JP3826497B2 - Pure water production method - Google Patents

Pure water production method Download PDF

Info

Publication number
JP3826497B2
JP3826497B2 JP16738997A JP16738997A JP3826497B2 JP 3826497 B2 JP3826497 B2 JP 3826497B2 JP 16738997 A JP16738997 A JP 16738997A JP 16738997 A JP16738997 A JP 16738997A JP 3826497 B2 JP3826497 B2 JP 3826497B2
Authority
JP
Japan
Prior art keywords
water
pure water
membrane separation
chelating agent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16738997A
Other languages
Japanese (ja)
Other versions
JPH1110150A (en
Inventor
伸 佐藤
征弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP16738997A priority Critical patent/JP3826497B2/en
Publication of JPH1110150A publication Critical patent/JPH1110150A/en
Application granted granted Critical
Publication of JP3826497B2 publication Critical patent/JP3826497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は銅(以下Cuと言うこともある)化合物含有水から純水を製造する方法に係り、特に、Cuの水酸化物による逆浸透(RO)膜分離装置の目詰りを防止して純水を効率的に回収する方法に関する。
【0002】
【従来の技術】
半導体製造工程、液晶製造工程の使用済超純水(回収水)は、一般に、図2に示す如く、工水、市水等の原水と混合し、まず、NaClO等の酸化剤を添加すると共に、HCl等の酸を添加してpH3.0〜5.0、例えばpH4程度に調整して脱炭酸装置1で脱炭酸処理し、次いで還元剤を添加すると共に、NaOH等のアルカリを添加してpH6.0〜9.5、例えばpH8程度に調整して紫外線酸化装置2で殺菌と有機物の酸化分解を行い、その後、精密濾過(MF)膜分離装置3及び2段に配置したRO膜分離装置(第1RO膜分離装置4及び第2RO膜分離装置5)で膜分離処理することにより、純水として再利用される。
【0003】
この純水製造工程において、NaClOは殺菌及び酸化のために添加され、また、HClは水中の炭酸成分を二酸化炭素として脱炭酸装置1での脱炭酸効率を高めるために添加される。還元剤は、残留塩素の除去のために添加される。また、NaOHは脱炭酸処理後に残留する炭酸成分をイオン化し、RO膜分離装置4,5での除去効率を高めるために添加される。
【0004】
【発明が解決しようとする課題】
回収水中にはCuなどの重金属が混入する場合があるが、回収水中にCuが存在すると、純水製造工程においてCuの水酸化物を生成してRO膜の目詰りを引き起こし、これにより生産水量が低下する。
【0005】
即ち、回収水中のCu濃度は一般に0.5〜5ppm程度であり、回収水のpHは中性程度であるため、回収水中のCuは水酸化物状態となっている。
【0006】
この回収水に脱炭酸処理に先立ちHClを添加するとCuはCu2+イオンとなるが、脱炭酸処理後にNaOHを添加してpH調整を行った際に、Cu2++OH- →Cu(OH)2 の反応によりCuの水酸化物が生成する。生成したCu水酸化物の粒子の多くはMF膜分離装置3で捕捉されるが、一部は非常に細かい粒子であるために、MF膜分離装置(通常、孔径20μm程度)3を通過して第1RO膜分離装置4に流入し、RO膜の目詰りを引き起こす。
【0007】
また、Cu水酸化物の粒子を捕捉したMF膜分離装置3では頻繁に逆洗を行うことが必要となる。
【0008】
本発明は上記従来の問題点を解決し、Cuを含有する回収水から純水を製造するに当り、Cuの水酸化物の生成を防止して、RO膜の目詰りによる生産水量の低下を抑えると共に、MF膜分離装置の逆洗頻度を低減して、効率的な純水製造を行う方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の純水製造方法は、Cu含有水を逆浸透膜分離処理して純水を製造する方法において、pH5以下のCu含有水にキレート剤を添加した後或いはキレート剤と共にアルカリを添加し、その後逆浸透膜分離処理することを特徴とする。
【0010】
キレート剤を添加することにより、Cuイオンが化学的に安定なCuキレート化合物となり、Cu(OH)2 の生成は防止される。
【0011】
また、キレート剤の添加は、CuがCu2+イオンの状態となっているときに添加するのが好ましく、従って、本発明ではCu含有水がpH5以下の酸性領域にあるときにキレート剤を添加する。
【0012】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0013】
図1は本発明の純水製造方法の実施の形態を示す系統図である。
【0014】
本発明の純水製造方法は、第1RO膜分離装置4の前段でキレート剤を添加すること以外は、図2に示す従来法と同様に実施することができる。
【0015】
本発明において、キレート剤は、CuがCu2+となってイオン状で存在する箇所で添加しても良いし、回収水のpHを酸性領域に調整した後添加し、原水と混合しても良い。
【0016】
好ましくは、経済性の観点から、キレート剤は、脱炭酸装置1の前段のHCl添加箇所の後段から、紫外線酸化装置2の前段のNaOH添加箇所の前段までの、水のpHが5以下となっている部分で添加する。従って、キレート剤は、例えば、図1に示す如く、還元剤添加箇所とNaOH添加箇所との間、或いは、HCl添加箇所と脱炭酸装置1との間で添加することができる。
【0017】
キレート剤の添加量は、Cuに対して0.5倍当量以上である。ただし、キレート剤の過剰添加は後段設備の負荷となるため、Cuに対して0.75倍当量以下とするのが好ましい。
【0018】
キレート剤としては、EDTA(エチレンジアミン四酢酸)、オキシカルボン酸等が効果的であるが、他のポリマー系のキレート剤であっても良い。特に、キレート剤としてEDTA・4Na(エチレンジアミン四酢酸ナトリウム)を用いた場合には、キレート剤自体がアルカリであるため、後段のNaOHの薬注量を低減することができる。このEDTA・4Naを添加する場合は、脱炭酸装置1の後段で添加する必要がある。
【0019】
キレート剤は、流入水のCu濃度に応じて薬注制御するのが好ましいが、Cu濃度がほぼ一定である場合には、キレート剤とNaOH等のアルカリとを予め混合して一液製剤として注入することにより、注入設備(ポンプ、タンク、配管等)の削減が可能となり経済的である。
【0020】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0021】
実施例1
Cu1.5ppmを含む回収水を図1に示す方法(ただし、RO膜分離装置は1段のみ)で処理して純水の製造を行った。
【0022】
まず、回収水にNaClOを有効塩素として1ppm添加した後、HClでpH4に調整し、脱炭酸処理した。その後、還元剤としてヒドラジンを0.35ppm添加し、残留塩素が無くなったのを確認した後、キレート剤としてEDTA・4Naを8.0ppm添加し、NaOHでpH8に調整し、紫外線酸化処理した後、孔径20μmのMF膜分離装置に通水し、透過水を平膜(ポリアクリルアミド系)を装着したRO膜分離装置に、回収率90%、運転圧力15kg/cm2 で通水した。
【0023】
通水初期のRO膜分離装置の生産水量(透過水量)と通水15時間後の生産水量を調べ、結果を表1に示した。
【0024】
比較例1
実施例1において、キレート剤を添加しなかったこと以外は同様に処理を行い、結果を表1に示した。
【0025】
比較例2
実施例1において、HClを添加しなかったこと以外は同様に処理を行い、結果を表1に示した。
【0026】
この比較例2では、キレート剤を添加しているが、HClを添加せず、pH7の条件下で添加しているために、キレート化合物の生成効率が、pH4の水にキレート剤を添加した実施例1の場合に比べて劣り、このためCu(OH)2 生成の抑制効果が十分でなかったために、比較例1よりは改善されているものの、生産水量の低下がみられる。
【0027】
【表1】

Figure 0003826497
【0028】
なお、通水後、各RO膜分離装置のRO膜面を調べたところ、実施例1では、RO膜に付着物は見られなかったが、比較例1,2では、緑灰色の付着物が見られ、これにより生産水量が低下していることが確認された。
【0029】
【発明の効果】
以上詳述した通り、本発明の純水製造方法によれば、Cuを含有する回収水から純水を製造するに当り、Cuの水酸化物の生成を防止して、RO膜の目詰りによる生産水量の低下を抑えると共に、MF膜分離装置の逆洗頻度を低減して、効率的な純水製造を行うことができる。
【図面の簡単な説明】
【図1】本発明の純水製造方法の実施の形態を示す系統図である。
【図2】従来法を示す系統図である。
【符号の説明】
1 脱炭酸装置
2 紫外線酸化装置
3 MF膜分離装置
4 第1RO膜分離装置
5 第2RO膜分離装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing pure water from copper (hereinafter sometimes referred to as Cu) compound-containing water, and in particular, prevents clogging of a reverse osmosis (RO) membrane separation apparatus by Cu hydroxide. The present invention relates to a method for efficiently recovering water.
[0002]
[Prior art]
In general, spent ultrapure water (recovered water) in the semiconductor manufacturing process and liquid crystal manufacturing process is mixed with raw water such as industrial water and city water as shown in FIG. 2, and first, an oxidizing agent such as NaClO is added. Then, an acid such as HCl is added to adjust the pH to 3.0 to 5.0, for example, about pH 4, and then decarboxylated with the decarboxylation apparatus 1, and then a reducing agent is added and an alkali such as NaOH is added. The pH is adjusted to 6.0 to 9.5, for example, about pH 8, and sterilization and oxidative decomposition of organic matter are performed by the ultraviolet oxidation device 2, and then the microfiltration (MF) membrane separation device 3 and the RO membrane separation device arranged in two stages. It is reused as pure water by performing a membrane separation process with the (first RO membrane separation device 4 and the second RO membrane separation device 5).
[0003]
In this pure water production process, NaClO is added for sterilization and oxidation, and HCl is added to increase the decarboxylation efficiency in the decarboxylation apparatus 1 using carbonic acid components in water as carbon dioxide. A reducing agent is added to remove residual chlorine. Further, NaOH is added to ionize the carbonic acid component remaining after the decarboxylation treatment and to enhance the removal efficiency in the RO membrane separation devices 4 and 5.
[0004]
[Problems to be solved by the invention]
Heavy metals such as Cu may be mixed in the recovered water. However, if Cu is present in the recovered water, Cu hydroxide is generated in the pure water production process, causing the RO membrane to be clogged. Decreases.
[0005]
That is, since the Cu concentration in the recovered water is generally about 0.5 to 5 ppm and the pH of the recovered water is neutral, Cu in the recovered water is in a hydroxide state.
[0006]
When HCl is added to this recovered water prior to decarboxylation, Cu becomes Cu 2+ ions. However, when pH is adjusted by adding NaOH after decarboxylation, Cu 2+ + OH → Cu (OH) The reaction of 2 produces a Cu hydroxide. Most of the generated Cu hydroxide particles are captured by the MF membrane separator 3, but some of them are very fine particles, so that they pass through the MF membrane separator (usually about 20 μm in pore diameter) 3. It flows into the first RO membrane separation device 4 and causes clogging of the RO membrane.
[0007]
Further, the MF membrane separation device 3 that has captured the Cu hydroxide particles needs to be backwashed frequently.
[0008]
The present invention solves the above-mentioned conventional problems, and in producing pure water from recovered water containing Cu, the production of Cu hydroxide is prevented, and the production water volume is reduced due to clogging of the RO membrane. An object of the present invention is to provide a method for efficiently producing pure water while suppressing the frequency of backwashing of the MF membrane separation apparatus.
[0009]
[Means for Solving the Problems]
The pure water production method of the present invention is a method of producing pure water by subjecting Cu-containing water to reverse osmosis membrane separation, and after adding a chelating agent to Cu-containing water having a pH of 5 or less, or adding an alkali together with the chelating agent, Thereafter, reverse osmosis membrane separation treatment is performed.
[0010]
By adding a chelating agent, Cu ions become a chemically stable Cu chelate compound, and the formation of Cu (OH) 2 is prevented.
[0011]
The chelating agent is preferably added when Cu is in the state of Cu 2+ ions. Therefore, in the present invention, the chelating agent is added when the Cu-containing water is in the acidic region of pH 5 or lower. To do.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a system diagram showing an embodiment of the pure water production method of the present invention.
[0014]
The pure water production method of the present invention can be carried out in the same manner as the conventional method shown in FIG. 2 except that a chelating agent is added before the first RO membrane separation device 4.
[0015]
In the present invention, the chelating agent may be added at a place where Cu is Cu 2+ and is present in an ionic state, or may be added after adjusting the pH of recovered water to an acidic region and mixed with raw water. good.
[0016]
Preferably, from the economical point of view, the chelating agent has a pH of water of 5 or less from the stage after the addition of HCl at the front stage of the decarboxylation apparatus 1 to the stage before the addition of NaOH at the front stage of the ultraviolet oxidation apparatus 2. Add in the part where it is. Therefore, for example, as shown in FIG. 1, the chelating agent can be added between the reducing agent addition site and the NaOH addition site, or between the HCl addition site and the decarboxylation device 1.
[0017]
The addition amount of the chelating agent is 0.5 times or more equivalent to Cu. However, since excessive addition of a chelating agent causes a load on the subsequent equipment, it is preferable to make it 0.75 equivalent or less with respect to Cu.
[0018]
As the chelating agent, EDTA (ethylenediaminetetraacetic acid), oxycarboxylic acid and the like are effective, but other polymer-based chelating agents may be used. In particular, when EDTA · 4Na (sodium ethylenediaminetetraacetate) is used as the chelating agent, the chelating agent itself is alkaline, so that the amount of NaOH injected in the latter stage can be reduced. When this EDTA · 4Na is added, it is necessary to add it at the subsequent stage of the decarboxylation device 1.
[0019]
The chelating agent is preferably controlled according to the Cu concentration of the influent water, but when the Cu concentration is almost constant, the chelating agent and an alkali such as NaOH are mixed in advance and injected as a one-part preparation. This makes it possible to reduce the number of injection facilities (pumps, tanks, piping, etc.) and is economical.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0021]
Example 1
The recovered water containing 1.5 ppm of Cu was treated by the method shown in FIG. 1 (however, the RO membrane separator was only one stage) to produce pure water.
[0022]
First, after adding 1 ppm of NaClO as effective chlorine to the recovered water, the pH was adjusted to 4 with HCl and decarboxylation was performed. Then, after adding 0.35 ppm of hydrazine as a reducing agent and confirming that there was no residual chlorine, 8.0 ppm of EDTA · 4Na was added as a chelating agent, adjusted to pH 8 with NaOH, and after UV oxidation treatment, Water was passed through an MF membrane separator having a pore diameter of 20 μm, and the permeate was passed through an RO membrane separator equipped with a flat membrane (polyacrylamide system) at a recovery rate of 90% and an operating pressure of 15 kg / cm 2 .
[0023]
The production water volume (permeated water volume) of the RO membrane separation apparatus at the initial stage of water flow and the production water volume after 15 hours of water flow were examined, and the results are shown in Table 1.
[0024]
Comparative Example 1
In Example 1, it processed similarly except not adding a chelating agent, and the result was shown in Table 1.
[0025]
Comparative Example 2
In Example 1, the same treatment was performed except that HCl was not added, and the results are shown in Table 1.
[0026]
In Comparative Example 2, a chelating agent was added, but HCl was not added, and the addition was performed under the condition of pH 7. Therefore, the efficiency of chelating compound formation was increased by adding the chelating agent to pH 4 water. This is inferior to the case of Example 1, and therefore, the effect of suppressing the formation of Cu (OH) 2 was not sufficient.
[0027]
[Table 1]
Figure 0003826497
[0028]
In addition, when the RO membrane surface of each RO membrane separation apparatus was examined after passing water, in Example 1, no deposit was found on the RO membrane, but in Comparative Examples 1 and 2, a greenish gray deposit was found. As a result, it was confirmed that the amount of water produced decreased.
[0029]
【The invention's effect】
As described above in detail, according to the method for producing pure water of the present invention, in producing pure water from recovered water containing Cu, formation of Cu hydroxide is prevented, and RO membrane is clogged. While suppressing the fall of the amount of production water, the backwash frequency of MF membrane separation apparatus can be reduced, and efficient pure water manufacture can be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a pure water production method of the present invention.
FIG. 2 is a system diagram showing a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Decarbonation apparatus 2 UV oxidation apparatus 3 MF membrane separation apparatus 4 1st RO membrane separation apparatus 5 2nd RO membrane separation apparatus

Claims (4)

銅化合物含有水を逆浸透膜分離処理して純水を製造する方法において、pH5以下の銅化合物含有水にキレート剤を添加した後或いはキレート剤と共にアルカリを添加し、その後逆浸透膜分離処理することを特徴とする純水製造方法。In a method for producing pure water by subjecting copper compound-containing water to reverse osmosis membrane separation, after adding a chelating agent to copper compound-containing water having a pH of 5 or less or adding an alkali together with the chelating agent, then performing reverse osmosis membrane separation treatment The pure water manufacturing method characterized by the above-mentioned. 前記アルカリを添加してpH6.0〜9.5に調整して逆浸透膜分離処理することを特徴とする請求項1に記載の純水製造方法。The method for producing pure water according to claim 1, wherein the alkali is added to adjust the pH to 6.0 to 9.5 to perform reverse osmosis membrane separation treatment. 前記アルカリを添加した後、精密濾過膜分離装置に通水し、透過水を逆浸透膜分離処理することを特徴とする請求項1又は2に記載の純水製造方法。3. The method for producing pure water according to claim 1, wherein after the alkali is added, water is passed through a microfiltration membrane separation device, and the permeated water is subjected to reverse osmosis membrane separation treatment. 前記キレート剤がエチレンジアミン四酢酸ナトリウムであることを特徴とする請求項1ないし3のいずれか1項に記載の純水製造方法。The method for producing pure water according to any one of claims 1 to 3, wherein the chelating agent is sodium ethylenediaminetetraacetate.
JP16738997A 1997-06-24 1997-06-24 Pure water production method Expired - Fee Related JP3826497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16738997A JP3826497B2 (en) 1997-06-24 1997-06-24 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16738997A JP3826497B2 (en) 1997-06-24 1997-06-24 Pure water production method

Publications (2)

Publication Number Publication Date
JPH1110150A JPH1110150A (en) 1999-01-19
JP3826497B2 true JP3826497B2 (en) 2006-09-27

Family

ID=15848805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16738997A Expired - Fee Related JP3826497B2 (en) 1997-06-24 1997-06-24 Pure water production method

Country Status (1)

Country Link
JP (1) JP3826497B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084793A1 (en) * 2005-10-18 2007-04-19 Nigel Wenden Method and apparatus for producing ultra-high purity water
KR100758380B1 (en) * 2006-09-14 2007-09-18 주식회사 디엠퓨어텍 Treatment apparatus for recycling concentrated-water using reverse osmosis process
JP6106943B2 (en) * 2012-04-17 2017-04-05 栗田工業株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP2023058359A (en) * 2021-10-13 2023-04-25 野村マイクロ・サイエンス株式会社 Medicament injection system, pure water production system, and pure water production method

Also Published As

Publication number Publication date
JPH1110150A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP5471054B2 (en) Methods for recovering water and metals from plating cleaning wastewater
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4599803B2 (en) Demineralized water production equipment
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3788145B2 (en) Water treatment method and water treatment apparatus
JP2014213306A (en) Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method
JP3826497B2 (en) Pure water production method
JPH09150165A (en) Water treating method and device therefor
JP5678436B2 (en) Ultrapure water production method and apparatus
JP4618073B2 (en) Method and apparatus for recovering water from CMP wastewater containing high TOC
JP2007216102A (en) Filtering device, and membrane washing method of this filtering device
JPH10192851A (en) Water purifying treatment apparatus
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3525699B2 (en) Water treatment method containing organic components and manganese
CN114538693A (en) Cleaning agent regeneration method for antirust surface cleaning process
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JP3817799B2 (en) Wastewater membrane treatment equipment
JP3575238B2 (en) Water treatment method containing organic components and manganese
JP3534155B2 (en) Pure water production equipment
JP2004502027A5 (en)
JP3992996B2 (en) Wastewater treatment method and apparatus
JPH11277060A (en) Apparatus for treating water containing manganese
WO2022168948A1 (en) Water treatment device and method
JP7400878B1 (en) Treatment method for water containing fluorine and aluminum
JPH0142726B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140714

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees