JP2014213306A - Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method - Google Patents
Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method Download PDFInfo
- Publication number
- JP2014213306A JP2014213306A JP2013095343A JP2013095343A JP2014213306A JP 2014213306 A JP2014213306 A JP 2014213306A JP 2013095343 A JP2013095343 A JP 2013095343A JP 2013095343 A JP2013095343 A JP 2013095343A JP 2014213306 A JP2014213306 A JP 2014213306A
- Authority
- JP
- Japan
- Prior art keywords
- water
- pure water
- reverse osmosis
- osmosis membrane
- membrane treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、純水製造装置、純水およびろ過水製造装置、純水製造方法、ならびに純水およびろ過水製造方法に関する。 The present invention relates to a pure water production apparatus, a pure water and filtrate production apparatus, a pure water production method, and a pure water and filtrate production method.
純水は工業等において様々な用途で用いられている。純水の製造に関しては、イオン交換法、逆浸透膜法等が挙げられる。 Pure water is used in various applications in industry and the like. As for the production of pure water, an ion exchange method, a reverse osmosis membrane method and the like can be mentioned.
イオン交換法は、イオン交換樹脂等のイオン交換体を用いる方法である。イオン交換法は水利用効率が高いために、表流水および井水等の淡水を原水とした場合の純水製造方法として広く利用されているが、イオン交換樹脂の再生に大量の酸またはアルカリを必要とする。 The ion exchange method is a method using an ion exchanger such as an ion exchange resin. Since the ion exchange method has high water use efficiency, it is widely used as a pure water production method using fresh water such as surface water and well water as raw water. However, a large amount of acid or alkali is used for regeneration of the ion exchange resin. I need.
逆浸透膜法は、逆浸透膜を用いる方法であるが、適切な運転を行わないと逆浸透膜の膜面にスケール成分が析出し、閉塞してしまう課題がある。そのようなスケール成分析出を抑制するために、逆浸透膜処理の前段での前処理やpH調整、分散剤等のスケール防止剤の添加等を行うことで運用する場合が多い。また、遊離炭酸の除去率を高める目的で、アルカリ等の薬剤を添加することで処理水質の向上を図ることも多い。 The reverse osmosis membrane method is a method using a reverse osmosis membrane, but there is a problem that a scale component is deposited on the membrane surface of the reverse osmosis membrane and clogged unless an appropriate operation is performed. In order to suppress such precipitation of scale components, it is often operated by performing pretreatment before the reverse osmosis membrane treatment, pH adjustment, addition of a scale inhibitor such as a dispersant, and the like. In addition, for the purpose of increasing the removal rate of free carbonic acid, the quality of treated water is often improved by adding chemicals such as alkali.
例えば、特許文献1には、原水に酸を添加してスケール成分を析出させ、析出したスケール成分を膜分離処理し、透過水にアルカリを添加してから2段の逆浸透膜処理を行う方法が記載されている。
For example,
特許文献2には、被処理水にスケール防止剤を供給した後、前段逆浸透膜処理を行い、その濃縮水に酸を供給した後、後段逆浸透膜処理を行う方法が記載されている。 Patent Document 2 describes a method in which after the scale inhibitor is supplied to the water to be treated, the upstream reverse osmosis membrane treatment is performed, and after the acid is supplied to the concentrated water, the downstream reverse osmosis membrane treatment is performed.
特許文献3には、原水に酸等のスケール防止剤を添加した後、2段または3段の逆浸透膜処理を行う方法や、原水に酸を添加した後、1段目の逆浸透膜処理を行い、その透過水にアルカリを添加した後、2段目および3段目の逆浸透膜処理を行う方法が記載されている。 Patent Document 3 discloses a method of performing a two-stage or three-stage reverse osmosis membrane treatment after adding an acid or the like scale inhibitor to the raw water, or a first-stage reverse osmosis membrane treatment after adding an acid to the raw water. And after adding an alkali to the permeated water, the second and third stages of reverse osmosis membrane treatment are described.
ところで、工場によっては酸およびアルカリのような劇物の使用が禁止または制限される場合がある。そのような酸およびアルカリの使用が禁止または制限されている条件下においては、上記のようなスケール成分析出の抑制や処理水質の向上を目的とした酸およびアルカリの使用は望ましくない。 By the way, depending on the factory, the use of deleterious substances such as acids and alkalis may be prohibited or restricted. Under such conditions where the use of acids and alkalis is prohibited or restricted, the use of acids and alkalis for the purpose of suppressing the precipitation of scale components and improving the quality of treated water is not desirable.
本発明の目的は、劇物としての酸およびアルカリを使用しなくても純水を製造することができる純水製造装置、純水およびろ過水製造装置、純水製造方法、ならびに純水およびろ過水製造方法を提供することにある。 An object of the present invention is to provide a pure water production apparatus, a pure water and filtered water production apparatus, a pure water production method, a pure water and a filtration that can produce pure water without using acids and alkalis as deleterious substances. It is to provide a water production method.
本発明は、劇物としての酸およびアルカリを使用しない条件において、原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理手段と、前記前処理水を逆浸透膜処理して透過水を純水として得る逆浸透膜処理手段と、を備える純水製造装置である。 The present invention provides a pretreatment means for obtaining pretreated water by removing turbidity components and metal ion components contained in raw water under the conditions where acid and alkali as deleterious substances are not used, and reverse osmosis of the pretreated water And a reverse osmosis membrane treatment unit that obtains permeate as pure water by membrane treatment.
また、前記純水製造装置において、前記逆浸透膜処理における回収率が、濃縮水においてスケール成分の析出が起こりにくい条件に設定されることが好ましい。 Further, in the pure water production apparatus, it is preferable that the recovery rate in the reverse osmosis membrane treatment is set to a condition in which precipitation of scale components hardly occurs in the concentrated water.
また、本発明は、劇物としての酸およびアルカリを使用しない条件において、原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理手段と、前記前処理水を逆浸透膜処理して透過水を純水として得るとともに濃縮水をろ過水として得る逆浸透膜処理手段と、を備える純水およびろ過水製造装置である。 Further, the present invention provides pretreatment means for obtaining pretreated water by removing turbidity components and metal ion components contained in the raw water under the conditions where acids and alkalis as deleterious substances are not used, and the pretreated water A reverse osmosis membrane treatment means that obtains permeate as pure water by reverse osmosis membrane treatment, and reverse osmosis membrane treatment means that obtains concentrated water as filtered water.
また、本発明は、劇物としての酸およびアルカリを使用しない条件において、原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理工程と、前記前処理水を逆浸透膜処理して透過水を純水として得る逆浸透膜処理工程と、を含む純水製造方法である。 In addition, the present invention provides a pretreatment step for obtaining pretreatment water by removing turbidity components and metal ion components contained in the raw water under the condition that no acid and alkali as deleterious substances are used, and the pretreatment water. And a reverse osmosis membrane treatment step of obtaining permeate as pure water by reverse osmosis membrane treatment.
また、前記純水製造方法において、前記逆浸透膜処理における回収率を、濃縮水においてスケール成分の析出が起こりにくい条件に設定することが好ましい。 In the pure water production method, it is preferable that the recovery rate in the reverse osmosis membrane treatment is set to a condition in which precipitation of scale components hardly occurs in the concentrated water.
また、本発明は、劇物としての酸およびアルカリを使用しない条件において、原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理工程と、前記前処理水を逆浸透膜処理して透過水を純水として得るとともに濃縮水をろ過水として得る逆浸透膜処理工程と、を含む純水およびろ過水製造方法である。 In addition, the present invention provides a pretreatment step for obtaining pretreatment water by removing turbidity components and metal ion components contained in the raw water under the condition that no acid and alkali as deleterious substances are used, and the pretreatment water. And a reverse osmosis membrane treatment step of obtaining permeated water as pure water by performing reverse osmosis membrane treatment and obtaining concentrated water as filtered water.
本発明の純水製造装置および純水製造方法では、劇物としての酸およびアルカリを使用しなくても純水を製造することができる。また、本発明の純水およびろ過水製造装置ならびに純水およびろ過水製造方法では、劇物としての酸およびアルカリを使用しなくても純水およびろ過水を製造することができる。 In the pure water production apparatus and the pure water production method of the present invention, pure water can be produced without using acids and alkalis as deleterious substances. Moreover, in the pure water and filtered water manufacturing apparatus and the pure water and filtered water manufacturing method of the present invention, pure water and filtered water can be manufactured without using acids and alkalis as deleterious substances.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施形態に係る純水製造装置の一例の概略を図1に示し、その構成について説明する。純水製造装置1は、前処理装置10と、逆浸透膜処理装置12とを備える。
The outline of an example of the pure water manufacturing apparatus which concerns on embodiment of this invention is shown in FIG. 1, and the structure is demonstrated. The pure
図1の純水製造装置1において、前処理装置10の入口には原水配管14が接続され、前処理装置10の出口と逆浸透膜処理装置12の入口とは前処理水配管16により接続され、逆浸透膜処理装置12の透過水出口には透過水配管18が接続され、濃縮水出口には濃縮水配管20が接続されている。前処理装置10の前段側に必要に応じて原水槽が設けられてもよい。
1, the
本実施形態に係る純水製造方法および純水製造装置1の動作について説明する。
The operation of the pure water manufacturing method and the pure
処理対象となる原水は、原水配管14を通して前処理装置10へ送液され、前処理装置10において劇物としての酸およびアルカリ(以下、単に「酸およびアルカリ」という場合がある)を使用しない条件で、原水中に含有する濁度成分および金属イオン成分等が除去されて前処理水が得られる(前処理工程)。ここで、本願明細書でいう「劇物」とは、毒物及び劇物取締法第2条と毒物及び劇物指定令によって定義される劇物をいう。前処理水に酸化剤が含まれる場合、逆浸透膜を劣化させる可能性があるので、還元処理を行うことが望ましい。還元処理としては、還元剤を添加する方法、活性炭と接触させる方法等が挙げられる。前処理水は、前処理水配管16を通して逆浸透膜処理装置12へ送液され、逆浸透膜処理装置12において酸およびアルカリを使用しない条件で、逆浸透膜処理されて透過水が純水として得られる(逆浸透膜処理工程)。逆浸透膜処理装置12における透過水は、前処理装置10の前段側に返送されて原水に混合されてもよいし、ろ過水として利用されてもよい。
The raw water to be treated is fed to the
処理対象となる原水は、特に制限はないが、例えば、表流水、井水等の淡水等が挙げられる。特に、カルシウム、マグネシウム等の硬度成分、鉄イオン、マンガンイオン、アルミニウムイオン等の金属イオン成分、シリカ成分等を含む原水を処理対象とする。 The raw water to be treated is not particularly limited, and examples thereof include surface water and fresh water such as well water. In particular, raw water containing hardness components such as calcium and magnesium, metal ion components such as iron ions, manganese ions, and aluminum ions, silica components, and the like are treated.
前処理装置10としては、酸およびアルカリを使用しない条件で濁度成分および鉄イオン、マンガンイオン、アルミニウムイオン等の金属イオン成分等を除去することができるものであれば、どのようなものでもよい。前処理装置10としては、例えば、凝集沈殿装置、加圧浮上装置、膜ろ過装置等が挙げられる。しかしながら、凝集剤を使用する凝集沈殿装置、加圧浮上装置等は、最適凝集条件としてpH調整を行うことが望ましいことから、酸およびアルカリを使用しない条件下では凝集剤の使用量が多くなり、大きな設備となってしまう場合がある。そのような観点から、膜ろ過装置が好ましい。膜ろ過装置としては、精密ろ過(MF)膜や限外ろ過(UF)膜による膜ろ過装置が挙げられる。
The
原水が鉄やマンガン等の金属イオン成分を含む場合には、鉄やマンガン等を酸化処理して膜ろ過装置で除去できる形態とするため、原水に次亜塩素酸ナトリウム等の酸化剤を添加してから膜ろ過装置で処理を行ってもよい。 When the raw water contains metal ion components such as iron and manganese, an oxidizing agent such as sodium hypochlorite is added to the raw water so that iron and manganese can be oxidized and removed with a membrane filtration device. Then, the treatment may be performed with a membrane filtration apparatus.
この場合、添加した次亜塩素酸ナトリウム等の酸化剤が前処理水に残存すると、生物繁殖が抑制されるものの、次工程の逆浸透膜を酸化劣化させる要因となる可能性があるので、前処理装置10の後段側かつ逆浸透膜処理装置12の前段側において、活性炭との接触や還元剤の添加等の酸化剤除去処理手段により酸化剤を除去してもよい。酸化剤除去処理手段として活性炭を使用した場合は、酸化剤除去処理水に活性炭の微粒子が混入する可能性があるので、酸化剤除去処理水が逆浸透膜処理装置12へ導入される前に安全フィルタ等の微粒子除去手段を設けてもよい。
In this case, if the added oxidizing agent such as sodium hypochlorite remains in the pretreated water, although biological growth is suppressed, there is a possibility that the reverse osmosis membrane in the next step may be oxidized and deteriorated. The oxidant may be removed by an oxidant removal treatment means such as contact with activated carbon or addition of a reducing agent on the rear side of the
逆浸透膜処理装置12では、酸およびアルカリを使用しない条件で逆浸透膜処理が行われる。逆浸透膜処理工程では、逆浸透膜処理における回収率(透過水量/(透過水量+濃縮水量))を、濃縮水においてスケール成分の析出が起こりにくい条件に設定して運転することが好ましい。
In the reverse osmosis
スケール成分とは、カルシウムやマグネシウムといった硬度成分に由来する成分、シリカ成分、金属イオン成分等が代表的なものとして挙げられる。 Typical examples of the scale component include components derived from hardness components such as calcium and magnesium, silica components, metal ion components, and the like.
通常、硬度成分に対応するためには、軟化装置による除去等が有効であるが、装置が大型化してしまう。逆浸透膜への通水時にpHを低下して、スケール成分の析出を抑える技術もあるが、酸およびアルカリを使用しない条件とすることは困難である。そこで、例えば、濃縮水のランゲリア指数(LSI)が負になる範囲内で回収率を設定することが好ましい。 Usually, in order to cope with the hardness component, removal by a softening device or the like is effective, but the device becomes large. Although there is a technique for suppressing the precipitation of scale components by lowering the pH when water is passed through the reverse osmosis membrane, it is difficult to use conditions that do not use acid and alkali. Therefore, for example, it is preferable to set the recovery rate within a range in which the Langeria index (LSI) of the concentrated water is negative.
ランゲリア指数(LSI)とは、スケール成分の析出発生の指標となる数値である。ランゲリア指数(LSI)を算出する方法としては、一般的には簡便計算法が用いられる。簡便計算法は、ランゲリア・インデックス(藤田賢二(2003)『水処理薬品ハンドブック』,51−52頁)を用いてランゲリア指数を算出する方法である。 The Langeria index (LSI) is a numerical value that serves as an index of occurrence of scale component precipitation. As a method for calculating the Langeria index (LSI), a simple calculation method is generally used. The simple calculation method is a method for calculating the Langeria index using the Langeria index (Kenji Fujita (2003) “Water Treatment Chemical Handbook”, pages 51-52).
このランゲリア指数(LSI)がプラスの値で数値が大きいほど、硬度成分が析出しやすい状態であり、ゼロであれば、硬度成分は析出も溶解もしない平衡状態にあり、マイナスの値であれば、硬度成分が析出しにくい状態であることを示す。 The more the value of the Langeria index (LSI) is positive and the larger the value, the more easily the hardness component is precipitated. If it is zero, the hardness component is in an equilibrium state where neither precipitation nor dissolution occurs. , Indicating that the hardness component is difficult to precipitate.
原水がシリカ成分を含む場合、シリカ成分に対応するためには、濃縮水においてシリカの濃度をシリカの溶解度以下とすることが有効である。シリカの溶解度はpHによって変化するので、例えば濃縮水をpH10程度のアルカリ条件にすることでシリカスケールの析出を抑制することができるが、酸およびアルカリを使用しない条件とすることは困難である。そこで、濃縮水のシリカの濃度がシリカの溶解度以下になる範囲内で回収率を設定することが好ましい。
When the raw water contains a silica component, it is effective that the concentration of silica in the concentrated water is not more than the solubility of silica in order to correspond to the silica component. Since the solubility of silica changes depending on the pH, precipitation of silica scale can be suppressed, for example, by setting the concentrated water to an alkaline condition of about
硬度成分およびシリカ成分の析出を抑制するために、分散剤等のスケール防止剤を添加する方法がある。しかし、金属イオンの存在下、特にアルミニウムイオンの存在下においてシリカ濃度が上昇すると、分散剤等のスケール防止剤の効果が著しく低下し、スケール成分が析出してしまうことがある。金属イオン成分は前述した前処理装置10によって除去することが望ましいが、酸およびアルカリを使用しない条件下において、特にアルミニウムイオンは最適なpH条件としないと除去することが困難であるため、前処理設備10で処理しても前処理水に残存する可能性がある。そこで、原水中にアルミニウムイオンが存在する場合、逆浸透膜処理装置12においてこのようなアルミニウムイオンに起因するスケール成分の析出を抑制する濃度として、濃縮水において例えば0.25mg−Al/L程度以下となるような回収率を設定することが好ましい。
In order to suppress the precipitation of the hardness component and the silica component, there is a method of adding a scale inhibitor such as a dispersant. However, when the silica concentration is increased in the presence of metal ions, particularly in the presence of aluminum ions, the effect of a scale inhibitor such as a dispersant may be significantly reduced, and scale components may be precipitated. Although it is desirable to remove the metal ion component by the
したがって、以上の条件を満たした逆浸透膜処理における回収率は、例えば、30〜50%程度の範囲となる。本実施形態に係る純水製造装置および純水製造方法では、逆浸透膜処理装置12を通常設定する回収率よりも低い回収率に設定することによって、通常は排水とする濃縮水を必要に応じてろ過水としても使用できることに着目して構成されている。
Therefore, the recovery rate in the reverse osmosis membrane treatment that satisfies the above conditions is, for example, in the range of about 30 to 50%. In the pure water production apparatus and the pure water production method according to the present embodiment, the reverse osmosis
本実施形態に係る純水製造装置および純水製造方法で得られる透過水は、塩濃度が通常の塩濃度に対して30〜50%程度高くなっているものの、除濁処理はされており、逆浸透膜処理でスケール成分が析出しにくい条件で運転されていることから、スケールが発生している懸念のない水質が得られる。 Although the permeated water obtained by the pure water production apparatus and the pure water production method according to the present embodiment has a salt concentration of about 30 to 50% higher than the normal salt concentration, the turbidity treatment is performed. Since it is operated under conditions in which the scale components are not easily precipitated by the reverse osmosis membrane treatment, water quality without concern that scale is generated can be obtained.
一方、ろ過水中の残留成分となる可能性がある前述した分散剤等のスケール防止剤を使用しなくてもよいので、濃縮水をろ過水として利用することができる。 On the other hand, concentrated water can be used as filtered water because it is not necessary to use a scale inhibitor such as the above-mentioned dispersant that may become a residual component in filtered water.
また、逆浸透膜処理装置12の後段側に脱気処理装置を設置して脱気処理を行ってもよい。これにより得られる純水の水質をより向上することができる。
Further, the deaeration process may be performed by installing a deaeration apparatus on the rear stage side of the reverse osmosis
要求される純水の導電率が、逆浸透膜処理装置12による一段の逆浸透膜処理で満たされない場合、逆浸透膜処理装置12の後段側にさらに少なくとも1つの逆浸透膜処理装置を設置して、多段の逆浸透膜処理を行ってもよい。これにより、得られる純水の水質をより向上することができる。
When the required conductivity of pure water is not satisfied by the single-stage reverse osmosis membrane treatment by the reverse osmosis
多段の逆浸透膜処理を行う場合、少なくとも1段目の逆浸透膜処理において、回収率を、上記のように濃縮水においてスケール成分の析出が起こりにくい条件、例えば回収率を30〜50%程度の範囲に設定して運転すればよい。1段目より後の逆浸透膜処理においては、例えば回収率を80〜90%程度の範囲に設定して運転すればよい。 When performing a multi-stage reverse osmosis membrane treatment, at least the first-stage reverse osmosis membrane treatment is performed with a recovery rate such that the concentration of scale components hardly occurs in the concentrated water as described above, for example, the recovery rate is about 30 to 50%. It is sufficient to set the range to operate. In the reverse osmosis membrane treatment after the first stage, for example, the recovery rate may be set in the range of about 80 to 90%.
脱気処理を行う場合には、複数の逆浸透膜処理装置の間、例えば1段目の逆浸透膜処理装置と2段目の逆浸透膜処理装置間に脱気膜等の脱気処理装置を設置してもよい。脱気処理装置により脱炭酸処理を行うことにより、得られる純水の水質をより向上することができる。 When performing deaeration treatment, a deaeration treatment device such as a deaeration membrane between a plurality of reverse osmosis membrane treatment devices, for example, between a first-stage reverse osmosis membrane treatment device and a second-stage reverse osmosis membrane treatment device. May be installed. The quality of the pure water obtained can be further improved by performing the decarboxylation treatment with the deaeration treatment apparatus.
最後段の逆浸透膜処理装置の透過水出口に交換式のイオン交換樹脂塔を設置するか、電気再生式のイオン交換樹脂処理装置を設置してもよい。これにより、得られる純水の水質をより向上することができる。 An exchangeable ion exchange resin tower may be installed at the permeate outlet of the reverse osmosis membrane treatment apparatus at the last stage, or an electric regeneration type ion exchange resin treatment apparatus may be installed. Thereby, the quality of the pure water obtained can be improved more.
以上のような本実施形態に係る純水製造装置および純水製造方法は、水利用効率が高く、純水に加え、必要に応じてろ過水を供給することができる。 The pure water production apparatus and the pure water production method according to the present embodiment as described above have high water use efficiency, and can supply filtered water as needed in addition to pure water.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
(実施例1)
図1に示す純水製造装置を用い、以下の条件で処理を行った。逆浸透膜処理手段として2つの逆浸透膜処理装置を用いて2段の逆浸透膜処理を行った。結果を表1に示す。
原水:工業用水
前処理装置:UF膜(DOW製、SFP−2880)
逆浸透膜処理装置:RO膜(オルガノ製、OFR−240HJ8)
原水のカルシウム濃度:82.5mg−CaCO3/L
原水のアルカリ度:79.1mg−CaCO3/L
原水の蒸発残留物:320mg/L
水温:15℃
pH:7.5
1段目逆浸透膜処理回収率:35%
2段目逆浸透膜処理回収率:80〜90%
Example 1
Using the pure water production apparatus shown in FIG. 1, the treatment was performed under the following conditions. Two-stage reverse osmosis membrane treatment was performed using two reverse osmosis membrane treatment devices as reverse osmosis membrane treatment means. The results are shown in Table 1.
Raw water: Industrial water Pretreatment device: UF membrane (DOW, SFP-2880)
Reverse osmosis membrane treatment equipment: RO membrane (Organic, OFR-240HJ8)
Calcium concentration of raw water: 82.5mg-CaCO 3 / L
Alkalinity of raw water: 79.1 mg-CaCO 3 / L
Evaporation residue of raw water: 320mg / L
Water temperature: 15 ° C
pH: 7.5
First stage reverse osmosis membrane treatment recovery rate: 35%
Second stage reverse osmosis membrane treatment recovery rate: 80-90%
実施例1において、1段目逆浸透膜処理装置の濃縮水のランゲリア指数が以下の通り負の値(−0.4)になるように回収率を設定した。
濃縮水のCaCO3計算値:126.9mg−CaCO3/L → 2.53meq/L
濃縮水のアルカリ度計算値:121.7mg−CaCO3/L → 2.43meq/L
濃縮水のSd(溶解性物質TDS濃度)値:492.3mg/L
ランゲリア・インデックス(藤田賢二(2003)『水処理薬品ハンドブック』,51−52頁)を用いてランゲリア指数を算出すると、
全固形分(濃縮水のSd値)に基づく係数A=0.2
温度に基づく係数B=2.2
カルシウム硬度に基づく係数C=1.7
アルカリ度に基づく係数D=2.1
pHs=9.3+A+B−(C+D)
=9.3+0.2+2.2−(1.7+2.1)
=7.9
ランゲリア指数(LSI)=pH−pHs
=7.5−7.9
=−0.4
In Example 1, the recovery rate was set so that the Langerian index of the concentrated water of the first-stage reverse osmosis membrane treatment apparatus was a negative value (−0.4) as follows.
Concentrated water CaCO 3 calculation value: 126.9 mg-CaCO 3 / L → 2.53 meq / L
Calculated alkalinity of concentrated water: 121.7 mg-CaCO 3 / L → 2.43 meq / L
Concentrated water Sd (soluble substance TDS concentration) value: 492.3 mg / L
When the Langeria index (Kenji Fujita (2003) “Water Treatment Chemicals Handbook”, pages 51-52) is calculated using the Langeria Index,
Coefficient A based on total solid content (Sd value of concentrated water) = 0.2
Coefficient based on temperature B = 2.2
Coefficient based on calcium hardness C = 1.7
Coefficient D based on alkalinity D = 2.1
pHs = 9.3 + A + B- (C + D)
= 9.3 + 0.2 + 2.2− (1.7 + 2.1)
= 7.9
Langeria Index (LSI) = pH-pHs
= 7.5-7.9
= -0.4
(比較例1)
1段目の逆浸透膜処理回収率を80〜90%として、1段目の逆浸透膜処理の前にスケール防止剤として分散剤(オルパージョン、オルガノ製)を10mg/L添加した以外は、実施例1と同様にして処理を行った。結果を表1に示す。
(Comparative Example 1)
Except that the recovery rate of the first stage reverse osmosis membrane treatment was 80 to 90%, and 10 mg / L of a dispersant (Olperion, Organo) was added as a scale inhibitor before the first stage reverse osmosis membrane treatment. The treatment was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例1のように処理を行うことにより、酸およびアルカリを使用しなくても純水を製造することができた。また、実施例1では分散剤を使用しなくてもスケール成分をほとんど析出することなく純水を製造することができた。 By performing the treatment as in Example 1, pure water could be produced without using acid and alkali. Further, in Example 1, pure water could be produced with almost no scale component precipitated without using a dispersant.
1 純水製造装置、10 前処理装置、12 逆浸透膜処理装置、14 原水配管、16 前処理水配管、18 透過水配管、20 濃縮水配管。
DESCRIPTION OF
Claims (6)
原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理手段と、
前記前処理水を逆浸透膜処理して透過水を純水として得る逆浸透膜処理手段と、
を備えることを特徴とする純水製造装置。 In the condition where acid and alkali are not used as a deleterious substance,
Pretreatment means for removing turbidity components and metal ion components contained in raw water to obtain pretreated water;
A reverse osmosis membrane treatment means for obtaining a permeated water as pure water by subjecting the pretreated water to a reverse osmosis membrane;
A pure water production apparatus comprising:
前記逆浸透膜処理における回収率が、濃縮水においてスケール成分の析出が起こりにくい条件に設定されることを特徴とする純水製造装置。 It is a pure water manufacturing apparatus of Claim 1, Comprising: The recovery rate in the said reverse osmosis membrane process is set to the conditions where precipitation of a scale component does not occur easily in concentrated water.
原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理手段と、
前記前処理水を逆浸透膜処理して透過水を純水として得るとともに濃縮水をろ過水として得る逆浸透膜処理手段と、
を備えることを特徴とする純水およびろ過水製造装置。 In the condition where acid and alkali are not used as a deleterious substance,
Pretreatment means for removing turbidity components and metal ion components contained in raw water to obtain pretreated water;
A reverse osmosis membrane treatment means for obtaining a permeated water as pure water by treating the pretreated water with a reverse osmosis membrane;
An apparatus for producing pure water and filtered water, comprising:
原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理工程と、
前記前処理水を逆浸透膜処理して透過水を純水として得る逆浸透膜処理工程と、
を含むことを特徴とする純水製造方法。 In the condition where acid and alkali are not used as a deleterious substance,
A pretreatment step of obtaining pretreated water by removing turbidity components and metal ion components contained in the raw water;
A reverse osmosis membrane treatment step of obtaining a permeate as pure water by subjecting the pretreated water to a reverse osmosis membrane;
The pure water manufacturing method characterized by including.
前記逆浸透膜処理における回収率を、濃縮水においてスケール成分の析出が起こりにくい条件に設定することを特徴とする純水製造方法。 It is a pure water manufacturing method of Claim 4, Comprising: The recovery rate in the said reverse osmosis membrane process is set to the conditions which precipitation of a scale component does not occur easily in concentrated water.
原水中に含有する濁度成分および金属イオン成分を除去して前処理水を得る前処理工程と、
前記前処理水を逆浸透膜処理して透過水を純水として得るとともに濃縮水をろ過水として得る逆浸透膜処理工程と、
を含むことを特徴とする純水およびろ過水製造方法。 In the condition where acid and alkali are not used as a deleterious substance,
A pretreatment step of obtaining pretreated water by removing turbidity components and metal ion components contained in the raw water;
A reverse osmosis membrane treatment step of obtaining a permeated water as pure water by treating the pretreated water with a reverse osmosis membrane, and obtaining concentrated water as filtered water;
A method for producing pure water and filtered water, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095343A JP2014213306A (en) | 2013-04-30 | 2013-04-30 | Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095343A JP2014213306A (en) | 2013-04-30 | 2013-04-30 | Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014213306A true JP2014213306A (en) | 2014-11-17 |
Family
ID=51939593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013095343A Pending JP2014213306A (en) | 2013-04-30 | 2013-04-30 | Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014213306A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016179442A (en) * | 2015-03-24 | 2016-10-13 | 三菱レイヨンアクア・ソリューションズ株式会社 | Reverse osmosis membrane treatment method |
WO2018163468A1 (en) * | 2017-03-07 | 2018-09-13 | 栗田工業株式会社 | Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system |
JP2018144033A (en) * | 2018-03-06 | 2018-09-20 | 栗田工業株式会社 | Operation management method for reverse osmosis membrane apparatus and reverse osmosis membrane processing system |
US20190039022A1 (en) * | 2016-03-18 | 2019-02-07 | Kurita Water Industries Ltd. | Method for controlling operation of reverse osmosis membrane apparatus and reverse osmosis membrane treatment system |
CN113316476A (en) * | 2019-01-22 | 2021-08-27 | 日东电工株式会社 | Separation membrane module and liquid treatment system using same |
-
2013
- 2013-04-30 JP JP2013095343A patent/JP2014213306A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016179442A (en) * | 2015-03-24 | 2016-10-13 | 三菱レイヨンアクア・ソリューションズ株式会社 | Reverse osmosis membrane treatment method |
US20190039022A1 (en) * | 2016-03-18 | 2019-02-07 | Kurita Water Industries Ltd. | Method for controlling operation of reverse osmosis membrane apparatus and reverse osmosis membrane treatment system |
WO2018163468A1 (en) * | 2017-03-07 | 2018-09-13 | 栗田工業株式会社 | Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system |
US20190381456A1 (en) * | 2017-03-07 | 2019-12-19 | Kurita Water Industries Ltd. | Method for managing operation of reverse osmosis membrane device and reverse osmosis membrane treatment system |
JP2018144033A (en) * | 2018-03-06 | 2018-09-20 | 栗田工業株式会社 | Operation management method for reverse osmosis membrane apparatus and reverse osmosis membrane processing system |
CN113316476A (en) * | 2019-01-22 | 2021-08-27 | 日东电工株式会社 | Separation membrane module and liquid treatment system using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102047155B1 (en) | Method and device for treating boron-containing water | |
JP2014213306A (en) | Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method | |
JP5050605B2 (en) | Organic substance processing method and organic substance processing apparatus | |
CN110540318A (en) | Sewage recovery treatment system and treatment process | |
JP2012245439A (en) | Apparatus for producing ultrapure water | |
WO2015198438A1 (en) | Method and device for treating fluoride-containing water | |
TWI613153B (en) | Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater | |
JP2016185514A (en) | Cleaning method of permeable membrane, and cleaner | |
KR20100044397A (en) | Recycling method and apparatus of waste etching solution | |
JP2007098270A (en) | Method and apparatus for producing pure water | |
CN211111594U (en) | Processing system of copper oxide waste water | |
JP7149129B2 (en) | Silica-containing water treatment method and treatment apparatus | |
JP6524752B2 (en) | Method of treating calcium ion and inorganic carbon containing water | |
JP6102406B2 (en) | Membrane separation method and membrane separation apparatus | |
JP3826497B2 (en) | Pure water production method | |
CN111051253A (en) | Apparatus and method for treating silica-containing water | |
JP5461805B2 (en) | Method for processing emulsion-type water-soluble cutting oil | |
US20170267550A1 (en) | Ultrapure water producing method | |
TWI636018B (en) | Method to recycle copper sulfate in waste from wafer fab or pcb manufacturing and system of wafer or pcb manufacturing having copper sulfate recycling unit | |
JP5700080B2 (en) | Method and apparatus for treating waste water containing cationic surfactant | |
JP7460004B1 (en) | Fluorine-containing wastewater treatment equipment and method | |
KR101959103B1 (en) | Ultrapure water production device | |
JP7400878B1 (en) | Treatment method for water containing fluorine and aluminum | |
JP7520764B2 (en) | Water treatment method and apparatus | |
JP7290911B2 (en) | Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system |