JP6549015B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP6549015B2
JP6549015B2 JP2015205050A JP2015205050A JP6549015B2 JP 6549015 B2 JP6549015 B2 JP 6549015B2 JP 2015205050 A JP2015205050 A JP 2015205050A JP 2015205050 A JP2015205050 A JP 2015205050A JP 6549015 B2 JP6549015 B2 JP 6549015B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
osmosis membrane
membrane device
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205050A
Other languages
Japanese (ja)
Other versions
JP2017074574A (en
Inventor
倫子 五十嵐
倫子 五十嵐
大場 将純
将純 大場
舞奈 星
舞奈 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015205050A priority Critical patent/JP6549015B2/en
Publication of JP2017074574A publication Critical patent/JP2017074574A/en
Application granted granted Critical
Publication of JP6549015B2 publication Critical patent/JP6549015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水処理方法及び水処理装置に関し、特に逆浸透膜を用いてシリカ含有水を処理する水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus, and more particularly to a water treatment method and a water treatment apparatus for treating silica-containing water using a reverse osmosis membrane.

シリカ(SiO)は自然水に含まれる成分で、地下水(井水、地熱水、鉱山排水)に多く含まれる傾向がある。シリカは基本的に有害ではないもののスケール成分であることからしばしば利水上の障害を引き起こす。 Silica (SiO 2 ) is a component contained in natural water, and tends to be contained in large amounts in groundwater (well water, geothermal water, mine drainage). Silica is often a non-hazardous scale component and often causes water use problems.

ボイラや熱交換器等では、シリカスケールの析出によるトラブルが起こりやすいことから、冷凍空調機器の冷却水等のシリカ濃度については、30〜50mg/L以下であることが求められている。(出典:社団法人日本冷凍空調工業会、冷凍空調機器用水質ガイドライン、JRA-GL-02-1994)。   In a boiler, a heat exchanger, etc., since the problem by precipitation of a silica scale tends to occur, it is calculated | required that it is 30-50 mg / L or less about silica concentrations, such as cooling water of a freezer air conditioner. (Source: Japan Refrigeration and Air Conditioning Industry Association, Guidelines for water quality for refrigeration and air conditioning equipment, JRA-GL-02-1994).

逆浸透膜処理(RO)では、RO膜の濃縮水側表面に、濃縮されたシリカが析出してRO膜を閉塞させるため、得られる処理水量が減ってしまうという問題がある。RO膜表面の閉塞は、シリカばかりではなく、鉄、マンガン、カルシウム、マグネシウムなどの硬度成分によっても発生する。しかし、鉄やマンガンは凝集処理により、カルシウムやマグネシウムは軟化処理により、比較的容易に除去可能であるが、シリカの除去は困難である。したがって、RO原水の水回収率を律する要因は原水中のシリカ濃度であることが大半であり、原水のシリカ濃度によって水回収率が制限されてしまうことが多い。   In the reverse osmosis membrane treatment (RO), there is a problem that the amount of treated water to be obtained is reduced because concentrated silica is deposited on the concentrated water side surface of the RO membrane to block the RO membrane. Blockage of the RO membrane surface is caused not only by silica but also by hardness components such as iron, manganese, calcium and magnesium. However, iron and manganese can be removed relatively easily by aggregation treatment and calcium and magnesium can be removed by softening treatment, but removal of silica is difficult. Therefore, the factor that determines the water recovery rate of RO raw water is mostly the silica concentration in the raw water, and the silica concentration of the raw water often limits the water recovery rate.

シリカ及び硬度成分を含む原水を逆浸透膜処理するに際して、硫酸を添加して原水のpHを8〜9若しくは酸性域に調整し、且つポリカルボン酸とホスホン酸とを含むスケール分散剤を添加し、逆浸透膜装置から排出される濃縮水中のシリカ濃度を150mg/L以下に維持することが提案されている(特許文献1)。特許文献1に開示されている方法では、スケール分散剤を必要とするため薬剤コストが高くなる。また、特許文献1には、逆浸透膜の閉塞を防止するためにシリカ濃度を低く維持する技術的思想が開示されており、水回収率を高くすることができない。   In reverse osmosis membrane treatment of raw water containing silica and hardness components, sulfuric acid is added to adjust the pH of the raw water to 8 to 9 or acidic range, and a scale dispersant containing polycarboxylic acid and phosphonic acid is added. It has been proposed to maintain the silica concentration in the concentrated water discharged from the reverse osmosis membrane device at 150 mg / L or less (Patent Document 1). The method disclosed in Patent Document 1 requires a scale dispersant, resulting in high drug cost. In addition, Patent Document 1 discloses a technical idea of maintaining the silica concentration low to prevent blocking of the reverse osmosis membrane, and the water recovery rate can not be increased.

また、電子デバイス製造工場等から排出される有機物含有水を逆浸透膜処理するに際し、有機物含有水のpHを9.5以上に調整し、且つポリアルキレングリコール鎖を有する化合物を阻止率向上剤として添加し、低分子量の非イオン性有機物、ホウ素及びシリカを除去することが提案されている(特許文献2)。特許文献2には、シリカを除去するためにポリアルキレングリコール鎖を有する化合物を阻止率向上剤として添加することが開示されており、pHを9.5以上に調整するだけではシリカの濃縮による逆浸透膜の閉塞を解決することができないことが示唆されているといえる。   In addition, when organic substance-containing water discharged from an electronic device manufacturing plant etc. is subjected to reverse osmosis membrane treatment, the pH of the organic substance-containing water is adjusted to 9.5 or more, and a compound having a polyalkylene glycol chain is used as a rejection improvement agent. It has been proposed to add and remove low molecular weight non-ionic organic matter, boron and silica (US Pat. No. 5,648,015). Patent Document 2 discloses that a compound having a polyalkylene glycol chain is added as a rejection improving agent in order to remove silica, and only adjusting the pH to 9.5 or more reverses the concentration due to silica concentration. It can be said that it has been suggested that the obstruction of the osmotic membrane can not be resolved.

特許第5768959号公報Patent No. 5768959 gazette 特開2008-132421号公報JP 2008-132421 A

本発明は、シリカを含む水を逆浸透膜処理するに際して、スケール分散剤や阻止率向上剤などの追加の薬剤を添加せずに、従来法におけるよりも高濃度にシリカを濃縮しながら逆浸透膜の閉塞を生じさせることなく水回収率を向上させる方法を提案することを目的とする。   In the present invention, when reverse osmosis membrane treatment of water containing silica, reverse osmosis is performed while concentrating silica to a higher concentration than in the conventional method without adding an additional agent such as a scale dispersant or a blocking rate improver. The purpose is to propose a method of improving water recovery without causing membrane blockage.

本発明によれば以下の水処理方法及び水処理装置が提供される。
[1] 1 mg/L asCaCO3以下の硬度成分とシリカとを含む被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該被処理水の水温を25〜40℃の範囲に調整した後に、当該被処理水を逆浸透膜装置に供給して、逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とする、ことを特徴とする水処理方法。
[2] 前記被処理水の水温を25〜40℃の範囲に調整する前に、前記被処理水を前記逆浸透膜装置から排出される透過水と熱交換させ、前記被処理水を予備加温する、ことを特徴とする[1]に記載の水処理方法。
[3] 前記被処理水は、1 mg/L asCaCO3以上の硬度成分及びシリカを含む原水をイオン交換したものである、[1]又は[2]に記載の水処理方法。
[4] 2以上の逆浸透膜装置を用い、
1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、
第1の逆浸透膜装置から排出される透過水を第2の逆浸透膜装置に供給する工程、及び
第2の逆浸透膜装置から排出される濃縮水を第1の逆浸透膜装置へ供給される当該第1の被処理水に添加し、pHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に第1の逆浸透膜装置に供給する工程、を少なくとも備え、
第1の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
[5] 前記第1の逆浸透膜装置から排出される透過水に酸を添加してpHを6.5以上10.0以下に調整した後に、前記第2の逆浸透膜装置に供給する、ことを特徴とする[4]に記載の水処理方法。
[6] 2以上の逆浸透膜装置を用い、
1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、及び
第1の逆浸透膜装置から排出される第1の濃縮水のpHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に、第2の逆浸透膜装置に供給する工程、を少なくとも備え、
最終段の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
[7] 3以上の逆浸透膜装置を用い、
1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、
第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に、第2の被処理水として第2の逆浸透膜装置に供給する工程、及び
第2の逆浸透膜装置から排出される透過水を第3の逆浸透膜装置に供給し、第3の逆浸透膜装置から排出される濃縮水を前記第2の被処理水に添加する工程
を少なくとも備え、最終段の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
[8] 前記第2の逆浸透膜装置から排出される透過水に酸を添加してpHを6.5以上10.0以下に調整した後に、前記第3の逆浸透膜装置に供給する、ことを特徴とする[7]に記載の水処理方法。
[9] 前記第2の逆浸透膜装置に供給する被処理水のpH及び水温は、前記第1の逆浸透膜装置に供給する被処理水のpH及び水温よりも高くする、ことを特徴とする[4]〜[8]のいずれか1に記載の水処理方法。
[10] 前記第1の逆浸透膜装置へ供給される第1の被処理水の水温を25〜40℃の範囲に調整する前に、前記第1の被処理水を前記第1の逆浸透膜装置から排出される透過水及び/又は前記第2の逆浸透膜装置から排出される透過水と熱交換させ、前記第1の被処理水を予備加温することを特徴とする[4]〜[9]のいずれか1に記載の水処理方法。
[11] 前記第1の逆浸透膜装置へ供給される第1の被処理水の水温を25〜40℃の範囲に調整する前に、前記第1の被処理水を前記第1の逆浸透膜装置から排出される透過水と熱交換させ、前記第1の被処理水を予備加温し、
前記第2の逆浸透膜装置へ供給される第2の被処理水の水温を25〜40℃の範囲に調整する前に、前記第2の被処理水を前記第2の逆浸透膜装置から排出される透過水と熱交換させ、前記第2の被処理水を予備加温する
ことを特徴とする[4]〜[9]のいずれか1に記載の水処理方法。
[12] 逆浸透膜装置と、
当該逆浸透膜装置へ供給する被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加するpH調整手段と、
当該逆浸透膜装置へ供給する被処理水の水温を25〜40℃に加温する加温手段と、
を具備し、[1]に記載の水処理方法を行う装置。
[13] 前記逆浸透膜装置の加温手段の上流に、前記逆浸透膜装置から排出される透過水及び/又は濃縮水を熱媒体として用いる熱交換器を具備し、[2]に記載の水処理方法を行う[12]に記載の装置。
[14] 前記逆浸透膜装置の加温手段及びアルカリ剤添加手段の上流に、イオン交換装置を具備し、[3]に記載の水処理方法を行う[12]又は[13]に記載の装置。
[15] 第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される透過水を当該第2の逆浸透膜装置へ供給する配管と、
当該第2の逆浸透膜装置から排出される濃縮水を当該第1の逆浸透膜装置へ供給される当該第1の被処理水に添加する配管と、
を具備し、[4]に記載の水処理方法を行う装置。
[16] 前記第1の逆浸透膜装置から排出される透過水を第2の逆浸透膜装置へ供給する配管に、酸添加手段がさらに設けられている、[15]に記載の装置。
[17] 第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0に調整するアルカリ剤を添加する第2のpH調整手段と、
当該第1の逆浸透膜装置から排出される濃縮水の水温を25〜40℃に加温する第2の加温手段と、
を具備し、[6]に記載の水処理方法を行う装置。
[18] 第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0に調整するアルカリ剤を添加する第2のpH調整手段と、
当該第1の逆浸透膜装置から排出される濃縮水の水温を25〜40℃に加温する第2の加温手段と、
第3の逆浸透膜装置と、
当該第2の逆浸透膜装置から排出される透過水を当該第3の逆浸透膜装置へ供給する配管と、
当該第3の逆浸透膜装置から排出される濃縮水を当該第1の逆浸透膜装置から排出される濃縮水に添加する配管と、
を具備し、[7]に記載の水処理方法を行う装置。
[19] 前記第2の逆浸透膜装置から排出される透過水に酸を添加する酸添加手段をさらに具備する、[18]に記載の装置。
[20] 前記第1の逆浸透膜装置の第1の加温手段の上流に、前記第1の逆浸透膜装置及び/又は第2の逆浸透膜装置から排出される透過水を熱媒体として用いる熱交換器を具備する、[15]〜[19]のいずれか1に記載の装置。
[21] 前記第1の逆浸透膜装置の第1の加温手段の上流に、前記第1の逆浸透膜装置から排出される透過水を熱媒体として用いる第1の熱交換器と、
前記第2の逆浸透膜装置の第2の加温手段の上流に、前記第2の逆浸透膜装置から排出される透過水を熱媒体として用いる第2の熱交換器と
を具備する、[15]〜[19]のいずれか1に記載の装置。
According to the present invention, the following water treatment method and water treatment apparatus are provided.
[1] The pH of the treated water containing a hardness component of 1 mg / L asCaCO 3 or less and silica is adjusted to the range of 10.0 to 12.0, and the water temperature of the treated water is 25 to 40 ° C. After adjusting to a range, the said to-be-processed water is supplied to a reverse osmosis membrane apparatus, and the silica concentration of the concentrated water discharged | emitted from a reverse osmosis membrane apparatus is 550 mg / L or more, The water treatment method characterized by the above-mentioned.
[2] Before adjusting the temperature of the water to be treated to a range of 25 to 40 ° C., the water to be treated is heat exchanged with the permeated water discharged from the reverse osmosis membrane device, and the water to be treated is preliminarily added. Warm, The water treatment method as described in [1] characterized by the above-mentioned.
[3] The water treatment method according to [1] or [2], wherein the water to be treated is obtained by ion exchange of raw water containing a hardness component of 1 mg / L asCaCO 3 or more and silica.
[4] Use two or more reverse osmosis membrane devices,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less and silica is adjusted to the range of 10.0 to 12.0, and the water temperature of the first treated water is 25 to 25 Supplying the first treated water to the first reverse osmosis membrane device after adjustment to the range of 40 ° C .;
Supplying permeated water discharged from the first reverse osmosis membrane device to the second reverse osmosis membrane device; and supplying concentrated water discharged from the second reverse osmosis membrane device to the first reverse osmosis membrane device To the first water to be treated, adjust the pH to a range of 10.0 to 12.0, and adjust the water temperature to a range of 25 to 40 ° C. before supplying the first reverse osmosis membrane device At least the step of
A water treatment method characterized in that the concentration of silica in concentrated water discharged from the first reverse osmosis membrane device is 550 mg / L or more.
[5] An acid is added to the permeated water discharged from the first reverse osmosis membrane device to adjust the pH to 6.5 or more and 10.0 or less, and then supplied to the second reverse osmosis membrane device, [4] The water treatment method according to [4].
[6] Use two or more reverse osmosis membrane devices,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less and silica is adjusted to the range of 10.0 to 12.0, and the water temperature of the first treated water is 25 to 25 After adjusting to the range of 40 ° C., the step of supplying the first treated water to the first reverse osmosis membrane device, and the pH of the first concentrated water discharged from the first reverse osmosis membrane device is 10 After adjusting to a range of 0 to 12.0 and adjusting a water temperature to a range of 25 to 40 ° C., at least the step of supplying to a second reverse osmosis membrane device,
A water treatment method characterized in that the concentration of silica in concentrated water discharged from the reverse osmosis membrane device of the final stage is 550 mg / L or more.
[7] Use three or more reverse osmosis membrane devices,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less and silica is adjusted to the range of 10.0 to 12.0, and the water temperature of the first treated water is 25 to 25 Supplying the first treated water to the first reverse osmosis membrane device after adjustment to the range of 40 ° C .;
After adjusting the pH of the concentrated water discharged from the first reverse osmosis membrane device to a range of 10.0 to 12.0 and adjusting the water temperature to a range of 25 to 40 ° C., as a second treated water Supplying the second reverse osmosis membrane device, and supplying the permeated water discharged from the second reverse osmosis membrane device to the third reverse osmosis membrane device, and concentrating the water discharged from the third reverse osmosis membrane device A water treatment method comprising at least a step of adding water to the second treated water, wherein the concentration of silica in the concentrated water discharged from the reverse osmosis membrane device in the final stage is 550 mg / L or more.
[8] An acid is added to the permeated water discharged from the second reverse osmosis membrane device to adjust the pH to 6.5 or more and 10.0 or less, and then supplied to the third reverse osmosis membrane device, The water treatment method according to [7], characterized in that
[9] The pH and the water temperature of the water to be treated supplied to the second reverse osmosis membrane device are set higher than the pH and the water temperature of the water to be treated supplied to the first reverse osmosis membrane device The water treatment method according to any one of [4] to [8].
[10] Before adjusting the temperature of the first treated water supplied to the first reverse osmosis membrane device to a range of 25 to 40 ° C., the first treated water is subjected to the first reverse osmosis Heat exchange is performed with the permeated water discharged from the membrane device and / or the permeated water discharged from the second reverse osmosis membrane device, and the first treated water is preheated [4] The water treatment method as described in any one of [9].
[11] Before adjusting the temperature of the first treated water supplied to the first reverse osmosis membrane device to a range of 25 to 40 ° C., the first treated water is subjected to the first reverse osmosis Heat exchange with the permeated water discharged from the membrane device, and preheating the first treated water;
Before adjusting the temperature of the second treated water supplied to the second reverse osmosis membrane device to the range of 25 to 40 ° C., the second treated water is extracted from the second reverse osmosis membrane device The water treatment method according to any one of [4] to [9], wherein the second treated water is preheated by heat exchange with the permeated water to be discharged.
[12] reverse osmosis membrane device,
PH adjusting means for adding an alkaline agent to adjust the pH of the water to be treated supplied to the reverse osmosis membrane device to 10.0 to 12.0;
Heating means for heating the temperature of the water to be treated supplied to the reverse osmosis membrane device to 25 to 40 ° C .;
An apparatus for performing the water treatment method according to [1].
[13] A heat exchanger using permeated water and / or concentrated water discharged from the reverse osmosis membrane device as a heat medium is provided upstream of the heating means of the reverse osmosis membrane device, according to [2] The apparatus according to [12], which performs a water treatment method.
[14] The apparatus according to [12] or [13], comprising an ion exchange apparatus upstream of the heating means and the alkaline agent addition means of the reverse osmosis membrane apparatus, and performing the water treatment method according to [3] .
[15] a first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
Piping for supplying permeated water discharged from the first reverse osmosis membrane device to the second reverse osmosis membrane device;
Piping for adding concentrated water discharged from the second reverse osmosis membrane device to the first water to be treated supplied to the first reverse osmosis membrane device;
An apparatus for performing the water treatment method according to [4].
[16] The apparatus according to [15], wherein an acid addition means is further provided in a pipe for supplying permeated water discharged from the first reverse osmosis membrane device to a second reverse osmosis membrane device.
[17] a first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
A second pH adjusting means for adding an alkaline agent to adjust the pH of the concentrated water discharged from the first reverse osmosis membrane device to 10.0 to 12.0;
A second heating unit configured to heat the water temperature of the concentrated water discharged from the first reverse osmosis membrane device to 25 to 40 ° C .;
An apparatus for performing the water treatment method according to [6].
[18] a first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
A second pH adjusting means for adding an alkaline agent to adjust the pH of the concentrated water discharged from the first reverse osmosis membrane device to 10.0 to 12.0;
A second heating unit configured to heat the water temperature of the concentrated water discharged from the first reverse osmosis membrane device to 25 to 40 ° C .;
A third reverse osmosis membrane device,
Piping for supplying permeated water discharged from the second reverse osmosis membrane device to the third reverse osmosis membrane device;
Piping for adding the concentrated water discharged from the third reverse osmosis membrane device to the concentrated water discharged from the first reverse osmosis membrane device;
An apparatus for performing the water treatment method according to [7].
[19] The device according to [18], further comprising an acid addition means for adding an acid to the permeated water discharged from the second reverse osmosis membrane device.
[20] The permeated water discharged from the first reverse osmosis membrane device and / or the second reverse osmosis membrane device upstream of the first heating means of the first reverse osmosis membrane device is used as a heat medium The apparatus according to any one of [15] to [19], which comprises a heat exchanger to be used.
[21] A first heat exchanger using permeated water discharged from the first reverse osmosis membrane device as a heat medium upstream of the first heating means of the first reverse osmosis membrane device;
A second heat exchanger using, as a heat medium, the permeated water discharged from the second reverse osmosis membrane device, upstream of the second heating means of the second reverse osmosis membrane device; The apparatus as described in any one of 15]-[19].

本発明の処理方法及び処理装置によれば、シリカを含む水を逆浸透膜処理するに際して、スケール分散剤や阻止率向上剤などの追加の薬剤を添加せずに、従来法におけるよりも高濃度にシリカを濃縮しながら逆浸透膜の閉塞を生じさせることなく水回収率を向上させることができる。   According to the treatment method and treatment apparatus of the present invention, when reverse osmosis membrane treatment is performed on water containing silica, the concentration is higher than in the conventional method without adding an additional agent such as a scale dispersant or a blocking rate improver. While concentrating the silica, it is possible to improve the water recovery rate without causing clogging of the reverse osmosis membrane.

本発明の処理方法及び処理装置では、pH調整及び水温調整を行うだけで、追加の薬剤を添加する必要がないため、薬剤添加に起因する追加の維持管理が不要で、汚泥発生量が増加することもない。   In the treatment method and the treatment apparatus of the present invention, only pH adjustment and water temperature adjustment are performed, and it is not necessary to add an additional agent, so additional maintenance and management due to the addition of the agent is unnecessary and the amount of sludge generation increases. I have nothing to do.

従来の水処理方法及び装置においては、濃縮水中のシリカ濃度が高くなると、逆浸透膜が閉塞して安定した水処理を行うことができなかったが、本発明の処理方法及び処理装置では、濃縮水中のシリカ濃度が高くても逆浸透膜の閉塞が生じず、90%よりも高く、好ましくは93%以上の高い水回収率で安定した水処理を長期にわたって行うことができる。   In the conventional water treatment method and apparatus, when the silica concentration in the concentrated water is high, the reverse osmosis membrane is clogged and stable water treatment can not be performed, but in the treatment method and the treatment apparatus of the present invention, the concentration is concentrated Even if the silica concentration in water is high, the reverse osmosis membrane is not clogged, and stable water treatment can be performed for a long time with a high water recovery rate higher than 90%, preferably 93% or more.

また、逆浸透膜装置から排出される透過水と被処理水とを熱交換して、被処理水を予備加温することで、被処理水の加温に必要な外部熱エネルギーを低減できるため、水処理費用をさらに低減することができる。   In addition, external heat energy necessary for heating the water to be treated can be reduced by preheating the water to be treated by exchanging heat between the permeated water discharged from the reverse osmosis membrane device and the water to be treated. , Water treatment costs can be further reduced.

さらに、逆浸透膜装置から排出される透過水に酸を添加して逆浸透膜処理することで、最終的に得られる透過水の電気伝導率を低く維持し、良好な処理水水質を維持することができる。   Furthermore, by adding acid to the permeated water discharged from the reverse osmosis membrane device and subjecting it to reverse osmosis membrane treatment, the conductivity of the permeated water finally obtained is maintained low, and good treated water quality is maintained. be able to.

比較例1における透過水量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the amount of permeated water in comparative example 1. 比較例2における透過水量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the amount of permeated water in comparative example 2. FIG. 比較例3における透過水量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the amount of permeated water in comparative example 3. 比較例4における透過水量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the amount of permeated water in comparative example 4. 実施例1における透過水量の経時変化を示すグラフである。5 is a graph showing time-dependent changes in the amount of permeated water in Example 1. 実施例2における透過水量の経時変化を示すグラフである。7 is a graph showing time-dependent changes in the amount of permeated water in Example 2. 実施例3における透過水量の経時変化を示すグラフである。15 is a graph showing temporal changes in the amount of permeated water in Example 3. 実施例4における透過水量の経時変化を示すグラフである。FIG. 16 is a graph showing time-dependent changes in the amount of permeated water in Example 4. FIG. 実施例5における透過水量の経時変化を示すグラフである。15 is a graph showing temporal changes in the amount of permeated water in Example 5. 参考例1における透過水量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the amount of permeated water in the reference example 1. FIG.

本発明の水処理方法は、1 mg/L asCaCO3以下の硬度成分とシリカとを含む被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該被処理水の水温を25〜40℃の範囲に調整した後に、当該被処理水を逆浸透膜装置に供給して、逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上、好ましくは600mg/L以上、より好ましくは700mg/L以上とする、ことを特徴とする。 The water treatment method of the present invention adjusts the pH of the treated water containing a hardness component of 1 mg / L asCaCO 3 or less and silica to a range of 10.0 to 12.0, and the water temperature of the treated water After adjusting to a range of 25 to 40 ° C., the water to be treated is supplied to the reverse osmosis membrane device, and the concentration of silica in concentrated water discharged from the reverse osmosis membrane device is 550 mg / L or more, preferably 600 mg / L or more, More preferably, it is 700 mg / L or more.

被処理水のpH調整は、水酸化ナトリウムなどのアルカリ剤の注入により行うことができる。アルカリ剤の注入は、被処理水のpHをモニタリングしながら行うpH制御注入方式が好ましいが、被処理水の性状が安定している場合には一定の注入率で連続注入する方式でもよい。pH調整値は、10.0〜12.0、好ましくは10.5〜11.5の範囲とする。pH値が低過ぎるとシリカが析出してしまい、逆浸透膜装置の閉塞を誘発する。pH値が高すぎると逆浸透膜が劣化する。   The pH adjustment of the water to be treated can be performed by injection of an alkali agent such as sodium hydroxide. Although the pH control injection method performed while monitoring the pH of the water to be treated is preferable, the alkali agent may be injected continuously at a constant injection rate when the property of the water to be treated is stable. The pH adjustment value is in the range of 10.0 to 12.0, preferably 10.5 to 11.5. If the pH value is too low, silica will precipitate and cause clogging of the reverse osmosis membrane device. When the pH value is too high, the reverse osmosis membrane is degraded.

被処理水の水温調整は、ヒーターやボイラ蒸気などの外部熱源、又は蒸気や温水などの排熱利用及びこれらの任意の組み合わせにより行うことができる。本発明においては、ボイラ蒸気と、逆浸透膜装置から排出される透過水を熱交換媒体として利用する熱交換との組み合わせが特に好ましい。排熱利用と組み合わせることによって、外部熱源からのエネルギー必要量を低く抑えることができ、エネルギーコストを抑制することができる。水温調整範囲は、25〜40℃、好ましくは25〜35℃とする。水温が低すぎるとシリカが析出していまい,逆浸透膜装置の閉塞を誘発し、水温が高すぎると逆浸透膜が劣化する。   Water temperature adjustment of to-be-processed water can be performed by external heat sources, such as a heater and boiler steam, or waste heat utilization, such as steam and warm water, and arbitrary combinations of these. In the present invention, a combination of boiler steam and heat exchange using permeated water discharged from the reverse osmosis membrane device as a heat exchange medium is particularly preferable. By combining with the exhaust heat utilization, the energy requirement from the external heat source can be suppressed low, and the energy cost can be suppressed. The water temperature adjustment range is 25 to 40 ° C., preferably 25 to 35 ° C. If the water temperature is too low, silica will not be deposited, which will cause blocking of the reverse osmosis membrane device, and if the water temperature is too high, the reverse osmosis membrane will deteriorate.

被処理水のpHと水温の両者を最適範囲に調整することで、シリカを溶解させたまま、逆浸透膜装置に供給することができ、逆浸透膜装置の閉塞を防止し、たとえば90%よりも高い水回収率設定、好ましくは93%以上の高い水回収率設定での長期運転を可能とし、薬剤及びエネルギーも節約できる。   By adjusting both pH and water temperature of the water to be treated to the optimum range, it is possible to supply the reverse osmosis membrane device while dissolving the silica, and prevent clogging of the reverse osmosis membrane device, for example, 90% or more It also enables long-term operation with high water recovery settings, preferably high water recovery settings of 93% or more, and also saves medicine and energy.

本発明の処理対象となる被処理水は、1 mg/L asCaCO3以下の硬度成分とシリカとを含むものである。マグネシウムやカルシウムなどの硬度成分を多く含む原水の場合には、予め軟化処理により硬度成分を除去することが好ましい。軟化処理としてはイオン交換処理が好適であり、たとえばNa型強酸性カチオン交換樹脂を用いる軟水装置を用いることができる。 The water to be treated according to the present invention contains a hardness component of 1 mg / L asCaCO 3 or less and silica. In the case of raw water containing a large amount of hardness components such as magnesium and calcium, it is preferable to remove the hardness components by softening in advance. As the softening treatment, ion exchange treatment is preferable, and for example, a water softener using a Na-type strongly acidic cation exchange resin can be used.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

[第1の態様]   [First aspect]

被処理水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、逆浸透膜装置ROに供給する。   An alkaline agent (sodium hydroxide NaOH) is added to the water to be treated to adjust the pH to a range of 10.0 to 12.0 and the water temperature is adjusted to a range of 25 to 40 ° C. Supply.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、上記のフローの場合、逆浸透膜装置からの透過水が95%、濃縮水が5%となることをいう。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. Setting the water recovery rate of the reverse osmosis membrane device to 95% means that in the case of the above flow, the permeated water from the reverse osmosis membrane device is 95% and the concentrated water is 5%.

[第2の態様]   [Second aspect]

2機の逆浸透膜装置を直列に用いて1段目の逆浸透膜装置RO−1からの濃縮水を2段目の逆浸透膜装置RO−2の被処理水として用いる態様である。被処理水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、1段目の逆浸透膜装置RO−1に供給し、逆浸透膜処理RO−1により得られる濃縮水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、2段目の逆浸透膜装置RO−2に供給する。   It is an aspect using the reverse osmosis membrane apparatus of 2 units | sets in series, and using the concentrated water from reverse osmosis membrane apparatus RO-1 of 1st stage as to-be-processed water of reverse osmosis membrane apparatus RO-2 of 2nd stage. An alkaline agent (sodium hydroxide NaOH) is added to the water to be treated to adjust the pH to a range of 10.0 to 12.0, and the water temperature is adjusted to a range of 25 to 40 ° C. The pH is adjusted to a range of 10.0 to 12.0 by adding an alkaline agent (sodium hydroxide NaOH) to the concentrated water obtained by supplying to the membrane device RO-1 and obtained by the reverse osmosis membrane treatment RO-1 and the water temperature Is adjusted to the range of 25 to 40 ° C., and then supplied to the second stage reverse osmosis membrane device RO-2.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、装置全体から得られる透過水が95%、濃縮水が5%となることをいい、上記のフローの場合、たとえば逆浸透膜装置RO−1の水回収率を65%に設定し、濃縮水35%が得られ、逆浸透膜装置RO−2の水回収率を85%に設定して透過水30%が得られる設定でもよい。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. Setting the water recovery rate of the reverse osmosis membrane device to 95% means that the permeated water obtained from the entire device is 95% and the concentrated water is 5%, and in the case of the above flow, for example, the reverse osmosis membrane device RO The water recovery rate of -1 may be set to 65%, 35% concentrated water may be obtained, and the water recovery rate of the reverse osmosis membrane apparatus RO-2 may be set to 85% to obtain 30% permeated water.

[第3の態様]   [Third aspect]

第2の態様の変形例であり、被処理水を無処理のまま1段目の逆浸透膜装置RO−1へ供給し、1段目の逆浸透膜装置RO−1からの濃縮水を2段目の逆浸透膜装置RO−2の被処理水として用いる態様である。被処理水を1段目の逆浸透膜装置RO−1に供給し、逆浸透膜処理RO−1により得られる濃縮水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、2段目の逆浸透膜装置RO−2に供給する。   It is a modified example of the second aspect, and the untreated water is supplied to the first-stage reverse osmosis membrane apparatus RO-1 without treatment, and the concentrated water from the first-stage reverse osmosis membrane apparatus RO-1 is 2 It is an aspect used as to-be-processed water of reverse osmosis membrane apparatus RO-2 of a stage. Water to be treated is supplied to the first stage reverse osmosis membrane device RO-1, and an alkaline agent (sodium hydroxide NaOH) is added to the concentrated water obtained by reverse osmosis membrane treatment RO-1 to adjust the pH to 10.0 to After adjusting to a range of 12.0 and adjusting a water temperature to a range of 25 to 40 ° C., it is supplied to the second stage reverse osmosis membrane device RO-2.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、最終的に得られる逆浸透膜装置からの透過水が95%、濃縮水が5%となることをいい、上記のフローの場合、1段目の逆浸透膜装置RO−1の水回収率を65%に設定し、2段目の逆浸透膜装置RO−2の水回収率を85%に設定し、全体として水回収率95%に設定してもよい。1段目の逆浸透膜装置RO−1に供給する被処理水は無処理のままであり、最終的に水回収率95%を達成する2段目の逆浸透膜装置RO−2への被処理水のpH調整及び温度調整のみで足りるため、第2の態様と比較すると、薬剤注入量及び加温エネルギーを約65%節約できる。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. Setting the water recovery rate of the reverse osmosis membrane device to 95% means that the permeated water from the reverse osmosis membrane device finally obtained is 95% and the concentrated water is 5%, and in the case of the above flow, The water recovery rate of the first stage reverse osmosis membrane device RO-1 is set to 65%, the water recovery rate of the second stage reverse osmosis membrane device RO-2 is set to 85%, and the water recovery rate as a whole is 95 It may be set to%. The treated water supplied to the first-stage reverse osmosis membrane device RO-1 remains untreated, and the second-stage reverse osmosis membrane device RO-2 attains a water recovery rate of 95% finally Since only pH adjustment and temperature adjustment of treated water are sufficient, compared to the second embodiment, about 65% of the drug injection amount and heating energy can be saved.

[第4の態様]   [Fourth aspect]

2機の逆浸透膜装置を用いて1段目の逆浸透膜装置RO−1からの透過水を2段目の逆浸透膜装置RO−2に供給する態様である。被処理水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、1段目の逆浸透膜装置RO−1に供給し、逆浸透膜処理RO−1により得られる透過水を2段目の逆浸透膜装置RO−2に供給する。2段目の逆浸透膜装置RO−2からの濃縮水は、1段目の逆浸透膜装置RO−1への被処理水に戻し入れ、アルカリ剤の添加及び温度調整後に1段目の逆浸透膜装置RO−1にて処理する。   The permeated water from the first-stage reverse osmosis membrane device RO-1 is supplied to the second-stage reverse osmosis membrane device RO-2 using the two reverse osmosis membrane devices. An alkaline agent (sodium hydroxide NaOH) is added to the water to be treated to adjust the pH to a range of 10.0 to 12.0, and the water temperature is adjusted to a range of 25 to 40 ° C. It supplies to membrane apparatus RO-1, and the permeated water obtained by reverse osmosis membrane process RO-1 is supplied to reverse osmosis membrane apparatus RO-2 of 2nd stage. The concentrated water from the second-stage reverse osmosis membrane device RO-2 is returned to the first-stage reverse osmosis membrane device RO-1 to be treated, and after the addition of the alkali agent and the temperature control, the first-stage reverse is performed. Process with osmotic membrane device RO-1.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、上記のフローの場合、2段目の逆浸透膜装置RO−2からの透過水が95%となることをいう。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. Setting the water recovery rate of the reverse osmosis membrane device to 95% means that in the case of the above flow, the permeated water from the second stage reverse osmosis membrane device RO-2 is 95%.

[第5の態様]   [Fifth aspect]

第4の態様の変形例であり、1段目の逆浸透膜装置RO−1からの透過水に酸を添加して中和させた後、2段目の逆浸透膜装置RO−2に供給する態様である。被処理水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に、1段目の逆浸透膜装置RO−1に供給し、逆浸透膜処理RO−1により得られる透過水に酸を添加した後、2段目の逆浸透膜装置RO−2に供給する。2段目の逆浸透膜装置RO−2からの濃縮水は、1段目の逆浸透膜装置RO−1への被処理水に戻し入れ、アルカリ剤の添加及び温度調整後に1段目の逆浸透膜装置RO−1にて処理する。   It is a modified example of the fourth aspect, and after acid is added to the permeated water from the first stage reverse osmosis membrane device RO-1 to be neutralized, it is supplied to the second stage reverse osmosis membrane device RO-2 Is an aspect that An alkaline agent (sodium hydroxide NaOH) is added to the water to be treated to adjust the pH to a range of 10.0 to 12.0, and the water temperature is adjusted to a range of 25 to 40 ° C. After supplying an acid to the permeated water obtained by being supplied to the membrane device RO-1 and obtained by the reverse osmosis membrane treatment RO-1, it is supplied to the second stage reverse osmosis membrane device RO-2. The concentrated water from the second-stage reverse osmosis membrane device RO-2 is returned to the first-stage reverse osmosis membrane device RO-1 to be treated, and after the addition of the alkali agent and the temperature control, the first-stage reverse is performed. Process with osmotic membrane device RO-1.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、上記のフローの場合、2段目の逆浸透膜装置RO−2からの透過水が95%となることをいう。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. Setting the water recovery rate of the reverse osmosis membrane device to 95% means that in the case of the above flow, the permeated water from the second stage reverse osmosis membrane device RO-2 is 95%.

第5の態様では、2段目の逆浸透膜装置RO−2へ供給する水に酸を添加することによって、被処理水のpHを強アルカリ側から中性域に近づけて電気伝導率を下げることにより、低い電気伝導率の良質な透過水を得ることができる。上記のフローでは2機の逆浸透膜装置を用いた例を示しているが、逆浸透膜装置の台数に制限はない。2機以上の逆浸透膜装置を用いる場合には、最終段の逆浸透膜装置への供給水に酸を添加すればよい。また、添加する酸としては特に限定されず、硫酸、塩酸、硝酸、リン酸、その他の酸を使用することができる。   In the fifth aspect, by adding an acid to the water supplied to the second stage reverse osmosis membrane apparatus RO-2, the pH of the water to be treated is brought close to the neutral region from the strong alkali side to lower the electric conductivity. As a result, it is possible to obtain good permeated water with low electrical conductivity. The above flow shows an example using two reverse osmosis membrane devices, but the number of reverse osmosis membrane devices is not limited. When using two or more reverse osmosis membrane devices, an acid may be added to the feed water to the reverse osmosis membrane device of the final stage. Also, the acid to be added is not particularly limited, and sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and other acids can be used.

[第6の態様]   [Sixth aspect]

第2の態様の変形例であり、2段目の逆浸透膜装置RO−2からの透過水を熱媒体とする熱交換によって被処理水を予備加温する態様である。本態様は、被処理水を加温するエネルギーの節約に資する。   It is a modification of the 2nd mode, and is a mode which preheats to-be-processed water by heat exchange which uses the permeated water from reverse osmosis membrane apparatus RO-2 of the 2nd stage as a heat carrier. This aspect contributes to the saving of energy for heating the water to be treated.

上記フローでは、2段目の逆浸透膜装置RO−2からの透過水を熱媒体として用いているが、第1の態様〜第5の態様のいずれにおいても逆浸透膜装置からの透過水を熱媒体として用いることができる。   In the above flow, the permeated water from the second stage reverse osmosis membrane device RO-2 is used as a heat medium, but the permeated water from the reverse osmosis membrane device is used in any of the first to fifth aspects. It can be used as a heat medium.

[第7の態様]   [Seventh aspect]

3機の逆浸透膜装置を用いる態様である。被処理水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に1段目の逆浸透膜装置RO−1に供給し、逆浸透膜処理RO−1により得られる濃縮水にアルカリ剤(水酸化ナトリウムNaOH)を添加してpHを10.0〜12.0の範囲に調整し、水温を25〜40℃の範囲に調整した後に2段目の逆浸透膜装置RO−2に供給し、2段目の逆浸透膜装置RO−2からの透過水に酸を添加した後に3段目の逆浸透膜装置RO−3に供給する。3段目の逆浸透膜装置RO−3からの濃縮水を1段目の逆浸透膜装置RO−1からの濃縮水に戻し入れて2段目の逆浸透膜装置RO−2に供給する。1段目の逆浸透膜装置RO−1からの透過水は、1段目の逆浸透膜装置RO−1への被処理水と熱交換する熱媒体として用いる。2段目の逆浸透膜装置RO−2からの透過水は、2段目の逆浸透膜装置RO−2に供給される1段目の逆浸透膜装置RO−1からの濃縮水と熱交換する熱媒体として用いる。1段目及び2段目の逆浸透膜装置へ供給される被処理水及び濃縮水は予備加温されるため、水温を25〜40℃に調整するために必要な熱エネルギーを節約することができる。   This is an embodiment using three reverse osmosis membrane devices. An alkaline agent (sodium hydroxide NaOH) is added to the water to be treated to adjust the pH to a range of 10.0 to 12.0 and the water temperature is adjusted to a range of 25 to 40 ° C., and then the first stage reverse osmosis membrane The pH is adjusted to a range of 10.0 to 12.0 by adding an alkaline agent (sodium hydroxide NaOH) to the concentrated water obtained by reverse osmosis membrane treatment RO-1 by supplying the apparatus RO-1 and adjusting the water temperature After adjusting to the range of 25 to 40 ° C, it is supplied to the second stage reverse osmosis membrane device RO-2, and after adding acid to the permeated water from the second stage reverse osmosis membrane device RO-2, the third stage It supplies to reverse osmosis membrane apparatus RO-3. The concentrated water from the third stage reverse osmosis membrane device RO-3 is returned to the concentrated water from the first stage reverse osmosis membrane device RO-1 and supplied to the second stage reverse osmosis membrane device RO-2. The permeated water from the first stage reverse osmosis membrane device RO-1 is used as a heat medium which exchanges heat with the water to be treated to the first stage reverse osmosis membrane device RO-1. The permeated water from the second-stage reverse osmosis membrane device RO-2 exchanges heat with the concentrated water from the first-stage reverse osmosis membrane device RO-1 supplied to the second-stage reverse osmosis membrane device RO-2 Used as a heat medium. The treated water and concentrated water supplied to the first and second stage reverse osmosis membrane devices are preheated, so that the thermal energy necessary to adjust the water temperature to 25 to 40 ° C. can be saved. it can.

たとえば、被処理水を水温35℃、pH10.9に調整した場合には、逆浸透膜装置の水回収率を95%以上に設定しても長期間安定した運転を実現できる。逆浸透膜装置の水回収率を95%に設定するとは、上記のフローの場合、1段目の逆浸透膜装置RO−1及び3段目の逆浸透膜装置RO−3からの透過水の合計が95%、2段目の逆浸透膜装置RO−2からの濃縮水が5%となることをいう。   For example, when the water to be treated is adjusted to a water temperature of 35 ° C. and a pH of 10.9, stable operation can be realized for a long time even if the water recovery rate of the reverse osmosis membrane device is set to 95% or more. In the case of setting the water recovery rate of the reverse osmosis membrane device to 95%, in the case of the above flow, the permeated water from the first stage reverse osmosis membrane device RO-1 and the third stage reverse osmosis membrane device RO-3 The total is 95%, which means that the concentrated water from the second stage reverse osmosis membrane device RO-2 is 5%.

[第8の態様]   [Eighth aspect]

逆浸透膜装置へ供給する被処理水のpH調整及び温度調整を行う前に、イオン交換する態様である。原水をイオン交換塔に給水してイオン交換して、原水中の硬度成分(カルシウム、マグネシウムなど)を除去して、1 mg/L asCaCO3以下の硬度成分を含有する被処理水を得る。上記のフローでは、被処理水の処理態様は第5の態様を示したが、被処理水の処理態様は上述の第1の態様〜第7の態様及びその他の変形例を制限なく用いることができる。 It is an aspect which ion-exchanges, before performing pH control and temperature control of the to-be-processed water supplied to a reverse osmosis membrane apparatus. Raw water is supplied to an ion exchange column and ion-exchanged to remove hardness components (such as calcium and magnesium) in the raw water to obtain treated water containing a hardness component of 1 mg / L asCaCO 3 or less. In the above flow, the treatment aspect of the water to be treated is shown as the fifth aspect, but the treatment aspect of the water to be treated may use the first aspect to the seventh aspect and other modified examples without limitation. it can.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be more specifically described by way of examples.

下記実施例及び比較例において用いた被処理水は、水温16℃、pH8、カルシウム含有量0.15mg/L以下、マグネシウム含有量0.15mg/L以下、シリカ(SiO)含有量42mg/Lの井水である。 The water to be treated used in the following examples and comparative examples has a water temperature of 16 ° C., pH 8, a calcium content of 0.15 mg / L or less, a magnesium content of 0.15 mg / L or less, and a silica (SiO 2 ) content of 42 mg / L Well water.

[比較例1]   Comparative Example 1

上記第1の態様において、被処理水のpH調整のみ行い、温度調整は行なわない態様に相当する。   In the first aspect, only pH adjustment of the water to be treated is performed, and temperature adjustment is not performed.

被処理水に水酸化ナトリウムを添加してpHを10に調整したが、加温は行わず水温は16℃のままで逆浸透膜装置に供給した。濃縮水中シリカ(SiO)濃度は420mg/Lであった。透過水の回収率を90%に設定して1年間運転した結果、透過水流量が徐々に低下し、回収率90%を維持できなかった(図1)。 The pH was adjusted to 10 by adding sodium hydroxide to the water to be treated, but heating was not performed, and the water temperature was kept at 16 ° C. and supplied to the reverse osmosis membrane device. The concentration of silica (SiO 2 ) in concentrated water was 420 mg / L. As a result of operating for one year with the recovery rate of the permeate set at 90%, the flow rate of the permeate gradually decreased and the recovery rate could not be maintained at 90% (FIG. 1).

[比較例2]   Comparative Example 2

上記第1の態様において、被処理水のpH調整を行なわず、温度調整のみ行なった態様に相当する。   The above first embodiment corresponds to an embodiment in which only the temperature adjustment is performed without adjusting the pH of the water to be treated.

被処理水を35℃に加温したがpH調整を行わずpH8のままで逆浸透膜装置ROに供給した。逆浸透膜装置からの濃縮水中シリカ(SiO)濃度は163mg/Lであった。逆浸透膜装置の水回収率を74%に設定して1年間運転した結果、透過水流量が徐々に低下し、回収率74%でさえも維持できなかった(図2)。 The water to be treated was heated to 35 ° C., but was not adjusted in pH and was supplied to the reverse osmosis membrane device RO while maintaining pH 8. The concentration of silica (SiO 2 ) in the concentrated water from the reverse osmosis membrane device was 163 mg / L. As a result of setting the water recovery rate of the reverse osmosis membrane device to 74% and operating for 1 year, the permeated water flow rate gradually decreased, and even 74% recovery rate could not be maintained (FIG. 2).

[比較例3]   Comparative Example 3

上記第2の態様において、被処理水のpH調整を行なわず、温度調整のみ行なった態様に相当する。   In the second aspect, the present invention corresponds to an aspect in which only the temperature adjustment is performed without adjusting the pH of the water to be treated.

被処理水を22℃に加温したがpH調整を行わずpH8のままで1段目の逆浸透膜装置RO−1に供給し、1段目の逆浸透膜装置RO−1からの濃縮水を35℃に加温したがpH調整は行わずに2段目の逆浸透膜装置RO−2に供給した。1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度は131mg/L、2段目の逆浸透膜装置RO−2からの濃縮水中シリカ(SiO)濃度は163mg/Lで、最終的に得られた濃縮水中シリカ(SiO)濃度は163mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を68%に設定し、2段目の逆浸透膜装置RO−2の水回収率を19%に設定して1年間運転した結果、透過水流量の変動は少ないが低下する傾向を示し、水回収率は74%であった(図3)。しかし、水回収率74%では全体の処理水量が低く、原水の約25%が排水として排出されるため、排水処理の負担が大きく、実用的ではない。 The water to be treated was heated to 22 ° C but pH adjustment was not performed, and pH 8 was supplied to the first-stage reverse osmosis membrane device RO-1, and concentrated water from the first-stage reverse osmosis membrane device RO-1 Was heated to 35.degree. C. but pH adjustment was not performed, and it was supplied to the second stage reverse osmosis membrane device RO-2. The concentration of silica (SiO 2 ) in the concentrated water from the first-stage reverse osmosis membrane device RO-1 is 131 mg / L, and the concentration of water in the concentrated water (SiO 2 ) from the second-stage reverse osmosis membrane device RO-2 is 163 mg / L In L, the finally obtained concentrated water silica (SiO 2 ) concentration was 163 mg / L. As a result of setting the water recovery rate of the first-stage reverse osmosis membrane device RO-1 to 68% and setting the water recovery rate of the second-stage reverse osmosis membrane device RO-2 to 19%, one year of operation, The fluctuation of the permeated water flow was small but decreased, and the water recovery rate was 74% (FIG. 3). However, if the water recovery rate is 74%, the total amount of treated water is low, and about 25% of the raw water is discharged as drainage, so the burden of wastewater treatment is large and it is not practical.

[比較例4]
上記第1の態様において、被処理水に水酸化ナトリウムを添加してpHを9.6に調整し、20℃に加温した後、逆浸透膜装置に供給した。逆浸透膜装置の水回収率を89.4%に設定して運転した。本例で用いた被処理水はシリカ濃度が35.8mg/Lであった点を除いて他の条件は他の例と同じであったが、水回収率の設定を高くしたため、濃縮水中シリカ(SiO)濃度は338mg/Lと濃縮率は高くなった。その結果、透過水流量の減少が著しく、3ヶ月で1/2まで減少したため運転を停止した(図4)。すなわち、pHが10未満で水回収率を高く設定すると、シリカ濃縮率は高くなるが、透過水流量が著しく減少するため、実用できない。
Comparative Example 4
In the said 1st aspect, sodium hydroxide was added to to-be-processed water, pH was adjusted to 9.6, and after heating at 20 degreeC, it supplied to the reverse osmosis membrane apparatus. The water recovery rate of the reverse osmosis membrane device was set to 89.4% and operated. Other conditions were the same as the other examples except that the treated water used in this example had a silica concentration of 35.8 mg / L, but because the setting of the water recovery rate was increased, the concentrated water silica was used. The concentration rate increased with the (SiO 2 ) concentration of 338 mg / L. As a result, the decrease in the permeated water flow rate was significantly reduced to 1/2 in 3 months, and the operation was stopped (FIG. 4). That is, when the pH is less than 10 and the water recovery rate is set high, although the silica concentration rate is high, the permeated water flow rate is significantly reduced, so that it can not be used practically.

[実施例1]
第2の態様において、被処理水を22℃に加温し、水酸化ナトリウムを添加してpHを10に調整して1段目の逆浸透膜装置RO−1に供給し、1段目の逆浸透膜装置RO−1からの濃縮水を35℃に加温し、水酸化ナトリウムを添加してpHを11に調整して2段目の逆浸透膜装置RO−2に供給した。1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度は452mg/L、2段目の逆浸透膜装置RO−2からの濃縮水中シリカ(SiO)濃度は833mg/Lで、最終的に得られた濃縮水中シリカ(SiO)濃度は833mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を90.7%、2段目の逆浸透膜装置RO−2の水回収率を45.7%、全体として水回収率を95%に設定して1年間運転した結果、透過水流量の変動は少なく、回収率95%を維持できた(図5)。
Example 1
In the second embodiment, the water to be treated is heated to 22 ° C., sodium hydroxide is added to adjust the pH to 10, and the solution is supplied to the first-stage reverse osmosis membrane apparatus RO-1 and the first-stage The concentrated water from the reverse osmosis membrane device RO-1 was heated to 35 ° C., sodium hydroxide was added to adjust the pH to 11, and the solution was supplied to the second stage reverse osmosis membrane device RO-2. The concentration of silica (SiO 2 ) in concentrated water from the first-stage reverse osmosis membrane device RO-1 is 452 mg / L, and the concentration of water (SiO 2 ) in concentrated water from the second-stage reverse osmosis membrane device RO-2 is 833 mg / L In L, the finally obtained concentrated water silica (SiO 2 ) concentration was 833 mg / L. Water recovery of the first stage reverse osmosis membrane device RO-1 is 90.7%, water recovery of the second stage reverse osmosis membrane device RO-2 is 45.7%, and overall water recovery is 95% As a result of operating for 1 year by setting to, the fluctuation of the permeated water flow rate was small and the recovery rate could be maintained 95% (Figure 5).

[実施例2]
第4の態様において、被処理水を25℃に加温し、水酸化ナトリウムを添加してpHを11に調整して1段目の逆浸透膜装置RO−1に供給し、1段目の逆浸透膜装置RO−1からの透過水をそのまま2段目の逆浸透膜装置RO−2に供給した。2段目の逆浸透膜装置RO−2からの濃縮水は1段目の逆浸透膜装置RO−1への被処理水に戻し入れた。1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度、つまり本例において最終的に得られた濃縮水中シリカ(SiO)濃度は712mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を94.3%、2段目の逆浸透膜装置RO−2の水回収率を96%に設定して1年間運転した結果、透過水流量の変動は少なく、透過水回収率93.6%を維持できた(図6)。透過水の電気伝導率は5.0mS/mであった。
Example 2
In the fourth embodiment, the water to be treated is heated to 25 ° C., sodium hydroxide is added to adjust the pH to 11, and the solution is supplied to the first stage reverse osmosis membrane apparatus RO-1, and the first stage The permeated water from the reverse osmosis membrane device RO-1 was supplied as it was to the second stage reverse osmosis membrane device RO-2. The concentrated water from the second stage reverse osmosis membrane device RO-2 was returned to the first stage reverse osmosis membrane device RO-1 to be treated water. The concentration of silica (SiO 2 ) in concentrated water from the first-stage reverse osmosis membrane apparatus RO-1, that is, the concentration of silica (SiO 2 ) in concentrated water finally obtained in this example was 712 mg / L. The water recovery rate of the first-stage reverse osmosis membrane device RO-1 is 94.3%, and the water recovery rate of the second-stage reverse osmosis membrane device RO-2 is 96%. The fluctuation of the water flow rate was small, and the permeated water recovery rate was maintained at 93.6% (Fig. 6). The conductivity of the permeate was 5.0 mS / m.

[実施例3]
第5の態様において、被処理水を25℃に加温し、水酸化ナトリウムを添加してpHを11に調整して1段目の逆浸透膜装置RO−1に供給した。1段目の逆浸透膜装置RO−1からの透過水に硫酸を添加してpHを10に調製した後、2段目の逆浸透膜装置RO−2に供給した。2段目の逆浸透膜装置RO−2からの濃縮水は1段目の逆浸透膜装置RO−1への被処理水に戻し入れた。1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度、つまり本例において最終的に得られた濃縮水中シリカ(SiO)濃度は712mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を94.3%、2段目の逆浸透膜装置RO−2の水回収率を96%に設定して1年間運転した結果、透過水流量の変動は少なく、透過水回収率93.6%を維持できた(図7)。透過水の電気伝導率は1.5mS/mであった。実施例2と3の結果から、2段目の逆浸透膜装置に供給する透過水に酸を添加してpHを調整することで、処理後の透過水の電気伝導率を低くすることができ、より良好な水質の透過水を得ることができるといえる。
[Example 3]
In the 5th aspect, to-be-processed water was heated to 25 degreeC, sodium hydroxide was added, pH was adjusted to 11, and it supplied to 1st reverse osmosis membrane apparatus RO-1. After the pH was adjusted to 10 by adding sulfuric acid to the permeated water from the first-stage reverse osmosis membrane device RO-1, it was supplied to the second-stage reverse osmosis membrane device RO-2. The concentrated water from the second stage reverse osmosis membrane device RO-2 was returned to the first stage reverse osmosis membrane device RO-1 to be treated water. The concentration of silica (SiO 2 ) in concentrated water from the first-stage reverse osmosis membrane apparatus RO-1, that is, the concentration of silica (SiO 2 ) in concentrated water finally obtained in this example was 712 mg / L. The water recovery rate of the first-stage reverse osmosis membrane device RO-1 is 94.3%, and the water recovery rate of the second-stage reverse osmosis membrane device RO-2 is 96%. The fluctuation of the water flow rate was small, and the permeated water recovery rate was maintained at 93.6% (Fig. 7). The conductivity of the permeate was 1.5 mS / m. From the results of Examples 2 and 3, the conductivity of the permeated water after treatment can be lowered by adding an acid to the permeated water supplied to the second stage reverse osmosis membrane device to adjust the pH. It can be said that it is possible to obtain permeate water of better water quality.

[実施例4]
第7の態様において、被処理水を25℃に加温し、水酸化ナトリウムを添加してpHを10に調整した後、1段目の逆浸透膜装置RO−1に供給した。1段目の逆浸透膜装置RO−1からの濃縮水を35℃に加温して水酸化ナトリウムを添加してpHを11に調整した後、2段目の逆浸透膜装置RO−2に供給した。2段目の逆浸透膜装置RO−2からの透過水に硫酸を添加してpHを10に調整した後、3段目の逆浸透膜装置RO−3に供給した。3段目の逆浸透膜装置RO−3からの濃縮水は2段目の逆浸透膜装置RO−2へ供給される1段目の逆浸透膜装置RO−1からの濃縮水に戻し入れた。1段目の逆浸透膜装置RO−1からの透過水は1段目の逆浸透膜装置RO−1への被処理水と熱交換して、被処理水を予備加温した。2段目の逆浸透膜装置RO−2からの透過水は2段目の逆浸透膜装置RO−2へ供給される1段目の逆浸透膜装置RO−1からの濃縮水と熱交換した。
Example 4
In the seventh embodiment, the water to be treated was heated to 25 ° C., and the pH was adjusted to 10 by adding sodium hydroxide, and then supplied to the first stage reverse osmosis membrane device RO-1. The concentrated water from the first-stage reverse osmosis membrane device RO-1 is heated to 35 ° C. to add sodium hydroxide to adjust the pH to 11, and then to the second-stage reverse osmosis membrane device RO-2 Supplied. After the pH was adjusted to 10 by adding sulfuric acid to the permeated water from the second stage reverse osmosis membrane device RO-2, it was supplied to the third stage reverse osmosis membrane device RO-3. Concentrated water from the third-stage reverse osmosis membrane device RO-3 was returned to concentrated water from the first-stage reverse osmosis membrane device RO-1 supplied to the second-stage reverse osmosis membrane device RO-2 . The permeated water from the first-stage reverse osmosis membrane device RO-1 was heat-exchanged with the water to be treated to the first-stage reverse osmosis membrane device RO-1, and the water to be treated was preheated. The permeated water from the second-stage reverse osmosis membrane device RO-2 was heat-exchanged with the concentrated water from the first-stage reverse osmosis membrane device RO-1 supplied to the second-stage reverse osmosis membrane device RO-2 .

1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度は472mg/L、2段目の逆浸透膜装置RO−2からの濃縮水中シリカ(SiO)濃度、つまり本例において最終的に得られた濃縮水中シリカ(SiO)濃度は840mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を91.1%、2段目の逆浸透膜装置RO−2の水回収率を44%、3段目の逆浸透膜装置RO−3の水回収率を96%に設定して1年間運転した結果、透過水流量の変動は少なく、透過水回収率95%を維持できた(図8)。透過水の電気伝導率は1.5mS/mであった。 The concentration of water (SiO 2 ) in the concentrated water from the first stage reverse osmosis membrane device RO-1 is 472 mg / L, the concentration of water in the concentrated water (SiO 2 ) from the second stage reverse osmosis membrane device RO-2, ie The concentration of silica (SiO 2 ) in concentrated water finally obtained in the example was 840 mg / L. 91.1% water recovery rate of the first stage reverse osmosis membrane device RO-1, 44% water recovery rate of the second stage reverse osmosis membrane device RO-2, third stage reverse osmosis membrane device RO- As a result of setting the water recovery rate of 3 to 96% and operating for one year, the fluctuation of the permeated water flow rate was small, and the permeated water recovery rate of 95% could be maintained (FIG. 8). The conductivity of the permeate was 1.5 mS / m.

[実施例5]
第8の態様に相当する。原水としてカルシウム10mg/L、マグネシウム5mg/L、シリカ(SiO)42mg/Lを含む井水をイオン交換してカルシウム0.03mg/L以下、マグネシウム0.03mg/L以下、シリカ(SiO)42mg/Lを含み、pH8、水温16℃の被処理水を得た。被処理水を25℃に加温し、水酸化ナトリウムを添加してpHを11に調整して1段目の逆浸透膜装置RO−1に供給した。1段目の逆浸透膜装置RO−1からの透過水に硫酸を添加してpHを10に調整した後、2段目の逆浸透膜装置RO−2に供給した。2段目の逆浸透膜装置RO−2からの濃縮水は1段目の逆浸透膜装置RO−1への被処理水に戻し入れた。
[Example 5]
This corresponds to the eighth aspect. Ion exchange of well water containing 10 mg / L of calcium, 5 mg / L of magnesium and 42 mg / L of silica (SiO 2 ) as raw water, calcium 0.03 mg / L or less, magnesium 0.03 mg / L or less, silica (SiO 2 ) A treated water containing 42 mg / L, pH 8 and water temperature 16 ° C. was obtained. The to-be-processed water was heated to 25 degreeC, sodium hydroxide was added, pH was adjusted to 11, and it supplied to 1st reverse osmosis membrane apparatus RO-1. Sulfuric acid was added to the permeated water from the first-stage reverse osmosis membrane device RO-1 to adjust the pH to 10, and then supplied to the second-stage reverse osmosis membrane device RO-2. The concentrated water from the second stage reverse osmosis membrane device RO-2 was returned to the first stage reverse osmosis membrane device RO-1 to be treated water.

1段目の逆浸透膜装置RO−1からの濃縮水中シリカ(SiO)濃度、つまり本例において最終的に得られた濃縮水中シリカ(SiO)濃度は840mg/Lであった。1段目の逆浸透膜装置RO−1の水回収率を95.2%、2段目の逆浸透膜装置RO−2の水回収率を96%に設定して1年間運転した結果、透過水流量の変動は少なく、透過水回収率95%を維持できた(図9)。透過水の電気伝導率は1.5mS/mであった。 Concentrate water silica (SiO 2) concentration of the reverse osmosis unit RO-1 in the first stage, i.e. the finally obtained concentrate water silica (SiO 2) concentration in this example was 840 mg / L. The water recovery rate of the first-stage reverse osmosis membrane device RO-1 is 95.2%, and the water recovery rate of the second-stage reverse osmosis membrane device RO-2 is 96%, with the result that permeation is performed as a result The fluctuation of the water flow rate was small and the permeate recovery rate was maintained at 95% (Fig. 9). The conductivity of the permeate was 1.5 mS / m.

[参考例1]   [Reference Example 1]

原水をイオン交換して硬度成分を除去して被処理水とした以外は第1の態様に相当する。被処理水に水酸化ナトリウムを添加してpHを10.5に調整し、加温して水温を25℃に調整した後、逆浸透膜装置に供給した。水回収率を92.8%に設定して1年間運転したが、6ヶ月を経過した頃にイオン交換塔の不具合で硬度成分が1mg/Lを越える期間が2ヶ月続き、この間の透過水流量が20%程度減少したため、酸を用いて逆浸透膜装置を洗浄したところ、透過水量が回復した(図10)。濃縮水中シリカ濃度は538mg/Lであった。   This corresponds to the first aspect except that the raw water is ion-exchanged to remove the hardness component and the treated water is obtained. The pH was adjusted to 10.5 by adding sodium hydroxide to the water to be treated, and then heated to adjust the water temperature to 25 ° C., and then supplied to the reverse osmosis membrane device. The water recovery rate was set to 92.8% for one year, but after 6 months, the hardness of the ion exchange column was exceeded for 2 months, and the permeate flow rate continued for 2 months. When the reverse osmosis membrane device was washed using an acid, the amount of permeated water was recovered (FIG. 10). The concentration of silica in concentrated water was 538 mg / L.

本例より、被処理水中硬度成分濃度が1mg/Lを越えると、pH及び水温を調整しても水回収率90%以上を維持することができないことが確認できる。   From this example, it can be confirmed that the water recovery rate of 90% or more can not be maintained even if the pH and the water temperature are adjusted if the hardness component concentration in the water to be treated exceeds 1 mg / L.

上記実施例1〜5及び比較例1〜4の処理条件及び処理結果をまとめて表1に示す。   The processing conditions and the processing results of the above Examples 1 to 5 and Comparative Examples 1 to 4 are summarized in Table 1.

Claims (19)

1 mg/L asCaCO 3 以上の硬度成分及びシリカを含む原水をNa型強酸性カチオン交換樹脂により軟水処理し、得られる1 mg/L asCaCO3以下の硬度成分とシリカとを含む被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該被処理水の水温を25〜40℃の範囲に調整した後に、当該被処理水を逆浸透膜装置に供給して、逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とする、ことを特徴とする水処理方法。 Raw water containing 1 mg / L asCaCO 3 or more hardness component and silica is softened with Na-type strongly acidic cation exchange resin and obtained pH of treated water containing 1 mg / L asCaCO 3 or less hardness component and silica After adjusting the temperature of the water to be treated to a range of 25.degree. C. to 40.degree. C. and then supplying the water to be treated to a reverse osmosis membrane device to prepare a reverse osmosis membrane. The silica concentration of the concentrated water discharged | emitted from an apparatus shall be 550 mg / L or more, The water treatment method characterized by the above-mentioned. 前記被処理水の水温を25〜40℃の範囲に調整する前に、前記被処理水を前記逆浸透膜装置から排出される透過水と熱交換させ、前記被処理水を予備加温する、ことを特徴とする請求項1に記載の水処理方法。   Before the water temperature of the water to be treated is adjusted to a range of 25 to 40 ° C., the water to be treated is heat exchanged with the permeated water discharged from the reverse osmosis membrane device, and the water to be treated is preheated. The water treatment method according to claim 1, characterized in that. 2以上の逆浸透膜装置を用い、
1 mg/L asCaCO 3 以上の硬度成分及びシリカを含む原水をNa型強酸性カチオン交換樹脂により軟水処理する工程、
軟水処理により得られる1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、
第1の逆浸透膜装置から排出される透過水を第2の逆浸透膜装置に供給する工程、及び
第2の逆浸透膜装置から排出される濃縮水を第1の逆浸透膜装置へ供給される当該第1の被処理水に添加し、pHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に第1の逆浸透膜装置に供給する工程、を少なくとも備え、
第1の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
Using two or more reverse osmosis membrane devices,
A step of softening the raw water containing a hardness component of 1 mg / L asCaCO 3 or more and silica with a Na-type strongly acidic cation exchange resin,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less obtained by soft water treatment and silica is adjusted to the range of 10.0 to 12.0, and the first treated water Adjusting the temperature of the water in the range of 25 to 40 ° C., and then supplying the first treated water to the first reverse osmosis membrane device;
Supplying permeated water discharged from the first reverse osmosis membrane device to the second reverse osmosis membrane device; and supplying concentrated water discharged from the second reverse osmosis membrane device to the first reverse osmosis membrane device To the first water to be treated, adjust the pH to a range of 10.0 to 12.0, and adjust the water temperature to a range of 25 to 40 ° C. before supplying the first reverse osmosis membrane device At least the step of
A water treatment method characterized in that the concentration of silica in concentrated water discharged from the first reverse osmosis membrane device is 550 mg / L or more.
前記第1の逆浸透膜装置から排出される透過水に酸を添加してpHを6.5以上10.0以下に調整した後に、前記第2の逆浸透膜装置に供給する、ことを特徴とする請求項に記載の水処理方法。 An acid is added to the permeated water discharged from the first reverse osmosis membrane device to adjust the pH to 6.5 or more and 10.0 or less, and then supplied to the second reverse osmosis membrane device. The water treatment method according to claim 3 . 2以上の逆浸透膜装置を用い、
1 mg/L asCaCO 3 以上の硬度成分及びシリカを含む原水をNa型強酸性カチオン交換樹脂により軟水処理する工程、
軟水処理により得られる1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、及び
第1の逆浸透膜装置から排出される第1の濃縮水のpHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に、第2の逆浸透膜装置に供給する工程、を少なくとも備え、
最終段の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
Using two or more reverse osmosis membrane devices,
A step of softening the raw water containing a hardness component of 1 mg / L asCaCO 3 or more and silica with a Na-type strongly acidic cation exchange resin,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less obtained by soft water treatment and silica is adjusted to the range of 10.0 to 12.0, and the first treated water Supplying the first treated water to the first reverse osmosis membrane device after adjusting the temperature of the water in the range of 25 to 40 ° C., and the first concentration discharged from the first reverse osmosis membrane device Adjusting the pH of water to a range of 10.0 to 12.0, and adjusting the water temperature to a range of 25 to 40 ° C., and then supplying to a second reverse osmosis membrane device,
A water treatment method characterized in that the concentration of silica in concentrated water discharged from the reverse osmosis membrane device of the final stage is 550 mg / L or more.
3以上の逆浸透膜装置を用い、
1 mg/L asCaCO 3 以上の硬度成分及びシリカを含む原水をNa型強酸性カチオン交換樹脂により軟水処理する工程、
軟水処理により得られる1 mg/L asCaCO3以下の硬度成分とシリカとを含む第1の被処理水のpHを10.0〜12.0の範囲に調整し、且つ当該第1の被処理水の水温を25〜40℃の範囲に調整した後に、当該第1の被処理水を第1の逆浸透膜装置に供給する工程、
第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0の範囲に調整し、且つ水温を25〜40℃の範囲に調整した後に、第2の被処理水として第2の逆浸透膜装置に供給する工程、及び
第2の逆浸透膜装置から排出される透過水を第3の逆浸透膜装置に供給し、第3の逆浸透膜装置から排出される濃縮水を前記第2の被処理水に添加する工程
を少なくとも備え、最終段の逆浸透膜装置から排出される濃縮水中シリカ濃度を550mg/L以上とすることを特徴とする水処理方法。
Using three or more reverse osmosis membrane devices,
A step of softening the raw water containing a hardness component of 1 mg / L asCaCO 3 or more and silica with a Na-type strongly acidic cation exchange resin,
The pH of the first treated water containing a hardness component of 1 mg / L asCaCO 3 or less obtained by soft water treatment and silica is adjusted to the range of 10.0 to 12.0, and the first treated water Adjusting the temperature of the water in the range of 25 to 40 ° C., and then supplying the first treated water to the first reverse osmosis membrane device;
After adjusting the pH of the concentrated water discharged from the first reverse osmosis membrane device to a range of 10.0 to 12.0 and adjusting the water temperature to a range of 25 to 40 ° C., as a second treated water Supplying the second reverse osmosis membrane device, and supplying the permeated water discharged from the second reverse osmosis membrane device to the third reverse osmosis membrane device, and concentrating the water discharged from the third reverse osmosis membrane device A water treatment method comprising at least a step of adding water to the second treated water, wherein the concentration of silica in the concentrated water discharged from the reverse osmosis membrane device in the final stage is 550 mg / L or more.
前記第2の逆浸透膜装置から排出される透過水に酸を添加してpHを6.5以上10.0以下に調整した後に、前記第3の逆浸透膜装置に供給する、ことを特徴とする請求項に記載の水処理方法。 An acid is added to the permeated water discharged from the second reverse osmosis membrane device to adjust the pH to 6.5 or more and 10.0 or less, and then supplied to the third reverse osmosis membrane device. The water treatment method according to claim 6 . 前記第2の逆浸透膜装置に供給する被処理水のpH及び水温は、前記第1の逆浸透膜装置に供給する被処理水のpH及び水温よりも高くする、ことを特徴とする請求項3、5〜7のいずれか1に記載の水処理方法。 The pH and the water temperature of the water to be treated supplied to the second reverse osmosis membrane device are higher than the pH and the water temperature of the water to be treated supplied to the first reverse osmosis membrane device. The water treatment method as described in any one of 3, 5-7 . 前記第1の逆浸透膜装置へ供給される第1の被処理水の水温を25〜40℃の範囲に調整する前に、前記第1の被処理水を前記第1の逆浸透膜装置から排出される透過水及び/又は前記第2の逆浸透膜装置から排出される透過水と熱交換させ、前記第1の被処理水を予備加温することを特徴とする請求項3〜8のいずれか1に記載の水処理方法。 Before adjusting the temperature of the first treated water supplied to the first reverse osmosis membrane device to a range of 25 to 40 ° C., the first treated water is extracted from the first reverse osmosis membrane device The heat exchange is performed with the permeated water to be discharged and / or the permeated water discharged from the second reverse osmosis membrane device, and the first treated water is preheated . The water treatment method according to any one. 前記第1の逆浸透膜装置へ供給される第1の被処理水の水温を25〜40℃の範囲に調整する前に、前記第1の被処理水を前記第1の逆浸透膜装置から排出される透過水と熱交換させ、前記第1の被処理水を予備加温し、
前記第2の逆浸透膜装置へ供給される第2の被処理水の水温を25〜40℃の範囲に調整する前に、前記第2の被処理水を前記第2の逆浸透膜装置から排出される透過水と熱交換させ、前記第2の被処理水を予備加温する
ことを特徴とする請求項3〜8のいずれか1に記載の水処理方法。
Before adjusting the temperature of the first treated water supplied to the first reverse osmosis membrane device to a range of 25 to 40 ° C., the first treated water is extracted from the first reverse osmosis membrane device Heat is exchanged with the permeated water to be discharged, and the first treated water is preheated.
Before adjusting the temperature of the second treated water supplied to the second reverse osmosis membrane device to the range of 25 to 40 ° C., the second treated water is extracted from the second reverse osmosis membrane device The water treatment method according to any one of claims 3 to 8 , wherein the second treated water is preheated by heat exchange with the permeated water to be discharged.
逆浸透膜装置と、
当該逆浸透膜装置へ供給する被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加するpH調整手段と、
当該逆浸透膜装置へ供給する被処理水の水温を25〜40℃に加温する加温手段と、
当該加温手段及びpH調整手段の上流に、Na型強酸性カチオン交換樹脂を有するイオン交換装置と、
を具備し、請求項1に記載の水処理方法を行う装置。
Reverse osmosis membrane device,
PH adjusting means for adding an alkaline agent to adjust the pH of the water to be treated supplied to the reverse osmosis membrane device to 10.0 to 12.0;
Heating means for heating the temperature of the water to be treated supplied to the reverse osmosis membrane device to 25 to 40 ° C .;
An ion exchange device having a Na-type strongly acidic cation exchange resin upstream of the heating means and the pH adjusting means;
An apparatus for performing the water treatment method according to claim 1, comprising:
前記逆浸透膜装置の加温手段の上流に、前記逆浸透膜装置から排出される透過水及び/又は濃縮水を熱媒体として用いる熱交換器を具備し、請求項2に記載の水処理方法を行う請求項11に記載の装置。 The water treatment method according to claim 2, further comprising a heat exchanger using the permeated water and / or the concentrated water discharged from the reverse osmosis membrane device as a heat medium upstream of the heating means of the reverse osmosis membrane device. The apparatus according to claim 11 , wherein 第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される透過水を当該第2の逆浸透膜装置へ供給する配管と、
当該第2の逆浸透膜装置から排出される濃縮水を当該第1の逆浸透膜装置へ供給される当該第1の被処理水に添加する配管と、
当該第1のpH調整手段及び第1の加温手段の上流に、Na型強酸性カチオン交換樹脂を有するイオン交換装置と、
を具備し、請求項に記載の水処理方法を行う装置。
A first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
Piping for supplying permeated water discharged from the first reverse osmosis membrane device to the second reverse osmosis membrane device;
Piping for adding concentrated water discharged from the second reverse osmosis membrane device to the first water to be treated supplied to the first reverse osmosis membrane device;
An ion exchange device having a Na-type strongly acidic cation exchange resin upstream of the first pH adjusting means and the first heating means;
An apparatus for performing the water treatment method according to claim 3 , comprising:
前記第1の逆浸透膜装置から排出される透過水を第2の逆浸透膜装置へ供給する配管に、酸添加手段がさらに設けられている、請求項4に記載の水処理方法を行う請求項13に記載の装置。 The water treatment method according to claim 4 , wherein an acid addition means is further provided in the pipe for supplying the permeated water discharged from the first reverse osmosis membrane device to the second reverse osmosis membrane device. A device according to item 13 . 第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0に調整するアルカリ剤を添加する第2のpH調整手段と、
当該第1の逆浸透膜装置から排出される濃縮水の水温を25〜40℃に加温する第2の加温手段と、
当該第1のpH調整手段及び第1の加温手段の上流に、Na型強酸性カチオン交換樹脂を有するイオン交換装置と、
を具備し、請求項に記載の水処理方法を行う装置。
A first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
A second pH adjusting means for adding an alkaline agent to adjust the pH of the concentrated water discharged from the first reverse osmosis membrane device to 10.0 to 12.0;
A second heating unit configured to heat the water temperature of the concentrated water discharged from the first reverse osmosis membrane device to 25 to 40 ° C .;
An ion exchange device having a Na-type strongly acidic cation exchange resin upstream of the first pH adjusting means and the first heating means;
An apparatus for performing the water treatment method according to claim 5 , comprising:
第1の逆浸透膜装置と、
当該第1の逆浸透膜装置へ供給する第1の被処理水のpHを10.0〜12.0に調整するアルカリ剤を添加する第1のpH調整手段と、
当該第1の逆浸透膜装置へ供給する第1の被処理水の水温を25〜40℃に加温する第1の加温手段と、
第2の逆浸透膜装置と、
当該第1の逆浸透膜装置から排出される濃縮水のpHを10.0〜12.0に調整するアルカリ剤を添加する第2のpH調整手段と、
当該第1の逆浸透膜装置から排出される濃縮水の水温を25〜40℃に加温する第2の加温手段と、
第3の逆浸透膜装置と、
当該第2の逆浸透膜装置から排出される透過水を当該第3の逆浸透膜装置へ供給する配管と、
当該第3の逆浸透膜装置から排出される濃縮水を当該第1の逆浸透膜装置から排出される濃縮水に添加する配管と、
当該第1のpH調整手段及び第1の加温手段の上流に、Na型強酸性カチオン交換樹脂を有するイオン交換装置と、
を具備し、請求項に記載の水処理方法を行う装置。
A first reverse osmosis membrane device,
First pH adjusting means for adding an alkaline agent to adjust the pH of the first treated water supplied to the first reverse osmosis membrane device to 10.0 to 12.0;
A first heating unit configured to heat the temperature of the first treated water supplied to the first reverse osmosis membrane device to 25 to 40 ° C .;
A second reverse osmosis membrane device,
A second pH adjusting means for adding an alkaline agent to adjust the pH of the concentrated water discharged from the first reverse osmosis membrane device to 10.0 to 12.0;
A second heating unit configured to heat the water temperature of the concentrated water discharged from the first reverse osmosis membrane device to 25 to 40 ° C .;
A third reverse osmosis membrane device,
Piping for supplying permeated water discharged from the second reverse osmosis membrane device to the third reverse osmosis membrane device;
Piping for adding the concentrated water discharged from the third reverse osmosis membrane device to the concentrated water discharged from the first reverse osmosis membrane device;
An ion exchange device having a Na-type strongly acidic cation exchange resin upstream of the first pH adjusting means and the first heating means;
An apparatus for performing the water treatment method according to claim 6 , comprising:
前記第2の逆浸透膜装置から排出される透過水に酸を添加する酸添加手段をさらに具備する、請求項16に記載の装置。 17. The device according to claim 16 , further comprising an acid addition means for adding an acid to the permeate discharged from the second reverse osmosis membrane device. 前記第1の逆浸透膜装置の第1の加温手段の上流に、前記第1の逆浸透膜装置及び/又は第2の逆浸透膜装置から排出される透過水を熱媒体として用いる熱交換器を具備する、請求項13〜17のいずれか1に記載の装置。 Heat exchange using permeated water discharged from the first reverse osmosis membrane device and / or the second reverse osmosis membrane device as a heat medium upstream of the first heating means of the first reverse osmosis membrane device The apparatus according to any one of claims 13-17 , comprising a vessel. 前記第1の逆浸透膜装置の第1の加温手段の上流に、前記第1の逆浸透膜装置から排出される透過水を熱媒体として用いる第1の熱交換器と、
前記第2の逆浸透膜装置の第2の加温手段の上流に、前記第2の逆浸透膜装置から排出される透過水を熱媒体として用いる第2の熱交換器と
を具備する、請求項13〜17のいずれか1に記載の装置。
A first heat exchanger using, as a heat medium, the permeated water discharged from the first reverse osmosis membrane device, upstream of the first heating means of the first reverse osmosis membrane device;
A second heat exchanger is provided upstream of the second heating means of the second reverse osmosis membrane device, using a permeated water discharged from the second reverse osmosis membrane device as a heat medium. Item 18. The device according to any one of items 13 to 17 .
JP2015205050A 2015-10-16 2015-10-16 Water treatment method and water treatment apparatus Active JP6549015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205050A JP6549015B2 (en) 2015-10-16 2015-10-16 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205050A JP6549015B2 (en) 2015-10-16 2015-10-16 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2017074574A JP2017074574A (en) 2017-04-20
JP6549015B2 true JP6549015B2 (en) 2019-07-24

Family

ID=58550683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205050A Active JP6549015B2 (en) 2015-10-16 2015-10-16 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP6549015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122954B2 (en) * 2018-12-13 2022-08-22 オルガノ株式会社 Silica-containing water membrane separation method and silica-containing water membrane separation system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112890A (en) * 1982-12-20 1984-06-29 Japan Organo Co Ltd Desalination by reverse osmosis membrane device
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
TW404847B (en) * 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
JPH10309575A (en) * 1997-05-09 1998-11-24 Kurita Water Ind Ltd Pure water production device
JPH1199395A (en) * 1997-07-29 1999-04-13 Japan Organo Co Ltd Treatment of organic matter containing water
JP4045658B2 (en) * 1998-08-06 2008-02-13 栗田工業株式会社 Pure water production method
JP2001129550A (en) * 1999-11-04 2001-05-15 Nippon Rensui Co Ltd Pure water making apparatus
JP2001170615A (en) * 1999-12-15 2001-06-26 Kurita Water Ind Ltd Removing method of volatile organic matter
JP2002192152A (en) * 2000-12-25 2002-07-10 Nomura Micro Sci Co Ltd Method and apparatus for water treatment
JP2003145150A (en) * 2001-11-15 2003-05-20 Japan Organo Co Ltd Water treatment method and apparatus using membrane module
JP2015160179A (en) * 2014-02-28 2015-09-07 三菱レイヨンアクア・ソリューションズ株式会社 reverse osmosis membrane treatment method
JP6164121B2 (en) * 2014-03-04 2017-07-19 三浦工業株式会社 Water treatment equipment
JP5787040B2 (en) * 2015-03-03 2015-09-30 三浦工業株式会社 Membrane separator

Also Published As

Publication number Publication date
JP2017074574A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
CN109476509B (en) Ultrapure water production apparatus
US20140042061A1 (en) Heating system for desalination
CN104291511A (en) Method and device for zero-emission treatment of high-hardness waste water containing sulfate
JP5562670B2 (en) Water recovery system
KR102107924B1 (en) Ultrapure water production equipment
JP4045658B2 (en) Pure water production method
JP2013202581A (en) Ultrapure water production apparatus
JP6549015B2 (en) Water treatment method and water treatment apparatus
JP2005342664A (en) Method for producing mineral water
EP3242858B1 (en) Method and system for solar driven osmotic water purification
JP2014213306A (en) Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method
CN106907699A (en) A kind of method that high temperature initial steam condensate return is directly utilized in steam power plant
CN202465419U (en) Complete set of advanced desalting separated treatment recycling device for mine wastewater
WO2018168012A1 (en) Reverse osmosis treatment method and device
JP2011147894A (en) Seawater desalination apparatus
CN107540139B (en) Recycling treatment system and method for cold rolling wastewater ion exchange strong brine
JP6350718B2 (en) Ultrapure water production equipment
JP2013202610A (en) Ultrapure water production apparatus
JP6590016B2 (en) Reverse osmosis processing method and apparatus
JP2018153799A (en) Reverse osmosis treatment method and device
JP6709036B2 (en) Hot water recovery system
WO2020195235A1 (en) Decarboxylation method, water treatment method, decarboxylation device, and water treatment device
CN108083530B (en) High-hardness high-ammonia-nitrogen high-alkalinity high-salt-content industrial wastewater treatment system and process
WO2018207492A1 (en) Boiler water treatment apparatus and treatment method
JP2021113662A (en) Heat utilization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6549015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250