JP4618073B2 - Method and apparatus for recovering water from CMP wastewater containing high TOC - Google Patents

Method and apparatus for recovering water from CMP wastewater containing high TOC Download PDF

Info

Publication number
JP4618073B2
JP4618073B2 JP2005274155A JP2005274155A JP4618073B2 JP 4618073 B2 JP4618073 B2 JP 4618073B2 JP 2005274155 A JP2005274155 A JP 2005274155A JP 2005274155 A JP2005274155 A JP 2005274155A JP 4618073 B2 JP4618073 B2 JP 4618073B2
Authority
JP
Japan
Prior art keywords
water
membrane separation
membrane
toc
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005274155A
Other languages
Japanese (ja)
Other versions
JP2007083152A (en
Inventor
征弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005274155A priority Critical patent/JP4618073B2/en
Publication of JP2007083152A publication Critical patent/JP2007083152A/en
Application granted granted Critical
Publication of JP4618073B2 publication Critical patent/JP4618073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、高TOC含有CMP排水からの水回収方法及び水回収装置に係り、特に高濃度でTOCを含有するCMP(Chemical Mechanical Polishing)排水を、精密濾過(MF)膜で膜分離処理した後2段逆浸透(RO)膜分離処理することにより、有効再利用可能な水を効率的に回収する方法と装置に関する。   The present invention relates to a method and an apparatus for recovering water from high TOC-containing CMP wastewater, and in particular, after membrane separation treatment of a CMP (Chemical Mechanical Polishing) wastewater containing TOC at a high concentration with a microfiltration (MF) membrane. The present invention relates to a method and an apparatus for efficiently recovering water that can be effectively reused by performing a two-stage reverse osmosis (RO) membrane separation treatment.

半導体ウエハ及びその上に形成された絶縁膜、メタル薄膜等の被膜の表面は高度な平坦面であることが望まれる。従来、ウエハや、その上に形成された被膜の平坦化には、研磨材のスラリを用いて化学的機械研磨(CMP)する方法が採用されている。この方法では、研磨パッド等の研磨部材と半導体ウエハとの間に研磨材スラリを介在させた状態で研磨を行い、半導体ウエハあるいはシリコン酸化膜や金属薄膜等の被膜表面を平坦化する方法である。このCMPで用いられる研磨材としては、分散性が良好で、平均粒子径が揃っているシリカ微粒子(コロイダルシリカ)が一般的に使用されている。また、研磨速度の高いセリア(CeO)や、硬度が高く安定なアルミナ(Al)等も使用されている。セリアやアルミナ等の無機酸化物は、平均粒子径が0.05〜0.5μm程度の粒子が水中に分散したスラリとして使用されており、通常、このスラリ中には、pH調整剤(KOH,NHOH,有機酸,アミン類)や界面活性剤(分散剤)、酸化剤(H,KIO,Fe(NO)等が別途添加されて使用される。 It is desired that the surface of the semiconductor wafer and the coating film such as an insulating film and a metal thin film formed on the semiconductor wafer be a highly flat surface. Conventionally, a chemical mechanical polishing (CMP) method using a slurry of an abrasive material has been employed to planarize a wafer and a film formed thereon. In this method, polishing is performed in a state where an abrasive slurry is interposed between a polishing member such as a polishing pad and a semiconductor wafer, and the surface of the film such as a semiconductor wafer or a silicon oxide film or a metal thin film is flattened. . As an abrasive used in this CMP, silica fine particles (colloidal silica) having good dispersibility and uniform average particle diameter are generally used. Further, ceria (CeO 2 ) having a high polishing rate, alumina having a high hardness and stability (Al 2 O 3 ), and the like are also used. Inorganic oxides such as ceria and alumina are used as a slurry in which particles having an average particle size of about 0.05 to 0.5 μm are dispersed in water. Usually, a pH adjuster (KOH, NH 4 OH, organic acids, amines), a surfactant (dispersing agent), an oxidizing agent (H 2 O 2 , KIO 3 , Fe (NO 3 ) 3 ) and the like are separately added and used.

この研磨材スラリは、1枚のウエハ当りの使用量が多く、しかも非常に高価であることから、ウエハのCMP工程から排出される排スラリから研磨材を回収し、回収した研磨材を用いて所定の組成の研磨材スラリを調整すると共に、分離水を処理して再利用することが望まれる。   Since this abrasive slurry has a large amount of use per wafer and is very expensive, the abrasive is recovered from the exhaust slurry discharged from the CMP process of the wafer, and the recovered abrasive is used. It is desired to adjust the abrasive slurry having a predetermined composition and to treat and reuse the separated water.

従来、CMP工程から排出される排スラリから研磨材を回収する方法として、UF(限外濾過)膜を用いて膜分離処理を行う方法が提案されている(例えば特開平8−115892号公報)。この方法では、排スラリを精密濾過(UF)膜分離処理して粗大不純物を除去した後、UF膜分離処理して濃縮液から研磨材を回収する。また、この方法におけるUF膜の目詰まりを防止するために、排スラリを界面活性剤の存在下にpH6.8以下で凝集処理し、凝集処理水をUF膜分離処理する方法が提案されている(特開2000−126768号公報)。この方法では、UF膜分離処理の透過水を更にRO膜分離処理して水を回収する。   2. Description of the Related Art Conventionally, as a method for recovering an abrasive from waste slurry discharged from a CMP process, a method of performing a membrane separation process using a UF (ultrafiltration) membrane has been proposed (for example, Japanese Patent Application Laid-Open No. 8-115589). . In this method, the exhaust slurry is subjected to a microfiltration (UF) membrane separation treatment to remove coarse impurities, and then the UF membrane separation treatment is performed to recover the abrasive from the concentrated liquid. In order to prevent clogging of the UF membrane in this method, a method is proposed in which the waste slurry is agglomerated at a pH of 6.8 or less in the presence of a surfactant, and the agglomerated water is subjected to a UF membrane separation treatment. (Japanese Unexamined Patent Publication No. 2000-126768). In this method, the permeated water of the UF membrane separation treatment is further subjected to RO membrane separation treatment to recover water.

ところで、CMP排水は、そのCMP工程の種別、時期等によりその組成、濃度、性状等が異なる。しかして、研磨材として特にセリア(CeO)系の研磨材を用いた場合には、スラリの分散を十分に行うために、分散剤として分子量が数百程度と分子量の大きいカルボン酸が添加されると共に、pH調整のための有機アルカリ(例えば、TMAH:テトラメチルアンモニウムハイドライド)が添加されるため、排スラリから研磨材を分離回収した分離水として、TOC濃度として400〜600mg/Lというような高TOC含有CMP排水が排出される。 By the way, the composition, concentration, property, and the like of the CMP waste water differ depending on the type and timing of the CMP process. Thus, particularly when a ceria (CeO 2 ) -based abrasive is used as an abrasive, a carboxylic acid having a molecular weight of about several hundreds and a large molecular weight is added as a dispersant in order to sufficiently disperse the slurry. In addition, since an organic alkali (for example, TMAH: tetramethylammonium hydride) for pH adjustment is added, the TOC concentration is 400 to 600 mg / L as separated water obtained by separating and recovering the abrasive from the waste slurry. High TOC content CMP waste water is discharged.

従来、このようなTOC濃度の高い水は、物理・化学的な処理では処理し得ず、水回収のためには前処理として生物処理を組み込む必要があるとされている。従って、高TOC含有CMP排水についても、従来は、他のフッ酸系排水と混合して凝集・沈殿処理するか、或いは、高TOC含有CMP排水のみで凝集・沈殿処理した後、フッ酸系排水の凝集・沈殿処理水と混合して処理された後放流されており、水回収は行われていなかった。   Conventionally, water having such a high TOC concentration cannot be treated by physical or chemical treatment, and it is said that biological treatment must be incorporated as a pretreatment for water recovery. Therefore, high TOC-containing CMP wastewater is conventionally mixed with other hydrofluoric acid-based wastewaters for coagulation / precipitation treatment, or after coagulation / precipitation treatment only with high-TOC-containing CMP wastewater, hydrofluoric acid wastewater It was discharged after being mixed with the coagulation / precipitation treated water, and no water was collected.

なお、前述の特開2000−126768号公報の方法を、このような高TOC含有CMP排水に適用した場合、pH6.8以下の条件でUF膜分離処理した後、pH中性のUF膜分離処理の透過水をRO膜分離処理することにより、RO膜面においてTOC成分の高濃縮による膜面の汚染やスライム障害(TOC濃度が高いとそれをエサとするバクテリアが発生・増殖し、これによりスライム障害が起きる。)の問題があり、膜差圧の上昇で、膜フラックスの低下や処理水質の悪化を招く。
特開平8−115892号公報 特開2000−126768号公報
In addition, when the method of the above-mentioned JP-A-2000-126768 is applied to such a high TOC-containing CMP wastewater, a pH-neutral UF membrane separation treatment is performed after a UF membrane separation treatment under a condition of pH 6.8 or lower. The RO membrane surface is treated with RO membrane separation to contaminate the surface of the membrane due to high concentration of the TOC component and to cause slime damage (if the TOC concentration is high, bacteria are generated and propagated. A problem occurs), and an increase in the membrane differential pressure causes a decrease in membrane flux and a deterioration in the quality of treated water.
Japanese Patent Laid-Open No. 8-115589 JP 2000-126768 A

本発明は上記従来の問題点を解決し、高TOC含有CMP排水を処理して良好な水質の水を効率的に回収する方法及び装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a method and an apparatus for efficiently recovering water of good water quality by treating high TOC-containing CMP wastewater.

本発明の高TOC含有CMP排水からの水回収方法は、高TOC含有CMP排水を処理して水を回収する方法において、該CMP排水を精密濾過膜で膜分離処理する精密濾過膜分離工程と、該精密濾過膜分離工程の濾過水をpH11〜12において逆浸透膜分離処理する第1の逆浸透膜分離工程と、該第1の逆浸透膜分離工程の透過水をpH6.5〜7.5において逆浸透膜分離処理する第2の逆浸透膜分離工程とを備えてなることを特徴とする。   The method for recovering water from the high TOC-containing CMP waste water of the present invention is a method for recovering water by treating the high TOC-containing CMP waste water, and a microfiltration membrane separation step of membrane-separating the CMP wastewater with a microfiltration membrane; A first reverse osmosis membrane separation process in which the filtered water in the microfiltration membrane separation step is subjected to reverse osmosis membrane separation treatment at pH 11 to 12, and the permeated water in the first reverse osmosis membrane separation step is pH 6.5 to 7.5. And a second reverse osmosis membrane separation step for performing a reverse osmosis membrane separation treatment.

本発明の高TOC含有CMP排水からの水回収装置は、高TOC含有CMP排水を処理して水を回収する装置において、該CMP排水が導入される精密濾過膜分離手段と、該精密濾過膜分離手段の濾過水が必要に応じてpH調整された後、PH11〜12の条件で導入される第1の逆浸透膜分離手段と、該第1の逆浸透膜分離手段の透過水をpH6.5〜7.5に調整する中和手段と、該中和手段の処理水が導入される第2の逆浸透膜分離手段とを備えてなることを特徴とする。   The apparatus for recovering water from the high TOC content CMP waste water of the present invention is a device for processing the high TOC content CMP waste water to recover water, and a microfiltration membrane separation means for introducing the CMP waste water, and the microfiltration membrane separation. After the pH of the filtered water of the means is adjusted as necessary, the first reverse osmosis membrane separation means introduced under the conditions of PH 11 to 12 and the permeated water of the first reverse osmosis membrane separation means are adjusted to pH 6.5. It is characterized by comprising neutralizing means for adjusting to -7.5, and second reverse osmosis membrane separating means for introducing treated water of the neutralizing means.

本発明によれば、高TOC含有CMP排水をMF膜分離処理した後、特定のpH条件で2段RO膜分離処理することにより、膜フラックス低下、スライム障害等の問題を引き起こすことなく、簡易な操作で、長期に亘り安定な処理を行って、良好な水質の水を回収することができる。   According to the present invention, a high TOC content CMP waste water is subjected to MF membrane separation treatment, and then subjected to a two-stage RO membrane separation treatment under a specific pH condition, thereby causing simple problems without causing problems such as membrane flux reduction and slime failure. By operation, a stable treatment can be performed over a long period of time, and water with good water quality can be recovered.

即ち、本発明では、高TOC含有CMP排水をまずMF膜分離処理することにより、濁質成分を除去し、MF膜分離処理の濾過水をpH11〜12の高アルカリ条件で第1のRO膜分離処理を行うことにより、膜フラックスの低下を防止すると共に、スライム発生を抑制して水中のTOCや溶存塩類を粗取りする。その後、この第1のRO膜分離処理の透過水について更にpH6.5〜7.5の中性条件で第2のRO膜分離処理を行うことにより、残留するTOC成分と溶存塩類を高度に除去する。この第2のRO膜分離処理においては、第1のRO膜分離処理において、予めTOC成分が粗取りされているため、TOCの高濃縮による膜面汚染やスライム発生の問題はなく、TOC成分と溶存塩類の高度処理により、良好な水質の処理水を得ることができる。   That is, in the present invention, the high TOC-containing CMP wastewater is first subjected to MF membrane separation treatment to remove turbid components, and the filtered water of the MF membrane separation treatment is subjected to the first RO membrane separation under high alkaline conditions of pH 11-12. By performing the treatment, the membrane flux is prevented from being lowered, and slime generation is suppressed to roughly remove TOC and dissolved salts in water. Thereafter, the permeated water of the first RO membrane separation treatment is further subjected to a second RO membrane separation treatment under neutral conditions of pH 6.5 to 7.5, thereby highly removing residual TOC components and dissolved salts. To do. In this second RO membrane separation process, since the TOC component has been roughly removed in advance in the first RO membrane separation process, there is no problem of membrane surface contamination or slime generation due to high concentration of TOC. Treated water with good water quality can be obtained by advanced treatment of dissolved salts.

このような本発明の方法及び装置は、特にTOC濃度400mg/L以上の高濃度TOC含有CMP排水の処理に好適である。   Such a method and apparatus of the present invention is particularly suitable for the treatment of high concentration TOC-containing CMP waste water having a TOC concentration of 400 mg / L or more.

以下に図面を参照して本発明の高TOC含有CMP排水からの水回収方法及び水回収装置の実施の形態を詳細に説明する。   Embodiments of a water recovery method and a water recovery apparatus from a high TOC-containing CMP waste water according to the present invention will be described below in detail with reference to the drawings.

図1は本発明の高TOC含有CMP排水からの水回収方法及び水回収装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a method and a water recovery apparatus for recovering water from a CMP wastewater containing high TOC according to the present invention.

高TOC含有CMP排水はまず原水貯槽1を経てポンプPにより循環水槽2に導入され、ポンプPによりMF膜分離装置3に送給されてMF膜分離処理される。MF膜分離装置3の濃縮水はその一部が循環水槽2に返送されて循環処理され、残部は排水として系外に排出され、フッ素含有排水処理系統の凝集処理の入口側、或いはその後段の汚泥濃縮槽へ送給される。 High TOC content CMP wastewater is introduced into the circulation water tank 2 by the pump P 1 is first through the raw water tank 1, are fed to the MF membrane separator 3 is MF membrane separation by means of a pump P 2. A part of the concentrated water of the MF membrane separation device 3 is returned to the circulating water tank 2 and circulated, and the remaining part is discharged out of the system as waste water. It is sent to the sludge concentration tank.

本発明において、処理対象とする高TOC含有CMP排水は、TOC濃度400mg/L以上、例えば400〜600mg/L以上のCMP排水である。一般にこのようなCMP排水は、セリア(CeO)微粒子を研磨材とする研磨工程から排出されるセリア系CMP排水である。 In the present invention, the high TOC-containing CMP wastewater to be treated is a CMP wastewater having a TOC concentration of 400 mg / L or more, for example, 400 to 600 mg / L or more. In general, such CMP waste water is ceria-based CMP waste water discharged from a polishing process using ceria (CeO 2 ) fine particles as an abrasive.

本発明に係る高TOC含有CMP排水は、このようなセリア微粒子を研磨材とする研磨工程等から排出される濃厚排出スラリとその後の水洗浄排水あるいは化学洗浄排水とが混合された排水である。このCMP排水、特にセリア系CMP排水は、通常TOC成分を400〜600mg/L含み、pH11〜12、電気伝導度50〜100mS/m程度の排水である。このCMP排水に含まれるTOC成分は、主に研磨材スラリに分散剤として添加された高分子量のカルボン酸と、pH調整剤として添加されたTMAH等の有機アルカリである。   The high TOC-containing CMP waste water according to the present invention is a waste water in which a thick discharge slurry discharged from such a polishing process using ceria fine particles as an abrasive and a subsequent water cleaning waste water or chemical cleaning waste water are mixed. This CMP wastewater, particularly ceria-based CMP wastewater, usually contains 400 to 600 mg / L of TOC component, and has a pH of 11 to 12 and an electrical conductivity of about 50 to 100 mS / m. The TOC component contained in this CMP waste water is mainly a high molecular weight carboxylic acid added as a dispersant to the abrasive slurry and an organic alkali such as TMAH added as a pH adjuster.

また、このような高TOC含有CMP排水の排出量は工場規模によっても異なるが、通常7.5〜15m/hr程度である。 Moreover, although the discharge amount of such high TOC content CMP waste water changes with factory scales, it is about 7.5-15 m < 3 > / hr normally.

このような高TOC含有CMP排水が導入されるMF膜分離装置3のMF膜としては、孔径0.02〜0.1μm程度のものが好ましい。膜の材質や型式には特に制限はなく、有機膜であっても無機膜であっても良い。   As the MF membrane of the MF membrane separation apparatus 3 into which such high TOC content CMP wastewater is introduced, those having a pore diameter of about 0.02 to 0.1 μm are preferable. The material and type of the film are not particularly limited, and may be an organic film or an inorganic film.

MF膜分離処理は、バッチ処理(所定の濃縮倍率毎に濃縮水を排出する処理)、連続処理のいずれであっても良いが、タイマー制御により定期的にMF膜の逆洗を行う。   The MF membrane separation process may be either a batch process (a process for discharging concentrated water for each predetermined concentration ratio) or a continuous process, but the MF membrane is periodically back-washed by timer control.

MF膜分離処理の濃縮倍率は低過ぎると水回収率が悪くなり、高過ぎると透過流量の低下や排水循環流路閉塞などの障害が生じるため、30〜60倍程度とすることが好ましい。   If the concentration ratio of the MF membrane separation treatment is too low, the water recovery rate is deteriorated, and if it is too high, problems such as a decrease in the permeate flow rate and a blockage of the drain circulation path occur. Therefore, the concentration is preferably about 30 to 60 times.

このようなMF膜分離処理では、CMP排水中の濁質成分が分離除去されるが、溶解したTOC成分及び溶存塩類は除去されずそのままMF膜濾過水中に移行する。従って、TOC成分が濃縮されないため、このMF膜分離装置3では、TOC成分の高濃縮に起因する膜汚染やスライム発生の問題はない。また、pH変化なく、MF膜濾過水はCMP排水と同等のpHである。なお、MF膜分離処理で、表面荷電を持つ濁質が除去されることにより、MF膜濾過水の電気伝導度はCMP排水よりも20〜30%程度低くなる。   In such an MF membrane separation process, the turbid component in the CMP waste water is separated and removed, but the dissolved TOC component and dissolved salts are not removed but are transferred to the MF membrane filtered water as they are. Therefore, since the TOC component is not concentrated, the MF membrane separation apparatus 3 has no problem of membrane contamination or slime generation due to high concentration of the TOC component. Moreover, the MF membrane filtered water has a pH equivalent to that of the CMP waste water without changing the pH. In addition, by removing turbidity having surface charge in the MF membrane separation treatment, the electrical conductivity of the MF membrane filtrate is about 20 to 30% lower than that of the CMP waste water.

MF膜濾過水は、次いでRO給水槽4を経て後段の第2RO膜分離装置6の濃縮水と共に給水ポンプP及び昇圧ポンプPにより第1RO膜分離装置5に送給されてRO膜分離処理される。 The MF membrane filtered water is then supplied to the first RO membrane separation device 5 by the feed water pump P 3 and the booster pump P 4 together with the concentrated water of the second RO membrane separation device 6 in the subsequent stage through the RO water tank 4 and the RO membrane separation treatment. Is done.

ここで、RO給水槽4及び給水ポンプPは設けた方が好ましいが、MF膜濾過水の圧力が0.15MPa以上であり、CMP排水が連続的に供給され、MF膜濾過水も連続的に供給される場合には、RO給水槽4及び給水ポンプPは省略しても良い。MF膜分離装置3がバッチ処理である場合には、MF膜濾過水の流量が変化するため、RO給水槽4及び給水ポンプPが必須である。 Here, preferably who provided RO feedwater tank 4 and the water supply pump P 3, the pressure of the MF membrane filtration water is not less 0.15MPa or more, CMP wastewater is continuously fed, continuous rather MF membrane filtered water when applied to the, RO feedwater tank 4 and the water supply pump P 3 may be omitted. If MF membrane separator 3 is a batch process, the flow rate of the MF membrane filtration water is changed, RO water tank 4 and the water supply pump P 3 are essential.

本発明においては、第1RO膜分離装置5において、RO給水をpH11〜12の条件でRO膜分離処理するが、前述の如く、CMP排水、特にセリア系CMP排水は一般にpH11〜12のアルカリ性排水であり、これをMF膜分離処理して得られるMF膜濾過水も同等のpHであることから、このMF膜濾過水をpH調整することなくそのまま第1RO膜分離処理に供することができる。   In the present invention, in the first RO membrane separation device 5, RO feed water is subjected to RO membrane separation treatment under the condition of pH 11-12. As described above, CMP wastewater, particularly ceria-based CMP wastewater is generally alkaline wastewater of pH 11-12. In addition, since the MF membrane filtrate obtained by subjecting this to the MF membrane separation treatment has the same pH, the MF membrane filtration water can be directly used for the first RO membrane separation treatment without adjusting the pH.

本発明において、この第1RO膜分離処理をpH11〜12で行うことは極めて重要である。   In the present invention, it is extremely important to perform the first RO membrane separation treatment at pH 11-12.

即ち、この第1RO膜分離処理をpH中性を行う場合には、RO膜面でのTOC成分の高濃縮のために膜面汚染、スライム発生の問題が有り、膜差圧の上昇、膜フラックスの低下、処理水質(透過水水質)低下の問題を引き起こす。特にpH4〜9の条件では、スライムの発生は避けられない。また、pH中性にするための中和剤の添加が必要となり、このためにRO給水の溶存塩類濃度が高くなり、浸透圧が高くなって低フラックス運転とならざるを得ず、処理に必要なRO膜本数が多くなると共に処理水質低下などの問題が起こる。   That is, when this first RO membrane separation treatment is neutral to pH, there is a problem of membrane surface contamination and slime generation due to high concentration of TOC components on the RO membrane surface, increase in membrane differential pressure, membrane flux Cause deterioration of treated water quality (permeated water quality). In particular, generation of slime is inevitable under the condition of pH 4-9. In addition, it is necessary to add a neutralizing agent to neutralize the pH, which increases the dissolved salt concentration of the RO feedwater, which increases the osmotic pressure and requires low flux operation, which is necessary for processing. As the number of RO membranes increases, problems such as degradation of treated water occur.

第1RO膜分離装置5の給水のpHが11未満では高濃縮TOCによる膜汚染やスライムの発生を防止し得ず、pH12を超えると後段の第2RO膜分離装置6の給水のpH調整のために多量の中和剤を必要とし、好ましくない。   If the pH of the feed water of the first RO membrane separation device 5 is less than 11, membrane contamination and slime generation due to highly concentrated TOC cannot be prevented. If the pH exceeds 12, the pH of the feed water of the second RO membrane separation device 6 in the subsequent stage is adjusted. A large amount of neutralizing agent is required, which is not preferable.

本発明では、pH11〜12でRO膜分離処理するため、例えばセリア系CMP排水であればpH調整の必要がなく、高濃縮TOCによる膜面汚染や、スライムの発生、それによる膜フラックスの低下を抑制して安定かつ効率的なRO膜分離処理を行うことができる。   In the present invention, since RO membrane separation treatment is performed at a pH of 11 to 12, there is no need for pH adjustment, for example, in the case of ceria-based CMP wastewater, and membrane surface contamination due to highly concentrated TOC, generation of slime, resulting in a decrease in membrane flux. Stable and efficient RO membrane separation treatment can be performed.

第1RO膜分離装置5のRO膜としては、pH11〜12の耐アルカリ性を有するものであれば良く、特に制限はないが、例えば、低圧、超低圧のポリアミド複合膜が好適に用いられる。   The RO membrane of the first RO membrane separation device 5 is not particularly limited as long as it has alkali resistance of pH 11 to 12, and for example, a low-pressure, ultra-low pressure polyamide composite membrane is preferably used.

この第1RO膜分離装置5の水回収率は、60〜80%程度とすることが好ましい。   The water recovery rate of the first RO membrane separation device 5 is preferably about 60 to 80%.

第1RO膜分離装置5の透過水は、第1RO膜分離装置5でTOC成分の90〜96%及び溶存塩類の80%以上が除去された水であり、通常そのpHは第1RO膜分離装置5の給水より0.2〜0.5程度低い、pH10.5〜10.9程度のアルカリ性である。   The permeated water of the first RO membrane separation device 5 is water from which 90 to 96% of the TOC component and 80% or more of the dissolved salts have been removed by the first RO membrane separation device 5, and usually the pH thereof is the first RO membrane separation device 5. It is alkaline with a pH of about 10.5 to 10.9, which is about 0.2 to 0.5 lower than the feed water.

この第1RO膜透過水は、次いで塩酸(HCl)等の酸を添加してpH6.5〜7.5に調整した後、第2RO膜分離装置6でRO膜分離処理する。第2RO膜分離装置6の給水のpHが6.5未満では第2RO膜透過水への酸リークとこれによる処理水電気伝導度上昇が生じ、7.5を超えると逆に第2RO膜透過水へのアルカリリークによる処理水電気伝導度上昇が生じ、水回収しても再利用が難しくなる。   This first RO membrane permeated water is then adjusted to pH 6.5 to 7.5 by adding an acid such as hydrochloric acid (HCl) and then subjected to RO membrane separation treatment by the second RO membrane separation device 6. If the pH of the feed water of the second RO membrane separation device 6 is less than 6.5, an acid leak to the second RO membrane permeate and an increase in the electrical conductivity of the treated water occur, and if it exceeds 7.5, the second RO membrane permeate The electrical conductivity of the treated water is increased due to alkali leak, and it is difficult to reuse even if water is recovered.

なお、第1RO膜分離装置5の濃縮水は高濃度TOC成分と溶存塩類とを含む水であり、系外へ排出され、他の有機系排水と合流して処理されるが、単独で蒸発濃縮され、処分される。   The concentrated water of the first RO membrane separation device 5 is water containing a high-concentration TOC component and dissolved salts, and it is discharged out of the system and combined with other organic wastewater to be treated. And disposed of.

第2RO膜分離装置6では、このような中性の給水が導入されるが、この給水は、MF膜分離装置3で濁質が除去された後、第1RO膜分離装置5で予めCMP排水中のTOC成分及び溶存塩類の大部分が除去されているため、この第2RO膜分離装置6での濃縮による膜汚染やスライム発生、スケール発生の問題はなく、2段のRO膜分離処理による高度処理で高水質の処理水を得ることができる。   In the second RO membrane separation device 6, such neutral water supply is introduced. This turbidity is removed from the MF membrane separation device 3 by the MF membrane separation device 3, and then the first RO membrane separation device 5 preliminarily discharges the CMP water. Because most of the TOC components and dissolved salts are removed, there is no problem of membrane contamination, slime generation, and scale generation due to concentration in the second RO membrane separation device 6, and advanced processing by two-stage RO membrane separation processing. High-quality treated water can be obtained.

第2RO膜分離装置6のRO膜としては特に制限はないが、第1RO膜分離装置5のRO膜と同様の低圧、超低圧のポリアミド複合膜が好適に用いられる。   The RO membrane of the second RO membrane separation device 6 is not particularly limited, but a low-pressure and ultra-low pressure polyamide composite membrane similar to the RO membrane of the first RO membrane separation device 5 is preferably used.

この第2RO膜分離装置6における水回収率は80〜90%程度とすることが好ましい。   The water recovery rate in the second RO membrane separation device 6 is preferably about 80 to 90%.

第2RO膜分離装置6で得られる透過水は、第1RO膜透過水中のTOC成分及び溶存塩類が更に高度に除去されることにより、TOC濃度1mg/L以下、電気伝導度1mS/m以下でpH10以下の低純度純水である。   The permeated water obtained by the second RO membrane separation device 6 has a TOC concentration of 1 mg / L or less, an electric conductivity of 1 mS / m or less and a pH of 10 by further removing TOC components and dissolved salts in the first RO membrane permeated water. The following low-purity pure water.

この第2RO膜透過水は、処理水槽7を経てポンプPにより系外へ移送され、そのまま研磨材スラリの調整水として又は他の用途に使用されるか、或いは超純水の製造用原水として工水系のラインに送給される。 The first 2RO membrane permeate by the pump P 5 through the treatment water tank 7 is transferred out of the system, either directly be used to adjust or as other water uses abrasive slurry, or as the raw water for the production of ultrapure water It is sent to the industrial water line.

一方、第2RO膜分離装置6の濃縮水は、予め第1RO膜分離装置5においてTOC成分と溶存塩類の大部分が除去された第1RO膜透過水から得られる比較的清浄度の高い水であるため、RO給水槽4又は第1RO膜分離装置5の入口側に返送され、第1RO膜分離装置5の給水として再度処理される。   On the other hand, the concentrated water of the second RO membrane separation device 6 is water having a relatively high cleanliness obtained from the first RO membrane permeated water from which most of the TOC component and dissolved salts have been removed in the first RO membrane separation device 5 in advance. Therefore, it is returned to the inlet side of the RO water supply tank 4 or the first RO membrane separation device 5 and processed again as the water supply of the first RO membrane separation device 5.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
図1に示す方法により、下記表1に示す水質のセリア系CMP排水の処理を行った。
Example 1
The water quality ceria-based CMP waste water shown in Table 1 below was treated by the method shown in FIG.

各装置の仕様及び運転条件は次の通りである。
[MF膜分離装置3]
ノリタケ・アルミナ社製セラミックMF膜(孔径0.1μm)
運転条件:60倍濃縮 200L/m・hr
[第1RO膜分離装置5]
栗田工業株式会社製ポリアミドRO膜「KROA−2032」
MF膜濾過水をpH無調整で処理
給水圧力:7.5kg/cm
水回収率:80%
[第2RO膜分離装置6]
栗田工業株式会社製ポリアミドRO膜「KROA−2032」
第1RO膜透過水にHClを添加してpH7.3として処理
給水圧力:7.5kg/cm
水回収率:90%
The specifications and operating conditions of each device are as follows.
[MF membrane separator 3]
Noritake Alumina Ceramic MF membrane (pore size 0.1μm)
Operating conditions: 60 times concentration 200L / m 2 · hr
[First RO membrane separation device 5]
Polyamide RO membrane “KROA-2032” manufactured by Kurita Kogyo Co., Ltd.
Treatment of MF membrane filtered water without adjusting pH Supply water pressure: 7.5 kg / cm 2
Water recovery rate: 80%
[Second RO membrane separation device 6]
Polyamide RO membrane “KROA-2032” manufactured by Kurita Kogyo Co., Ltd.
Processed to pH 7.3 by adding HCl to the 1st RO membrane permeated water Feed water pressure: 7.5 kg / cm 2
Water recovery rate: 90%

この処理を400hr継続して行ったが、いずれの膜分離装置においてもフラックス低下やスライム発生の問題はなく、安定に処理を行うことができた。
この処理における各部の水質を表1に示した。
This treatment was continued for 400 hours, but there was no problem of flux reduction or slime generation in any membrane separation apparatus, and the treatment could be performed stably.
The water quality of each part in this treatment is shown in Table 1.

Figure 0004618073
Figure 0004618073

表1より、本発明によれば、高TOC含有CMP排水を安定かつ効率的に処理して良好な水質の処理水を得ることができることが分かる。   From Table 1, it can be seen that according to the present invention, high-TOC content CMP waste water can be treated stably and efficiently to obtain treated water with good water quality.

本発明の高TOC含有CMP排水からの水回収方法及び水回収装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the water recovery method and water recovery apparatus from the high TOC content CMP waste water of this invention.

符号の説明Explanation of symbols

1 原水貯槽
2 循環水槽
3 MF膜分離装置
4 RO給水槽
5 第1RO膜分離装置
6 第2RO膜分離装置
7 処理水槽
DESCRIPTION OF SYMBOLS 1 Raw water storage tank 2 Circulating water tank 3 MF membrane separation apparatus 4 RO water supply tank 5 1st RO membrane separation apparatus 6 2nd RO membrane separation apparatus 7 Treated water tank

Claims (3)

高TOC含有CMP排水を処理して水を回収する方法において、
該CMP排水を精密濾過膜で膜分離処理する精密濾過膜分離工程と、
該精密濾過膜分離工程の濾過水をpH11〜12において逆浸透膜分離処理する第1の逆浸透膜分離工程と、
該第1の逆浸透膜分離工程の透過水をpH6.5〜7.5において逆浸透膜分離処理する第2の逆浸透膜分離工程と
を備えてなることを特徴とする高TOC含有CMP排水からの水回収方法。
In a method of recovering water by treating high TOC-containing CMP wastewater,
A microfiltration membrane separation step of membrane separation treatment of the CMP wastewater with a microfiltration membrane;
A first reverse osmosis membrane separation step of subjecting the filtered water of the microfiltration membrane separation step to a reverse osmosis membrane separation treatment at pH 11 to 12,
A high TOC-containing CMP wastewater comprising: a second reverse osmosis membrane separation step of performing a reverse osmosis membrane separation treatment of the permeated water of the first reverse osmosis membrane separation step at pH 6.5 to 7.5 Water recovery method.
前記CMP排水のTOC濃度が400mg/L以上であることを特徴とする請求項1に記載の高TOC含有CMP排水からの水回収方法。   The method for recovering water from a high-TOC-containing CMP wastewater according to claim 1, wherein the TOC concentration of the CMP wastewater is 400 mg / L or more. 高TOC含有CMP排水を処理して水を回収する装置において、
該CMP排水が導入される精密濾過膜分離手段と、
該精密濾過膜分離手段の濾過水が必要に応じてpH調整された後、PH11〜12の条件で導入される第1の逆浸透膜分離手段と、
該第1の逆浸透膜分離手段の透過水をpH6.5〜7.5に調整する中和手段と、
該中和手段の処理水が導入される第2の逆浸透膜分離手段と
を備えてなることを特徴とする高TOC含有CMP排水からの水回収装置。
In an apparatus for treating high TOC-containing CMP wastewater and recovering water,
A microfiltration membrane separation means into which the CMP waste water is introduced;
A first reverse osmosis membrane separation means introduced under the conditions of pH 11 to 12 after the pH of the filtered water of the microfiltration membrane separation means is adjusted as necessary;
Neutralizing means for adjusting the permeated water of the first reverse osmosis membrane separating means to pH 6.5 to 7.5;
An apparatus for recovering water from CMP wastewater containing high TOC, comprising: a second reverse osmosis membrane separation unit into which treated water of the neutralization unit is introduced.
JP2005274155A 2005-09-21 2005-09-21 Method and apparatus for recovering water from CMP wastewater containing high TOC Expired - Fee Related JP4618073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274155A JP4618073B2 (en) 2005-09-21 2005-09-21 Method and apparatus for recovering water from CMP wastewater containing high TOC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274155A JP4618073B2 (en) 2005-09-21 2005-09-21 Method and apparatus for recovering water from CMP wastewater containing high TOC

Publications (2)

Publication Number Publication Date
JP2007083152A JP2007083152A (en) 2007-04-05
JP4618073B2 true JP4618073B2 (en) 2011-01-26

Family

ID=37970675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274155A Expired - Fee Related JP4618073B2 (en) 2005-09-21 2005-09-21 Method and apparatus for recovering water from CMP wastewater containing high TOC

Country Status (1)

Country Link
JP (1) JP4618073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853661B2 (en) * 2016-12-15 2021-03-31 オルガノ株式会社 Amine-containing wastewater treatment method and treatment equipment
WO2018074039A1 (en) * 2016-10-20 2018-04-26 オルガノ株式会社 Method and apparatus for treating amine-containing waste water
JP2022070609A (en) * 2020-10-27 2022-05-13 栗田工業株式会社 Treatment device of exhaust gas treatment facility wastewater
CN114993802B (en) * 2022-06-14 2024-03-22 大晟芯材料科技(山东)有限公司 Method for testing content of organic impurities in electronic-grade hydrofluoric acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081269A (en) * 2003-09-09 2005-03-31 Kurita Water Ind Ltd Treatment method and treatment apparatus for organic substance-containing wastewater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622227B2 (en) * 1993-05-26 2005-02-23 住友化学株式会社 Method for concentrating waste liquid containing photoresist
JP4253048B2 (en) * 1997-10-15 2009-04-08 栗田工業株式会社 Abrasive slurry recovery device
JPH11138162A (en) * 1997-11-06 1999-05-25 Kurita Water Ind Ltd Polishing waste water treating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081269A (en) * 2003-09-09 2005-03-31 Kurita Water Ind Ltd Treatment method and treatment apparatus for organic substance-containing wastewater

Also Published As

Publication number Publication date
JP2007083152A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US6722958B2 (en) Apparatus and process for recovering abrasive
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP2007130523A (en) Membrane washing method for water treatment system
JP3575271B2 (en) Pure water production method
JP4618073B2 (en) Method and apparatus for recovering water from CMP wastewater containing high TOC
JP4609675B2 (en) Metal polishing CMP process wastewater treatment apparatus and method
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3137831B2 (en) Membrane processing equipment
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2000051665A (en) Desalination method
JP4032496B2 (en) CMP process wastewater treatment equipment
KR102366095B1 (en) How to pickle a grater
CN216687774U (en) Integrated circuit trade grinding waste water retrieval and utilization and silica flour recovery processing system
JP4161389B2 (en) Polishing wastewater treatment method and apparatus
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3944973B2 (en) Reverse osmosis membrane treatment method
US20050211632A1 (en) Base dosing water purification system and method
JPH1133362A (en) Recovery method and apparatus of polishing agent
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP2000126768A (en) Method nd apparatus for treating cmp waste solution
JP3826497B2 (en) Pure water production method
JPH11347569A (en) Polishing waste water treatment method
CN111410332A (en) Method and device for treating silicon wafer processing wastewater
JP3444214B2 (en) Reverse osmosis membrane desalting method
JP4135324B2 (en) Waste liquid treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees