜装置における回収率の制御を行なってもよい。 In the water treatment management device 20 according to the present invention, in order to prevent the reverse osmosis membrane from deteriorating due to the oxidizing agent, it is more preferable to provide an oxidizing agent removal means on the upstream side of the reverse osmosis membrane device 31. In the present invention, the inorganic carbon (IC) concentration contained in the water to be measured is set to be 10 times or less by weight the TOC concentration value obtained by the TOC measurement device, and the water treatment management device 20 is configured to satisfy this condition. The operating conditions of each device may be controlled. For example, the current value and water flow rate value (SV value) in the EDI device, and the recovery rate in the reverse osmosis membrane device may be controlled.

次に実施例及び比較例により、本発明をさらに詳しく説明する。 Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

[実施例1及び比較例1]
無機炭素(IC)成分として二酸化炭素を溶解させ、TOC成分としてイソプロピルアルコールを添加した水を用意し、試料水とした。試料水に含まれるTOC成分はイソプロピルアルコールだけであり、GC-MS(ガスクロマトグラフィー-質量分析)法によって試料水中のイソプロピルアルコールを定量することによって試料水に対する正確なTOC濃度を求め、試料水におけるTOC濃度を10μg/L及び100μg/Lに調整した。二酸化炭素の添加量を変化させて無機炭素濃度を変化させながら、試料水のTOC濃度をTOC計を用いて測定し、TOC計でのTOC濃度の測定精度を求めた。TOC計としては、SUEZ社製のSievers M500eを使用した。このTOC計はTOC濃度の測定と同時に試料水中の無機炭素(IC)濃度の測定を行うことが可能であり、TOC濃度と同時に無機炭素濃度も求めた。結果を表1に示す。表1において「IC/TOC重量比」は、試料水に含有される炭素の質量基準でのTOC濃度に対する無機炭素濃度の比である。また、「測定精度」は、GC-MSでの測定に基づくTOC濃度値を100%として、TOC計で得られたTOC濃度値を表したものである。
[Example 1 and Comparative Example 1]
Water in which carbon dioxide was dissolved as an inorganic carbon (IC) component and isopropyl alcohol was added as a TOC component was prepared and used as sample water. The only TOC component contained in the sample water is isopropyl alcohol, and by quantifying isopropyl alcohol in the sample water using the GC-MS (gas chromatography-mass spectrometry) method, the accurate TOC concentration in the sample water can be determined. TOC concentration was adjusted to 10 μg/L and 100 μg/L. The TOC concentration of the sample water was measured using a TOC meter while changing the inorganic carbon concentration by changing the amount of carbon dioxide added, and the measurement accuracy of the TOC concentration with the TOC meter was determined. As the TOC meter, Sievers M500e manufactured by SUEZ was used. This TOC meter is capable of measuring the inorganic carbon (IC) concentration in the sample water at the same time as measuring the TOC concentration, and the inorganic carbon concentration was also determined at the same time as the TOC concentration. The results are shown in Table 1. In Table 1, "IC/TOC weight ratio" is the ratio of the inorganic carbon concentration to the TOC concentration based on the mass of carbon contained in the sample water. Furthermore, "measurement accuracy" represents the TOC concentration value obtained by the TOC meter, with the TOC concentration value based on the measurement by GC-MS being taken as 100%.

Figure 2023150986000002
Figure 2023150986000002

IC/TOC重量比が10以下である実施例1-1から1-12では、測定精度が70%以上であり、30%以内の精度範囲でTOC濃度を測定できることが分かった。特に、IC/TOC重量比が3以下である実施例1-1から1-4と1-7から1-10では、測定精度が90%以上であり、10%以内の精度範囲でTOC濃度を測定できた。これに対し、IC/TOC重量比が10を超える比較例1-1から1-4は測定精度が70%未満となった。IC/TOC重量比が大きくなるにつれて測定精度が大幅に悪化した。 It was found that in Examples 1-1 to 1-12 in which the IC/TOC weight ratio was 10 or less, the measurement accuracy was 70% or more, and the TOC concentration could be measured within an accuracy range of 30% or less. In particular, in Examples 1-1 to 1-4 and 1-7 to 1-10, in which the IC/TOC weight ratio is 3 or less, the measurement accuracy is 90% or more, and the TOC concentration can be determined within an accuracy range of 10%. I was able to measure it. On the other hand, in Comparative Examples 1-1 to 1-4 in which the IC/TOC weight ratio exceeds 10, the measurement accuracy was less than 70%. As the IC/TOC weight ratio increased, the measurement accuracy deteriorated significantly.

[実施例2]
図1に示す第1の実施形態の水処理管理装置20を実施例2の水処理管理装置として組み立て、試料水をこの水処理管理装置に通水して、EDI装置32の処理水(EDI処理水)のTOC濃度とカートリッジポリッシャー34の処理水(CP処理水)のTOC濃度をTOC測定装置22であるTOC計を用いて測定した。試料水としては、TOC濃度が1000μg/Lとなるようにイソプロピルアルコールを添加し、無機炭素濃度が10mg/Lとなるように二酸化炭素を溶解させ、pHを7に調整した水を使用した。このとき、試料水における無機炭素濃度はTOC濃度の10重量倍である。また、逆浸透膜装置31の処理水(RO処理水)、EDI処理水、及びCP処理水の各々についてGC-MS法によりイソプロピルアルコール濃度を測定してTOC濃度に換算した。TOC計での測定結果とGC-MS法での測定結果に基づき、実施例1と同様にして、TOC計でのTOC濃度の測定精度を求めた。結果を表2に示す。
[Example 2]
The water treatment management device 20 of the first embodiment shown in FIG. The TOC concentration of water) and the TOC concentration of treated water (CP treated water) of the cartridge polisher 34 were measured using a TOC meter which is the TOC measuring device 22. As sample water, water was used in which isopropyl alcohol was added so that the TOC concentration was 1000 μg/L, carbon dioxide was dissolved so that the inorganic carbon concentration was 10 mg/L, and the pH was adjusted to 7. At this time, the inorganic carbon concentration in the sample water is 10 times the TOC concentration by weight. In addition, the isopropyl alcohol concentration was measured by the GC-MS method for each of the treated water (RO treated water), EDI treated water, and CP treated water of the reverse osmosis membrane device 31, and was converted into a TOC concentration. Based on the measurement results with the TOC meter and the measurement results with the GC-MS method, the measurement accuracy of TOC concentration with the TOC meter was determined in the same manner as in Example 1. The results are shown in Table 2.

実施例2においては、TOC計として実施例1で用いたものと同じものを使用した。逆浸透膜装置31を構成する逆浸透膜として日東電工株式会社製のESPA2を使用し、回収率50%で逆浸透膜装置31を運転した。EDI装置32としては、脱塩室が中間イオン交換膜を挟んで陽極側の第1小脱塩室と陰極側の第2小脱塩室とに区画されているものを使用した。第1小脱塩室にはカチオン交換樹脂(CER)が充填され、第2小脱塩室にはアニオン交換樹脂(AER)が充填されていた。濃縮室及び陰極室にはアニオン交換樹脂が充填され、陽極室にはカチオン交換樹脂が充填されていた。EDI装置32における電流値は0.6A(電流密度として0.5A/dm)とした。紫外線照射装置33としては、株式会社日本フォトサイエンス製の低圧紫外線酸化装置を使用し、照射量を0.4kWh/mとした。 In Example 2, the same TOC meter as used in Example 1 was used. ESPA2 manufactured by Nitto Denko Corporation was used as the reverse osmosis membrane constituting the reverse osmosis membrane device 31, and the reverse osmosis membrane device 31 was operated at a recovery rate of 50%. The EDI device 32 used was one in which the demineralization chamber was divided into a first small demineralization chamber on the anode side and a second small demineralization chamber on the cathode side with an intermediate ion exchange membrane in between. The first small demineralization chamber was filled with a cation exchange resin (CER), and the second small demineralization chamber was filled with an anion exchange resin (AER). The concentration chamber and the cathode chamber were filled with an anion exchange resin, and the anode chamber was filled with a cation exchange resin. The current value in the EDI device 32 was 0.6 A (current density: 0.5 A/dm 2 ). As the ultraviolet irradiation device 33, a low-pressure ultraviolet oxidation device manufactured by Nippon Photo Science Co., Ltd. was used, and the irradiation amount was set to 0.4 kWh/m 3 .

[比較例2]
実施例2の水処理管理装置からEDI装置32を取り除き、逆浸透膜装置31の処理水がそのまま紫外線照射装置33に供給される構成の装置を比較例2の水処理管理装置として組み立て、逆浸透膜装置31の処理水(RO処理水)及びカートリッジポリッシャー34の処理水(CP処理水)に対して実施例2と同様の測定を行い、TOC計によるTOC濃度の測定精度を求めた。結果を表2に示す。
[Comparative example 2]
The EDI device 32 was removed from the water treatment management device of Example 2, and a device configured such that the treated water of the reverse osmosis membrane device 31 was directly supplied to the ultraviolet irradiation device 33 was assembled as the water treatment management device of Comparative Example 2. The same measurements as in Example 2 were performed on the treated water of the membrane device 31 (RO treated water) and the treated water of the cartridge polisher 34 (CP treated water), and the measurement accuracy of TOC concentration by the TOC meter was determined. The results are shown in Table 2.

Figure 2023150986000003
Figure 2023150986000003

表2に示す結果より、逆浸透膜装置31と紫外線照射装置33との間にEDI装置32を配置する実施例2では、EDI処理水においてもCP処理水においても、TOC計によるTOC濃度測定値は、GC-MS法によるイソプロピルアルコールの定量値から換算されるTOC濃度の70%以上となり、TOC計によってTOC濃度を精度よく測定できた。また、GC-MS法による、RO処理水のTOC濃度とEDI処理水のTOC濃度とが同じであることから、EDI処理水のTOC濃度をRO処理水のTOC濃度として取り扱うことができることが分かった。一方、比較例2では、TOC計により、CP処理水についてはTOC濃度を精度良く測定できたが、RO処理水のTOC濃度については測定精度が27%であって精度が悪かった。 From the results shown in Table 2, in Example 2 in which the EDI device 32 is placed between the reverse osmosis membrane device 31 and the ultraviolet irradiation device 33, the TOC concentration measured by the TOC meter was was 70% or more of the TOC concentration calculated from the quantitative value of isopropyl alcohol by GC-MS method, and the TOC concentration could be measured with high accuracy by the TOC meter. Furthermore, since the TOC concentration of RO treated water and EDI treated water are the same as determined by the GC-MS method, it was found that the TOC concentration of EDI treated water can be treated as the TOC concentration of RO treated water. . On the other hand, in Comparative Example 2, the TOC meter was able to accurately measure the TOC concentration of CP-treated water, but the TOC concentration of RO-treated water had a poor measurement accuracy of 27%.

[実施例3]
図3に示す第3の実施形態の水処理管理装置20を実施例3-1の水処理管理装置として組み立て、試料水をこの水処理管理装置に通水して、EDI装置32の処理水(EDI処理水)のTOC濃度とカートリッジポリッシャー34の処理水(CP処理水)のTOC濃度とをTOC測定装置22であるTOC計を用いて測定した。逆浸透膜装置31及び紫外線照射装置33として、実施例2で用いたものと同じものを同一の運転条件で使用した。実施例3-1でのEDI装置32としては、実施例2でのEDI装置32と同じものを同一の運転条件で使用した。試料水としては、TOC濃度が1000μg/Lとなるようにイソプロピルアルコールを添加し、無機炭素濃度が5mg/Lとなるように二酸化炭素を溶解させてpHを7に調整した水を使用した。このとき、試料水における無機炭素濃度はTOC濃度の5重量倍である。また、EDI処理水及びCP処理水の各々についてGC-MS法によりイソプロピルアルコール濃度を測定してTOC濃度に換算した。また、EDI処理水とCP処理水について、無機炭素濃度も求めた。TOC計での測定結果とGC-MS法での測定結果に基づき、実施例2と同様にして、TOC計でのTOC濃度の測定精度を求めた。結果を表3に示す。
[Example 3]
The water treatment management device 20 of the third embodiment shown in FIG. The TOC concentration of the EDI treated water) and the TOC concentration of the treated water of the cartridge polisher 34 (CP treated water) were measured using a TOC meter which is the TOC measuring device 22. As the reverse osmosis membrane device 31 and the ultraviolet irradiation device 33, the same ones used in Example 2 were used under the same operating conditions. The EDI device 32 in Example 3-1 was the same as the EDI device 32 in Example 2, and was used under the same operating conditions. As sample water, water was used in which isopropyl alcohol was added so that the TOC concentration was 1000 μg/L, carbon dioxide was dissolved therein so that the inorganic carbon concentration was 5 mg/L, and the pH was adjusted to 7. At this time, the inorganic carbon concentration in the sample water is 5 times the TOC concentration by weight. In addition, the isopropyl alcohol concentration was measured using the GC-MS method for each of the EDI-treated water and the CP-treated water and converted to the TOC concentration. Inorganic carbon concentrations were also determined for EDI-treated water and CP-treated water. Based on the measurement results with the TOC meter and the measurement results with the GC-MS method, the measurement accuracy of TOC concentration with the TOC meter was determined in the same manner as in Example 2. The results are shown in Table 3.

実施例3-1の水処理管理装置からEDI装置32を取り除き、さらにカートリッジポリッシャー34の代わりにEDI装置36を設けたものを実施例3-2の水処理管理装置として組み立て、実施例3-1で用いたものと同じ試料水を水処理管理装置に通水し、実施例3-1と同様にして、RO処理水のTOC濃度と無機炭素濃度、EDI処理水のTOC濃度と無機炭素濃度を求め、TOC計でのTOC濃度の測定精度を求めた。結果を表3に示す。また、実施例3-2の水処理管理装置から膜脱気装置35を取り除いたものは、上述した比較例2の水処理管理装置である。表3には、比較例2の結果も再掲する。 The EDI device 32 was removed from the water treatment management device of Example 3-1, and an EDI device 36 was installed in place of the cartridge polisher 34, which was assembled as the water treatment management device of Example 3-2. The same sample water used in was passed through the water treatment management device, and the TOC concentration and inorganic carbon concentration of the RO treated water and the TOC concentration and inorganic carbon concentration of the EDI treated water were measured in the same manner as in Example 3-1. The measurement accuracy of TOC concentration using a TOC meter was determined. The results are shown in Table 3. Furthermore, the water treatment management device of Example 3-2 from which the membrane deaerator 35 was removed is the water treatment management device of Comparative Example 2 described above. Table 3 also shows the results of Comparative Example 2.

Figure 2023150986000004
Figure 2023150986000004

表3より、GC-MS法によるTOC濃度を100%としたとき、TOC計によるTOC濃度は、実施例3-1ではEDI処理水に対して99%を超え、CP処理水に対して99%超であって、十分な測定精度が得られた。実施例3-2でもRO処理水に対して88%、EDI処理水に対して95%であって、十分な測定精度が得られた。一方、比較例2ではRO処理水に対して27%、EDI処理水に対して99%超であり、RO処理水に関してTOC計では十分な測定精度を得ることができなかった。 From Table 3, when the TOC concentration determined by the GC-MS method is taken as 100%, the TOC concentration determined by the TOC meter exceeds 99% for EDI treated water and 99% for CP treated water in Example 3-1. was obtained, and sufficient measurement accuracy was obtained. In Example 3-2, sufficient measurement accuracy was also obtained, with the measurement accuracy being 88% for RO treated water and 95% for EDI treated water. On the other hand, in Comparative Example 2, it was 27% for RO-treated water and more than 99% for EDI-treated water, and it was not possible to obtain sufficient measurement accuracy with the TOC meter for RO-treated water.

[実施例4及び比較例3]
試料水が供給される逆浸透膜装置と、逆浸透膜装置の処理水出口に接続する紫外線照射装置と、紫外線照射装置の出口に接続するEDI装置とからなる水処理管理装置を組み立て、試料水のpHを変えながら試料水をこの水処理管理装置に通水し、逆浸透膜装置の処理水(RO処理水)のTOC濃度とEDI装置の処理水(EDI処理水)のTOC濃度をTOC測定装置であるTOC計を用いて測定した。この実施例4及び比較例4においては逆浸透膜装置、紫外線照射装置及びEDI装置として、それぞれ、実施例3の水処理管理装置20において使用された逆浸透膜装置31、紫外線照射装置33及びEDI装置36と同じものを同一の運転条件で使用した。試料水としては、TOC濃度が1000μg/Lとなるようにイソプロピルアルコールを添加し、無機炭素濃度が3mg/Lとなるように二酸化炭素を溶解させ、pHを8(実施例4-1)、7(実施例4-2)及び6(比較例3)に調整した水を使用した。実施例4-1,4-2及び比較例3のいずれにおいても、試料水における無機炭素濃度はTOC濃度の3重量倍である。pHの調整を行っているので、実施例4-1,4-2及び比較例3で用いた水処理管理装置は、図4に示す第4の実施形態の水処理管理装置20と同等のものである。また、RO処理水及びEDI処理水の各々についてGC-MS法によりイソプロピルアルコール濃度を測定してTOC濃度に換算した。TOC計での測定結果とGC-MS法での測定結果に基づき、実施例2と同様にして、TOC計でのTOC濃度の測定精度を求めた。結果を表4に示す。
[Example 4 and Comparative Example 3]
Assemble a water treatment management device consisting of a reverse osmosis membrane device to which sample water is supplied, an ultraviolet irradiation device connected to the treated water outlet of the reverse osmosis membrane device, and an EDI device connected to the outlet of the ultraviolet irradiation device. The sample water is passed through this water treatment management device while changing the pH of the water, and the TOC concentration of the water treated by the reverse osmosis membrane device (RO treated water) and the TOC concentration of the treated water of the EDI device (EDI treated water) are measured. It was measured using a TOC meter. In Example 4 and Comparative Example 4, the reverse osmosis membrane device 31, ultraviolet irradiation device 33, and EDI device used in the water treatment management device 20 of Example 3 were used as the reverse osmosis membrane device, ultraviolet irradiation device, and EDI device, respectively. The same device as apparatus 36 was used under the same operating conditions. As sample water, isopropyl alcohol was added so that the TOC concentration was 1000 μg/L, carbon dioxide was dissolved so that the inorganic carbon concentration was 3 mg/L, and the pH was adjusted to 8 (Example 4-1), 7 (Example 4-2) and water adjusted to 6 (Comparative Example 3) were used. In both Examples 4-1 and 4-2 and Comparative Example 3, the inorganic carbon concentration in the sample water was 3 times the TOC concentration by weight. Since the pH is adjusted, the water treatment management device used in Examples 4-1, 4-2 and Comparative Example 3 is equivalent to the water treatment management device 20 of the fourth embodiment shown in FIG. It is. In addition, the isopropyl alcohol concentration was measured using the GC-MS method for each of the RO-treated water and the EDI-treated water and converted into the TOC concentration. Based on the measurement results with the TOC meter and the measurement results with the GC-MS method, the measurement accuracy of TOC concentration with the TOC meter was determined in the same manner as in Example 2. The results are shown in Table 4.

Figure 2023150986000005
Figure 2023150986000005

表4より、GC-MS法によるTOC濃度を100%としたとき、TOC計によるTOC濃度は、実施例4-1,4-2ではRO処理水に対してもEDI処理水に対しても70%以上であり、十分な測定精度が得られた。一方、比較例4ではRO処理水とEDI処理水の両方に関して測定精度が70%未満となり、TOC計では十分な測定精度を得ることができなかった。 From Table 4, when the TOC concentration determined by the GC-MS method is taken as 100%, the TOC concentration determined by the TOC meter was 70% for both the RO treated water and the EDI treated water in Examples 4-1 and 4-2. % or more, and sufficient measurement accuracy was obtained. On the other hand, in Comparative Example 4, the measurement accuracy was less than 70% for both the RO-treated water and the EDI-treated water, and the TOC meter was unable to obtain sufficient measurement accuracy.

10 水処理システム
20 水処理管理装置
21 評価用純水製造部
22 TOC測定装置
31 逆浸透膜装置(RO)
32,36 電気式脱イオン水製造装置(EDI)
33 紫外線照射装置(UV)
34 カートリッジポリッシャー(CP)
35 膜脱気装置
37 pH調整装置
10 Water treatment system 20 Water treatment management device 21 Pure water production department for evaluation 22 TOC measurement device 31 Reverse osmosis membrane device (RO)
32,36 Electrodeionized water production equipment (EDI)
33 Ultraviolet irradiation device (UV)
34 Cartridge polisher (CP)
35 Membrane deaerator 37 pH adjustment device

Claims (10)

水処理システムに供給されるべき水が対象水として供給されて前記対象水に対する処理を実行する機器を備え、TOC成分を除去するための単位操作を実行する評価用純水製造部と、測定対象の水のTOC濃度を測定する測定手段と、を備え、前記水処理システムの運転管理に用いられる水処理管理装置において、
前記評価用純水製造部に設けられ無機炭素除去手段を備え、
前記評価用純水製造部において、前記機器として、逆浸透膜装置と、紫外線照射装置と、少なくともアニオン交換体を含むイオン交換体が充填されたイオン交換体充填装置とが少なくとも設けられて前記対象水が前記逆浸透膜装置、前記紫外線照射装置及び前記イオン交換体充填装置の順で通水処理され、
前記測定対象の水は、前記対象水及び少なくとも1つの前記機器の処理水の少なくとも一方であり、
前記無機炭素除去手段は、単独でまたは前記逆浸透膜装置と協働して、前記測定対象の水に含まれる無機炭素を除去し、
前記測定手段に供給される前記測定対象の水の無機炭素濃度が、前記測定手段におけるTOC濃度測定値の10重量倍以下であることを特徴とする、水処理管理装置。
Water to be supplied to the water treatment system is supplied as target water and includes equipment for processing the target water, and an evaluation pure water production unit that performs unit operations for removing TOC components, and a measurement target A water treatment management device used for operational management of the water treatment system, comprising: a measuring means for measuring the TOC concentration of the water;
An inorganic carbon removal means provided in the evaluation pure water production section,
In the pure water production department for evaluation, at least a reverse osmosis membrane device, an ultraviolet irradiation device, and an ion exchanger filling device filled with an ion exchanger containing at least an anion exchanger are provided as the equipment, and the target Water is passed through the reverse osmosis membrane device, the ultraviolet irradiation device, and the ion exchanger filling device in this order,
The water to be measured is at least one of the target water and the treated water of at least one of the devices,
The inorganic carbon removing means removes inorganic carbon contained in the water to be measured, either alone or in cooperation with the reverse osmosis membrane device,
A water treatment management device characterized in that the inorganic carbon concentration of the water to be measured that is supplied to the measuring means is 10 times or less by weight the TOC concentration measured by the measuring means.
前記評価用純水製造部での前記対象水の通水経路において前記逆浸透膜装置の後段であって前記紫外線照射装置の前段となる位置に前記無機炭素除去手段が設けられている、請求項1に記載の水処理管理装置。 Claim: The inorganic carbon removal means is provided at a position downstream of the reverse osmosis membrane device and upstream of the ultraviolet irradiation device in the water flow path of the target water in the evaluation pure water production section. 1. The water treatment management device according to 1. 前記無機炭素除去手段は電気式脱イオン水製造装置である、請求項2に記載の水処理管理装置。 The water treatment management device according to claim 2, wherein the inorganic carbon removal means is an electrodeionized water production device. 前記対象水が供給される追加の前記無機炭素除去手段が設けられ、前記追加の無機炭素除去手段の処理水が前記逆浸透膜装置に供給される、請求項2または3に記載の水処理管理装置。 Water treatment management according to claim 2 or 3, wherein the additional inorganic carbon removal means to which the target water is supplied is provided, and the treated water of the additional inorganic carbon removal means is supplied to the reverse osmosis membrane device. Device. 前記追加の無機炭素除去手段は、前記対象水のpHを調整するpH調整手段及び脱気装置のいずれかである、請求項4に記載の水処理管理装置。 The water treatment management device according to claim 4, wherein the additional inorganic carbon removal means is either a pH adjustment means for adjusting the pH of the target water or a deaerator. 前記逆浸透膜装置の前段に、前記対象水が供給されるように前記無機炭素除去手段が設けられ、前記無機炭素除去手段の処理水が前記逆浸透膜装置に供給される、請求項1に記載の水処理管理装置。 2. The method according to claim 1, wherein the inorganic carbon removing means is provided upstream of the reverse osmosis membrane device so that the target water is supplied, and the treated water of the inorganic carbon removing means is supplied to the reverse osmosis membrane device. The water treatment management device described. 前記無機炭素除去手段は、前記対象水のpHを調整するpH調整手段及び脱気装置のいずれかである、請求項6に記載の水処理管理装置。 The water treatment management device according to claim 6, wherein the inorganic carbon removing means is either a pH adjusting means for adjusting the pH of the target water or a deaerator. 前記イオン交換体充填装置は、電気式脱イオン水製造装置である、請求項1乃至7のいずれか1項に記載の水処理管理装置。 The water treatment management device according to any one of claims 1 to 7, wherein the ion exchanger filling device is an electrodeionized water production device. 水処理システムに供給されるべき水を対象水として前記対象水の水質を監視する水質監視方法であって、
前記水処理システムとは別個に設けられてTOC成分を除去するための単位操作を実行する評価用純水製造部に前記対象水を供給する工程と、
前記評価用純水製造部の入口及び出口を含んでよい前記評価用純水製造部における1以上の測定点における測定対象の水のTOC濃度を測定手段により測定する工程と、
前記測定手段に供給される前記測定対象の水の無機炭素濃度が、前記測定手段におけるTOC濃度測定値の10重量倍以下であるように、無機炭素を除去する工程と、
を有する、水質監視方法。
A water quality monitoring method for monitoring the water quality of target water using water to be supplied to a water treatment system as target water, the method comprising:
supplying the target water to an evaluation pure water production unit that is provided separately from the water treatment system and executes a unit operation for removing TOC components;
Measuring the TOC concentration of water to be measured at one or more measurement points in the pure water production section for evaluation, which may include an inlet and an outlet of the pure water production section for evaluation, using a measuring means;
removing inorganic carbon so that the inorganic carbon concentration of the water to be measured supplied to the measuring means is 10 times or less by weight the TOC concentration measured by the measuring means;
A method for monitoring water quality.
前記評価用純水製造部において、前記対象水に対し、前記単位操作として、少なくとも逆浸透膜処理、紫外線酸化処理及びイオン交換処理がこの順で実行される、請求項9に記載の水質管理方法。
The water quality management method according to claim 9, wherein in the evaluation pure water production unit, at least a reverse osmosis membrane treatment, an ultraviolet oxidation treatment, and an ion exchange treatment are performed in this order on the target water as the unit operations. .
JP2022060360A 2022-03-31 2022-03-31 Water treatment control apparatus and water quality monitoring method Pending JP2023150986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022060360A JP2023150986A (en) 2022-03-31 2022-03-31 Water treatment control apparatus and water quality monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022060360A JP2023150986A (en) 2022-03-31 2022-03-31 Water treatment control apparatus and water quality monitoring method

Publications (1)

Publication Number Publication Date
JP2023150986A true JP2023150986A (en) 2023-10-16

Family

ID=88326763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022060360A Pending JP2023150986A (en) 2022-03-31 2022-03-31 Water treatment control apparatus and water quality monitoring method

Country Status (1)

Country Link
JP (1) JP2023150986A (en)

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
US9044747B2 (en) Method of regenerating ion exchange resins
US10961144B2 (en) Method and apparatus for providing ultrapure water
TWI760601B (en) Water treatment management device and water quality monitoring method
JP2016107249A (en) Ultrapure water production system and method
US20210261445A1 (en) Method of removing boron from water to be treated, boron-removing system, ultrapure water production system, and method of measuring concentration of boron
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP6082192B2 (en) Pure water production equipment
JPH07260725A (en) Organic carbon measuring device, and ultrapure water producing device with the device built-in
JP2023150986A (en) Water treatment control apparatus and water quality monitoring method
JP2009112944A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2013193004A (en) Pure water production method
JP2018038943A (en) Washing machine of non-regeneration type ion exchange resin and ultrapure water production system
JP2013202587A (en) Ultra-pure water producing apparatus
JP7243039B2 (en) Urea monitoring device and pure water production device
JP2020116507A (en) Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
JPH09192643A (en) Ultrapure water producing device
JP4469542B2 (en) Functional water production method and production apparatus
WO2024075731A1 (en) Method for producing pure water from which boron has been removed, pure water production device, and ultrapure water production system
WO2023189171A1 (en) Water treatment management apparatus, water treatment management system, and water treatment method
US20230416131A1 (en) Water Purification System With Inline Measurement Of Total Organic Carbon And Method Of Operating Such System
JP7143595B2 (en) Particle control method for ultrapure water production system
TW202304821A (en) Method for operating pure-water production system
TW202415628A (en) Deboronized pure water production method, pure water production equipment, ultrapure water production system