JP4469542B2 - Functional water production method and production apparatus - Google Patents

Functional water production method and production apparatus Download PDF

Info

Publication number
JP4469542B2
JP4469542B2 JP2002164011A JP2002164011A JP4469542B2 JP 4469542 B2 JP4469542 B2 JP 4469542B2 JP 2002164011 A JP2002164011 A JP 2002164011A JP 2002164011 A JP2002164011 A JP 2002164011A JP 4469542 B2 JP4469542 B2 JP 4469542B2
Authority
JP
Japan
Prior art keywords
water
functional
facility
pure water
functional water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002164011A
Other languages
Japanese (ja)
Other versions
JP2004008882A (en
Inventor
友紀 泉
正樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002164011A priority Critical patent/JP4469542B2/en
Publication of JP2004008882A publication Critical patent/JP2004008882A/en
Application granted granted Critical
Publication of JP4469542B2 publication Critical patent/JP4469542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機能水排水を回収再利用しながら、機能水を製造する方法及びその製造装置に関する。さらに詳しくは、本発明は、使用済みの回収機能水排水の水質に応じて機能水製造設備工程に返送し、機能水製造の原料水として再利用することのできる機能水を製造する方法及びその製造装置に関する。
【0002】
【従来の技術】
半導体、液晶などの電子部品の製造においては、半導体用シリコン基板などの汚染を効果的に除去するために、超純水に、対象となる汚染物質除去に適した、水素、酸素、オゾンガスなどを溶解した洗浄水(機能水)が使用されている。従来、洗浄に使用された機能水排水は、洗浄の最終工程又はリンスで排出される汚染物質の含有濃度の低い希薄排水は溶存ガスを除去して一次純水設備又は二次純水設備にリサイクルされ再利用されている(特開平11−277007号公報、特開平11−302689号公報)が、回収のため別途処理設備が必要となり、また、それ以外の洗浄工程の汚染物質を比較的多く含む排水は、再利用することなく排出されている。このため、機能水排水の回収率が低い欠点があるだけでなく、環境対策として、たとえ排水基準を満たしているとしても、廃棄は好ましいことではない。
【0003】
【発明が解決しようとする課題】
本発明は、洗浄工程から回収された機能水排水を、別途処理設備を設けることなく、良好な水質の機能水原料水として回収再利用し、排水回収率を向上した機能水の製造方法及びその製造装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、機能水回収排水のイオン濃度、微粒子数及び/又は有機物濃度などの水質に応じて、回収排水を適切な機能水製造設備工程を選択して返送供給し、機能水回収排水を再利用することによって上記の課題を解決しうることを見出し、この知見に基づいて本発明を完成するにいたった。
すなわち本発明は、
(1)1)水中の懸濁物質を除去する前処理設備、2)前処理水を脱イオンして純水を製造する一次純水製造設備、3)一次純水を超純水とする二次純水製造設備、4)超純水にガスを溶解して機能水を製造する機能水供給設備を有する機能水製造装置を用いる機能水の製造方法であって、使用済みの機能水の回収排水を、該回収排水の水質に応じて、機能水製造装置の前記1)〜4)のいずれかの設備へ返送する機能水の製造方法において、該回収排水のイオン濃度、微粒子数及び/又は有機物濃度を測定し、イオン濃度、微粒子数及び/又は有機物濃度が、機能水供給設備の受入許容範囲の水質であれば該回収排水を機能水供給設備のみに返送し、機能水供給設備の受入許容範囲から外れるが二次純水製造設備の受入許容範囲の水質であれば該回収排水を二次純水製造設備のみに返送し、二次純水製造設備の受入許容範囲から外れるが一次純水製造設備の受入許容範囲の水質であれば該回収排水を一次純水製造設備のみに返送し、一次純水製造設備の受入許容範囲の水質より汚染された水質であれば該回収排水を前処理設備のみに返送することによって、使用済みの機能水のほぼ全量が回収され、回収排水として該機能水製造装置に返送されることを特徴とする機能水の製造方法、及び
)1)水中の懸濁物質を除去する前処理設備及び返送タンク、2)前処理水を脱イオンして純水を製造する一次純水製造設備及び返送タンク、3)一次純水を超純水とする二次純水製造設備及び返送タンク並びに4)超純水にガスを溶解して機能水を製造する機能水供給設備を有する機能水製造装置及び返送タンクが設けられ、該機能水製造装置で製造された機能水をユースポイントへ供給する供給配管と、ユースポイントで使用された機能水排水を回収する回収排水流路とが設けられ、回収排水の水質に応じて、該1)〜4)のいずれかの設備の返送タンクを選択する4個の切り換え弁を経て回収排水を返送タンクに返送する返送路を回収排水流路に接続し、該回収排水流路に設置されたイオン濃度、微粒子数及び/又は有機物濃度を測定するイオン濃度測定器、微粒子数測定器及び有機物濃度測定器からのイオン濃度信号伝達ライン、微粒子数信号伝達ライン及び有機物濃度信号伝達ラインの信号が伝えられたコンピュータ制御によって4個の切り換え弁が開閉して、自動的に返送タンクを選択する機構であって、回収排水のイオン濃度、微粒子数及び/又は有機物濃度の数値が、機能水供給設備の受入許容範囲の水質であれば、機能水製造装置の返送タンクのみに返送される機構、機能水供給設備の受入許容範囲から外れるが二次純水製造設備の受入許容範囲の水質であれば、該回収排水を二次純水製造設備の返送タンクのみに返送される機構、二次純水製造設備の受入許容範囲から外れるが一次純水製造設備の受入許容範囲の水質であれば、該回収排水を一次純水製造設備の返送タンクのみに返送する機構並びに一次純水製造設備の受入許容範囲の水質より汚染された水質であれば、該回収排水を前処理設備の返送タンクのみに返送する機構を有することを特徴とする機能水の製造装置、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の、使用された機能水の回収排水を再利用する機能水の製造方法及びその製造装置においては、機能水回収排水のイオン濃度、微粒子数及び/又は有機物濃度などの水質に応じて、含有されるイオン濃度、微粒子数または有機物濃度に対応できる処理能力を有する機能水製造設備工程を選択して返送供給し、機能水回収排水を機能水製造原料水として再利用し機能水を製造する。これを本発明の方法及び装置の一態様を示す図1によって説明すると、市水、工業用水、井水などから選ばれる超純水製造用原水(補給水)は、前処理設備1に供給される。本発明方法を適用する前処理設備1では、原水のろ過、凝集沈殿、精密ろ過膜などによる前処理が施され、主に懸濁物質が除去される。前処理水は一次純水設備の原料水になる。この前処理によって通常、微粒子数は103個/mL以下となる。
本発明方法を適用する一次純水設備2では、原水の水質と要求される処理水の水質水準に合わせて、イオン交換、逆浸透膜脱塩、連続式電気脱塩などの脱イオン処理、ガス放散、真空脱気、膜脱気などの溶存ガス除去、紫外線照射、吸着などの有機物除去などが行なわれ、脱イオン、有機物(TOC)除去されて一次純水になる。一次純水は二次純水設備の原料水になる。この一次純水設備によって通常、比抵抗1〜17MΩ・cm、TOC0.1〜100mg/mLの純水が得られる。
本発明方法を適用する二次純水設備3では、一次純水中に残存する極微量のイオン、シリカ、有機物、微粒子などを除去するために、さらに紫外線照射、イオン交換、限外ろ過膜、脱気などを組み合わせて最終的に処理され、超純水が得られる。超純水は機能水供給設備の原料水になる。この二次純水設備によって、処理条件によって異なるが比抵抗15MΩ・cm以上、微粒子数5個/mL以下、TOC50μg/mL以下の高純度水となる。
【0006】
本発明方法を適用する機能水供給設備4では、通常、超純水もしくは回収機能水排水中に含有溶存するガスを除去する膜脱気装置及び新たに半導体電子材料の洗浄で除去されるべき物質に適したガスを溶解させるガス溶解装置、また必要に応じてpH調整剤、酸化剤、洗浄用酸などの薬液を注入する薬注装置を具備している。二次純水製造設備3から機能水供給設備4へ送給された超純水は、膜脱気装置に通水され、水中に溶解している溶存ガスが除去され、次の目的ガスの溶解を容易にする。脱気された超純水と溶解すべき目的ガスとはガス溶解装置に供給されガスを溶解した機能水となり、さらに必要に応じて薬注装置から薬液が供給されて洗浄力の高い機能水となる。
本発明方法を適用する機能水は、洗浄で除去される物質に適したガスが超純水中に溶存している洗浄水であって、超純水に水素ガスを溶解した水素水、オゾンを溶解したオゾン水、酸素ガスを溶解した酸素水、オゾンと酸素を溶解したオゾン酸素水、オゾンと炭酸ガスを溶解したオゾン炭酸ガス水、酸素ガスとアンモニアと過酸化水素を溶解した機能水、水素ガスとアンモニアと過酸化水素を溶解した機能水、チオ硫酸ナトリウムとアンモニアと過酸化水素を溶解した機能水、フッ化水素と水素ガスを溶解した機能水、フッ化水素と過酸化水素と酸素ガスを溶解した機能水などを挙げることができる。半導体ウエハのような電子材料上に付着しているダストパーティクルを除去するには、超純水中に水素ガスが溶存している機能水(水素水)が使用され、有機物除去には、超純水中に酸素ガス又はオゾンが溶存している機能水(オゾン水)が使用される。機能水の製造は、公知の方法を使用することができる。例えば、ガス溶解膜を通して所望のガスを超純水に溶解させる方法(特開平11−29794号公報、特開平11−29795号公報)、あるいは、超純水を電気分解することによって、アノード電極で主に酸素、オゾンを含むアノード水、カソード電極で主に水素を含むカソード水が生成される超純水電気分解機能水(特開平9−19668号公報)等を使用することができる。
【0007】
本発明方法を適用するユースポイント5は、機能水を使用して半導体電子部品等を洗浄する施設であって、機能水供給設備4とユースポイント5とを連絡する供給配管Pを介して機能水が供給される。ユースポイント5での機能水を用いた洗浄により、洗浄工程や、洗浄対象物によって水質の異なる使用済み機能水排水が排出され、排水タンク6に回収される。排水タンク6には回収排水流路Rが連結され、回収排水流路Rからは分岐して、機能水供給設備4への返送路R1、二次純水製造設備3への返送路R2、一次純水製造設備2への返送路R3、前処理設備1への返送路R4が設けられ、回収排水が各設備へ返送可能に構成されている。各返送路には切替え弁14、15、16、17が設けられ、回収排水の水質に応じて切替え弁を操作し、回収排水の返送先が選択できるようになっている。また、排水タンク6を含む回収排水流路Rには、回収排水の水質を測定する水質計として、イオン濃度測定器7、微粒子数測定器8および有機物濃度測定器9が設けられている。
【0008】
本発明を適用する回収機能水排水の返送先設備を選択する手段は、回収排水流路Rに設置されたイオン濃度測定器7、微粒子数測定器8及び有機物濃度測定器9によって測定された数値信号が各機能水製造設備工程の受入許容範囲の水質に合致するかを、装置運転員が読取り判断し手動操作によって適切な返送先への切換え弁を開閉することによって達成することができる。さらに、予め組み込まれたコンピューター制御を利用すれば、回収排水の水質変化に即時的確に対応し最適の返送先への切換え弁を選択し開閉することによって自動的に切換えることもできる。すなわち、回収排水流路Rに設置されたイオン濃度測定器7、微粒子数測定器8及び有機物濃度測定器9によって測定された数値信号のいずれもが、機能水供給設備4の受入許容範囲の水質に合致すれば、信号伝達ライン10、11及び12によってその信号が伝えられ、切換え弁17のみが開、切換え弁14、15及び16は閉となり、該回収排水はポンプ13によって、返送路R1を経てタンク21にのみ返送される。タンク21から機能水供給設備4への送水量は流量指示制御計27からの信号によって、機能水供給設備4への供給水量が一定になるように、流量制御弁24によって調節される。同様に、イオン濃度測定器7、微粒子数測定器8及び有機物濃度測定器9によって測定された数値信号のいずれか一つ以上が、機能水供給設備4の受入許容範囲には合致しないが、全てが二次純水設備3の受入許容範囲の水質に合致すれば、信号伝達ライン10、11及び12によってその信号が伝えられ、切換え弁16のみが開、切換え弁14、15及び17は閉となり、該回収排水はポンプ13によって、返送路R2を経てタンク20にのみ返送される。タンク20から二次純水設備3への送水量は流量指示制御計26からの信号によって、二次純水設備3への供給水量が一定になるように、流量制御弁23によって調節される。同様に、イオン濃度測定器7、微粒子数測定器8及び有機物濃度測定器9によって測定された数値信号のいずれか一つ以上が、二次純水設備3の許容範囲の水質には合致しないが、全てが一次純水製造設備2の許容範囲の水質に合致すれば、信号伝達ライン10、11及び12によってその信号が伝えられ、切換え弁15のみが開、切換え弁14、16及び17は閉となり、該回収排水はポンプ13によって、返送路R3を経てタンク19にのみ返送される。タンク19から一次純水設備2への送水量は流量指示制御計25からの信号によって、一次純水設備2への供給水量が一定になるように、流量制御弁22によって調節される。同様に、測定された回収排水の水質の信号が機能水供給設備4、二次純水設備3、及び一次純水設備2のいずれの許容範囲の水質にも合致しないと判定された該回収排水は、信号伝達ライン10、11及び12によってその信号が伝えられ、切換え弁14のみが開、切換え弁15、16及び17は閉となり、該回収排水はポンプ13によって、返送路R4を経てタンク18にのみ返送され前処理設備1の原料水となり、ここで、全機能水製造設備工程1〜4及びユースポイント5の洗浄過程でのロス水量が原水(補給水)によって補充される。
【0009】
本発明に用いる返送先設備を選択する手段は、運転状況に応じて、イオン濃度測定器、微粒子数測定器及び/又は有機物濃度測定器によって測定された数値信号を、装置運転員が読取り判断し手動操作によって適切な返送先への切換え弁を開閉することによって行なうことと、予め組み込まれたコンピューター制御を利用する自動制御によって適切な返送先への切換え弁を開閉することによって行なうことを組み合わせることができる。
本発明に用いるイオン濃度測定器は、本発明の目的、方法に適切なものであれば、特に制限することなく、公知の方法及び器具を利用することができる。本発明に用いるイオン濃度測定器は即時的確に測定値がえられるものが、返送先の選択が容易であるので望ましい。本発明に用いるイオン濃度の測定器として、導電率計、比抵抗計、イオンメーター等を使用することができる。
【0010】
本発明に用いる微粒子数測定器は、本発明の目的、方法に適切なものであれば、特に制限することなく、市販されている任意の微粒子計を利用することができる。
本発明に用いる有機物濃度測定器は、本発明の目的、方法に適切なものであれば、特に制限することなく、公知の方法及び器具を利用することができ、TOC計を好適に使用することができる。
本発明に用いる切換え弁は、イオン濃度測定器、微粒子数測定器及び有機物濃度測定器によって測定された数値を判定した結果を、切換え弁開閉信号によって伝達することができる。切換え弁開閉指示信号に正確に応答できるものであれば、公知の開閉制御弁を特に制限なく使用することができる。
本発明に用いる流量制御弁及び流量指示制御計は、各流路に設置された流量指示制御計によって流量制御弁が制御され、各流路のそれぞれに設定された流量を一定にできる機能を保有するものであれば公知市販の流量制御弁及び流量指示制御計を特に制限することなく使用することができる。
なお、図1の実施態様において装置を簡素化する場合は、タンク18、19、20、21、流量指示制御計25、26、27、流量制御弁22、23、24は省略することができ、各設備には、通常、前工程からの水を一時的に貯える受槽を備えているので、回収排水をそれらの受槽に直接返送することができる。
【0011】
上述のようにして、回収排水の水質に応じて機能水製造装置の前記1)〜4)のいずれかの設備へ返送するようにしたので、たとえば、洗浄初期の比較的汚染された排水は一次純水製造設備または前処理設備で処理し、洗浄中期の排水は一次純水製造設備または二次純水製造設備で処理し、洗浄後期の比較的清澄な排水は二次純水製造設備または機能水供給設備で処理することができ、排水水質に応じた処理が可能となる。この結果、洗浄工程全てにわたって発生する排水を、ほぼ全量回収することが可能になる。
本発明の好ましい実施態様を図1に基づいて説明してきたが、さらに、本発明は状況に応じて以下に述べるような実施態様も好ましい。
本発明の機能水の製造方法は、回収排水の水質に応じて回収排水の返送先を選別するが、選別のための水質判定項目としては、上述の通り、イオン濃度、微粒子数、有機物濃度の3種であってもよいけれども、ユースポイントでの洗浄において機能水成分、洗浄対象汚染物が特定されている場合には、水質判定項目として3種のうちのいずれか一つまたは二つを選択することもできる。たとえば、対象汚染物が微粒子のみで、機能水が薬剤無添加の水素ガス溶解水である場合、回収排水中の微粒子数のみを水質判定項目とすることができ、また、機能水がpH調整剤を添加した水素ガス溶解水による微粒子除去の場合は、イオン濃度と微粒子数の二つを判定項目とすることができる。また、酸性オゾン水による金属汚染物、有機汚染物の除去の場合は、イオン濃度と有機物濃度との二つを水質判定項目とすることができる。
【0012】
回収排水の水質判定は、通常、回収排水流路Rに設置した水質計の測定値を用いるが、ユースポイントでの機能水による洗浄条件(機能水成分、洗浄対象物、洗浄対象汚染物)がほとんど変化しない場合は、水質計を設置することなく、回収排水を定期的にサンプリングし、分析して水質を測定してもよい。また、洗浄対象物に付着した汚染物量が別途測定できる場合は、その汚染物量と機能水使用量から回収排水の水質を予測できるので、この予測値で回収排水の返送先を選択することもできる。
また、ユースポイントでの洗浄条件に大きな変動がなく、あるいは回収排水の水質が概ね予測され、回収排水の返送先設備が2または3設備に限定されることがあらかじめ明らかな場合には、回収排水流路Rから分岐する返送路は全ての設備に対して設ける必要はなく、返送が予測される2または3設備に対してのみ返送路を設けるようにしてもよい。
【0013】
本発明の回収排水の返送先は水質に応じて選択するが、選択基準として、1)前処理設備、2)一次純水製造設備、3)二次純水製造設備、4)機能水供給設備のそれぞれの設備に受入許容範囲の水質を設定しておく。返送された回収排水の水質がいずれの設備の受入許容範囲に該当するかにより返送先を決定する。各設備の受入許容範囲は、任意に設定できるが、超純水製造過程での各設備での水質目標値を目安に設定することができる。たとえば、二次純水製造設備で比抵抗15MΩ・cm以上、微粒子数1個/mL以下、TOC50μg/mL以下の超純水を製造するような超純水製造装置の場合は、この超純水水質を機能水供給設備への受入許容範囲の水質と設定することができ、回収排水の水質がこの受入許容範囲の水質より良好であるときは、回収排水を機能水供給設備へ返送する。また、一次純水製造設備で比抵抗1MΩ・cm以上、TOC0.1〜100mg/mLの一次純水を製造するような場合は、この一次純水の水質を二次純水製造設備の受入許容範囲の水質と設定することができる。前処理設備で微粒子数が1000個/mL以下の前処理水を得る場合は、この微粒子数を一次純水製造装置または二次純水製造装置の受入許容範囲の水質とすることができる。一次純水製造設備以降の各設備の受入許容範囲に該当しない汚染された回収排水は前処理設備へ返送されることになる。
返送先の選択基準は、必ずしも超純水製造過程における各設備の水質目標値に合致させる必要はなく、超純水製造設備の通常での処理能力に余力があるときは、余力のある設備の受入許容範囲は緩やかな条件に設定することができる。
【0014】
【発明の効果】
従来廃棄されてきた洗浄工程からの機能水排水を、機能水原料水として回収再利用し、別途処理設備を設けることなく、機能水製造装置の各設備の処理能力を利用して機能水を製造することができる。このため洗浄機能水排水の回収率を大幅に引き上げることができる。
【図面の簡単な説明】
【図1】図1は、本発明の洗浄機能水排水再利用による機能水製造設備工程を示す。
【符号の説明】
1 前処理設備
2 一次純水設備
3 二次純水設備
4 機能水供給設備
5 ユースポイント
6 排水タンク
7 イオン濃度測定器
8 微粒子数測定器
9 有機物濃度測定器
10 イオン濃度信号伝達ライン
11 微粒子数信号伝達ライン
12 有機物濃度信号伝達ライン
13 ポンプ
14 切換え弁
15 切換え弁
16 切換え弁
17 切換え弁
18 タンク
19 タンク
20 タンク
21 タンク
22 流量制御弁
23 流量制御弁
24 流量制御弁
25 流量指示制御計
26 流量指示制御計
27 流量指示制御計
R 回収排水流路
R1、R2、R3、R4 返送路
P 供給配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing functional water while collecting and reusing functional water wastewater, and a production apparatus therefor. More specifically, the present invention relates to a method for producing functional water that can be returned to the functional water production facility process according to the quality of the used recovered functional water wastewater and reused as raw water for functional water production, and the method thereof. It relates to a manufacturing apparatus.
[0002]
[Prior art]
In the manufacture of electronic components such as semiconductors and liquid crystals, hydrogen, oxygen, ozone gas, etc. suitable for removing the target pollutants are applied to ultrapure water in order to effectively remove contamination such as silicon substrates for semiconductors. Dissolved cleaning water (functional water) is used. Conventionally, functional water drainage used for cleaning is recycled to primary pure water equipment or secondary pure water equipment by removing dissolved gas from dilute wastewater with low concentration of pollutants discharged in the final washing process or rinse. However, it requires a separate processing facility for recovery, and contains a relatively large amount of contaminants in other cleaning processes, although they are reused (JP-A-11-277007, JP-A-11-302688) Wastewater is discharged without being reused. For this reason, not only has the disadvantage that the recovery rate of functional water drainage is low, but also as an environmental measure, disposal is not preferable even if the drainage standard is satisfied.
[0003]
[Problems to be solved by the invention]
The present invention relates to a method for producing functional water that improves the wastewater recovery rate by recovering and reusing the functional water drainage recovered from the cleaning process as a functional water raw material water with good water quality without providing a separate treatment facility, and its It was made for the purpose of providing a manufacturing apparatus.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have produced recovered functional wastewater appropriately according to water quality such as ion concentration, number of fine particles and / or organic matter concentration of functional water recovered wastewater. The present inventors have found that the above-mentioned problems can be solved by selecting and returning the facility process and reusing the functional water recovery wastewater, and have completed the present invention based on this knowledge.
That is, the present invention
(1) 1) Pretreatment equipment for removing suspended substances in water, 2) Primary pure water production equipment for producing pure water by deionizing the pretreated water, 3) Primary pure water is used as ultrapure water Next-pure water production equipment, 4) A functional water production method using a functional water production apparatus having a functional water supply equipment for producing functional water by dissolving gas in ultrapure water, and collecting used functional water In the functional water production method of returning wastewater to the facility of any one of 1) to 4) of the functional water production apparatus according to the quality of the recovered wastewater, the ion concentration, the number of fine particles and / or the recovered wastewater Measure the organic matter concentration, and if the ion concentration, the number of fine particles, and / or the organic matter concentration is within the acceptable water quality range of the functional water supply facility, return the recovered wastewater only to the functional water supply facility and accept the functional water supply facility. Although the water quality is outside the acceptable range, the water quality is within the acceptable range for the secondary pure water production facility For example, if the recovered wastewater is returned only to the secondary pure water production facility and is out of the acceptable range of the secondary pure water production facility, but the water quality is within the acceptable range of the primary pure water production facility, the recovered wastewater is returned to the primary pure water. If the water quality is returned to the production facility only and contaminated from the acceptable water quality of the primary pure water production facility, almost all the used functional water is recovered by returning the recovered wastewater only to the pretreatment facility. And ( 2 ) 1) pretreatment equipment and return tank for removing suspended substances in the water, and 2) pretreatment. Primary pure water production equipment and return tank for producing pure water by deionizing water, 3) Secondary pure water production equipment and return tank using primary pure water as ultra pure water, and 4) Dissolving gas in ultra pure water With functional water supply equipment to produce functional water A water production device and a return tank are provided, and a supply pipe for supplying functional water produced by the functional water production device to the use point and a recovery drainage channel for collecting the functional water drainage used at the use point are provided. Depending on the quality of the recovered wastewater, the return path for returning the recovered wastewater to the return tank through the four switching valves for selecting the return tank of any of the above 1) to 4) is used as the recovered wastewater flow path. Ion concentration measuring device, ion concentration measuring device for measuring ion concentration, fine particle number and / or organic matter concentration connected to the recovery drainage channel, fine particle number measuring device and ion concentration signal transmission line from organic matter concentration measuring device, fine particle number signal open and close the four switching valves by the computer control signal is transmitted in transmission lines and organic concentration signal transmission line, a mechanism that automatically selects the return tank, collecting waste water If the ion concentration, the number of fine particles, and / or the organic substance concentration are water quality within the acceptable range for accepting functional water supply equipment, the mechanism can be returned only to the return tank of the functional water production equipment, and the acceptable range for accepting functional water supply equipment. If the water quality is within the acceptable range of acceptance of the secondary pure water production facility, the recovered wastewater is returned only to the return tank of the secondary pure water production facility, from the acceptable range of the secondary pure water production facility. If the water quality is within the acceptable range of the primary pure water production facility, it is contaminated by the mechanism that returns the recovered wastewater only to the return tank of the primary pure water production facility and the acceptable water quality of the primary pure water production facility. If it is water quality, it has a mechanism that returns the recovered wastewater only to the return tank of the pretreatment facility,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the functional water production method and the production apparatus for reusing the used functional water recovery wastewater of the present invention, depending on the water quality such as the ion concentration, the number of fine particles and / or the organic matter concentration of the functional water recovery wastewater, Select functional water production equipment process that has a processing capacity that can correspond to the contained ion concentration, fine particle count or organic substance concentration, return and supply, and reuse functional water recovery wastewater as functional water production raw water to produce functional water . Referring to FIG. 1 showing an embodiment of the method and apparatus of the present invention, raw water (makeup water) for producing ultrapure water selected from city water, industrial water, well water, etc. is supplied to the pretreatment facility 1. The In the pretreatment facility 1 to which the method of the present invention is applied, pretreatment by raw water filtration, coagulation sedimentation, microfiltration membrane or the like is performed, and mainly suspended substances are removed. The pretreated water becomes the raw water for the primary pure water facility. By this pretreatment, the number of fine particles is usually 10 3 particles / mL or less.
In the primary pure water facility 2 to which the method of the present invention is applied, deionization treatment such as ion exchange, reverse osmosis membrane desalting, continuous electric desalting, gas, etc., according to the quality of raw water and the required quality of treated water Removal of dissolved gases such as diffusion, vacuum degassing, and membrane degassing, and removal of organic substances such as ultraviolet irradiation and adsorption are performed, and deionized and organic substances (TOC) are removed to obtain primary pure water. The primary pure water becomes the raw water of the secondary pure water facility. With this primary pure water facility, pure water having a specific resistance of 1 to 17 MΩ · cm and a TOC of 0.1 to 100 mg / mL is usually obtained.
In the secondary pure water facility 3 to which the method of the present invention is applied, in order to remove trace amounts of ions, silica, organic matter, fine particles, etc. remaining in the primary pure water, further ultraviolet irradiation, ion exchange, ultrafiltration membrane, Ultrapure water is obtained by final treatment using a combination of degassing. Ultrapure water becomes the raw water for functional water supply equipment. Depending on the treatment conditions, this secondary pure water equipment provides high-purity water having a specific resistance of 15 MΩ · cm or more, a fine particle count of 5 particles / mL or less, and a TOC of 50 μg / mL or less.
[0006]
In the functional water supply equipment 4 to which the method of the present invention is applied, usually a membrane deaerator for removing dissolved gas contained in ultrapure water or recovered functional water wastewater, and a substance to be removed by cleaning of a new semiconductor electronic material A gas dissolving device for dissolving a gas suitable for the above, and a chemical injection device for injecting a chemical solution such as a pH adjusting agent, an oxidizing agent, and a cleaning acid as necessary. The ultrapure water sent from the secondary pure water production facility 3 to the functional water supply facility 4 is passed through the membrane degassing device to remove the dissolved gas dissolved in the water and dissolve the next target gas. To make it easier. The degassed ultrapure water and the target gas to be dissolved are functional water that is supplied to the gas dissolving device and dissolves the gas. Become.
The functional water to which the method of the present invention is applied is cleaning water in which a gas suitable for a substance to be removed by cleaning is dissolved in ultrapure water, hydrogen water in which hydrogen gas is dissolved in ultrapure water, and ozone. Dissolved ozone water, oxygen water dissolved oxygen gas, ozone oxygen water dissolved ozone and oxygen, ozone carbon dioxide water dissolved ozone and carbon dioxide, functional water dissolved oxygen gas, ammonia and hydrogen peroxide, hydrogen Functional water in which gas, ammonia and hydrogen peroxide are dissolved, functional water in which sodium thiosulfate, ammonia and hydrogen peroxide are dissolved, functional water in which hydrogen fluoride and hydrogen gas are dissolved, hydrogen fluoride, hydrogen peroxide and oxygen gas And functional water in which is dissolved. In order to remove dust particles adhering to electronic materials such as semiconductor wafers, functional water (hydrogen water) in which hydrogen gas is dissolved in ultrapure water is used. Functional water (ozone water) in which oxygen gas or ozone is dissolved in water is used. A known method can be used for the production of functional water. For example, a method of dissolving a desired gas in ultrapure water through a gas dissolution membrane (Japanese Patent Laid-Open Nos. 11-29794 and 11-29795), or by electrolyzing ultrapure water with an anode electrode It is possible to use, for example, anode water mainly containing oxygen and ozone, ultrapure water electrolysis functional water (Japanese Patent Laid-Open No. 9-19668), etc., in which cathode water mainly containing hydrogen is produced at the cathode electrode.
[0007]
The use point 5 to which the method of the present invention is applied is a facility for cleaning semiconductor electronic components and the like using functional water, and the functional water is supplied via a supply pipe P that connects the functional water supply equipment 4 and the use point 5. Is supplied. By using the functional water at the use point 5, the used functional water drainage having different water quality depending on the cleaning process and the object to be cleaned is discharged and collected in the drainage tank 6. A recovery drainage channel R is connected to the drainage tank 6, branched from the recovery drainage channel R, a return path R 1 to the functional water supply facility 4, a return path R 2 to the secondary pure water production facility 3, and the primary A return path R3 to the pure water production facility 2 and a return path R4 to the pretreatment facility 1 are provided, and the collected waste water can be returned to each facility. Each return path is provided with switching valves 14, 15, 16, and 17 so that the return destination of the recovered waste water can be selected by operating the switching valve according to the quality of the recovered waste water. The recovery drainage channel R including the drainage tank 6 is provided with an ion concentration measuring device 7, a fine particle number measuring device 8, and an organic matter concentration measuring device 9 as water quality meters for measuring the quality of the recovered wastewater.
[0008]
The means for selecting the return facility of the recovery function water wastewater to which the present invention is applied are numerical values measured by the ion concentration measuring device 7, the fine particle number measuring device 8 and the organic matter concentration measuring device 9 installed in the recovery wastewater flow path R. Whether the signal matches the acceptable water quality of each functional water production facility process can be achieved by the operator reading and judging and manually opening and closing the switching valve to the appropriate return destination. Furthermore, if a computer control incorporated in advance is used, it is possible to automatically switch by selecting and opening and closing the switching valve to the optimum return destination, responding to changes in the quality of the recovered wastewater immediately and accurately. That is, all of the numerical signals measured by the ion concentration measuring device 7, the fine particle number measuring device 8, and the organic matter concentration measuring device 9 installed in the recovery drainage flow path R are the water quality within the acceptance allowable range of the functional water supply facility 4. , The signal is transmitted by the signal transmission lines 10, 11 and 12, only the switching valve 17 is opened, the switching valves 14, 15 and 16 are closed, and the recovered wastewater is returned to the return path R1 by the pump 13. After that, only the tank 21 is returned. The amount of water supplied from the tank 21 to the functional water supply facility 4 is adjusted by the flow control valve 24 so that the amount of water supplied to the functional water supply facility 4 is constant by a signal from the flow rate instruction controller 27. Similarly, any one or more of the numerical signals measured by the ion concentration measuring device 7, the fine particle number measuring device 8, and the organic matter concentration measuring device 9 do not match the acceptance allowable range of the functional water supply facility 4, If the water quality matches the acceptable water quality of the secondary pure water facility 3, the signal is transmitted through the signal transmission lines 10, 11 and 12, only the switching valve 16 is opened, and the switching valves 14, 15 and 17 are closed. The recovered waste water is returned only to the tank 20 by the pump 13 via the return path R2. The amount of water supplied from the tank 20 to the secondary pure water facility 3 is adjusted by the flow rate control valve 23 so that the amount of water supplied to the secondary pure water facility 3 is constant by a signal from the flow rate instruction controller 26. Similarly, any one or more of the numerical signals measured by the ion concentration measuring device 7, the fine particle number measuring device 8, and the organic matter concentration measuring device 9 do not match the water quality within the allowable range of the secondary pure water facility 3. If all match the water quality within the allowable range of the primary pure water production facility 2, the signal is transmitted by the signal transmission lines 10, 11 and 12, only the switching valve 15 is opened, and the switching valves 14, 16 and 17 are closed. The recovered waste water is returned only to the tank 19 by the pump 13 via the return path R3. The amount of water fed from the tank 19 to the primary pure water facility 2 is adjusted by the flow rate control valve 22 so that the amount of water supplied to the primary pure water facility 2 becomes constant by a signal from the flow rate instruction controller 25. Similarly, it is determined that the measured water quality signal of the recovered wastewater does not match the acceptable water quality of the functional water supply facility 4, the secondary pure water facility 3, and the primary pure water facility 2. The signal is transmitted through the signal transmission lines 10, 11 and 12, only the switching valve 14 is opened, the switching valves 15, 16 and 17 are closed, and the recovered wastewater is pumped by the pump 13 via the return path R4 and the tank 18 The raw water (replenishment water) supplements the amount of water lost in the cleaning process of all the functional water production equipment steps 1 to 4 and the use point 5.
[0009]
The means for selecting the return destination equipment used in the present invention is that the apparatus operator reads and judges the numerical signal measured by the ion concentration measuring device, the fine particle number measuring device and / or the organic matter concentration measuring device according to the operating condition. Combined by opening and closing the switching valve to the appropriate return destination by manual operation and performing by opening and closing the switching valve to the appropriate return destination by automatic control using pre-installed computer control Can do.
The ion concentration measuring instrument used in the present invention is not particularly limited as long as it is suitable for the purpose and method of the present invention, and a known method and instrument can be used. As the ion concentration measuring instrument used in the present invention, it is desirable that the measured value can be obtained immediately and accurately because the return destination can be easily selected. As an ion concentration measuring instrument used in the present invention, a conductivity meter, a specific resistance meter, an ion meter, or the like can be used.
[0010]
The particle number measuring device used in the present invention is not particularly limited as long as it is suitable for the object and method of the present invention, and any commercially available particle meter can be used.
As long as the organic substance concentration measuring instrument used in the present invention is suitable for the purpose and method of the present invention, a known method and instrument can be used without particular limitation, and a TOC meter is preferably used. Can do.
The switching valve used in the present invention can transmit the result of determining the numerical values measured by the ion concentration measuring device, the fine particle number measuring device, and the organic substance concentration measuring device by the switching valve opening / closing signal. Any known open / close control valve can be used without particular limitation as long as it can accurately respond to the switching valve open / close instruction signal.
The flow rate control valve and the flow rate indicating controller used in the present invention have a function of making the flow rate set in each flow path constant by controlling the flow rate control valve by the flow rate indicating controller installed in each flow path. If it does, a well-known commercially available flow control valve and flow control controller can be used without a restriction | limiting in particular.
In the case of simplifying the apparatus in the embodiment of FIG. 1, the tanks 18, 19, 20, 21, the flow rate instruction control meters 25, 26, 27, and the flow rate control valves 22, 23, 24 can be omitted. Since each facility is usually provided with receiving tanks for temporarily storing water from the previous process, the recovered waste water can be directly returned to those receiving tanks.
[0011]
As described above, since the water is returned to any one of the above-described 1) to 4) of the functional water production apparatus according to the quality of the recovered waste water, for example, the relatively contaminated waste water at the initial stage of cleaning is primary. Treated with pure water production equipment or pretreatment equipment, wastewater in the middle of washing is treated with primary pure water production equipment or secondary pure water production equipment, and relatively clear wastewater in the latter stage of washing is treated with secondary pure water production equipment or functions It can be treated with water supply equipment, and treatment according to the quality of the wastewater becomes possible. As a result, it is possible to collect almost all of the waste water generated throughout the cleaning process.
Although the preferred embodiment of the present invention has been described with reference to FIG. 1, the present invention is also preferably implemented as described below depending on the situation.
In the method for producing functional water of the present invention, the return destination of the recovered wastewater is selected according to the quality of the recovered wastewater. As the water quality determination items for selection, as described above, the ion concentration, the number of fine particles, and the organic matter concentration are selected. Although there may be three types, if functional water components and contaminants to be cleaned are specified in the cleaning at the point of use, select one or two of the three types as water quality judgment items You can also For example, if the target pollutant is only fine particles and the functional water is hydrogen gas-dissolved water with no chemicals added, only the number of fine particles in the recovered wastewater can be used as a water quality determination item. In the case of removing fine particles with hydrogen gas-dissolved water to which is added, two determination items can be used: the ion concentration and the number of fine particles. Moreover, in the case of removal of metal contaminants and organic contaminants by acidic ozone water, two of an ion concentration and an organic matter concentration can be set as water quality determination items.
[0012]
The water quality of the recovered wastewater is usually determined using the measured value of the water quality meter installed in the recovered wastewater flow path R. However, the cleaning conditions (functional water components, objects to be cleaned, pollutants to be cleaned) with functional water at the point of use are If there is little change, the collected wastewater may be sampled periodically and analyzed to measure the water quality without installing a water quality meter. In addition, if the amount of contaminants attached to the object to be cleaned can be measured separately, the quality of the recovered wastewater can be predicted from the amount of contaminants and the amount of functional water used, so the return destination of the recovered wastewater can also be selected using this predicted value. .
Also, if there is no significant fluctuation in the cleaning conditions at the point of use, or the quality of the recovered wastewater is generally predicted, and it is clear in advance that the return destination of the recovered wastewater is limited to 2 or 3 facilities, the recovered wastewater The return path branched from the flow path R does not need to be provided for all facilities, and may be provided only for 2 or 3 facilities where return is predicted.
[0013]
The return destination of the recovered wastewater of the present invention is selected according to the water quality. As selection criteria, 1) pretreatment equipment, 2) primary pure water production equipment, 3) secondary pure water production equipment, 4) functional water supply equipment Set the water quality within the acceptable range for each of the facilities. The return destination is determined based on which equipment is acceptable for the quality of the recovered wastewater returned. The allowable acceptance range of each facility can be set arbitrarily, but it can be set with reference to the target water quality value at each facility during the ultrapure water production process. For example, in the case of an ultrapure water production apparatus that produces ultrapure water with a specific resistance of 15 MΩ · cm or more, the number of fine particles of 1 piece / mL or less, and a TOC of 50 μg / mL or less in a secondary pure water production facility, this ultrapure water is used. The water quality can be set as the acceptable water quality for the functional water supply facility, and when the recovered wastewater quality is better than the acceptable water quality, the recovered wastewater is returned to the functional water supply facility. In addition, when primary pure water is produced at a primary pure water production facility with a specific resistance of 1 MΩ · cm or more and a TOC of 0.1 to 100 mg / mL, the quality of this primary pure water is allowed to be accepted by the secondary pure water production facility. Can be set with a range of water quality. When pretreatment water having a number of fine particles of 1000 particles / mL or less is obtained in the pretreatment facility, the number of fine particles can be set to a water quality within an acceptable range of the primary pure water production apparatus or the secondary pure water production apparatus. Contaminated recovered wastewater that does not fall within the permissible acceptance range of each facility after the primary pure water production facility will be returned to the pretreatment facility.
The selection criteria for the return destination do not necessarily need to match the target water quality of each facility in the ultrapure water production process, and if there is room in the normal processing capacity of the ultrapure water production facility, The acceptance tolerance can be set to a mild condition.
[0014]
【The invention's effect】
Functional water effluent from the washing process that has been disposed of in the past is recovered and reused as raw material water for functional water, and functional water is produced using the processing capacity of each facility of the functional water production equipment without providing separate treatment facilities. can do. For this reason, the recovery rate of cleaning functional water drainage can be significantly increased.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows a functional water production facility process by reuse of cleaning functional water drainage according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pretreatment equipment 2 Primary pure water equipment 3 Secondary pure water equipment 4 Functional water supply equipment 5 Use point 6 Drainage tank 7 Ion concentration measuring device 8 Fine particle number measuring device 9 Organic substance concentration measuring device 10 Ion concentration signal transmission line 11 Fine particle number Signal transmission line 12 Organic substance concentration signal transmission line 13 Pump 14 Switching valve 15 Switching valve 16 Switching valve 17 Switching valve 18 Tank 19 Tank 20 Tank 21 Tank 22 Flow rate control valve 23 Flow rate control valve 24 Flow rate control valve 25 Flow rate indicating controller 26 Flow rate Indicator controller 27 Flow indicator controller R Recovery drainage channel R1, R2, R3, R4 Return channel P Supply piping

Claims (2)

1)水中の懸濁物質を除去する前処理設備、2)前処理水を脱イオンして純水を製造する一次純水製造設備、3)一次純水を超純水とする二次純水製造設備、4)超純水にガスを溶解して機能水を製造する機能水供給設備を有する機能水製造装置を用いる機能水の製造方法であって、使用済みの機能水の回収排水を、該回収排水の水質に応じて、機能水製造装置の前記1)〜4)のいずれかの設備へ返送する機能水の製造方法において、該回収排水のイオン濃度、微粒子数及び/又は有機物濃度を測定し、イオン濃度、微粒子数及び/又は有機物濃度が、機能水供給設備の受入許容範囲の水質であれば該回収排水を機能水供給設備のみに返送し、機能水供給設備の受入許容範囲から外れるが二次純水製造設備の受入許容範囲の水質であれば該回収排水を二次純水製造設備のみに返送し、二次純水製造設備の受入許容範囲から外れるが一次純水製造設備の受入許容範囲の水質であれば該回収排水を一次純水製造設備のみに返送し、一次純水製造設備の受入許容範囲の水質より汚染された水質であれば該回収排水を前処理設備のみに返送することによって、使用済みの機能水のほぼ全量が回収され、回収排水として該機能水製造装置に返送されることを特徴とする機能水の製造方法。1) Pretreatment equipment for removing suspended substances in water, 2) Primary pure water production equipment for producing pure water by deionizing pretreated water, 3) Secondary pure water using primary pure water as ultrapure water Production facility, 4) A functional water production method using a functional water production apparatus having a functional water supply facility for producing functional water by dissolving gas in ultrapure water, In the method for producing functional water to be returned to any one of the above-mentioned 1) to 4) of the functional water production apparatus according to the quality of the collected waste water, the ion concentration, the number of fine particles and / or the organic matter concentration of the collected waste water are determined. If the ion concentration, the number of fine particles, and / or the organic substance concentration is water quality that is acceptable for the functional water supply facility, the recovered wastewater is returned to the functional water supply facility only. If the water quality is within the acceptable range of the secondary pure water production facility, Collected wastewater is returned only to the secondary pure water production facility, and if it falls outside the acceptable range of the secondary pure water production facility, but the water quality is within the acceptable range of the primary pure water production facility, the recovered wastewater is returned to the primary pure water production facility. return only, by sending back only before treatment facility the recovered waste water as long as water contaminated than the quality of reception-permitting range of primary pure water production equipment, almost all of the used functional water is recovered, A method for producing functional water, wherein the functional water is returned to the functional water production apparatus as recovered waste water. 1)水中の懸濁物質を除去する前処理設備及び返送タンク、2)前処理水を脱イオンして純水を製造する一次純水製造設備及び返送タンク、3)一次純水を超純水とする二次純水製造設備及び返送タンク並びに4)超純水にガスを溶解して機能水を製造する機能水供給設備を有する機能水製造装置及び返送タンクが設けられ、該機能水製造装置で製造された機能水をユースポイントへ供給する供給配管と、ユースポイントで使用された機能水排水を回収する回収排水流路とが設けられ、回収排水の水質に応じて、該1)〜4)のいずれかの設備の返送タンクを選択する4個の切り換え弁を経て回収排水を返送タンクに返送する返送路を回収排水流路に接続し、該回収排水流路に設置されたイオン濃度、微粒子数及び/又は有機物濃度を測定するイオン濃度測定器、微粒子数測定器及び有機物濃度測定器からのイオン濃度信号伝達ライン、微粒子数信号伝達ライン及び有機物濃度信号伝達ラインの信号が伝えられたコンピュータ制御によって4個の切り換え弁が開閉して、自動的に返送タンクを選択する機構であって、回収排水のイオン濃度、微粒子数及び/又は有機物濃度の数値が、機能水供給設備の受入許容範囲の水質であれば、機能水製造装置の返送タンクのみに返送される機構、機能水供給設備の受入許容範囲から外れるが二次純水製造設備の受入許容範囲の水質であれば、該回収排水を二次純水製造設備の返送タンクのみに返送される機構、二次純水製造設備の受入許容範囲から外れるが一次純水製造設備の受入許容範囲の水質であれば、該回収排水を一次純水製造設備の返送タンクのみに返送する機構並びに一次純水製造設備の受入許容範囲の水質より汚染された水質であれば、該回収排水を前処理設備の返送タンクのみに返送する機構を有することを特徴とする機能水の製造装置。1) Pretreatment equipment and return tank for removing suspended substances in water, 2) Primary pure water production equipment and return tank for producing pure water by deionizing pretreatment water, 3) Ultra pure water for primary pure water A secondary pure water production facility and a return tank, and 4) a functional water production device and a return tank having a functional water supply facility for producing functional water by dissolving gas in ultrapure water, the functional water production device A supply pipe for supplying the functional water produced in the point of use to the use point and a recovery drainage channel for recovering the functional water drainage used at the point of use are provided. ) Connect the return path for returning the recovered wastewater to the return tank via the four switching valves that select the return tank of any of the equipment, and the ion concentration installed in the recovered drainage path. Measure the number of fine particles and / or organic matter concentration Ion concentration meter, ion concentration signal transmission line from the microparticles number measuring instrument and organic densitometry, four switching valves by the computer control signal is transmitted in the number of microparticles signal transmission lines and the organics concentration signal transmission line is opened and closed Te, a mechanism that automatically selects the return tank, the ion concentration of the recovered effluent, numerical values of number of microparticles and / or organic concentrations, if the quality of the reception-permitting range of functional water supply equipment, functional water generator If the water quality is within the acceptable range of the secondary pure water production facility, but not within the acceptable range of the mechanism and functional water supply facility, the returned wastewater is returned to the return tank of the secondary pure water production facility. However, if the water quality is within the acceptable range of the primary pure water production facility, the recovered wastewater is removed from the primary pure water production facility. It has a mechanism for returning only to the return tank and a mechanism for returning the recovered wastewater only to the return tank of the pretreatment facility if the water quality is contaminated from the acceptable water quality of the primary pure water production facility. Functional water production equipment.
JP2002164011A 2002-06-05 2002-06-05 Functional water production method and production apparatus Expired - Fee Related JP4469542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164011A JP4469542B2 (en) 2002-06-05 2002-06-05 Functional water production method and production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164011A JP4469542B2 (en) 2002-06-05 2002-06-05 Functional water production method and production apparatus

Publications (2)

Publication Number Publication Date
JP2004008882A JP2004008882A (en) 2004-01-15
JP4469542B2 true JP4469542B2 (en) 2010-05-26

Family

ID=30432275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164011A Expired - Fee Related JP4469542B2 (en) 2002-06-05 2002-06-05 Functional water production method and production apparatus

Country Status (1)

Country Link
JP (1) JP4469542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792834B2 (en) * 2005-06-27 2011-10-12 栗田工業株式会社 Functional water production system
JP2007313421A (en) * 2006-05-25 2007-12-06 Ebara Corp Pure water circulating feed system, pure water recycling method, and method for treating substrate
JP5318670B2 (en) * 2009-06-09 2013-10-16 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, program, and storage medium
CN116081779A (en) * 2021-10-31 2023-05-09 深圳银星智能集团股份有限公司 Sewage treatment method, device and cleaning equipment

Also Published As

Publication number Publication date
JP2004008882A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP6331186B2 (en) Waste water treatment apparatus, treatment method, and waste water treatment system
EP1090880A1 (en) Electrolytic ozone generating method, system and ozone water producing system
JPH09192661A (en) Ultrapure water producing device
US9611160B2 (en) Wastewater treatment apparatus and method
JP2003225672A (en) Water treatment equipment
JP2008194560A (en) Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device
CN110451704A (en) A kind of processing method of fluorine-containing recycle-water
TW323306B (en)
JP2014000548A (en) Cleaning method when uplifting ultrapure water production system
JP4469542B2 (en) Functional water production method and production apparatus
JP2000354729A (en) Method and apparatus for producing functional water for washing
JP4034668B2 (en) Ultrapure water production system and operation method thereof
JPH07260725A (en) Organic carbon measuring device, and ultrapure water producing device with the device built-in
IL281874B2 (en) Systems for reducing hydrogen peroxide in wastewater
JP4358652B2 (en) Wastewater treatment apparatus and method
JP2003305465A (en) System for making pure water and method for monitoring water quality
JP4583520B2 (en) Waste water treatment apparatus and method
JPH09192643A (en) Ultrapure water producing device
Myers Evaluating alternative disinfectants for THM control in small systems
JP5413587B2 (en) Ultrapure water production method and production apparatus for ion exchange resin purification equipment
JP4538881B2 (en) Membrane module cleaning method
JP2009269014A (en) Method for treating drainage including dialysis treatment drainage produced via dialysis treatment
JP4543516B2 (en) Batch type electrolyzed water generator
JP2006297343A (en) Washing method of ultrapure water manufacturing and supplying device
TW202346212A (en) Ultrapure water production device, and operation management method of ultrapure water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080924

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4469542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees