JP4135324B2 - Waste liquid treatment method - Google Patents

Waste liquid treatment method Download PDF

Info

Publication number
JP4135324B2
JP4135324B2 JP2001044681A JP2001044681A JP4135324B2 JP 4135324 B2 JP4135324 B2 JP 4135324B2 JP 2001044681 A JP2001044681 A JP 2001044681A JP 2001044681 A JP2001044681 A JP 2001044681A JP 4135324 B2 JP4135324 B2 JP 4135324B2
Authority
JP
Japan
Prior art keywords
waste liquid
copper
adjustment
treatment method
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001044681A
Other languages
Japanese (ja)
Other versions
JP2002239568A (en
Inventor
万規子 宇田川
康之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001044681A priority Critical patent/JP4135324B2/en
Publication of JP2002239568A publication Critical patent/JP2002239568A/en
Application granted granted Critical
Publication of JP4135324B2 publication Critical patent/JP4135324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コロイド状シリカを主成分とし、かつ銅化合物を含有する廃液の処理方法に関するもので、特には化学機械研磨廃液に好適な廃液の処理方法に関するものである。
【0002】
【従来の技術】
化学機械研磨(Chemical Mechanical Polish、以下CMPと略す)は、半導体製造において、シリコンウェハ母材表面にLSIを加工する半導体製造工程の中間に導入され、未加工のベアシリコンウェハ表面の平坦化に採用されている。このCMPは、半導体の集積度向上に伴って、即ちLSIの多層構造化が進むに伴って多用され、半導体工場で排出されるCMP廃液は年々増加する傾向にある。
【0003】
【発明が解決しようとする課題】
ところで、CMPでは、コロイド状シリカを主成分とする研磨剤粒子をアンモニウム塩等の電解質溶液,過酸化水素等の酸化剤,硝酸等の酸,水酸化カリウム等の無機アルカリ剤,有機アルカリ等の有機分散剤等を含む水中に分散させてなる研磨スラリが使用されるが、そのCMP廃液を処理する場合に、次のような問題が生じる。
【0004】
▲1▼CMPスラリは、コロイド状シリカを主成分とし、かつ固形物濃度として数千から数万mg/Lを含有し、さらにCMP工程のうち、銅配線の研磨を行うCMPは銅化合物,過酸化水素およびCOD成分が高濃度に含有することから、既設凝集沈殿処理を安定に機能させるには、注入する凝集剤を大幅に増加させる必要がある。即ち、凝集沈殿における薬品注入設備の改善をしなければ成らず、薬注量増加に伴い、ランニングコストが高くなる。
【0005】
▲2▼固形物濃度の高い研磨スラリ混入とこれに伴う薬注量増加により、沈殿分離後の汚泥量が大幅に増加するため、汚泥濃縮設備や脱水設備の増加が必要となるばかりでなく、フッ素系廃液と混合処理した場合、凝集沈殿時の汚泥沈降性能やフッ素系廃液中のフッ素除去性能が微妙に影響を受け、突発的にフッ素系廃液処理設備が本来目標とする放流基準値以下の水質を得られない場合が生じる。
【0006】
▲3▼CMP廃液中には銅化合物,過酸化水素およびCOD成分が高濃度に含有するため、従来の処理方式のみでは水回収やスラリの再利用は困難である。
【0007】
本発明はこのような事情に鑑みてなされたもので、コロイド状シリカ,銅化合物,過酸化水素およびCOD成分を含有するCMP廃液等を効率よく処理でき、安定して、安価で高品質な処理水を得ることができる廃液の処理方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は前記目的を達成するために請求項1の廃液の処理方法では、コロイド状シリカ,銅化合物,過酸化水素およびCOD成分を含有する廃液に対し、廃液中の過酸化水素を利用して前記COD成分を分解するためのオゾン処理をなし、次いで銅をイオン化するために1次pH調整を行い、更に濃縮されたコロイド状シリカ濃縮液と透過水に分離する膜分離を行い、この膜分離後の透過水に対し銅を分離するための2次pH調整を順に行うことを特徴としている。
【0009】
また、本発明に係る請求項2の廃液処理方法は、請求項1に記載の発明において、1次pH調整がpH5以下であることを特徴としている。
【0010】
また、本発明に係る請求項3の廃液処理方法は、請求項2に記載の発明において、2次pH調整がpH5.5以上であることを特徴としている。
【0011】
本発明によれば、錯化剤や防錆剤などのCOD成分は、廃液中に含有する過酸化水素を利用し、これにオゾンガスを供給して分解除去する。この場合、過酸化水素を利用することにより、酸化還元電位2.07Vのオゾン処理単独より2.85Vと酸化力の強い、オゾン/過酸化水素併用酸化の効果を得ることができる。また、COD成分を分解除去することで、銅錯体は分解される。
【0012】
次いで、1次pH調整をpH5以下に調整することで、銅はイオン化する。
【0013】
次いで、銅をイオン化した後に廃液を膜分離することにより、廃液は高濃度に濃縮されたコロイド状シリカ濃縮液と、イオン化した銅を含有する透過水に分離される。この場合、膜分離の事前にCOD成分を除去しているため、COD成分による膜のファウリングが生じ難くなり、分離膜の洗浄頻度を低減できる。分離膜としては、ポリスルホン,ポリアクリロニトリルなどの有機性高分子膜またはシリカなどの無機性焼成膜,即ちセラミックス膜を用いることができる。
【0014】
次いで、銅イオンを含有する透過水の銅を水酸化物にして沈殿分離する。銅はpH5以上で水酸化物を生じ出すため、pH5.5以上、好ましくはpH7に上昇させる。これにより、清澄な処理水を得ることができる。
【0015】
なお、後段に砂ろ過,活性炭設備を設置することで、さらに処理水の安定化を図ることができる。
【0016】
【発明の実施の形態】
以下に、本発明に係る廃液の処理方法を図面を参照しながらさらに詳細に説明する。
【0017】
図1は、本発明の実施する廃液処理システムのフロー図である。
【0018】
本発明において、処理対象とする廃液は、コロイド状シリカ,銅化合物,過酸化水素およびCOD成分を含有するCMP廃液である。
【0019】
この廃液処理設備は、主としてCOD成分を除去するオゾン処理塔1と、1次pH調整槽3と、膜分離装置5と、2次pH調整槽6から構成される。
【0020】
CMP廃液は、オゾン処理塔1に導入される。オゾン処理塔1には、オゾン発生器2によって発生したオゾンガスが供給されており、オゾンによってCMP廃液中のCOD成分が分解除去される。このとき、廃液中に含有する過酸化水素を利用することで、併用酸化の効果が得られ、さらに、過酸化水素の分解もできる。
【0021】
オゾン処理塔1で処理された処理水は、1次pH調整槽3に導入される。この1次pH調整槽3は、1次pH調整用薬品貯留槽4から注入される酸によってpH5以下に調整されている。そして、この1次pH調整槽3に導入された処理水は、該処理水中の銅がイオン化される。
【0022】
そして、1次pH調整槽3で処理された処理液は、膜分離装置5に通水される。ここで、CMPスラリの主成分であるコロイド状シリカは、濃縮水として系外に排出される。一方、イオン化された銅は、分離膜を通過して透過水中に混入する。
【0023】
その膜透過水は2次pH調整槽6に導入される。2次pH調整槽6には、2次pH調整用薬品貯留槽7からアルカリ液が注入され、そのアルカリ液によって2次pH調整槽6はpH5.5以上に調整されている。そして、この2次pH調整槽6に導入された膜透過水中の銅は水酸化物にされる。
【0024】
2次pH調整槽6によって処理された処理液は、沈殿槽8に導入され、該沈殿槽8で沈殿分離して銅が汚泥として系外に排出される。
【0025】
さらに、その後、沈殿槽8で処理された処理水は、砂ろ過塔9を経て活性炭塔10に導入され、それらによって、処理水中に残留したCOD成分や固形物が除去される。
【0026】
【実施例】
この実施例で用いたCMP廃液は、コロイド状シリカ1,200mg/L,固形物当たりの銅含有量0.1g−Cu/g−TS,錯化剤や防錆剤などによるCOD215mg/Lの濃度であり、pH6.2の弱酸性の廃液である。
【0027】
この廃液をオゾン処理した後、pH4,5に調整し、セラミックス製の膜分離装置に通水した。さらに、透過水をpH7に調整して処理水を得た。表1はその処理水と原水との比較を示している。
【0028】
【表1】

Figure 0004135324
【0029】
表1には、本実施例による各水質を示している。原水に含まれるCOD成分は分解除去され、さらに銅は原水に対して、固形物当たりの含有量を1/20に低減できている。また、コロイド状シリカは濃縮水に含まれており、透過水には含まれていない。
【0030】
【発明の効果】
上記したように、本発明によるCMP廃液の処理方法を採用することで、コロイド状シリカ,銅化合物,過酸化水素およびCOD成分を含有するCMP廃液を効率よく処理するとができ、清澄な処理水を得ることができ、さらに、非常に高価であり、CMP工程の約60%を占めるCMPスラリの回収が可能となり、CMPスラリの再利用ができ、しかも廃棄物も削減できる。また、膜分離の事前にCOD成分を除去しているため、COD成分による膜のファウリングが生じ難くなり、分離膜の洗浄頻度を低減できる。
【図面の簡単な説明】
【図1】本発明による廃液の処理方法を実施するための廃液処理システムを示したフロー図である。
【符号の説明】
1…オゾン処理塔,2…オゾン発生器,3…1次pH調整槽,4…1次pH調整用薬品貯留槽,5…膜分離装置,6…2次pH調整槽,7…2次pH調整用薬品貯留槽,8…沈殿槽,9…砂ろ過塔,10…活性炭塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a waste liquid containing colloidal silica as a main component and containing a copper compound, and more particularly to a method for treating a waste liquid suitable for a chemical mechanical polishing waste liquid.
[0002]
[Prior art]
Chemical mechanical polishing (hereinafter abbreviated as CMP) is introduced in the middle of semiconductor manufacturing processes for processing LSIs on the surface of a silicon wafer base material in semiconductor manufacturing, and is used to planarize the surface of raw bare silicon wafers. Has been. This CMP is frequently used as the degree of integration of semiconductors increases, that is, as the multi-layer structure of LSI advances, and the CMP waste liquid discharged from semiconductor factories tends to increase year by year.
[0003]
[Problems to be solved by the invention]
By the way, in CMP, abrasive particles containing colloidal silica as a main component are mixed with electrolyte solution such as ammonium salt, oxidizing agent such as hydrogen peroxide, acid such as nitric acid, inorganic alkaline agent such as potassium hydroxide, organic alkali, etc. A polishing slurry that is dispersed in water containing an organic dispersant or the like is used, but the following problems arise when processing the CMP waste liquid.
[0004]
(1) The CMP slurry contains colloidal silica as a main component and contains a solid concentration of several thousand to several tens of thousands mg / L. Further, in the CMP process, CMP for polishing a copper wiring is a copper compound, an excess of copper. Since hydrogen oxide and COD components are contained at high concentrations, it is necessary to greatly increase the amount of the flocculant to be injected in order to make the existing coagulation sedimentation treatment function stably. That is, the chemical injection equipment for coagulation sedimentation must be improved, and the running cost increases with an increase in the amount of chemical injection.
[0005]
(2) The amount of sludge after precipitation separation greatly increases due to the mixing of abrasive slurry with a high solids concentration and the accompanying increase in the amount of chemicals to be poured, so it is not only necessary to increase sludge concentration equipment and dewatering equipment, When mixed with fluorine waste liquid, sludge sedimentation performance during coagulation sedimentation and fluorine removal performance in fluorine waste liquid are subtly affected, and suddenly the fluorine waste liquid treatment facility falls below the target target discharge standard value. In some cases, water quality cannot be obtained.
[0006]
(3) Since the CMP waste liquid contains copper compounds, hydrogen peroxide and COD components in high concentrations, it is difficult to recover water and reuse the slurry only by the conventional treatment method.
[0007]
The present invention has been made in view of such circumstances, and can efficiently treat a CMP waste liquid containing colloidal silica, a copper compound, hydrogen peroxide and a COD component, stably, inexpensively and with high quality. It is an object of the present invention to provide a waste liquid treatment method capable of obtaining water.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a waste liquid treatment method according to claim 1, wherein the waste liquid containing colloidal silica, copper compound, hydrogen peroxide and COD component is used by utilizing hydrogen peroxide in the waste liquid. Ozone treatment is performed to decompose the COD component, then primary pH adjustment is performed to ionize copper, and membrane separation is performed to separate the concentrated colloidal silica concentrate into permeated water. It is characterized in that secondary pH adjustment for separating copper from subsequent permeated water is sequentially performed .
[0009]
The waste liquid treatment method according to claim 2 of the present invention is characterized in that, in the invention according to claim 1, the primary pH adjustment is pH 5 or less.
[0010]
According to a third aspect of the present invention, there is provided the waste liquid treatment method according to the second aspect, wherein the secondary pH adjustment is pH 5.5 or more.
[0011]
According to the present invention, COD components such as complexing agents and rust preventives are decomposed and removed using hydrogen peroxide contained in the waste liquid and supplying ozone gas thereto. In this case, by using hydrogen peroxide, it is possible to obtain the effect of ozone / hydrogen peroxide combined oxidation, which has a stronger oxidizing power of 2.85 V than ozone treatment alone having a redox potential of 2.07 V. Moreover, a copper complex is decomposed | disassembled by decomposing and removing a COD component.
[0012]
Subsequently, copper is ionized by adjusting the primary pH adjustment to pH 5 or less.
[0013]
Next, the waste liquid is separated into a colloidal silica concentrate concentrated to a high concentration and a permeate containing ionized copper by membrane separation of the waste liquid after ionizing copper. In this case, since the COD component is removed in advance of the membrane separation, membrane fouling due to the COD component is difficult to occur, and the cleaning frequency of the separation membrane can be reduced. As the separation membrane, an organic polymer membrane such as polysulfone or polyacrylonitrile or an inorganic fired membrane such as silica, that is, a ceramic membrane can be used.
[0014]
Subsequently, the permeated copper containing copper ions is converted into a hydroxide and separated by precipitation. Since copper produces a hydroxide at pH 5 or higher, the pH is raised to pH 5.5 or higher, preferably pH 7. Thereby, clear treated water can be obtained.
[0015]
In addition, stabilization of treated water can be further achieved by installing sand filtration and activated carbon equipment in the subsequent stage.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Below, the processing method of the waste liquid concerning this invention is demonstrated still in detail, referring drawings.
[0017]
FIG. 1 is a flowchart of a waste liquid treatment system implemented by the present invention.
[0018]
In the present invention, the waste liquid to be treated is a CMP waste liquid containing colloidal silica, a copper compound, hydrogen peroxide and a COD component.
[0019]
This waste liquid treatment facility is mainly composed of an ozone treatment tower 1 for removing COD components, a primary pH adjustment tank 3, a membrane separation device 5, and a secondary pH adjustment tank 6.
[0020]
The CMP waste liquid is introduced into the ozone treatment tower 1. The ozone treatment tower 1 is supplied with ozone gas generated by the ozone generator 2, and the COD component in the CMP waste liquid is decomposed and removed by ozone. At this time, by using hydrogen peroxide contained in the waste liquid, an effect of combined oxidation can be obtained, and further, hydrogen peroxide can be decomposed.
[0021]
The treated water treated in the ozone treatment tower 1 is introduced into the primary pH adjustment tank 3. The primary pH adjusting tank 3 is adjusted to pH 5 or lower by an acid injected from the primary pH adjusting chemical storage tank 4. The treated water introduced into the primary pH adjusting tank 3 is ionized with copper in the treated water.
[0022]
Then, the treatment liquid treated in the primary pH adjustment tank 3 is passed through the membrane separation device 5. Here, the colloidal silica which is the main component of the CMP slurry is discharged out of the system as concentrated water. On the other hand, the ionized copper passes through the separation membrane and enters the permeated water.
[0023]
The membrane permeated water is introduced into the secondary pH adjusting tank 6. Alkaline liquid is injected into the secondary pH adjusting tank 6 from the secondary pH adjusting chemical storage tank 7, and the secondary pH adjusting tank 6 is adjusted to pH 5.5 or higher by the alkali liquid. Then, the copper in the membrane permeated water introduced into the secondary pH adjusting tank 6 is converted into a hydroxide.
[0024]
The treatment liquid treated in the secondary pH adjusting tank 6 is introduced into the precipitation tank 8, and separated by precipitation in the precipitation tank 8, and copper is discharged out of the system as sludge.
[0025]
Further, the treated water treated in the settling tank 8 is then introduced into the activated carbon tower 10 through the sand filtration tower 9, thereby removing COD components and solids remaining in the treated water.
[0026]
【Example】
The CMP waste solution used in this example is colloidal silica 1,200 mg / L, copper content 0.1 g-Cu / g-TS per solid, concentration of COD 215 mg / L due to complexing agent, rust preventive agent, etc. It is a weakly acidic waste liquid with a pH of 6.2.
[0027]
The waste liquid was treated with ozone, adjusted to pH 4 and 5, and passed through a ceramic membrane separator. Furthermore, the permeated water was adjusted to pH 7 to obtain treated water. Table 1 shows a comparison between the treated water and raw water.
[0028]
[Table 1]
Figure 0004135324
[0029]
Table 1 shows each water quality according to this example. The COD component contained in the raw water is decomposed and removed, and the copper content per solid can be reduced to 1/20 of the raw water. Colloidal silica is contained in the concentrated water and not in the permeated water.
[0030]
【The invention's effect】
As described above, the CMP waste liquid treatment method according to the present invention can be used to efficiently treat the CMP waste liquid containing colloidal silica, copper compound, hydrogen peroxide, and COD components. Furthermore, it is very expensive, and it is possible to recover the CMP slurry that occupies about 60% of the CMP process. The CMP slurry can be reused, and the waste can be reduced. Further, since the COD component is removed prior to membrane separation, membrane fouling due to the COD component is less likely to occur, and the frequency of cleaning the separation membrane can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a waste liquid treatment system for carrying out a waste liquid treatment method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ozone processing tower, 2 ... Ozone generator, 3 ... Primary pH adjustment tank, 4 ... Chemical storage tank for primary pH adjustment, 5 ... Membrane separator, 6 ... Secondary pH adjustment tank, 7 ... Secondary pH Chemical storage tank for adjustment, 8 ... precipitation tank, 9 ... sand filter tower, 10 ... activated carbon tower

Claims (3)

コロイド状シリカ,銅化合物,過酸化水素およびCOD成分を含有する廃液に対し、廃液中の過酸化水素を利用して前記COD成分を分解するためのオゾン処理をなし、次いで銅をイオン化するために1次pH調整を行い、更に濃縮されたコロイド状シリカ濃縮液と透過水に分離する膜分離を行い、この膜分離後の透過水に対し銅を分離するための2次pH調整を順に行うことを特徴とする廃液の処理方法。To treat the waste liquid containing colloidal silica, copper compound, hydrogen peroxide and COD component with ozone treatment to decompose the COD component using hydrogen peroxide in the waste liquid, and then ionize copper Perform primary pH adjustment, membrane separation that separates into concentrated colloidal silica concentrate and permeated water, and sequentially perform secondary pH adjustment to separate copper from the permeated water after membrane separation. A method for treating waste liquid. 前記1次pH調整はpH5以下であることを特徴とする請求項1に記載の廃液の処理方法。The waste liquid treatment method according to claim 1, wherein the primary pH adjustment is pH 5 or less. 前記2次pH調整はpH5.5以上であることを特徴とする請求項2に記載の廃液の処理方法。The waste liquid treatment method according to claim 2, wherein the secondary pH adjustment is pH 5.5 or more.
JP2001044681A 2001-02-21 2001-02-21 Waste liquid treatment method Expired - Fee Related JP4135324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044681A JP4135324B2 (en) 2001-02-21 2001-02-21 Waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044681A JP4135324B2 (en) 2001-02-21 2001-02-21 Waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2002239568A JP2002239568A (en) 2002-08-27
JP4135324B2 true JP4135324B2 (en) 2008-08-20

Family

ID=18906631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044681A Expired - Fee Related JP4135324B2 (en) 2001-02-21 2001-02-21 Waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP4135324B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406751B2 (en) * 2003-05-13 2010-02-03 Dowaメタルテック株式会社 Method for storing or transporting hydrogen peroxide-containing wastewater and processing method
JP5568259B2 (en) * 2009-07-14 2014-08-06 日本錬水株式会社 Waste water treatment method and waste water treatment apparatus
JP2011212596A (en) * 2010-03-31 2011-10-27 Dowa Eco-System Co Ltd Method for oil/water separation utilizing sand filtration
AT519319B1 (en) * 2016-11-14 2020-09-15 Va Tech Wabag Gmbh Treatment of wastewater into drinking water using ozone

Also Published As

Publication number Publication date
JP2002239568A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
TWI245744B (en) System and method for removing deep sub-micron particles from water
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
TWI540103B (en) Method for removing boron from a boron-containing wastewater
JP4609675B2 (en) Metal polishing CMP process wastewater treatment apparatus and method
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
TW589284B (en) Liquid treatment method and apparatus
JP4135324B2 (en) Waste liquid treatment method
JP4032496B2 (en) CMP process wastewater treatment equipment
JP2007125519A (en) Method and apparatus for producing ultrapure water
Kin et al. Treatment of chemical–mechanical planarization wastes by electrocoagulation/electro-Fenton method
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP4618073B2 (en) Method and apparatus for recovering water from CMP wastewater containing high TOC
JP2009125708A (en) Method for treating cmp wastewater
JP4899565B2 (en) Water treatment apparatus and water treatment method
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP2002096068A (en) Treating method and device for waste water of desalting
JP2001300576A (en) Sewage treating method
JP3928484B2 (en) Functional water recovery method
JP3826497B2 (en) Pure water production method
JP2004091224A (en) Recovery apparatus of fluorine aqueous solution or hydrofluoric acid aqueous solution, its recovery method, and circulating and using system of the same
WO2023234047A1 (en) Treatment method for fluorine- and aluminum-containing water
KR20030095682A (en) A ozonize filtration type waste water process method and a waste water disposal apparatus thereof
JP4142994B2 (en) Fluorine-containing water treatment method and treatment apparatus therefor
JP2003236571A (en) Treatment method for organic wastewater containing copper
JPH11192480A (en) Device for recovering and treating waste alkaline silica polishing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees