JP4045658B2 - Pure water production method - Google Patents

Pure water production method Download PDF

Info

Publication number
JP4045658B2
JP4045658B2 JP22309498A JP22309498A JP4045658B2 JP 4045658 B2 JP4045658 B2 JP 4045658B2 JP 22309498 A JP22309498 A JP 22309498A JP 22309498 A JP22309498 A JP 22309498A JP 4045658 B2 JP4045658 B2 JP 4045658B2
Authority
JP
Japan
Prior art keywords
water
ion exchange
pure water
membrane
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22309498A
Other languages
Japanese (ja)
Other versions
JP2000051845A (en
Inventor
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP22309498A priority Critical patent/JP4045658B2/en
Publication of JP2000051845A publication Critical patent/JP2000051845A/en
Application granted granted Critical
Publication of JP4045658B2 publication Critical patent/JP4045658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製薬分野、電力分野、半導体製造分野、液晶製造分野等で用いられる純水の製造方法に関するものであり、詳しくは脱ガス装置、逆浸透膜装置及びイオン交換脱塩装置を組み合せて構成された純水製造装置を用いて純水を製造する方法に関する。
【0002】
【従来の技術】
河川水、工水、市水等の原水中の不純物を除去して製薬分野、電力分野、半導体製造分野、液晶製造分野等で用いられる純水を製造する純水製造装置は、前処理システムと純水製造システム(一次純水製造システム)とで構成されている。
【0003】
前処理システムは、原水の水質に応じて、凝集・沈殿装置、浮上分離装置、濾過装置、吸着装置、軟化装置などを任意に組み合せて構成され、この前処理システムでは、原水中の懸濁物、不溶化可能物質、一部の有機物(TOC)などを除去する。
【0004】
前処理システムに続く純水製造システムは、イオン交換脱塩装置、逆浸透膜(RO膜)装置、脱気装置を任意の順序に組み合せて構成され、このうち、脱気装置としては、真空脱気装置、窒素脱気装置、膜脱気装置などが用いられる。また、RO膜装置としては、高脱塩率のRO膜、ルーズRO膜、荷電膜、耐アルカリ性膜などを用いたものが採用され、RO膜装置は1段に設ける他、2段又は3段などの多段に設ける場合もある。イオン交換脱塩装置としては、混床式イオン交換装置や、カチオン交換搭、アニオン交換搭をそれぞれ1搭設けた2搭式、複数設けた4搭式などの多床式イオン交換装置のような通常のイオン交換装置が用いられる。また、電気再生式イオン交換脱塩装置が用いられる場合もある。
【0005】
電気再生式イオン交換脱塩装置は、複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮水室と処理水室とを交互に形成し、処理水室にアニオン交換樹脂とカチオン交換樹脂とを混合して充填したものであり、処理水室に供給した水中のイオンを濃縮水室に移動させて濃縮し、処理水室から脱イオン水を取り出すものである。電気再生式イオン交換脱塩装置は効果的な脱イオン処理が可能であり、イオン交換樹脂のように再生を必要とせず、完全な連続採水が可能で、極めて高純度の水が得られるという優れた特長を有する。
【0006】
従来の純水製造システムの具体的な構成としては、次のようなものがある。
【0007】
▲1▼ 脱気装置→RO膜装置→イオン交換脱塩装置
▲2▼ カチオン交換搭→脱気装置→アニオン交換搭→RO膜装置
▲3▼ 脱気装置→イオン交換脱塩装置→RO膜装置
▲4▼ 脱気装置→RO膜装置→イオン交換脱塩装置→RO膜装置
なお、純水製造システムには、更に殺菌装置や酸化装置を組み込む場合もある。
【0008】
図2は、従来の純水製造装置の一例を示す系統図であり、この純水製造装置は、前処理システムIとしての砂濾過装置1及び活性炭吸着装置2と、純水製造システムIIとしての脱気装置3、RO膜装置4及びイオン交換脱塩装置5で構成されている。
【0009】
この純水製造装置においては、まず、砂濾過装置1で原水中の不溶解物質を除去した後、活性炭吸着装置2で水中のTOC、遊離塩素を除去し、その後、脱気装置3で水中の溶存ガスを除去する。次いで、RO膜装置4で有機物や無機イオンを除去した後、イオン交換脱塩装置5で無機イオンを除去して純水を得る。
【0010】
このように製造される純水の水質は、一般に導電率0.1μS/cm、TOC10〜50ppb、溶存酸素5〜10ppb程度で、わずかな量ではあるが不純物を含むため、半導体製造分野等で用いられる超純水用途には、更なる精製が必要となる。
【0011】
【発明が解決しようとする課題】
従来の純水製造技術では、次のような問題点があった。
【0012】
(1) 半導体製造分野で用いられる超純水には、比抵抗値18.20MΩ・cm以上、TOC1ppb以下、溶存酸素5ppb以下の水質が求められており、これらの要求を満足させるためには、後段で更なる処理が必要とされ、その処理負荷も大きい。
(2) トリハロメタン類のような低分子で揮発性の有機物は、活性炭吸着装置、RO膜装置のみでは効果的に除去し得ない。
(3) シリカ、ホウ素等のイオン化しにくい成分の除去が困難である。
(4) RO膜装置を運転するための高圧ポンプ、脱気装置を運転するための真空ポンプの運転や、電気再生式イオン交換脱塩装置を用いる場合には電気再生式イオン交換脱塩装置の運転に多大の電力を要するため、処理コストが高くつく。
【0013】
本発明は上記従来の問題点を解決し、脱気装置、RO膜装置及びイオン交換脱塩装置を組み合わせて構成される純水製造装置により、原水中の揮発性有機物、シリカ、ホウ素等を効率的に除去し、低コストで高水質の純水を製造することができる純水製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1の純水製造方法は、脱ガス装置、逆浸透膜装置及びイオン交換脱塩装置を組み合せて構成される純水製造手段に原水を通水して純水を製造する方法において、該逆浸透膜装置に通水される水をpH9以上に調整し、該逆浸透膜装置の透過水をイオン交換脱塩装置に通水する方法であって、各装置に通水される原水の温度を35〜80℃とすることを特徴とする。
請求項2の純水製造方法は、脱ガス装置、逆浸透膜装置及びイオン交換脱塩装置を組み合せて構成される純水製造手段に原水を通水して純水を製造する方法において、該イオン交換脱塩装置が電気再生式イオン交換脱塩装置であり、各装置に通水される原水の温度を35〜80℃とすることを特徴とする
【0015】
本発明によれば、35〜80℃の原水を各装置に通水することにより、各装置において次のような作用効果が得られる。
【0016】
(A) 脱気装置では、原水を35〜80℃とすることにより、溶存酸素、溶存炭酸ガスなどが効率よく除去され、溶存ガス濃度を極めて低くすることができる。また、このような加温状態で脱気することで原水中の揮発性有機物の除去も可能となる。
【0017】
(B) RO膜装置では、35〜80℃の原水を通水することにより、塩類、特に常温では解離し難いシリカやホウ素化合物が解離し易くなり、RO膜での除去率が向上する。また、昇温することによりRO膜の透過流束も向上して、高流速での運転が可能となるため、ポンプの低圧化、消費電力の低減が図れる。
【0018】
(C) イオン交換脱塩装置では、35〜80℃の原水を通水することにより、上述のようにシリカやホウ素、その他の物質がイオン化し易くなり、イオン交換による除去率が向上し、高水質な処理水が得られる。特に、イオン交換脱塩装置として電気再生式イオン交換脱塩装置を用いる場合、イオン除去率の向上と共に電流が流れ易くなることで電流効率が改善され、消費電力の低減が可能となる。
【0019】
このように各装置の溶存物質の除去効果が向上することにより、全体として高純度の純水が得られることになる。
【0020】
特に、本発明の純水製造方法は、超純水製造装置の一次純水製造装置への適用に好適であり、一次純水製造装置における除去率の向上で後段の超純水製造装置の負荷を軽減することで、この後段装置での除去効率がより一層高められ、得られる超純水の純度が向上すると共に、膜やイオン交換樹脂の再生頻度の低減、使用電気量の低減などを図ることができる。
【0021】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0022】
図1は本発明の純水製造方法の実施の形態を示す系統図である。
【0023】
図1においては、最後段の装置であるイオン交換脱塩装置5からの処理水(この処理水は昇温されて一連の装置に通水された、温度の高い水である。)と原水(この原水は、工水、河川水、市水等を通常の前処理システムで処理した水である。)とを、まず、回収熱交換器6で熱交換することにより原水を加温する。このように原水を予め処理水で熱交換して熱回収することにより、熱源を節約することができると共に、処理水を冷却することができる。
【0024】
回収熱交換器6で予め加温した水は、次いで熱交換器等の加熱装置7で加熱する。本発明においては、原水を昇温して脱気装置3、RO膜装置4及びイオン交換脱塩装置5のいずれに対しても35〜80℃の温度で通水するため、この加熱装置7における加熱は、最後の装置、即ち、図1においてはイオン交換脱塩装置5の出口水(処理水)が35℃以上となるように行うのが好ましい。この加熱装置7としては、蒸気等による熱交換器が好ましいが、電気式加熱器で加熱しても良い。
【0025】
本発明においては、脱気装置3、RO膜装置4及びイオン交換脱塩装置5を通る原水の温度が35〜80℃となるように原水を必要に応じ加温する。この原水温度が35℃未満では前記(A)〜(C)の効果を十分に得ることができず、80℃を超える高温では、イオン交換樹脂やRO膜等が熱により劣化し、これらからの溶出物で水質が低下する恐れがある。
【0026】
加熱装置7で昇温した原水は、水中に炭酸イオン又は重炭酸イオンの形態で存在する炭酸成分を炭酸ガス化するために、HCl等の酸を添加してpH4〜6とした後、脱気装置3で脱気処理する。
【0027】
水に対するガスの溶解度は、水温が高いほど低くなることから、本発明により昇温した原水を脱気装置3に通水することにより、脱気装置3において効率的な脱気処理を行えると共に、トリハロメタン等の揮発性有機物をも除去することが可能となる。脱気装置3としては特に制限はなく、真空脱気装置、窒素脱気装置、膜脱気装置等の公知の脱気装置を用いることができる。
【0028】
脱気処理水は次いでRO膜装置4に通水される。
【0029】
一般に、低圧型のRO膜装置は常温(25℃)において入口圧力15kgf/cm2で運転されるが、本発明に従って、原水を昇温することによって透過流束が向上し、常温の場合に比べて低圧で運転することが可能となる。例えば、入口水の水温45℃で運転した場合、約9kgf/cm2の圧力で同等の水量が得られ、ポンプの低圧化、電力の省力化が可能となる。同時に、水温が上ることにより、常温では解離し難いシリカやホウ素化合物等が解離し易くなり、これらのイオン類をRO膜装置4で効率的に除去することができるようになる。
【0030】
このRO膜装置4のRO膜の形式等には特に制限はないが、35〜80℃の水温に耐え得る材質のものを用いる必要がある。
【0031】
また、このRO膜装置4の入口側では、NaOH等のアルカリを添加してpH9以上、好ましくは10〜11程度に調整するのが好ましく、このようなpH調整を行うことで、シリカ、ホウ素化合物、有機物がより一層解離してイオン化し易くなるため、RO膜装置4での除去率を高めることができる。
【0032】
RO膜装置4の透過水は次いでイオン交換脱塩装置5に通水される。イオン交換脱塩装置5では、昇温してイオン交換することにより、前述のようにシリカやホウ素、その他の物質がイオン化し易くなり、イオン交換による除去率が向上し、高水質の処理水が得られるようになる。特に、イオン交換脱塩装置5として電気再生式イオン交換脱塩装置を用いる場合、イオン除去率の向上と共にイオンの移動速度が速くなって電流が流れ易くなることで電流効率が改善され、消費電力の低減が可能となる。
【0033】
イオン交換脱塩装置5としては、前述の混床式、多床式のいずれのイオン交換脱塩装置でも良く、また、電気再生式イオン交換脱塩装置を用いても良い。いずれの場合においても、イオン交換樹脂としては35〜80℃の水温に耐え得る材質のものを用いる必要がある。
【0034】
イオン交換脱塩装置5の処理水は、溶存物質が高度に除去された極めて純度の高い水であり、回収熱交換器6で原水と熱交換して冷却された後、系外へ排出され、コースポイントへ送られるか或いは更に後段の装置で処理されて超純水が製造される。
【0035】
図1は本発明の純水製造方法の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。
【0036】
例えば、水温が35℃よりも低くなる場合には、装置間に更に加熱装置を配置して再加温するようにしても良い。ただし、加温は、昇温して通水する脱気装置、RO膜装置及びイオン交換脱塩装置の一番上流側の装置の前でのみ行い、最後の装置の出口水(処理水)が35℃以上になるように加温するのが、熱を有効に利用でき、熱交換器等の加熱設備を簡素化できる点で好ましい。
【0037】
なお、原水が最初から35℃以上のものであり、且つ各装置での処理工程において35℃未満にならないときには加温を行うには及ばない。
【0038】
また、脱気装置、RO膜装置及びイオン交換脱塩装置の設置構成にも特に制限はなく、本発明は、例えば前述の▲1▼〜▲4▼のような装置構成等の各種の純水製造装置に適用することができる。
【0039】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0040】
実施例1
表1に示す水質の原水(原水通水量120L/hr)を、通水SV20hr-1で活性炭吸着装置に通水して前処理し、次いで熱交換器で55℃に昇温した後、HClを添加してpH5に調整して真空脱気装置で脱気処理し、その後、NaOHを添加しpH9に調整してRO膜装置に通水し、更に、電気再生式イオン交換脱塩装置に通水して純水の製造を行った。なお、脱気装置出口水の温度は50℃、RO膜装置出口水の温度は47℃、処理水(電気再生式イオン交換脱塩装置出口水)の温度は45℃であった。
【0041】
用いた装置の仕様及び処理条件は次の通りである。
【0042】

Figure 0004045658
得られた処理水の水質を表1に示す。
【0043】
比較例1
実施例1において、原水を昇温せず、20℃のまま通水したこと以外は全く同様にして処理を行った。得られた処理水の水質を表1に示す。なお、脱気装置出口水の温度は21℃、RO膜装置出口水の温度は23℃、電気再生式イオン交換脱塩装置出口水の温度は24℃であった。
【0044】
【表1】
Figure 0004045658
【0045】
表1より明らかなように、35〜80℃の原水を各装置に通水することにより、高水質の処理水を得ることができる。
【0046】
【発明の効果】
以上詳述した通り、本発明によれば、
(i) 純水製造装置において、従来除去困難とされていた揮発性有機物、シリカ、ホウ素を効率良く除去することができる。
(ii) TOC、溶存ガス濃度をより一層低減することができるため、後段設備の負荷を軽減できる。
(iii) RO膜装置や脱気装置のポンプの容量、電力コストを低減できる。
【0047】
等の効果が奏され、高純度の純水を低コストで効率的に製造することができる。
【図面の簡単な説明】
【図1】本発明の純水製造方法の実施の形態を示す系統図である。
【図2】従来の純水製造装置の一例を示す系統図である。
【符号の説明】
1 砂濾過装置
2 活性炭吸着装置
3 脱気装置
4 RO膜装置
5 イオン交換脱塩装置
6 回収熱交換器
7 加熱装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing pure water used in the pharmaceutical field, power field, semiconductor manufacturing field, liquid crystal manufacturing field and the like, and more specifically, a combination of a degassing device, a reverse osmosis membrane device and an ion exchange desalting device. The present invention relates to a method for producing pure water using a constructed pure water production apparatus.
[0002]
[Prior art]
A pure water production apparatus for producing pure water used in the pharmaceutical field, electric power field, semiconductor manufacturing field, liquid crystal manufacturing field, etc. by removing impurities in raw water such as river water, industrial water, city water, etc. And a pure water production system (primary pure water production system).
[0003]
The pretreatment system is composed of any combination of agglomeration / sedimentation device, flotation separation device, filtration device, adsorption device, softening device, etc., depending on the quality of the raw water. , Removing insolubilizable substances, some organic substances (TOC) and the like.
[0004]
The pure water production system following the pretreatment system is composed of ion exchange demineralizer, reverse osmosis membrane (RO membrane) device, and deaerator in any order. A gas device, a nitrogen degassing device, a membrane degassing device, or the like is used. Moreover, as the RO membrane device, a device using a high desalination rate RO membrane, a loose RO membrane, a charged membrane, an alkali-resistant membrane, etc. is adopted. In some cases, it is provided in multiple stages. Examples of the ion exchange desalination apparatus include a mixed bed type ion exchange apparatus, a multi-bed type ion exchange apparatus such as a two-cylinder type having one cation exchange tower and an anion exchange tower, and a four-column type having a plurality of ion exchange towers. A normal ion exchange apparatus is used. In addition, an electric regeneration type ion exchange desalination apparatus may be used.
[0005]
The electric regenerative ion exchange desalination apparatus alternately arranges a plurality of anion exchange membranes and cation exchange membranes to form a concentrated water chamber and a treated water chamber, and the anion exchange resin and the cation exchange resin are formed in the treated water chamber. Are mixed and filled, and ions in the water supplied to the treated water chamber are moved to the concentrated water chamber for concentration, and deionized water is taken out from the treated water chamber. Electrically regenerative ion exchange desalination equipment can perform effective deionization treatment, does not require regeneration like ion exchange resin, can be completely continuously collected, and extremely high purity water can be obtained. Has excellent features.
[0006]
Specific configurations of the conventional pure water production system include the following.
[0007]
▲ 1 ▼ Degassing device → RO membrane device → Ion exchange desalination device ▲ 2 ▼ Cation exchange tower → Degassing device → Anion exchange tower → RO membrane device ▲ 3 ▼ Degassing equipment → Ion exchange demineralizer → RO membrane device (4) Deaeration device → RO membrane device → Ion exchange desalination device → RO membrane device There may be a case where a sterilization device or an oxidation device is further incorporated in the pure water production system.
[0008]
FIG. 2 is a system diagram showing an example of a conventional pure water production apparatus. This pure water production apparatus includes a sand filtration device 1 and an activated carbon adsorption device 2 as a pretreatment system I, and a pure water production system II. It comprises a deaeration device 3, an RO membrane device 4, and an ion exchange desalting device 5.
[0009]
In this pure water production apparatus, first, insoluble substances in the raw water are removed by the sand filtration apparatus 1, TOC and free chlorine in the water are removed by the activated carbon adsorption apparatus 2, and then the degassing apparatus 3 removes the water in the water. Remove dissolved gas. Next, after removing organic substances and inorganic ions by the RO membrane device 4, the inorganic ions are removed by the ion exchange desalting device 5 to obtain pure water.
[0010]
The quality of the pure water produced in this way is generally 0.1 μS / cm in conductivity, 10 to 50 ppb TOC, 5 to 10 ppb dissolved oxygen, and contains a small amount of impurities. For further ultrapure water applications, further purification is required.
[0011]
[Problems to be solved by the invention]
The conventional pure water production technology has the following problems.
[0012]
(1) Ultra-pure water used in the semiconductor manufacturing field is required to have a water quality with a specific resistance of 18.20 MΩ · cm or more, a TOC of 1 ppb or less, and a dissolved oxygen of 5 ppb or less. In order to satisfy these requirements, Further processing is required at a later stage, and the processing load is large.
(2) Low molecular and volatile organic substances such as trihalomethanes cannot be effectively removed only by the activated carbon adsorption device and the RO membrane device.
(3) It is difficult to remove components that are difficult to ionize such as silica and boron.
(4) The operation of the high pressure pump for operating the RO membrane device, the operation of the vacuum pump for operating the deaeration device, and the electric regeneration type ion exchange desalination device when using the electric regeneration type ion exchange desalination device. Since much electric power is required for operation, processing costs are high.
[0013]
The present invention solves the above-mentioned conventional problems and efficiently removes volatile organic substances, silica, boron, etc. in raw water by a pure water production apparatus configured by combining a deaeration device, an RO membrane device, and an ion exchange desalination device. It is an object of the present invention to provide a pure water production method that can remove purely and produce high quality pure water at low cost.
[0014]
[Means for Solving the Problems]
The method for producing pure water according to claim 1 is a method for producing pure water by passing raw water through pure water production means comprising a combination of a degassing device, a reverse osmosis membrane device and an ion exchange desalination device. A method of adjusting water to be passed through a reverse osmosis membrane device to pH 9 or more and passing the permeated water of the reverse osmosis membrane device to an ion exchange desalination device, the temperature of raw water being passed through each device Is 35 to 80 ° C.
The method for producing pure water according to claim 2 is a method for producing pure water by passing raw water through pure water production means comprising a combination of a degassing device, a reverse osmosis membrane device and an ion exchange desalination device. an ion-exchange demineralizer electric regenerative ion exchanger deionization apparatus, characterized by a temperature 35 to 80 ° C. of the raw water to be passed through each device.
[0015]
According to the present invention, by passing raw water of 35 to 80 ° C. through each device, the following effects can be obtained in each device.
[0016]
(A) In the degassing apparatus, by setting the raw water at 35 to 80 ° C., dissolved oxygen, dissolved carbon dioxide gas and the like can be efficiently removed, and the dissolved gas concentration can be made extremely low. Moreover, the volatile organic substance in raw | natural water can also be removed by deaeration in such a heating state.
[0017]
(B) In the RO membrane apparatus, by passing raw water at 35 to 80 ° C., salts, particularly silica and boron compounds that are difficult to dissociate at room temperature, are easily dissociated, and the removal rate at the RO membrane is improved. In addition, by increasing the temperature, the permeation flux of the RO membrane can be improved and operation at a high flow rate is possible, so that the pressure of the pump can be reduced and the power consumption can be reduced.
[0018]
(C) In the ion exchange desalting apparatus, by passing raw water at 35 to 80 ° C., silica, boron, and other substances are easily ionized as described above, and the removal rate by ion exchange is improved. Quality treated water is obtained. In particular, when an electrically regenerative ion exchange desalting apparatus is used as the ion exchange desalting apparatus, current efficiency is improved and the power consumption can be reduced by improving the ion removal rate and facilitating current flow.
[0019]
Thus, by improving the effect of removing dissolved substances in each apparatus, pure water with high purity can be obtained as a whole.
[0020]
In particular, the pure water production method of the present invention is suitable for application to the primary pure water production apparatus of the ultrapure water production apparatus, and the load of the subsequent ultrapure water production apparatus is improved by improving the removal rate in the primary pure water production apparatus. As a result, the removal efficiency of the latter-stage apparatus is further enhanced, the purity of the obtained ultrapure water is improved, the frequency of regeneration of the membrane and ion exchange resin is reduced, and the amount of electricity used is reduced. be able to.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022]
FIG. 1 is a system diagram showing an embodiment of the pure water production method of the present invention.
[0023]
In FIG. 1, treated water from the ion exchange desalting apparatus 5 which is the last stage apparatus (this treated water is high-temperature water which has been heated and passed through a series of apparatuses) and raw water ( This raw water is water obtained by treating industrial water, river water, city water, etc. with a normal pretreatment system.) First, the recovered water exchanger 6 heats the raw water. Thus, by exchanging heat with the treated water in advance and recovering heat, the heat source can be saved and the treated water can be cooled.
[0024]
The water preheated by the recovered heat exchanger 6 is then heated by a heating device 7 such as a heat exchanger. In the present invention, the temperature of the raw water is raised to pass water at a temperature of 35 to 80 ° C. with respect to any of the deaeration device 3, the RO membrane device 4 and the ion exchange demineralization device 5. Heating is preferably performed so that the final apparatus, that is, the outlet water (treated water) of the ion-exchange demineralizer 5 in FIG. The heating device 7 is preferably a heat exchanger using steam or the like, but may be heated by an electric heater.
[0025]
In this invention, raw | natural water is heated as needed so that the temperature of the raw | natural water which passes the deaeration apparatus 3, RO membrane apparatus 4, and the ion exchange desalination apparatus 5 may be 35-80 degreeC. When the raw water temperature is less than 35 ° C., the effects (A) to (C) cannot be sufficiently obtained, and at a high temperature exceeding 80 ° C., the ion exchange resin, the RO membrane, etc. are deteriorated by heat. There is a risk that water quality may deteriorate due to eluate.
[0026]
The raw water heated by the heating device 7 is degassed after adding an acid such as HCl to pH 4 to 6 in order to carbonate carbonic acid components present in the form of carbonate ions or bicarbonate ions in the water. Deaeration treatment is performed by the apparatus 3.
[0027]
Since the solubility of the gas with respect to water becomes lower as the water temperature becomes higher, by passing the raw water heated according to the present invention through the deaeration device 3, an efficient deaeration process can be performed in the deaeration device 3, and It also becomes possible to remove volatile organic substances such as trihalomethane. There is no restriction | limiting in particular as the deaeration apparatus 3, Well-known deaeration apparatuses, such as a vacuum deaeration apparatus, a nitrogen deaeration apparatus, and a membrane deaeration apparatus, can be used.
[0028]
The degassed water is then passed through the RO membrane device 4.
[0029]
In general, a low-pressure RO membrane apparatus is operated at an ordinary pressure (25 ° C.) and an inlet pressure of 15 kgf / cm 2. However, according to the present invention, the permeation flux is improved by raising the temperature of raw water, compared with the case of normal temperature. Operation at low pressure. For example, when the inlet water is operated at a water temperature of 45 ° C., an equivalent amount of water can be obtained at a pressure of about 9 kgf / cm 2 , and the pressure of the pump can be reduced and the power can be saved. At the same time, as the water temperature rises, silica and boron compounds that are difficult to dissociate at normal temperature are easily dissociated, and these ions can be efficiently removed by the RO membrane device 4.
[0030]
The type of RO membrane of the RO membrane device 4 is not particularly limited, but it is necessary to use a material that can withstand a water temperature of 35 to 80 ° C.
[0031]
Moreover, it is preferable to adjust the pH to 9 or more, preferably about 10 to 11 by adding an alkali such as NaOH on the inlet side of the RO membrane device 4. By performing such pH adjustment, silica, boron compounds Since the organic matter is further dissociated and easily ionized, the removal rate in the RO membrane device 4 can be increased.
[0032]
The permeated water of the RO membrane device 4 is then passed through the ion exchange desalting device 5. In the ion exchange desalting apparatus 5, by performing ion exchange by raising the temperature, silica, boron, and other substances are easily ionized as described above, the removal rate by ion exchange is improved, and high-quality treated water is produced. It will be obtained. In particular, when an electrically regenerative ion exchange desalination apparatus is used as the ion exchange desalination apparatus 5, the current efficiency is improved by improving the ion removal rate and increasing the speed of ion movement and facilitating the current flow. Can be reduced.
[0033]
As the ion exchange desalting apparatus 5, either the above-mentioned mixed bed type or multi-bed type ion exchange desalting apparatus may be used, or an electric regeneration type ion exchange desalting apparatus may be used. In either case, it is necessary to use a material that can withstand a water temperature of 35 to 80 ° C. as the ion exchange resin.
[0034]
The treated water of the ion exchange desalination apparatus 5 is highly purified water from which dissolved substances are removed to a high degree. After being cooled by exchanging heat with raw water in the recovery heat exchanger 6, it is discharged out of the system. Ultrapure water is produced by being sent to the course point or further processed by a subsequent apparatus.
[0035]
FIG. 1 shows an example of an embodiment of the pure water production method of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist.
[0036]
For example, when the water temperature is lower than 35 ° C., a heating device may be further arranged between the devices to reheat. However, heating is performed only in front of the deaerator, RO membrane device and ion exchange demineralizer, which are heated and passed, and the outlet water (treated water) of the last device is used. Heating to 35 ° C. or higher is preferable in that heat can be used effectively and heating equipment such as a heat exchanger can be simplified.
[0037]
In addition, when raw water is 35 degreeC or more from the beginning, and when it does not become less than 35 degreeC in the process process in each apparatus, it is not necessary to heat.
[0038]
Further, there is no particular limitation on the installation configuration of the deaeration device, the RO membrane device, and the ion exchange desalination device, and the present invention includes various kinds of pure water such as the above-described device configurations (1) to (4). It can be applied to manufacturing equipment.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0040]
Example 1
Raw water of the quality shown in Table 1 (raw water flow rate 120 L / hr) was pretreated by passing water through an activated carbon adsorbing device with water flow SV20 hr −1 , then heated to 55 ° C. with a heat exchanger, and then HCl was added. Add to adjust to pH 5 and deaerate with vacuum deaerator, then add NaOH to adjust pH to 9 and pass through RO membrane unit, then pass through regenerative ion exchange demineralizer And pure water was produced. In addition, the temperature of the deaerator outlet water was 50 ° C., the temperature of the RO membrane device outlet water was 47 ° C., and the temperature of the treated water (electric regeneration ion exchange demineralizer outlet water) was 45 ° C.
[0041]
The specifications and processing conditions of the apparatus used are as follows.
[0042]
Figure 0004045658
Table 1 shows the quality of the treated water obtained.
[0043]
Comparative Example 1
In Example 1, the raw water was not heated, and the treatment was performed in the same manner except that water was passed at 20 ° C. Table 1 shows the quality of the treated water obtained. In addition, the temperature of the deaerator outlet water was 21 ° C., the temperature of the RO membrane device outlet water was 23 ° C., and the temperature of the outlet water of the electroregenerative ion exchange demineralizer was 24 ° C.
[0044]
[Table 1]
Figure 0004045658
[0045]
As is clear from Table 1, high-quality treated water can be obtained by passing raw water of 35 to 80 ° C. through each device.
[0046]
【The invention's effect】
As detailed above, according to the present invention,
(i) In a pure water production apparatus, it is possible to efficiently remove volatile organic substances, silica, and boron, which have conventionally been difficult to remove.
(ii) Since the TOC and dissolved gas concentration can be further reduced, the load on the subsequent equipment can be reduced.
(iii) The capacity of the RO membrane device and the pump of the deaeration device and the power cost can be reduced.
[0047]
Thus, high-purity pure water can be efficiently produced at low cost.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a pure water production method of the present invention.
FIG. 2 is a system diagram showing an example of a conventional pure water production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sand filtration apparatus 2 Activated carbon adsorption apparatus 3 Deaeration apparatus 4 RO membrane apparatus 5 Ion exchange desalination apparatus 6 Recovery heat exchanger 7 Heating apparatus

Claims (2)

脱ガス装置、逆浸透膜装置及びイオン交換脱塩装置を組み合せて構成される純水製造手段に原水を通水して純水を製造する方法において、該逆浸透膜装置に通水される水をpH9以上に調整し、該逆浸透膜装置の透過水をイオン交換脱塩装置に通水する方法であって、各装置に通水される原水の温度を35〜80℃とすることを特徴とする純水製造方法。  Water to be passed through a reverse osmosis membrane device in a method for producing pure water by passing raw water through pure water production means comprising a combination of a degassing device, a reverse osmosis membrane device and an ion exchange desalination device Is adjusted to pH 9 or more, and the permeated water of the reverse osmosis membrane device is passed through the ion exchange desalting device, and the temperature of the raw water passed through each device is set to 35 to 80 ° C. A pure water production method. 脱ガス装置、逆浸透膜装置及びイオン交換脱塩装置を組み合せて構成される純水製造手段に原水を通水して純水を製造する方法において、該イオン交換脱塩装置が電気再生式イオン交換脱塩装置であり、各装置に通水される原水の温度を35〜80℃とすることを特徴とする純水製造方法。  In a method for producing pure water by passing raw water through pure water production means comprising a combination of a degassing device, a reverse osmosis membrane device and an ion exchange demineralization device, the ion exchange demineralization device is an electrically regenerative ion. A method for producing pure water, which is an exchange desalination apparatus, wherein the temperature of raw water passed through each apparatus is set to 35 to 80 ° C.
JP22309498A 1998-08-06 1998-08-06 Pure water production method Expired - Fee Related JP4045658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22309498A JP4045658B2 (en) 1998-08-06 1998-08-06 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22309498A JP4045658B2 (en) 1998-08-06 1998-08-06 Pure water production method

Publications (2)

Publication Number Publication Date
JP2000051845A JP2000051845A (en) 2000-02-22
JP4045658B2 true JP4045658B2 (en) 2008-02-13

Family

ID=16792748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22309498A Expired - Fee Related JP4045658B2 (en) 1998-08-06 1998-08-06 Pure water production method

Country Status (1)

Country Link
JP (1) JP4045658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179652B2 (en) 2019-02-28 2021-11-23 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353498A (en) * 2000-06-12 2001-12-25 Hitachi Plant Eng & Constr Co Ltd Production method of pure water, and device
JP3922935B2 (en) * 2002-02-20 2007-05-30 オルガノ株式会社 Water treatment system
JP2003260463A (en) * 2002-03-12 2003-09-16 Kurita Water Ind Ltd Manufacturing method of pure water
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP4250922B2 (en) * 2002-07-29 2009-04-08 栗田工業株式会社 Ultrapure water production system
JP4239876B2 (en) * 2004-03-30 2009-03-18 三浦工業株式会社 Water treatment method
JP4239877B2 (en) * 2004-03-30 2009-03-18 三浦工業株式会社 Water treatment method
JP4544020B2 (en) * 2005-04-28 2010-09-15 三浦工業株式会社 Operation method of membrane filtration system
JP5564817B2 (en) * 2009-03-31 2014-08-06 栗田工業株式会社 Ion exchange resin regeneration method and ultrapure water production apparatus
JP5678436B2 (en) * 2010-03-04 2015-03-04 栗田工業株式会社 Ultrapure water production method and apparatus
JP2011200864A (en) * 2011-06-01 2011-10-13 Spring:Kk Drinking water for preventing blood vessel aging and method for producing drinking water for preventing blood vessel aging
JP5895962B2 (en) * 2014-03-31 2016-03-30 栗田工業株式会社 Method for preventing boron contamination of ion exchange resin
JP6549015B2 (en) * 2015-10-16 2019-07-24 水ing株式会社 Water treatment method and water treatment apparatus
JP6415509B2 (en) * 2016-10-04 2018-10-31 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane regeneration method
KR101859135B1 (en) * 2017-03-21 2018-05-17 정주환 Apparatus for manufacturing ultra pure water
JP7197325B2 (en) * 2018-10-31 2022-12-27 三菱ケミカルアクア・ソリューションズ株式会社 Pure water production device and pure water production method
JP6799657B1 (en) * 2019-10-24 2020-12-16 オルガノ株式会社 Water treatment system, ultrapure water production system and water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179652B2 (en) 2019-02-28 2021-11-23 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid

Also Published As

Publication number Publication date
JP2000051845A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP4045658B2 (en) Pure water production method
EP0634364B1 (en) Pure water manufacturing method
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
TWI648093B (en) Ultrapure water manufacturing device and method
JP3593932B2 (en) High-purity water production apparatus and high-purity water production method
JP3575271B2 (en) Pure water production method
WO2015012054A1 (en) Method and device for treating boron-containing water
CN111252971A (en) Ultrapure water manufacturing system and ultrapure water manufacturing method using same
JP2004283710A (en) Pure water producer
JP4599803B2 (en) Demineralized water production equipment
JP2004033976A (en) Deionized water manufacturing method and apparatus therefor
JP2014000575A (en) Apparatus and method for producing purified water
JP2007307561A (en) High-purity water producing apparatus and method
JP3656458B2 (en) Pure water production method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP2000015257A (en) Apparatus and method for making high purity water
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
CN112424128B (en) Pure water production system and pure water production method
JP3259557B2 (en) How to remove organic matter
JPH09294974A (en) Water treatment apparatus
JPH10309575A (en) Pure water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees