JP5895962B2 - Method for preventing boron contamination of ion exchange resin - Google Patents

Method for preventing boron contamination of ion exchange resin Download PDF

Info

Publication number
JP5895962B2
JP5895962B2 JP2014071318A JP2014071318A JP5895962B2 JP 5895962 B2 JP5895962 B2 JP 5895962B2 JP 2014071318 A JP2014071318 A JP 2014071318A JP 2014071318 A JP2014071318 A JP 2014071318A JP 5895962 B2 JP5895962 B2 JP 5895962B2
Authority
JP
Japan
Prior art keywords
boron
exchange resin
ion exchange
regenerant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014071318A
Other languages
Japanese (ja)
Other versions
JP2014121709A (en
Inventor
長雄 福井
長雄 福井
堀田 等
等 堀田
岩崎 邦博
邦博 岩崎
織田 信博
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014071318A priority Critical patent/JP5895962B2/en
Publication of JP2014121709A publication Critical patent/JP2014121709A/en
Application granted granted Critical
Publication of JP5895962B2 publication Critical patent/JP5895962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオン交換樹脂のホウ素汚染防止法に関し、特に、半導体製造分野等における電子部品部材類の洗浄水等として用いられる超純水の製造工程に有効なイオン交換樹脂のホウ素汚染防止法に関する。 The present invention relates to boron Pollution how the ion-exchange resin, in particular, boron pollution effective ion exchange resin in a manufacturing process for ultrapure water used as washing water or the like of the electronic component members rocks in the semiconductor manufacturing field, etc. about the mETHODS.

超純水を汎用している半導体、薬品製造等の分野において、近年、益々高純度の水質が要求されている。即ち、半導体基板や各種電子材料を洗浄する水(超純水)や薬液中の不純物は、半導体などのシリコン基板の電気的特性に影響を与えるため、厳しく管理されている。特に、超純水の水質項目のうち、ホウ素については、1ng/L以下にまで低減することが望まれている。   In the fields of semiconductors and chemicals that use ultrapure water for general purposes, high-purity water quality is increasingly required in recent years. In other words, water (ultra-pure water) for cleaning semiconductor substrates and various electronic materials and impurities in chemicals affect the electrical characteristics of silicon substrates such as semiconductors and are therefore strictly controlled. In particular, among the water quality items of ultrapure water, boron is desired to be reduced to 1 ng / L or less.

超純水は、一般に、河川水、地下水及び工業用水等の被処理水を前処理工程で処理して被処理水中の懸濁物及び有機物の大半を除去し、次いで、この前処理水を一次系純水製造装置及び二次系純水製造装置(サブシステムと呼ばれることもある。)で順次処理することによって製造される。二次系純水製造装置では、一次純水中に残存する極微量のイオン、有機物、微粒子などを除去するために、さらに紫外線照射、イオン交換、限外濾過膜などを組み合わせて処理され、最終的に所望の超純水が得られる。   Ultrapure water generally treats treated water such as river water, groundwater and industrial water in a pretreatment process to remove most of the suspended matter and organic matter in the treated water. It is manufactured by sequentially processing with a system pure water manufacturing apparatus and a secondary system pure water manufacturing apparatus (sometimes called a subsystem). In the secondary pure water production equipment, in order to remove trace amounts of ions, organic substances, fine particles, etc. remaining in the primary pure water, the treatment is further combined with ultraviolet irradiation, ion exchange, ultrafiltration membrane, etc. Desired ultrapure water can be obtained.

このような超純水製造装置においては、再生型イオン交換装置の後段に、特殊なコンディショニングが施された非再生型イオン交換装置を設けて不純物の低減を図っている。ここで、非再生型イオン交換装置を用いるのは、既にその前段で十分に処理された水を処理するものであるため特殊なコンディショニングで高度に精製され、かつ、再生を行わない非再生型イオン交換装置が有効であること、また、超純水製造装置の出口付近で万が一にも再生用の薬液がユースポイントに流れ込んだりしないように非再生型イオン交換装置とすることによる。   In such an ultrapure water production apparatus, a non-regenerative ion exchange apparatus subjected to special conditioning is provided downstream of the regenerative ion exchange apparatus to reduce impurities. Here, the non-regenerative ion exchanger is used for treating water that has already been sufficiently treated in the previous stage, so it is highly purified by special conditioning and does not regenerate. This is because the exchange apparatus is effective, and the non-regenerative ion exchange apparatus is used so that a chemical solution for regeneration does not flow into the use point near the outlet of the ultrapure water production apparatus.

しかしながら、近年、超純水の要求水質が向上し、不純物濃度が極微量に抑えられることで、次のような問題があった。
・非再生型イオン交換装置でも除去し得ない不純物が残留し、超純水の要求水質を満たすことができない。
・非再生型イオン交換装置でこのような不純物を高度に除去しようとすると、非再生型イオン交換装置のBTC(Break through capacity:貫流交換容量)が非常に少なくなり、交換頻度が高くなる。
However, in recent years, the required water quality of ultrapure water has been improved and the impurity concentration has been suppressed to a very small amount, resulting in the following problems.
-Impurities that cannot be removed even with non-regenerative ion exchangers remain, and the required water quality of ultrapure water cannot be satisfied.
If an attempt is made to remove such impurities with a non-regenerative ion exchange device to a high degree, the BTC (Break through capacity) of the non-regenerative ion exchange device is very small and the exchange frequency is high.

例えば、ホウ素のような弱酸性物質は、BTP(Break through point:貫流点)を1ng/Lとした場合、BTCがμg/L−アニオン交換樹脂オーダーとなり、非再生型イオン交換装置の交換頻度は1回/月と著しく高くなる。   For example, for a weakly acidic substance such as boron, when the BTP (Break through point) is 1 ng / L, the BTC is on the order of μg / L-anion exchange resin, and the exchange frequency of the non-regenerative ion exchange apparatus is It becomes extremely high once a month.

特開平8−84986号公報には、ホウ素選択性イオン交換樹脂を用いることにより、ホウ素濃度1ng/L以下の超純水を製造することが記載されている。しかしながら、このホウ素選択性イオン交換装置の後段または、それと混合して、混床式イオン交換樹脂が使用されると、該混床式イオン交換樹脂に用いられるアニオン交換樹脂からのホウ素溶出によりホウ素濃度が上昇し、この結果、その後段の非再生型イオン交換装置において、上述のような問題点が起こっていた。   JP-A-8-84986 describes that ultrapure water having a boron concentration of 1 ng / L or less is produced by using a boron selective ion exchange resin. However, when a mixed bed ion exchange resin is used after or mixed with the boron selective ion exchange apparatus, the boron concentration is reduced by boron elution from the anion exchange resin used in the mixed bed ion exchange resin. As a result, the above-described problem has occurred in the non-regenerative ion exchange apparatus in the subsequent stage.

なお、特開2005−177564号公報には、超純水製造プロセスにおいて、得られる超純水のホウ素濃度を低減すると共に、イオン交換装置の再生頻度を低減するために、イオン交換装置の前段に熱交換器を設け、イオン交換装置に通水する水の温度を25℃以下に制御することが記載されているが、イオン交換樹脂からのホウ素溶出の問題自体を解決するものではない。   In JP-A-2005-177564, in the ultrapure water production process, in order to reduce the boron concentration of the obtained ultrapure water and reduce the frequency of regeneration of the ion exchanger, Although it is described that a heat exchanger is provided and the temperature of water flowing through the ion exchange device is controlled to 25 ° C. or less, it does not solve the problem of boron elution from the ion exchange resin itself.

また、特開2003−315496号公報には、加圧水型原子力発電所の復水脱塩装置において、再生されたイオン交換樹脂からのNa,Clイオンの流出を抑えるために、再生に用いられる再生剤を精製することが記載されているが、超純水製造におけるイオン交換樹脂の再生とは全く別異の技術分野に属するものである。また、ホウ素の低減についての記載もない。   Japanese Patent Laid-Open No. 2003-31596 discloses a regenerative agent used for regeneration in order to suppress the outflow of Na and Cl ions from the regenerated ion exchange resin in a condensate demineralizer of a pressurized water nuclear power plant. However, it belongs to a completely different technical field from the regeneration of the ion exchange resin in the production of ultrapure water. There is no description about reduction of boron.

特開平8−84986号公報JP-A-8-84986 特開2005−177564号公報JP 2005-177564 A 特開2003−315496号公報JP 2003-31596 A

本発明は、ホウ素濃度が1ng/L以下の超純水を安定して製造することができるイオン交換樹脂を得るためのイオン交換樹脂のホウ素汚染防止法を提供することを目的とする。 The present invention aims to boron concentration to provide a boron pollution how the ion-exchange resin for obtaining the ion-exchange resin can be stably produced the following ultrapure water 1 ng / L.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、超純水中のホウ素はイオン交換樹脂からのリークが原因であること、このイオン交換樹脂中のホウ素は再生剤によってもたらされることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that boron in ultrapure water is caused by leakage from the ion exchange resin, and boron in the ion exchange resin is brought about by the regenerant. I found out.

しかして、本発明者らは、イオン交換樹脂の再生に先立ち、再生に用いる再生剤からホウ素を除去し、ホウ素を除去した再生剤を用いてイオン交換樹脂の再生を行うことにより、再生剤に起因するイオン交換樹脂のホウ素汚染を防止して、超純水製造時のホウ素リークの問題のないイオン交換樹脂を得ることができることを見出した。   Thus, prior to the regeneration of the ion exchange resin, the present inventors remove boron from the regenerant used for regeneration, and regenerate the ion exchange resin using the regenerant from which boron has been removed. It has been found that the resulting ion exchange resin can be prevented from being contaminated with boron and can be free from the problem of boron leakage during the production of ultrapure water.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 超純水の製造工程で用いられるイオン交換樹脂を、再生薬剤を水で希釈した再生剤と接触させて再生する際に、該再生剤に起因する該イオン交換樹脂のホウ素汚染を防止する方法において、再生に先立ち、該再生剤をホウ素除去手段で処理して、ホウ素除去後の再生剤が、下記条件(1)を満たすようにホウ素を除去することを特徴とするイオン交換樹脂のホウ素汚染防止方法。
条件(1):ホウ素除去後の該再生剤を用いて再生したイオン交換樹脂をカラムに充填して超純水(ホウ素濃度<1ng/L)を通水したときの流出水について、誘導結合プラズマ質量分析法により測定したホウ素濃度が1ng/L以下
[2] 超純水の製造工程で用いられるイオン交換樹脂を、再生薬剤を水で希釈した再生剤と接触させて再生する際に、該再生剤に起因する該イオン交換樹脂のホウ素汚染を防止する方法において、再生に先立ち、該再生剤をホウ素除去手段で処理して、ホウ素除去後の再生剤が、下記条件(2)を満たすようにホウ素を除去することを特徴とするイオン交換樹脂のホウ素汚染防止方法。
条件(2):ホウ素除去後の該再生剤を用いて再生したイオン交換樹脂について、以下の方法で測定したホウ素含有量が10μg/Lイオン交換樹脂(湿潤状態)以下
<イオン交換樹脂のホウ素含有量>
イオン交換樹脂100mLを清浄なポリプロピレン製容器に採取し、これに、高純度硝酸(4重量%)500mLを添加して1時間振とう(5ストローク/秒)させた後、硝酸中のホウ素濃度を誘導結合プラズマ質量分析法により測定し、以下の式から、イオン交換樹脂中のホウ素濃度を算出する。
樹脂のホウ素含有量(μg/L−イオン交換樹脂)
=[ICPMS分析値(μg/L)×硝酸量(0.5L)]/樹脂量(0.1L)
[1] Prevention of boron contamination of the ion exchange resin caused by the regenerant when the ion exchange resin used in the production process of ultrapure water is regenerated by bringing the regenerant into contact with a regenerant diluted with water. In this method, an ion exchange resin is characterized in that, prior to regeneration, the regenerant is treated with a boron removing means to remove boron so that the regenerant after boron removal satisfies the following condition (1) . Boron contamination prevention method.
Condition (1): Inductively coupled plasma for the outflow water when ion exchange resin regenerated using the regenerant after boron removal is packed into a column and ultrapure water (boron concentration <1 ng / L) is passed through. Boron concentration measured by mass spectrometry is 1 ng / L or less
[2] When the ion exchange resin used in the production process of ultrapure water is regenerated by bringing the regenerant into contact with a regenerant diluted with water, boron contamination of the ion exchange resin due to the regenerant is prevented. In this method, an ion exchange resin characterized in that, prior to regeneration, the regenerant is treated with a boron removing means to remove boron so that the regenerant after boron removal satisfies the following condition (2). Boron contamination prevention method.
Condition (2): For ion exchange resin regenerated using the regenerant after boron removal, the boron content measured by the following method is 10 μg / L ion exchange resin (wet state) or less.
<Boron content of ion exchange resin>
Collect 100 mL of ion exchange resin in a clean polypropylene container, add 500 mL of high-purity nitric acid (4% by weight) to this and shake for 1 hour (5 strokes / second), and then adjust the boron concentration in nitric acid. Measured by inductively coupled plasma mass spectrometry, and the boron concentration in the ion exchange resin is calculated from the following equation.
Boron content of resin (μg / L-ion exchange resin)
= [ICPMS analysis value (μg / L) × nitric acid amount (0.5 L)] / resin amount (0.1 L)

[3] [1]又は[2]において、前記イオン交換樹脂がアニオン交換樹脂であり、前記再生剤が水酸化ナトリウム水溶液であることを特徴とするイオン交換樹脂のホウ素汚染防止方法 [3] A method for preventing boron contamination of an ion exchange resin according to [1] or [2], wherein the ion exchange resin is an anion exchange resin and the regenerant is an aqueous sodium hydroxide solution .

本発明によれば、イオン交換樹脂の再生に先立ち、再生剤をホウ素除去手段で処理して再生剤中のホウ素を除去することにより、再生剤に起因するイオン交換樹脂のホウ素汚染を防止して、ホウ素リークの問題のないイオン交換樹脂を得ることができる。   According to the present invention, prior to regeneration of the ion exchange resin, the boron in the regenerant is removed by treating the regenerant with a boron removing means, thereby preventing boron contamination of the ion exchange resin caused by the regenerant. An ion exchange resin free from boron leakage can be obtained.

再生剤は、ホウ素除去手段で処理することにより、再生剤中のホウ素濃度が30μg asB/L−0.1Nアルカリ溶液以下にまでホウ素が除去されることが好ましい(請求項2)。   It is preferable that boron is removed so that the boron concentration in the regenerant is 30 μg asB / L-0.1N alkaline solution or less by treating the regenerant with a boron removing means (Claim 2).

本発明は、ホウ素汚染が問題となるアニオン交換樹脂を水酸化ナトリウム水溶液で再生する場合に特に有効である(請求項3) The present invention is particularly effective when an anion exchange resin in which boron contamination is a problem is regenerated with an aqueous sodium hydroxide solution (claim 3) .

発明のイオン交換樹脂のホウ素汚染防止方法は、特に再生型イオン交換装置のイオン交換樹脂の再生に有効であり、再生型イオン交換装置のイオン交換樹脂を本発明に従って再生し、ホウ素リークのない再生型イオン交換装置を調整することにより、再生型イオン交換装置からのホウ素のリークが防止され、この結果、超純水製造装置において、この再生型イオン交換装置の後段に設けられた非再生型イオン交換装置の負荷を軽減して非再生型イオン交換装置の交換頻度を低減することができる。 The boron contamination prevention method of the ion exchange resin of the present invention is particularly effective for the regeneration of the ion exchange resin of the regenerative ion exchange device, and the ion exchange resin of the regenerative ion exchange device is regenerated according to the present invention, and there is no boron leak. By adjusting the regenerative ion exchange apparatus, leakage of boron from the regenerative ion exchange apparatus is prevented. As a result, in the ultrapure water production apparatus, the non-regenerative type provided in the subsequent stage of the regenerative ion exchange apparatus It is possible to reduce the load of the ion exchange device and reduce the replacement frequency of the non-regenerative ion exchange device.

本発明の超純水製造装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the ultrapure water manufacturing apparatus of this invention. カチオン交換膜を用いた電解装置の構成図である。It is a block diagram of the electrolyzer using a cation exchange membrane.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明のイオン交換樹脂のホウ素汚染防止方法について説明する。
本発明のイオン交換樹脂のホウ素汚染防止方法は、イオン交換樹脂を再生剤と接触させて再生するに当たり、再生に用いる再生剤をホウ素除去手段で処理してホウ素を除去することを特徴とするものである。
First, a method for preventing boron contamination of the ion exchange resin of the present invention will be described.
The method for preventing boron contamination of an ion exchange resin according to the present invention is characterized in that when the ion exchange resin is brought into contact with a regenerant and regenerated, the regenerant used for regeneration is treated with a boron removing means to remove boron. It is.

なお、本発明において再生処理の対象となるイオン交換樹脂とは、ホウ素をイオン交換により吸着するアニオン交換樹脂であり、また、このアニオン交換樹脂の再生薬剤としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア、テトラメチルアンモニウムヒドロキシサイド、モノエタノール等が例示されるが、中でも水酸化ナトリウムが好適である。再生剤として水酸化ナトリウム(NaOH)を用いる場合、通常、NaOH濃度1〜10重量%程度の水溶液が用いられる。   In the present invention, the ion exchange resin to be subjected to the regeneration treatment is an anion exchange resin that adsorbs boron by ion exchange, and the regeneration agent for this anion exchange resin is sodium hydroxide, potassium hydroxide, water. Examples include lithium oxide, ammonia, tetramethylammonium hydroxyside, monoethanol, etc. Among them, sodium hydroxide is preferable. When using sodium hydroxide (NaOH) as a regenerant, an aqueous solution having a NaOH concentration of about 1 to 10% by weight is usually used.

本発明で再生剤からのホウ素除去に用いるホウ素除去手段としては、水中のホウ素を高度に除去することができるものであれば良く、特に制限はないが、例えば次のようなものが挙げられる。これらのホウ素除去手段は必要に応じて2種以上組み合わせて用いても良い。   The boron removing means used for removing boron from the regenerant in the present invention is not particularly limited as long as it can remove boron in water to a high degree, and examples thereof include the following. These boron removing means may be used in combination of two or more as required.

・ホウ素選択性イオン交換樹脂
・カチオン交換膜を用いた電解装置
・連続式電気脱イオン装置
・アニオン交換樹脂
・アニオン交換フィルタ
・アニオン交換膜
-Boron selective ion exchange resin-Electrolyzer using cation exchange membrane-Continuous electrodeionization device-Anion exchange resin-Anion exchange filter-Anion exchange membrane

ホウ素選択性イオン交換樹脂としては、ホウ素吸着能力を有し、かつホウ素を選択的に吸着するイオン交換樹脂であれば特に限定されるものではないが、交換基としてN−メチルグルカミン基を有するホウ素選択性樹脂が最も好ましい。このN−メチルグルカミン基を有するホウ素選択性樹脂としては、ダイヤイオン(登録商標:三菱化学(株))CRB01、CRB02,CRB03,CRB05、アンバーライト(登録商標;ロームアンドハース社)IRA743、デュオライト(登録商標:ロームアンドハース社)ES−371N,ユニセレック(登録商標:ユニチカ(株))UR−3500等の市販品から適宜選ぶことができる。   The boron-selective ion exchange resin is not particularly limited as long as it has an ability to adsorb boron and selectively adsorbs boron, but has an N-methylglucamine group as an exchange group. A boron selective resin is most preferred. Examples of the boron-selective resin having an N-methylglucamine group include Diaion (registered trademark: Mitsubishi Chemical Corporation) CRB01, CRB02, CRB03, CRB05, Amberlite (registered trademark; Rohm and Haas) IRA743, Duo. It can be appropriately selected from commercially available products such as Wright (registered trademark: Rohm and Haas) ES-371N and Uniselec (registered trademark: Unitika Ltd.) UR-3500.

カチオン交換膜を用いた電解装置は、図2に示す如く、電解セル10内がカチオン交換膜11により陽極室12と陰極室13とに仕切られたものであり、例えば陽極室12にホウ素を含む粗NaOH水溶液を導入し、陰極室13にホウ素を含まない超純水を導入して、陽極12A、陰極13A間に図示しない直流電源により電圧を印加すると、陽極室12内の粗NaOH水溶液中のNaイオンがカチオン交換膜11を透過して陰極室13へ移動し、陰極13Aで生成するOHイオンと結合してNaOHとなる。 As shown in FIG. 2, the electrolysis apparatus using the cation exchange membrane is one in which the inside of the electrolysis cell 10 is partitioned into an anode chamber 12 and a cathode chamber 13 by a cation exchange membrane 11. For example, the anode chamber 12 contains boron. When a crude NaOH aqueous solution is introduced, boron-free ultrapure water is introduced into the cathode chamber 13, and a voltage is applied between the anode 12A and the cathode 13A by a DC power source (not shown), the crude NaOH aqueous solution in the anode chamber 12 Na + ions permeate the cation exchange membrane 11 and move to the cathode chamber 13, and combine with OH ions generated at the cathode 13A to become NaOH.

一方、陽極室12内の粗NaOH水溶液中のホウ素はホウ酸イオンの形で存在するため、陰極室13側へ移動することはなく、陽極室12内にとどまる。この結果、陰極室13からは、ホウ素を含まない高純度NaOH水溶液が得られ、陽極室12からは、NaOH濃度が低減されたホウ素含有粗NaOH水溶液が得られる。   On the other hand, since boron in the crude NaOH aqueous solution in the anode chamber 12 exists in the form of borate ions, it does not move to the cathode chamber 13 side, but remains in the anode chamber 12. As a result, a high-purity NaOH aqueous solution containing no boron is obtained from the cathode chamber 13, and a boron-containing crude NaOH aqueous solution having a reduced NaOH concentration is obtained from the anode chamber 12.

連続式電気脱イオン装置は、陽極、陰極間に複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填したものであり、この連続式電気脱イオン装置を用いてホウ素イオンとNaイオンとをそれぞれ濃縮することにより、ホウ素を含まないNaOH水溶液を得ることができる。即ち、連続式電気脱イオン装置に導入されたホウ素を含む粗NaOH水溶液中のNaイオンはカチオン交換膜を透過して陰極側の濃縮室に濃縮され、この濃縮室からホウ素が低減されたNaOH水溶液が得られ、一方、ホウ酸イオンの形態のホウ素はアニオン交換膜を透過して陽極側の濃縮室に濃縮される。 A continuous type electrodeionization device is formed by alternately arranging a plurality of anion exchange membranes and cation exchange membranes between an anode and a cathode to alternately form a concentration chamber and a desalting chamber. An anion exchanger and cation exchanger composed of exchange fibers or graft exchangers are mixed or packed in multiple layers, and boron ions and Na + ions are concentrated using this continuous electrodeionization device. Thus, an aqueous NaOH solution containing no boron can be obtained. That is, Na + ions in the crude NaOH aqueous solution containing boron introduced into the continuous electrodeionization apparatus permeate the cation exchange membrane and are concentrated in the cathode-side concentration chamber, and the boron in which boron is reduced from this concentration chamber. An aqueous solution is obtained, while boron in the form of borate ions permeates the anion exchange membrane and is concentrated in the concentration chamber on the anode side.

本発明においては、このようなホウ素除去手段で再生剤を処理することにより、再生剤中のホウ素濃度を30μg asB/L−0.1Nアルカリ溶液以下とすることが好ましい。この再生剤のホウ素濃度は、低い程好ましいが、ホウ素濃度を極低濃度にするための処理コストを勘案した場合、30μg asB/L−0.1Nアルカリ溶液以下であれば、1μg asB/L−0.1Nアルカリ溶液以上でも十分な効果が得られる。即ち、アニオン交換樹脂を再生剤で再生した場合、再生剤からアニオン交換樹脂中に取り込まれるホウ素量は、再生剤中のホウ素量に対して更に少ない量であるため、ホウ素濃度1〜30μg asB/L−0.1Nアルカリ溶液程度の再生剤であれば十分なアニオン交換樹脂のホウ素汚染防止効果を得ることができる。   In the present invention, it is preferable that the boron concentration in the regenerant is 30 μg asB / L-0.1N alkaline solution or less by treating the regenerator with such boron removing means. The lower the boron concentration of this regenerant, the better. However, in consideration of the processing cost for making the boron concentration extremely low, if it is 30 μg asB / L-0.1N alkaline solution or less, 1 μg asB / L- A sufficient effect can be obtained even with a 0.1N alkaline solution or more. That is, when the anion exchange resin is regenerated with a regenerant, the amount of boron taken into the anion exchange resin from the regenerant is smaller than the amount of boron in the regenerant, so that the boron concentration is 1 to 30 μg asB / If the regenerant is about an L-0.1N alkaline solution, a sufficient effect of preventing boron contamination of the anion exchange resin can be obtained.

通常、工業的に市販されている試薬としての水酸化ナトリウムを超純水(ホウ素濃度<1ng/L)で希釈して得られる4重量%程度の濃度のNaOH水溶液のホウ素濃度は50μg/L程度である。本発明ではこのようなNaOH水溶液を上述のホウ素除去手段で処理してホウ素濃度30μg asB/L−0.1Nアルカリ溶液以下のNaOH水溶液とすることが好ましい。   Usually, the boron concentration of a NaOH aqueous solution having a concentration of about 4% by weight obtained by diluting sodium hydroxide as a commercially available reagent with ultrapure water (boron concentration <1 ng / L) is about 50 μg / L. It is. In the present invention, it is preferable to treat such an aqueous NaOH solution with the above boron removing means to obtain an aqueous NaOH solution having a boron concentration of 30 μg asB / L-0.1N alkaline solution or lower.

なお、再生剤は、通常再生薬剤を、水(通常、ホウ素濃度30μg/L程度の水)で適当な濃度に希釈して用いられるが、本発明においては、希釈され、再生時の使用濃度に調整された再生剤に対して、ホウ素除去手段でホウ素除去処理を行うことが、希釈水中に含まれるホウ素もホウ素除去手段で除去することができるため好ましい。   The regenerative agent is usually used by diluting a regenerative drug with water (usually water having a boron concentration of about 30 μg / L) to an appropriate concentration. It is preferable to perform a boron removing process on the adjusted regenerant by a boron removing unit because boron contained in the diluted water can also be removed by the boron removing unit.

なお、イオン交換樹脂の再生に当たり、上述のように、ホウ素除去処理を施した再生剤のみを用いて再生を行う必要はなく、再生の初期においてはホウ素除去処理を施していない再生剤を用いて再生を行い、その後ホウ素除去処理を施した再生剤を用いて再生を行うようにしても良く、このように再生剤を切り換えて用いることにより、再生に用いる再生剤当たりのホウ素除去処理コストの低減を図ることができる。   In the regeneration of the ion exchange resin, as described above, it is not necessary to perform the regeneration using only the regenerant that has been subjected to the boron removal treatment, and using the regenerant that has not been subjected to the boron removal treatment in the initial stage of the regeneration. Regeneration may be carried out using a regenerant that has been subjected to a boron removal treatment, and the boron removal treatment cost per regenerant used for regeneration can be reduced by switching the regenerant in this way. Can be achieved.

なお、再生剤による再生後は、通常、押出洗浄が行われるが、この押出洗浄に用いる洗浄水についても、ホウ素濃度が十分に低減された水であることが好ましく、ホウ素濃度1ng/L以下の超純水を用いることが好ましい。   In addition, after regeneration with a regenerant, extrusion cleaning is usually performed, but the cleaning water used for this extrusion cleaning is also preferably water with a sufficiently reduced boron concentration, and the boron concentration is 1 ng / L or less. It is preferable to use ultrapure water.

本発明においては、このようにホウ素を除去した再生剤を用いてイオン交換樹脂を再生することにより、後述の実施例の項で示される測定方法により測定されるホウ素含有量が50μg/L−イオン交換樹脂(湿潤状態)以下、特に10μg/Lイオン交換樹脂(湿潤状態)以下のイオン交換樹脂を得ることが好ましい。   In the present invention, by regenerating the ion exchange resin using the regenerant from which boron has been removed as described above, the boron content measured by the measurement method shown in the section of the below-described example is 50 μg / L-ion. It is preferable to obtain an ion exchange resin having an exchange resin (wet state) or less, particularly 10 μg / L ion exchange resin (wet state) or less.

このような本発明のイオン交換樹脂の再生方法は、再生型イオン交換装置のイオン交換樹脂の再生に有効であるが、本発明の方法に従って再生されたホウ素含有量50μg/L−イオン交換樹脂(湿潤状態)以下、特に10μg/Lイオン交換樹脂(湿潤状態)以下のイオン交換樹脂は、非再生型イオン交換装置のイオン交換樹脂としても好適に用いられる。   Such a method for regenerating an ion exchange resin of the present invention is effective for regenerating an ion exchange resin of a regenerative ion exchange apparatus. However, a boron content regenerated according to the method of the present invention is 50 μg / L-ion exchange resin ( Wet state) or less, in particular, an ion exchange resin of 10 μg / L ion exchange resin (wet state) or less is also suitably used as an ion exchange resin for a non-regenerative ion exchange apparatus.

次に本発明の超純水製造装置について図面を参照して説明する。   Next, the ultrapure water production apparatus of the present invention will be described with reference to the drawings.

図1(a)〜(d)は、本発明の超純水製造装置の実施の形態を示すイオン交換装置(再生型イオン交換装置)とその再生剤供給ライン部分を示す系統図である。このイオン交換装置1は、通常の超純水製造装置に組み込まれるものであって、その前段には紫外線酸化装置、脱気装置などが設けられ、後段には非再生型イオン交換装置や限外濾過膜分離装置などが設けられる。1Aはイオン交換装置1の被処理水流入ラインであり、1Bはイオン交換処理水流出ラインである。   1 (a) to 1 (d) are system diagrams showing an ion exchange device (regenerative ion exchange device) showing an embodiment of the ultrapure water production apparatus of the present invention and its regenerant supply line portion. This ion exchange apparatus 1 is incorporated in a normal ultrapure water production apparatus, and is provided with an ultraviolet oxidation apparatus, a deaeration apparatus, etc. in the preceding stage, and a non-regenerative ion exchange apparatus or a limiter in the subsequent stage. A filtration membrane separator or the like is provided. 1A is a treated water inflow line of the ion exchange apparatus 1, and 1B is an ion exchange treated water outflow line.

図1(a)は、再生剤貯槽2からイオン交換装置1にポンプPにより再生剤を供給するライン3に、前述のホウ素除去手段4を設けたものであり、再生剤は、このホウ素除去手段4でホウ素が除去された後、イオン交換装置1に供給され、装置1内のイオン交換樹脂の再生が行われる。   In FIG. 1A, the boron removing means 4 described above is provided in a line 3 for supplying the regenerant from the regenerant storage tank 2 to the ion exchanger 1 by the pump P. The regenerant is the boron remover. After boron is removed in step 4, the ion exchange apparatus 1 is supplied to regenerate the ion exchange resin in the apparatus 1.

図1(b)は、図1(a)の再生剤供給ライン3に希釈水注入ライン6を設けたものであり、再生薬剤(再生剤原液)貯槽5からの再生薬剤は、希釈水で希釈された後、ホウ素除去手段3でホウ素が除去され、イオン交換装置1に供給される。   FIG. 1B shows a case where the regenerant supply line 3 of FIG. 1A is provided with a dilution water injection line 6, and the regenerative medicine from the regenerative medicine (regenerant stock solution) storage tank 5 is diluted with dilution water. After that, boron is removed by the boron removing means 3 and supplied to the ion exchange device 1.

図1(c)は、図1(a)の再生剤供給ライン3に希釈水注入ライン6と希釈水槽8を設けたものであり、再生薬剤(再生剤原液)貯槽5からの再生薬剤は、ライン3Aを経て希釈水槽8に送給され、ライン6Aからの希釈水で希釈された後、ライン6からの希釈水で更に希釈され、その後、ホウ素除去手段4でホウ素が除去された後、イオン交換装置1に供給され、装置1内のイオン交換樹脂の再生が行われる。   FIG. 1 (c) shows a case where the regenerant supply line 3 in FIG. 1 (a) is provided with a diluting water injection line 6 and a diluting water tank 8, and the regenerative medicine from the regenerative medicine (regenerant stock solution) storage tank 5 is After being supplied to the dilution water tank 8 through the line 3A, diluted with the dilution water from the line 6A, further diluted with the dilution water from the line 6, and then boron is removed by the boron removing means 4, then the ions The ion exchange resin in the apparatus 1 is regenerated by being supplied to the exchange apparatus 1.

図1(d)は、図1(b)において、再生剤供給ライン3にホウ素除去手段4をバイパスするバイパスライン9と流路切り換えバルブVを設けたものであり、希釈水で希釈された再生剤は、再生開始初期はバイパスライン9を経てイオン交換装置1に供給され、その後、バルブVの切り換えによりホウ素除去手段4でホウ素が除去された後イオン交換装置1に供給され、装置1内のイオン交換樹脂の再生が行われる。   FIG. 1 (d) shows the regeneration agent diluted with dilution water in FIG. 1 (b), wherein the regenerant supply line 3 is provided with a bypass line 9 for bypassing the boron removing means 4 and a flow path switching valve V. The agent is supplied to the ion exchange device 1 through the bypass line 9 at the beginning of regeneration, and then supplied to the ion exchange device 1 after boron is removed by the boron removing means 4 by switching the valve V. The regeneration of the ion exchange resin is performed.

このように、再生剤の供給ラインにホウ素除去手段を設けた超純水製造装置であれば、装置内のイオン交換装置1のイオン交換樹脂の再生に当たり、ホウ素除去手段4でホウ素を除去した再生剤で再生を行うことができ、再生によるイオン交換樹脂のホウ素汚染を防止することができる。   As described above, in the case of an ultrapure water production apparatus provided with a boron removing means in the regenerant supply line, regeneration of the ion exchange resin in the ion exchange apparatus 1 in the apparatus is performed by removing boron by the boron removing means 4. Regeneration can be performed with an agent, and boron contamination of the ion exchange resin due to regeneration can be prevented.

図1(b)〜(d)のように、再生剤の希釈手段の下流側にホウ素除去手段4を設けることにより、希釈水中のホウ素をもホウ素除去手段4で除去することができる。   As shown in FIGS. 1B to 1D, by providing the boron removing means 4 on the downstream side of the regenerant diluting means, the boron in the diluted water can also be removed by the boron removing means 4.

また、図1(d)のように、再生剤の流路切り換えを行えるようにすることにより、再生開始初期は、ホウ素除去処理を施していない再生剤で再生を行い、その後、ホウ素除去手段4でホウ素を除去した再生剤で再生を行うことができる。   Further, as shown in FIG. 1 (d), by making it possible to switch the flow path of the regenerant, at the initial stage of regeneration, regeneration is performed with a regenerant that has not been subjected to boron removal treatment, and thereafter, boron removal means 4 Regeneration can be performed with a regenerant from which boron has been removed.

なお、図1(a)〜(d)において、ホウ素除去手段4の前段又は後段には熱交換器を設けて再生剤の温度調整を行っても良い。   In FIGS. 1A to 1D, a heat exchanger may be provided before or after the boron removing means 4 to adjust the temperature of the regenerant.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

なお、以下において再生薬剤として用いた水酸化ナトリウムはキシダ化学(株)製の食添用NaOH(純度98%)であり、再生したアニオン交換樹脂はダウケミカル(株)製「モノスフィア650CUPW(H)」である。   In the following, sodium hydroxide used as a regenerative agent is food additive NaOH (purity 98%) manufactured by Kishida Chemical Co., Ltd., and the regenerated anion exchange resin is “Monosphere 650 CUUPW (H) manufactured by Dow Chemical Co., Ltd. ) ”.

また、水中のホウ素濃度は、必要に応じてサンプルを濃縮した後、誘導結合プラズマ質量分析法(ICPMS)により分析した。また、アニオン交換樹脂のホウ素含有量は以下の方法で測定した。   The boron concentration in water was analyzed by inductively coupled plasma mass spectrometry (ICPMS) after concentrating the sample as necessary. Moreover, the boron content of the anion exchange resin was measured by the following method.

<アニオン交換樹脂のホウ素含有量>
アニオン交換樹脂100mLを清浄なポリプロピレン製容器に採取し、これに、高純度硝酸(4重量%)500mLを添加して1時間振とう(5ストローク/秒)させた後、硝酸中のホウ素濃度をICPMSにより測定し、以下の式から、アニオン交換樹脂中のホウ素濃度を算出した。
樹脂のホウ素含有量(μg/L−アニオン交換樹脂)
=[ICPMS分析値(μg/L)×硝酸量(0.5L)]/樹脂量(0.1L)
<Boron content of anion exchange resin>
Collect 100 mL of anion exchange resin in a clean polypropylene container, add 500 mL of high-purity nitric acid (4% by weight) and shake for 1 hour (5 strokes / second), and then adjust the boron concentration in nitric acid. Measured by ICPMS, the boron concentration in the anion exchange resin was calculated from the following formula.
Boron content of resin (μg / L-anion exchange resin)
= [ICPMS analysis value (μg / L) × nitric acid amount (0.5 L)] / resin amount (0.1 L)

[実施例1]
再生薬剤のNaOHを超純水(ホウ素濃度<1ng/L)で4重量%濃度に希釈して再生剤(以下「再生剤A」と称す。)とした。
再生剤Aのホウ素濃度を測定したところ20μg asB/L−4重量%NaOH水溶液であった。
この再生剤Aをホウ素選択性イオン交換樹脂(三菱化学(株)製ホウ素キレート樹脂「ダイヤイオン(登録商標)CRB03」)を充填したカラムにSV=10hr−1で通液してホウ素の除去処理を行った(ホウ素除去処理した再生剤Aを「再生剤B」と称す。)。
この再生剤Bのホウ素濃度は10μg asB/L−4重量%NaOH水溶液であった。
[Example 1]
The regenerative agent NaOH was diluted with ultrapure water (boron concentration <1 ng / L) to a concentration of 4% by weight to obtain a regenerant (hereinafter referred to as “regenerant A”).
When the boron concentration of the regenerant A was measured, it was 20 μg asB / L-4 wt% NaOH aqueous solution.
This regenerant A was passed through a column packed with boron-selective ion exchange resin (boron chelate resin “Diaion (registered trademark) CRB03” manufactured by Mitsubishi Chemical Corporation) at SV = 10 hr −1 to remove boron. (Regenerant A subjected to boron removal treatment is referred to as “regenerant B”.)
The boron concentration of this regenerant B was 10 μg asB / L-4 wt% NaOH aqueous solution.

アニオン交換樹脂を再生用カラムに充填し、再生剤Bを通液して再生を行った。再生レベルは50g asNaOH/L−アニオン交換樹脂とした。   An anion exchange resin was packed in a regeneration column, and regeneration was performed by passing a regeneration agent B. The regeneration level was 50 g asNaOH / L-anion exchange resin.

再生されたアニオン交換樹脂の一部につき、前述の方法でホウ素含有量の測定を行った。また、アニオン交換樹脂の残部は、アクリル製カラム(直径40mm、高さ800mm)に充填し、このアニオン交換樹脂充填カラムに超純水(ホウ素濃度<1ng/L)を流速833mL/分(SV=50hr−1)で通水し、流出水中のホウ素濃度を測定した。
これらの結果を表1に示した。
A part of the regenerated anion exchange resin was measured for boron content by the method described above. The remainder of the anion exchange resin is packed in an acrylic column (diameter 40 mm, height 800 mm), and ultrapure water (boron concentration <1 ng / L) is flowed into this anion exchange resin packed column at a flow rate of 833 mL / min (SV = 50 hr −1 ), and the boron concentration in the effluent water was measured.
These results are shown in Table 1.

[比較例1]
実施例1において、再生剤Bの代りに再生剤Aを用いたこと以外は同様に再生後のアニオン交換樹脂の再生を行い、同様にアニオン交換樹脂のホウ素含有量を測定すると共に、アニオン交換樹脂充填カラムに超純水を通水して流出水中のホウ素濃度を測定し、結果を表1に示した。
[Comparative Example 1]
In Example 1, except that the regenerant A was used in place of the regenerant B, the regenerated anion exchange resin was similarly regenerated, and the boron content of the anion exchange resin was measured in the same manner. Ultrapure water was passed through the packed column to measure the boron concentration in the effluent, and the results are shown in Table 1.

表1より、ホウ素を除去した再生剤を用いて再生を行うことにより、ホウ素含有量が著しく少ないアニオン交換樹脂を得ることができ、アニオン交換樹脂からのホウ素のリークを防止して高純度の超純水を得ることができることが分かる。   From Table 1, it is possible to obtain an anion exchange resin having a remarkably low boron content by performing regeneration using a regenerant from which boron has been removed. It turns out that pure water can be obtained.

[実施例2]
図2に示すカチオン交換膜を用いた電解装置を用いて再生剤のホウ素除去処理を行った。
用いた電解装置(角型のセル)の各部の仕様は次の通りである。
有効面積:2dm
陽極:Ti−Ptメッキ板
陰極:SUS316板
カチオン交換膜:ディユポン社製「ナフィオン(登録商標)112」
[Example 2]
The regenerant boron removal treatment was performed using an electrolysis apparatus using the cation exchange membrane shown in FIG.
The specification of each part of the used electrolyzer (square cell) is as follows.
Effective area: 2 dm 2
Anode: Ti-Pt plated plate Cathode: SUS316 plate Cation exchange membrane: "Nafion (registered trademark) 112" manufactured by Diyupon

NaOHを超純水(ホウ素濃度<1ng/L)で48重量%の水溶液とし、このNaOH水溶液を電解装置の陽極室に、超純水(ホウ素濃度<1ng/L)を陰極室にそれぞれ流速12mL/hrで通液した。
電流は2.0A、電圧は5Vで操作した。その結果、陰極室からはNaOH濃度24重量%、ホウ素濃度12μg asB/L(2μg asB/L−4重量%NaOH水溶液)のホウ素除去NaOH水溶液を得ることができ、陽極室からはNaOH24重量%、ホウ素濃度860μg asB/Lのホウ素が濃縮されたNaOH水溶液が得られた。
NaOH is made into an aqueous solution of 48 wt% with ultrapure water (boron concentration <1 ng / L). / Hr.
The operation was performed at a current of 2.0 A and a voltage of 5 V. As a result, a boron-removed NaOH aqueous solution having a NaOH concentration of 24 wt% and a boron concentration of 12 μg asB / L (2 μg asB / L-4 wt% NaOH aqueous solution) can be obtained from the cathode chamber, and NaOH of 24 wt%, A NaOH aqueous solution enriched with boron having a boron concentration of 860 μg asB / L was obtained.

このホウ素除去NaOH水溶液を用い、実施例1と同様にしてアニオン交換樹脂の再生を行い、再生されたアニオン交換樹脂のホウ素含有量を測定したところ8μg asB/L−アニオン交換樹脂であった。
このアニオン交換樹脂を超純水(ホウ素濃度<1ng/L)で洗浄した後、500mLを秤り取り、H形転換率が99.95%以上のカチオン交換樹脂(ダウケミカル社製「モノスフィアCUPW(H)」)500mLと混合して、アクリル製カラム(直径40mm、高さ800mm)に充填して混床式イオン交換装置を作製した。
Using this boron-removed NaOH aqueous solution, the anion exchange resin was regenerated in the same manner as in Example 1, and the boron content of the regenerated anion exchange resin was measured to be 8 μg asB / L-anion exchange resin.
After washing this anion exchange resin with ultrapure water (boron concentration <1 ng / L), 500 mL was weighed out, and a cation exchange resin having a H-type conversion rate of 99.95% or more (“Monosphere CUWP” manufactured by Dow Chemical Company). (H) ") Mixed with 500 mL and filled into an acrylic column (diameter 40 mm, height 800 mm) to produce a mixed bed ion exchanger.

作製した混床式イオン交換装置に超純水(ホウ素濃度<1ng/L)を流速2.7mL/分(SV=160hr−1)で通水したところ、流出水のホウ素濃度は1ng/L未満と、十分に高水質であった。 When ultrapure water (boron concentration <1 ng / L) was passed through the produced mixed bed type ion exchanger at a flow rate of 2.7 mL / min (SV = 160 hr −1 ), the boron concentration of the effluent water was less than 1 ng / L. The water quality was high enough.

1 イオン交換装置
2 再生剤貯槽
4 ホウ素除去手段
5 再生薬剤貯槽
8 希釈水槽
10 電解セル
11 カチオン交換膜
12 陽極室
13 陰極室
DESCRIPTION OF SYMBOLS 1 Ion exchange apparatus 2 Regenerant storage tank 4 Boron removal means 5 Regenerative medicine storage tank 8 Dilution water tank 10 Electrolysis cell 11 Cation exchange membrane 12 Anode chamber 13 Cathode chamber

Claims (3)

超純水の製造工程で用いられるイオン交換樹脂を、再生薬剤を水で希釈した再生剤と接触させて再生する際に、該再生剤に起因する該イオン交換樹脂のホウ素汚染を防止する方法において、再生に先立ち、該再生剤をホウ素除去手段で処理して、ホウ素除去後の再生剤が、下記条件(1)を満たすようにホウ素を除去することを特徴とするイオン交換樹脂のホウ素汚染防止方法。
条件(1):ホウ素除去後の該再生剤を用いて再生したイオン交換樹脂をカラムに充填して超純水(ホウ素濃度<1ng/L)を通水したときの流出水について、誘導結合プラズマ質量分析法により測定したホウ素濃度が1ng/L以下
In a method for preventing boron contamination of the ion exchange resin caused by the regenerant when the ion exchange resin used in the production process of ultrapure water is regenerated by bringing the regenerant into contact with a regenerant diluted with water. Prior to regeneration, the regenerant is treated with boron removing means, and the regenerator after boron removal removes boron so that the following condition (1) is satisfied. Method.
Condition (1): Inductively coupled plasma for the outflow water when ion exchange resin regenerated using the regenerant after boron removal is packed into a column and ultrapure water (boron concentration <1 ng / L) is passed through. Boron concentration measured by mass spectrometry is 1 ng / L or less
超純水の製造工程で用いられるイオン交換樹脂を、再生薬剤を水で希釈した再生剤と接触させて再生する際に、該再生剤に起因する該イオン交換樹脂のホウ素汚染を防止する方法において、再生に先立ち、該再生剤をホウ素除去手段で処理して、ホウ素除去後の再生剤が、下記条件(2)を満たすようにホウ素を除去することを特徴とするイオン交換樹脂のホウ素汚染防止方法。
条件(2):ホウ素除去後の該再生剤を用いて再生したイオン交換樹脂について、以下の方法で測定したホウ素含有量が10μg/Lイオン交換樹脂(湿潤状態)以下
<イオン交換樹脂のホウ素含有量>
イオン交換樹脂100mLを清浄なポリプロピレン製容器に採取し、これに、高純度硝酸(4重量%)500mLを添加して1時間振とう(5ストローク/秒)させた後、硝酸中のホウ素濃度を誘導結合プラズマ質量分析法により測定し、以下の式から、イオン交換樹脂中のホウ素濃度を算出する。
樹脂のホウ素含有量(μg/L−イオン交換樹脂)
=[ICPMS分析値(μg/L)×硝酸量(0.5L)]/樹脂量(0.1L)
In a method for preventing boron contamination of the ion exchange resin caused by the regenerant when the ion exchange resin used in the production process of ultrapure water is regenerated by bringing the regenerant into contact with a regenerant diluted with water. Prior to regeneration, the regenerant is treated with a boron removing means, and boron is removed so that the regenerant after boron removal satisfies the following condition (2). Method.
Condition (2): For ion exchange resin regenerated using the regenerant after boron removal, the boron content measured by the following method is 10 μg / L ion exchange resin (wet state) or less.
<Boron content of ion exchange resin>
Collect 100 mL of ion exchange resin in a clean polypropylene container, add 500 mL of high-purity nitric acid (4% by weight) to this and shake for 1 hour (5 strokes / second), and then adjust the boron concentration in nitric acid. Measured by inductively coupled plasma mass spectrometry, and the boron concentration in the ion exchange resin is calculated from the following equation.
Boron content of resin (μg / L-ion exchange resin)
= [ICPMS analysis value (μg / L) × nitric acid amount (0.5 L)] / resin amount (0.1 L)
請求項1又は2において、前記イオン交換樹脂がアニオン交換樹脂であり、前記再生剤が水酸化ナトリウム水溶液であることを特徴とするイオン交換樹脂のホウ素汚染防止方法。   3. The method for preventing boron contamination of an ion exchange resin according to claim 1, wherein the ion exchange resin is an anion exchange resin and the regenerant is an aqueous sodium hydroxide solution.
JP2014071318A 2014-03-31 2014-03-31 Method for preventing boron contamination of ion exchange resin Expired - Fee Related JP5895962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071318A JP5895962B2 (en) 2014-03-31 2014-03-31 Method for preventing boron contamination of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071318A JP5895962B2 (en) 2014-03-31 2014-03-31 Method for preventing boron contamination of ion exchange resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009086342A Division JP5564817B2 (en) 2009-03-31 2009-03-31 Ion exchange resin regeneration method and ultrapure water production apparatus

Publications (2)

Publication Number Publication Date
JP2014121709A JP2014121709A (en) 2014-07-03
JP5895962B2 true JP5895962B2 (en) 2016-03-30

Family

ID=51402676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071318A Expired - Fee Related JP5895962B2 (en) 2014-03-31 2014-03-31 Method for preventing boron contamination of ion exchange resin

Country Status (1)

Country Link
JP (1) JP5895962B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0150476B2 (en) * 1985-11-19 1989-10-30 Kurita Water Ind Ltd
JP3380658B2 (en) * 1995-09-19 2003-02-24 鶴見曹達株式会社 Purification method of alkaline solution
JP4045658B2 (en) * 1998-08-06 2008-02-13 栗田工業株式会社 Pure water production method
JP2001017866A (en) * 1999-07-07 2001-01-23 Kurita Water Ind Ltd Preparation of boron adsorbing resin
JP4599803B2 (en) * 2002-04-05 2010-12-15 栗田工業株式会社 Demineralized water production equipment
TW200307647A (en) * 2002-04-12 2003-12-16 Ionics Ion exchange regeneration system for UPW treatment
JP2003315496A (en) * 2002-04-25 2003-11-06 Japan Organo Co Ltd Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP4441472B2 (en) * 2005-10-24 2010-03-31 オルガノ株式会社 Method for reducing the amount of metal impurities contained in a cation exchange resin
JP5053587B2 (en) * 2006-07-31 2012-10-17 東亞合成株式会社 High-purity production method of alkali metal hydroxide
WO2009060827A1 (en) * 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP5320723B2 (en) * 2007-11-06 2013-10-23 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5081690B2 (en) * 2008-03-31 2012-11-28 オルガノ株式会社 Production method of ultra pure water
JP5556046B2 (en) * 2009-03-31 2014-07-23 栗田工業株式会社 Treatment liquid for purification of crude ion exchange resin

Also Published As

Publication number Publication date
JP2014121709A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
KR100361799B1 (en) Method and apparatus for regenerating photoresist developing waste liquid
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP4599803B2 (en) Demineralized water production equipment
US6858145B2 (en) Method of removing organic impurities from water
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
TWI391331B (en) Pure water fabricating apparatus
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
JP5136774B2 (en) Chemical purification method using electrodeionization equipment for chemical purification
US20100288308A1 (en) Method and system for producing ultrapure water, and method and system for washing electronic component members
KR20130114616A (en) Ultra water pure plant
US20150353401A1 (en) Water recovery system for use in confined spaces
JP2009226315A (en) Electric deionized water manufacturing device and manufacturing method of deionized water
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
KR20180058706A (en) Metal antifouling agent, metal antifouling film, metal pollution prevention method, and product cleaning method
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5895962B2 (en) Method for preventing boron contamination of ion exchange resin
WO2019188309A1 (en) Anion exchange resin and water treatment method using same
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP4552273B2 (en) Electrodeionization equipment
JP2016150275A (en) Method and device for producing purified water
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP2012196634A (en) Method and system for treatment of water
JP2011121027A (en) Electric type deionized water producing apparatus
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees