JPH11192480A - Device for recovering and treating waste alkaline silica polishing water - Google Patents

Device for recovering and treating waste alkaline silica polishing water

Info

Publication number
JPH11192480A
JPH11192480A JP10010026A JP1002698A JPH11192480A JP H11192480 A JPH11192480 A JP H11192480A JP 10010026 A JP10010026 A JP 10010026A JP 1002698 A JP1002698 A JP 1002698A JP H11192480 A JPH11192480 A JP H11192480A
Authority
JP
Japan
Prior art keywords
exchange resin
water
polishing
silica
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10010026A
Other languages
Japanese (ja)
Other versions
JP3940864B2 (en
Inventor
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP01002698A priority Critical patent/JP3940864B2/en
Publication of JPH11192480A publication Critical patent/JPH11192480A/en
Application granted granted Critical
Publication of JP3940864B2 publication Critical patent/JP3940864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering and treating a waste alkaline silica polishing water by which the silica in the waste water is easily and efficiently removed by incorporating a membrane separator for separating the waste alkaline silica polishing water and an anion-exchange treating device for treating the permeated water obtained from the separator. SOLUTION: A membrane separator for separating a waste alkaline silica polishing water discharged from the chemical and mechanical polishing stage in a semiconductor producing process by using a separation membrane (preferably ultrafilter membrane) and an ion-exchange treating device for bringing the permeated water obtained from the membrane separator into contact with an ion-exchange resin including an anion-exchange resin (preferably a strongly basic anion-exchange resin) to obtain the treated water are provided to constitute this device for recovering and treating the waste alkaline silica polishing water. The device including a single-bed anion-exchange resin is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ系シリカ
研磨排水の回収処理装置に関し、詳しくは、半導体デバ
イス製造プロセスにおけるケミカルメカニカルポリッシ
ング(CMP)工程から排出されるアルカリ系シリカ研
磨排水から水や場合によっては更に研磨液(研磨剤)を
回収する場合に好適に用いられるアルカリ系シリカ研磨
排水の回収処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for collecting and recovering alkaline silica polishing wastewater, and more particularly to a method for recovering water from alkaline silica polishing wastewater discharged from a chemical mechanical polishing (CMP) step in a semiconductor device manufacturing process. The present invention also relates to an alkaline silica polishing wastewater recovery treatment apparatus which is preferably used when recovering a polishing liquid (polishing agent).

【0002】[0002]

【従来の技術】半導体デバイスは、通常、絶縁層や配線
層などをウェハ上に積層した多層構造を有している。こ
のような半導体デバイスでは、ウェハやウェハ上に形成
された各層の表面を平坦化することが要求されることが
多い。例えば、多層配線層を有する半導体集積回路を形
成する場合、多層配線間の層間絶縁層の表面を平坦化す
る必要がある。例えば、第1層の配線層形成後、その上
部に絶縁層としてのシリコン酸化膜を形成すると第1層
の配線層の存在のためにシリコン酸化膜表面に凹凸が生
じ、このままフォトリソグラフィー及びドライエッチン
グにより第2層の配線層を形成すると、レジストパター
ニングにおいて凹凸部で露光焦点が合わなかったり、段
差部にドライエッチング残りが生じたりするなどの不具
合が生じる。
2. Description of the Related Art A semiconductor device usually has a multilayer structure in which an insulating layer, a wiring layer, and the like are stacked on a wafer. In such a semiconductor device, it is often required to flatten the surface of the wafer or each layer formed on the wafer. For example, when forming a semiconductor integrated circuit having a multilayer wiring layer, it is necessary to flatten the surface of the interlayer insulating layer between the multilayer wirings. For example, if a silicon oxide film as an insulating layer is formed thereon after forming the first wiring layer, the surface of the silicon oxide film becomes uneven due to the presence of the first wiring layer, and photolithography and dry etching are performed as they are. Thus, when the second wiring layer is formed, there occur problems such as that the focus of exposure is not focused on the concave and convex portions in the resist patterning, and that dry etching remains on the step portions.

【0003】そこで、半導体デバイスの製造工程におい
ては、ウェハやウェハ上に形成された多層配線用層間絶
縁膜や埋込配線用メタル膜等を平坦化するために、これ
らを研磨する研磨工程が行われている。
Therefore, in the process of manufacturing a semiconductor device, a polishing step for polishing a wafer, an interlayer insulating film for multilayer wiring, a metal film for buried wiring, and the like formed on the wafer is performed. Have been done.

【0004】近年の半導体デバイスの高集積度化に伴
い、このような研磨工程において、更に精密な研磨が必
要とされ、ケミカルメカニカルポリッシング(CMP)
と称される方式が採用されている。具体的には、ケミカ
ルメカニカルポリッシングとは、SiO2 (コロイダル
シリカ)、CeO2 、Al2 3 、MnO2 等の研磨剤
粒子をアンモニウム塩やカリウム塩等の電解質の溶液、
過酸化水素等の酸化剤、硝酸、弗酸、バッファード弗酸
等の酸、水酸化カリウムや水酸化アンモニウム等の無機
アルカリ剤、アルカノールアミン等の有機アミンや有機
アルカリ等の有機分散剤等の薬剤を含む水中に分散させ
て得られる分散体を研磨液(スラリー)として用いて研
磨するものであり、通常は、ポリウレタン等からなる研
磨パッド上で研磨する。これらの中でも、アルカリ系シ
リカ研磨液(スラリー)は、主に半導体デバイスの製造
工程で層間絶縁膜(SiO2 膜)の平坦化のために使用
される。このアルカリ系シリカ研磨液は、コロイダルシ
リカとアルカリ剤を主成分とするものである。
With the recent increase in the degree of integration of semiconductor devices, more precise polishing is required in such a polishing step, and chemical mechanical polishing (CMP) is required.
A system referred to as a "square" is adopted. Specifically, chemical mechanical polishing refers to polishing of abrasive particles such as SiO 2 (colloidal silica), CeO 2 , Al 2 O 3 , and MnO 2 with a solution of an electrolyte such as an ammonium salt or a potassium salt.
Oxidizing agents such as hydrogen peroxide, acids such as nitric acid, hydrofluoric acid, and buffered hydrofluoric acid; inorganic alkali agents such as potassium hydroxide and ammonium hydroxide; organic dispersants such as organic amines such as alkanolamines and organic alkalis; Polishing is performed by using a dispersion obtained by dispersing in water containing a drug as a polishing liquid (slurry), and is usually polished on a polishing pad made of polyurethane or the like. Among them, the alkaline silica polishing liquid (slurry) is mainly used for flattening an interlayer insulating film (SiO 2 film) in a semiconductor device manufacturing process. The alkaline silica polishing liquid contains colloidal silica and an alkaline agent as main components.

【0005】このような研磨工程において、研磨液、並
びに、ウェハや半導体デバイスの各層材料及び研磨パッ
ドから削り取られて生じる研磨屑を含む研磨排水が排出
される。なお、研磨剤粒子そのものも破砕されて研磨屑
となるものが生じる。この研磨屑は研磨剤粒子の研磨力
を低下させる。また、研磨中に研磨剤粒子が乾燥してゲ
ル化したり、凝集して粗大化することがある。このよう
な研磨屑の中で、大粒径の研磨屑や凝集物は、半導体デ
バイスの各層の研磨面を傷つける原因になるし、また、
研磨屑の蓄積により研磨力が低下するので、研磨排水
は、再利用されずに排水処理されている。
[0005] In such a polishing step, polishing liquid and polishing wastewater containing polishing debris generated by scraping from the material of each layer of the wafer and the semiconductor device and the polishing pad are discharged. Note that the abrasive particles themselves are also crushed to produce abrasive dust. The polishing debris reduces the polishing power of the abrasive particles. Further, during polishing, the abrasive particles may dry and gel, or may aggregate and coarsen. Among such polishing debris, large-diameter polishing debris and aggregates cause damage to the polished surface of each layer of the semiconductor device, and
Since the polishing power is reduced due to the accumulation of polishing debris, the polishing wastewater is drained without being reused.

【0006】[0006]

【発明が解決しようとする課題】一方、半導体デバイス
製造工程において、近年の半導体デバイスの高集積度化
に伴い精密研磨工程が増加しており、研磨液の使用量が
飛躍的に増大し、それに伴い研磨排水の排出量も増大
し、研磨排水の排水処理過程で固液分離されて生じる汚
泥(スラッジ)量も増大している。この研磨排水の処分
方法としては、(1)全量外部業者引取処分(産業廃棄
物処理)する方法、(2)凝集沈澱処理し、濾過等の固
液分離により得られる汚泥を外部業者引取処分(産業廃
棄物処理)し、透過水(処理水)を中和して放流する方
法、(3)限外濾過膜処理して、濃縮水を外部業者引取
処分(産業廃棄物処理)し、透過水(処理水)を中和し
て放流する方法等がある。近年のCMP工程から排出さ
れる研磨排水量の激増に伴い、研磨排水の処分方法も
(1)→(2)→(3)へと変化してきている。今後も
益々研磨排水量が増加することが予想され、排水のリサ
イクルのニーズが生じて来ている。
On the other hand, in the semiconductor device manufacturing process, the precision polishing process has been increasing with the recent increase in the degree of integration of semiconductor devices, and the amount of polishing liquid used has increased dramatically. Accordingly, the discharge amount of the polishing wastewater also increases, and the amount of sludge (sludge) generated by solid-liquid separation in the wastewater treatment process of the polishing wastewater also increases. Disposal methods of this polishing wastewater include (1) a method of collecting all the waste by an external contractor (industrial waste treatment), and (2) a sludge obtained by solid-liquid separation such as coagulation and sedimentation and filtration. Industrial waste treatment), neutralizing permeated water (treated water) and discharging it. (3) Ultrafiltration membrane treatment, concentrated water collected by external contractors (industrial waste treatment), and permeated water (Treated water) is neutralized and discharged. With the rapid increase in the amount of polishing wastewater discharged from the CMP process in recent years, the disposal method of polishing wastewater has also changed from (1) to (2) to (3). It is expected that the polishing wastewater volume will continue to increase in the future, and the need for wastewater recycling has arisen.

【0007】CMP工程で前述したアルカリ系シリカ研
磨液から生じる研磨排水、即ち、アルカリ系シリカ研磨
排水は、該研磨液が主として層間絶縁膜(SiO2 膜)
の平坦化を行うものであるから、必然的に微細なシリカ
粒子とアルカリを主成分とするものである。一方、この
アルカリ系シリカ研磨排水は、半導体デバイスの製造工
程から排出される排水であるという性格上、これらの成
分以外の不純物は非常に少ない。アルカリ系シリカ研磨
排水は、研磨液の原液と比べて、一般に、リンス水等に
よって数十から数百倍程度に希釈されて排出されるが、
この排水に含有されるシリカ粒子量は依然として多く、
何らかの処理が必要である。
The polishing wastewater generated from the above-mentioned alkaline silica polishing liquid in the CMP step, that is, the alkaline silica polishing wastewater is mainly composed of an interlayer insulating film (SiO 2 film)
Therefore, it is inevitable to use fine silica particles and alkali as main components. On the other hand, since the alkaline silica polishing wastewater is wastewater discharged from a semiconductor device manufacturing process, impurities other than these components are extremely small. Alkaline silica polishing wastewater is generally diluted to several tens to several hundred times by rinsing water and discharged as compared with the stock solution of the polishing liquid,
The amount of silica particles contained in this wastewater is still large,
Some processing is required.

【0008】限外濾過膜(場合によっては精密濾過膜)
によってアルカリ系シリカ研磨排水から効果的にシリカ
粒子は分離排除できるが、透過水は依然として高アルカ
リ性で、また、溶存シリカが多量に含まれるため、回収
水として利用されるに至っていない。
[0008] Ultrafiltration membrane (optionally microfiltration membrane)
Although silica particles can be effectively separated and removed from the alkaline silica polishing wastewater, the permeated water is still highly alkaline and contains a large amount of dissolved silica, so that it has not been used as recovered water.

【0009】凝集沈澱処理、濾過等の固液分離により得
られる処理水も、多量の添加された凝集剤等の不純物を
含むため、回収水として利用されるに至っていない。こ
のようなことから、アルカリ系シリカ研磨排水量の増大
は、処理コストの増大をもたらすだけでなく、水資源の
有効活用という観点からも問題となってきている。
The treated water obtained by solid-liquid separation such as coagulation sedimentation treatment and filtration has not been used as recovered water because it contains a large amount of impurities such as a coagulant added. For this reason, an increase in the amount of alkaline silica polishing wastewater not only causes an increase in treatment cost, but also poses a problem from the viewpoint of effective utilization of water resources.

【0010】上述の状況に鑑み、本発明は、アルカリ系
シリカ研磨排水から回収水として再利用できる処理水を
効率的に得ることができるアルカリ系シリカ研磨排水の
回収処理装置を提供することを目的とする。
In view of the above situation, an object of the present invention is to provide an apparatus for recovering and processing alkaline silica polishing wastewater which can efficiently obtain treated water that can be reused as recovered water from the alkaline silica polishing wastewater. And

【0011】[0011]

【課題を解決するための手段】本発明は、半導体デバイ
ス製造プロセスにおけるケミカルメカニカルポリッシン
グ(CMP)工程から排出されるアルカリ系シリカ研磨
排水を分離膜を用いて膜分離処理する膜分離装置、及
び、前記膜分離装置から得られる透過水を少なくとも陰
イオン交換樹脂を含むイオン交換樹脂と接触させて処理
水を得るイオン交換処理装置を含むことを特徴とするア
ルカリ系シリカ研磨排水の回収処理装置を提供するもの
である。本発明の装置において、上記分離膜としては、
場合によっては精密濾過膜等を用いることができるが、
コロイダルシリカの除去率等の観点から孔径1nm〜1
00nmの限外濾過膜が好ましく、また、後述するよう
に、特に、上記イオン交換処理装置が、少なくとも単床
の陰イオン交換樹脂を含むことが好ましい。また、上記
分離膜は、有機膜であってもセラミック膜等の無機膜で
あっても良い。
SUMMARY OF THE INVENTION The present invention provides a membrane separation apparatus for subjecting an alkaline silica polishing wastewater discharged from a chemical mechanical polishing (CMP) step in a semiconductor device manufacturing process to a membrane separation treatment using a separation membrane. An alkaline silica polishing wastewater recovery treatment apparatus, comprising: an ion exchange treatment apparatus for obtaining treated water by bringing permeated water obtained from the membrane separation apparatus into contact with an ion exchange resin containing at least an anion exchange resin. Is what you do. In the apparatus of the present invention, as the separation membrane,
In some cases, a microfiltration membrane or the like can be used,
From the viewpoint of the removal rate of colloidal silica, etc.
A 00 nm ultrafiltration membrane is preferable, and as described later, it is particularly preferable that the ion exchange treatment device includes at least a single-bed anion exchange resin. Further, the separation membrane may be an organic membrane or an inorganic membrane such as a ceramic membrane.

【0012】前述のように、アルカリ系シリカ研磨液
(スラリー)は、コロイダルシリカ及び化学的エッチン
グ剤と分散剤(図4のコロイダルシリカ−水系における
pHの効果を示すグラフにおいて、アルカリ側に安定ゾ
ル相があることから分散剤としてアルカリが機能するこ
とが分かる)としての両役割を果たすアルカリ剤を主成
分とするもので、主に半導体デバイス製造プロセスで層
間絶縁膜(SiO2 膜)の平坦化の目的で使用されてい
る。この平坦化の機構は、層間絶縁膜(SiO2膜)を
アルカリで化学的にエッチングしながらシリカ微粒子で
研磨するものである。従って、研磨屑として生じるシリ
カ微粒子は超微細であり、コロイド粒子のレベルとな
る。また、アルカリ系シリカ研磨剤で、一部ウェハ等の
ベアシリコン(Si、bare silicon)を研磨することも
あり、そのため研磨排水中にSiが含まれてくることも
あるが、やはり化学的エッチングを伴う研磨であるの
で、コロイド状の超微細なSiであり、水と反応し、水
素ガスの発生を伴い少なくともSi微粒子の表面部分は
シリカ等に酸化されている。上記のことより明らかなよ
うに、アルカリ系シリカ研磨排水は、高濃度のシリカ微
粒子が高pHの水溶液中に分散されている分散体であ
る。
As described above, the alkaline silica polishing liquid (slurry) contains colloidal silica, a chemical etching agent and a dispersant (in the graph showing the effect of pH in the colloidal silica-water system shown in FIG. (It is understood that the alkali functions as a dispersant because of the presence of a phase.) The main component is an alkali agent which plays both roles as a dispersant, and is mainly used for flattening an interlayer insulating film (SiO 2 film) in a semiconductor device manufacturing process. Is used for the purpose of. This flattening mechanism is to polish the interlayer insulating film (SiO 2 film) with fine silica particles while chemically etching it with alkali. Therefore, the silica fine particles generated as polishing dust are ultrafine, which is at the level of colloid particles. In addition, bare silicon (Si, bare silicon) such as wafers may be partially polished with an alkaline silica polishing agent. Therefore, Si may be contained in polishing wastewater. Since the polishing is accompanied by this, it is colloidal ultra-fine Si, reacts with water, generates hydrogen gas, and at least the surface portion of the Si fine particles is oxidized to silica or the like. As is clear from the above, the alkaline silica polishing wastewater is a dispersion in which high-concentration silica fine particles are dispersed in a high-pH aqueous solution.

【0013】一般に、アルカリ剤としては水酸化カリウ
ム(KOH)、アンモニア、有機アミン等が使用され、
研磨液のpHは9〜12(通常は、pH10前後)に調
整されている。また、シリカ微粒子は、その粒度分布が
数nm〜数百nm(平均粒径は、数百nm)と超微細で
あり、そのシリカ微粒子濃度が重量パーセントで数%〜
十数%であるようなアルカリ系シリカ研磨液が使用され
ている。
Generally, potassium hydroxide (KOH), ammonia, organic amines, etc. are used as the alkaline agent.
The pH of the polishing liquid is adjusted to 9 to 12 (usually around pH 10). Further, the silica fine particles are ultrafine with a particle size distribution of several nm to several hundred nm (the average particle size is several hundred nm), and the concentration of the silica fine particles is several percent by weight.
Alkaline silica polishing liquid having a concentration of more than 10% is used.

【0014】このため、新品研磨液における溶存シリカ
濃度はほぼ飽和状態であり、pH10以上の場合は、溶
存シリカ濃度は1000ppm以上にもなる(図5のシ
リカ溶解度とpHの関係を示すグラフ参照)。
For this reason, the dissolved silica concentration in the new polishing liquid is almost saturated, and when the pH is 10 or more, the dissolved silica concentration becomes 1000 ppm or more (see the graph showing the relationship between silica solubility and pH in FIG. 5). .

【0015】一方、CMP工程を経て排出される研磨排
水は、研磨液に対して、通常、数十〜数百倍程度にリン
ス水等で希釈されたものである。従って、研磨装置から
排出された直後の研磨排水の溶存シリカ濃度は低減され
たものであるが、研磨排水は依然として高pH値を有し
(例えば、pH10の研磨液を水で百倍希釈したとして
もpH値は8である)、かかる高pHの水中にシリカ微
粒子が分散している形であるため、時間の経過と共に飽
和溶存シリカ濃度に向かって徐々にシリカがシリカ微粒
子表面から溶け出して溶存シリカとなるので、研磨排水
の溶存シリカ濃度は上昇していく(図5のグラフ参
照)。従って、アルカリ系シリカ研磨排水処理装置へ送
る段階の被処理水としてのアルカリ系シリカ研磨排水中
には、百ppm以上と高濃度の溶存シリカを含む場合が
通常である。但し、溶存シリカ濃度は、希釈倍率、p
H、経過時間等によって異なる。
On the other hand, the polishing wastewater discharged after the CMP step is usually diluted with rinsing water or the like about several tens to several hundreds times the polishing liquid. Accordingly, although the concentration of dissolved silica in the polishing wastewater immediately after being discharged from the polishing apparatus is reduced, the polishing wastewater still has a high pH value (for example, even if a polishing liquid having a pH of 10 is diluted 100 times with water). The pH value is 8). Since the silica fine particles are dispersed in such high-pH water, the silica gradually dissolves from the surface of the silica fine particles toward the saturated dissolved silica concentration with the lapse of time. Therefore, the concentration of dissolved silica in the polishing wastewater increases (see the graph in FIG. 5). Therefore, the alkaline silica polishing wastewater as the water to be treated at the stage of sending to the alkaline silica polishing wastewater treatment apparatus usually contains dissolved silica having a high concentration of 100 ppm or more. However, the dissolved silica concentration is determined by the dilution ratio, p
H, elapse time, etc.

【0016】シリカはpHによって様々な挙動を示す。
(i)pH8以上で劇的にシリカの溶解度が増す(図5
のシリカ溶解度とpHの関係を示すグラフ参照)。(i
i)溶存シリカは、中性では無電荷であるが、アルカリ
性では負電荷を帯びる(図6の水中における溶存シリカ
の濃度分布参照。但し、図6において、zは電荷を表
し、−1価〜−3価)。(iii) コロイダルシリカは、p
H2以上で負の表面電荷を帯びる(図4のコロイダルシ
リカ−水系におけるpHの影響のグラフ参照)。
Silica exhibits various behaviors depending on pH.
(I) The solubility of silica dramatically increases at pH 8 or higher (FIG. 5)
(See graph showing relationship between silica solubility and pH.) (I
i) Dissolved silica has no charge when neutral, but takes a negative charge when alkaline (see the concentration distribution of dissolved silica in water in FIG. 6; however, in FIG. 6, z represents electric charge and −1 valence to −). -3). (iii) Colloidal silica is p
It has a negative surface charge above H2 (see graph of pH effect in colloidal silica-water system in FIG. 4).

【0017】本発明者等は、膜分離装置で処理して得ら
れる透過水をイオン交換樹脂で処理すると、該樹脂内で
pHの変化が起こり、シリカの除去効果が異なることを
発見した。但し、実質的なシリカの除去効果を有するの
は陰イオン交換樹脂である。次に、上記透過水をイオン
交換樹脂で処理する例を示すが、ここで、簡略化のため
にAER=強塩基性陰イオン交換樹脂の単床、CER=
陽イオン交換樹脂の単床、MB=強塩基性陰イオン交換
樹脂と陽イオン交換樹脂との混合イオン交換樹脂からな
る混床を表す。 透過水→AER→CER→処理水 透過水→AER→MB→処理水 透過水→CER→AER→処理水 透過水→MB→AER→処理水 透過水→MB→処理水
The present inventors have discovered that when permeated water obtained by treatment with a membrane separation device is treated with an ion-exchange resin, a change in pH occurs in the resin, and the silica removal effect is different. However, it is the anion exchange resin that has a substantial silica removing effect. Next, an example in which the permeated water is treated with an ion exchange resin will be described. Here, for simplification, AER = single bed of a strongly basic anion exchange resin, CER =
Single bed of cation exchange resin, MB = mixed bed composed of mixed ion exchange resin of strongly basic anion exchange resin and cation exchange resin. Permeated water → AER → CER → Treated water Permeated water → AER → MB → Treated water Permeated water → CER → AER → Treated water Permeated water → MB → AER → Treated water Permeated water → MB → Treated water

【0018】上記の各例において透過水を処理した場合
のAER層中でのpH変化は次の通りである。 とのケースでは、AER層中で常にアルカリ性 のケースでは、AER層の入口で酸性〜AER層の出
口で中性 のケースでは、AER層の入口で中性〜AER層の出
口でも中性 のケースでは、MB層の入口でアルカリ性〜MB層の
出口で中性
The pH change in the AER layer when permeated water is treated in each of the above examples is as follows. In the case of AER layer, in the case of always alkaline in the AER layer, in the case of acidic at the entrance of the AER layer to neutral in the exit of the AER layer, in the case of neutral at the entrance of the AER layer, the case of neutral in the exit of the AER layer Alkaline at the entrance of the MB layer-neutral at the exit of the MB layer

【0019】のケースでAER層の入口で酸性なの
は、CERで処理されてアルカリが透過水から除去され
ており、且つ、シリカが弱酸であるためである。これに
対し、のケースでAER層の入口で中性なのは、MB
で処理されて、その陽イオン交換樹脂でアルカリが透過
水から除去されると共に弱酸であるシリカもその強塩基
性陰イオン交換樹脂でほぼ除去されているからである。
The acidity at the entrance of the AER layer in the case of the above is because the alkali is removed from the permeated water by the treatment with CER, and the silica is a weak acid. On the other hand, in the case of
This is because the alkali is removed from the permeated water by the cation exchange resin and silica, which is a weak acid, is almost completely removed by the strongly basic anion exchange resin.

【0020】アルカリ側で高濃度になった溶存シリカ
は、pHが中性〜酸性に傾くと、シリカの溶解度が激減
し、飽和を越えた時点で溶けきれなくなったシリカの重
合が始まり、コロイダルシリカへと変化する。
When the pH of the dissolved silica becomes high on the alkaline side, the solubility of the silica is drastically reduced when the pH is shifted from neutral to acidic, and the polymerization of the silica which cannot be completely dissolved at the point of exceeding the saturation starts, and colloidal silica is started. Changes to

【0021】陰イオン交換樹脂でコロイダルシリカも除
去できるが、その吸着能力は溶存シリカに対する吸着能
力よりも小さい。これは、コロイドはサイズが大きく、
表面電荷密度が低いためと考えられる。
[0021] Colloidal silica can also be removed by an anion exchange resin, but its adsorption capacity is smaller than that of dissolved silica. This is because colloids are large and
This is probably because the surface charge density is low.

【0022】pHが中性〜酸性に傾くと、電気的に中性
の溶存シリカの割合が増すが、シリカは弱酸であるた
め、強塩基性陰イオン交換樹脂を用いてこれを吸着除去
することができる。コロイダルシリカは、pH2付近で
表面電荷ゼロとなるが(図4参照)、陰イオン交換樹脂
による処理後も処理水のpHが2以下になることは無く
(シリカは弱酸で、他の強酸成分は含まれていないか
ら)、従って、コロイダルシリカの表面電荷は常に負電
荷を持つ。また、コロイダルシリカの表面はシラノール
基で覆われているが、シラノール基は弱酸性の官能基で
あるため、強塩基性陰イオン交換樹脂を用いて、コロイ
ダルシリカを吸着除去することができる。
When the pH is inclined from neutral to acidic, the proportion of electrically neutral dissolved silica increases. However, since silica is a weak acid, it must be absorbed and removed using a strongly basic anion exchange resin. Can be. Although the surface charge of colloidal silica becomes zero around pH 2 (see FIG. 4), the pH of the treated water does not become 2 or less even after the treatment with the anion exchange resin (silica is a weak acid, and other strong acid components are Therefore, the surface charge of the colloidal silica always has a negative charge. Further, the surface of the colloidal silica is covered with a silanol group. Since the silanol group is a weakly acidic functional group, the colloidal silica can be adsorbed and removed using a strongly basic anion exchange resin.

【0023】即ち、陰イオン交換樹脂としては強塩基性
陰イオン交換樹脂が好ましく、少なくとも強塩基性陰イ
オン交換樹脂の単床を用いれば、上記透過水中のシリカ
を効果的に除去することができる。
That is, as the anion exchange resin, a strongly basic anion exchange resin is preferable. If at least a single bed of the strongly basic anion exchange resin is used, silica in the permeated water can be effectively removed. .

【0024】一方、イオン交換樹脂を陰イオン交換樹脂
と陽イオン交換樹脂との混床として用いた場合は、吸着
帯(混床イオン交換樹脂層の吸着反応が起こっている帯
域)の下流側先端は常にほぼ中性であるため、下記の理
由により上記透過水中のシリカ除去効果が弱くなると思
われる。 (a)シリカの溶解度は中性付近で最も低く、コロイダ
ルシリカの生成量が相対的に増す(図5参照)。 (b)中性付近では、シリカ微粒子(コロイダルシリ
カ)の会合が急速に起こる条件下であるため(図4参
照)、相対的にコロイダルシリカの粒子系が大きくなる
(即ち、重くなる)。 (c)混床イオン交換樹脂層内は、固体の酸及び塩基の
中和状態であるため、アルカリ度が見掛け上低くなる。
On the other hand, when the ion-exchange resin is used as a mixed bed of an anion-exchange resin and a cation-exchange resin, a downstream end of an adsorption zone (a zone in which the adsorption reaction of the mixed-bed ion-exchange resin layer is occurring). Is always almost neutral, so the silica removal effect in the permeated water is considered to be weak for the following reasons. (A) The solubility of silica is lowest near neutrality, and the amount of colloidal silica produced relatively increases (see FIG. 5). (B) In the vicinity of neutrality, since the association of silica fine particles (colloidal silica) occurs rapidly (see FIG. 4), the particle system of colloidal silica becomes relatively large (that is, becomes heavy). (C) Since the inside of the mixed-bed ion exchange resin layer is in a neutralized state of solid acids and bases, the alkalinity is apparently low.

【0025】CMPは、半導体デバイスの製造に用いら
れるので、CMP工程から排出される研磨排水を膜分離
して得られる透過水中には溶存シリカとアルカリ以外の
不純物は極めて少なく、CaやMg等の硬度成分は元々
含まれていないので、透過水を直接的に陰イオン交換樹
脂で処理しても、硬度成分が析出して問題を生じること
は無い。
Since CMP is used in the manufacture of semiconductor devices, the permeated water obtained by subjecting the polishing wastewater discharged from the CMP process to membrane separation contains very few impurities other than dissolved silica and alkali, such as Ca and Mg. Since the hardness component is not originally contained, even if the permeated water is directly treated with an anion exchange resin, the hardness component does not precipitate and cause a problem.

【0026】シリカは弱酸性なので、前述のように、陰
イオン交換樹脂としては強塩基性陰イオン交換樹脂を用
いるのが好ましい。また、必要に応じて陽イオン交換樹
脂を用いるとしても、研磨液中のアルカリ剤が水酸化カ
リウム(KOH)の場合は、これが強塩基なので、強酸
性陽イオン交換樹脂、弱酸性陽イオン交換樹脂のいずれ
を使用しても問題無いが、アルカリ剤がアンモニアや有
機アミン等の弱塩基である場合は、強酸性陽イオン交換
樹脂を用いるのが好ましい。
Since silica is weakly acidic, it is preferable to use a strongly basic anion exchange resin as the anion exchange resin as described above. Further, even if a cation exchange resin is used as required, when the alkaline agent in the polishing solution is potassium hydroxide (KOH), since this is a strong base, a strongly acidic cation exchange resin or a weakly acidic cation exchange resin is used. There is no problem in using any of them, but when the alkaline agent is a weak base such as ammonia or organic amine, it is preferable to use a strongly acidic cation exchange resin.

【0027】アルカリ系シリカ研磨排水を限外濾過膜処
理装置等の膜分離装置で処理することで、シリカ微粒子
濃縮水と溶存シリカを高濃度に含んだ透過水(コロイダ
ルシリカは殆ど含まない)とに分離される。
By treating the alkaline silica polishing wastewater with a membrane separation device such as an ultrafiltration membrane treatment device, concentrated silica fine water and permeated water containing a high concentration of dissolved silica (colloidal silica is hardly contained) can be obtained. Is separated into

【0028】陰イオン交換樹脂を上流に配設する場合
は、イオン状シリカがコロイダルシリカに変化すること
はないが、限外濾過膜処理装置等の膜分離装置から得ら
れる透過水のアルカリ濃度が高い(高pH)と、アルカ
リが陰イオン交換樹脂の再生剤として作用してしまうた
め、シリカのコンスタントリーク(定常的な漏れ)が生
じてしまう。このような場合は、下流に陰イオン交換樹
脂と陽イオン交換樹脂との混床を配設すれば、リークし
た溶存シリカを捕捉しながらアルカリも除去できるの
で、効果的である。
When the anion exchange resin is provided upstream, the ionic silica does not change to colloidal silica, but the alkali concentration of the permeated water obtained from a membrane separation device such as an ultrafiltration membrane treatment device is reduced. If the pH is high (high pH), the alkali acts as a regenerating agent for the anion exchange resin, so that a constant leak (steady leak) of silica occurs. In such a case, if a mixed bed of an anion exchange resin and a cation exchange resin is provided downstream, the alkali can be removed while capturing the dissolved silica that has leaked, which is effective.

【0029】また、陽イオン交換樹脂の後に陰イオン交
換樹脂を配設すると、前もって透過水からアルカリを除
去する点では有利であるが、陽イオン交換樹脂通過中に
コロイダルシリカが生成する点では不利である。
The arrangement of the anion exchange resin after the cation exchange resin is advantageous in that alkali is removed from the permeated water in advance, but is disadvantageous in that colloidal silica is generated during passage through the cation exchange resin. It is.

【0030】また、混床の後に陰イオン交換樹脂を配設
すると、混床でシリカの大部分とアルカリを除去できる
点では有利であるが、生成するコロイダルシリカの量が
陽イオン交換樹脂による処理に比べて多くなり、且つ、
コロイダルシリカのサイズが大きくなり易いといった点
では不利である。
It is advantageous to dispose an anion exchange resin after the mixed bed in that most of the silica and alkali can be removed in the mixed bed. However, the amount of colloidal silica produced is reduced by the treatment with the cation exchange resin. And more than
This is disadvantageous in that the size of colloidal silica tends to increase.

【0031】このように陰イオン交換樹脂と陽イオン交
換樹脂とを併用する場合において、上述したイオン交換
システムのいずれを選択するかは、アルカリ系シリカ研
磨排水の性状、処理コスト、処理水の仕様の望ましい水
質基準等に応じて決めればよい。しかし、本発明はこれ
らのシステムに限定されるものでは無く、少なくとも陰
イオン交換樹脂を含む限りにおいて他のシステムを採用
しても差し支えない。また、各イオン交換樹脂層は積層
構造として1カラム又は塔に充填し、イオン交換処理装
置を構成してもよく、複数の別個のカラム又は塔にそれ
ぞれ充填してイオン交換処理装置を構成するようにして
もよい。
When the anion exchange resin and the cation exchange resin are used in combination as described above, the choice of the ion exchange system described above depends on the properties of the alkaline silica polishing wastewater, the treatment cost, and the specifications of the treated water. It may be determined according to the desired water quality standard or the like. However, the present invention is not limited to these systems, and other systems may be employed as long as they include at least an anion exchange resin. Further, each ion exchange resin layer may be packed in one column or column as a laminated structure to constitute an ion exchange treatment device, or may be filled in a plurality of separate columns or columns to constitute an ion exchange treatment device. It may be.

【0032】また、膜分離装置から得られる透過水中の
シリカ濃度が低い場合や、処理水の仕様の水質基準が低
い場合、例えば、CMP後の水研磨(研磨液を用いず、
水だけを用いて、ウレタン等からなる研磨パッドによる
研磨)や洗浄水等の用水であって、シリカが若干含まれ
ていてもよい場合や、雑用水等として用いる場合は、混
床のみのイオン交換処理装置でも問題無い。また、更に
後段に逆浸透膜装置を配置し、逆浸透膜処理すれば、少
量の残留コロイダルシリカを除去することができるの
で、混床のみのイオン交換処理装置でも高水質の処理水
を得ることができ、通常は問題無い。しかし、シリカ濃
度が高い場合は、逆浸透膜上でシリカが濃縮されて、逆
浸透膜を閉塞させるといった問題が生じる(即ち、高濃
度シリカ含有水の逆浸透膜処理は困難を伴う)。このよ
うな場合は、シリカ濃度を低減させることができるよう
なイオン交換システムを採用するのが好ましい。
When the silica concentration in the permeated water obtained from the membrane separation device is low, or when the quality standard of the treated water is low, for example, water polishing after CMP (without using a polishing liquid,
When only water is used and polishing is performed with a polishing pad made of urethane or the like) or cleaning water is used, and silica may be slightly contained, or when used as miscellaneous water, etc. There is no problem with the exchange processing device. Further, if a reverse osmosis membrane device is further arranged at the subsequent stage and reverse osmosis membrane treatment is performed, a small amount of residual colloidal silica can be removed, so that high-quality treated water can be obtained even with an ion exchange treatment device having only a mixed bed. Can be done and there is usually no problem. However, when the silica concentration is high, there is a problem that the silica is concentrated on the reverse osmosis membrane and the reverse osmosis membrane is blocked (that is, it is difficult to treat the high-concentration silica-containing water with the reverse osmosis membrane). In such a case, it is preferable to employ an ion exchange system capable of reducing the silica concentration.

【0033】少なくとも膜分離装置とイオン交換処理装
置を経て回収される処理水は、上述したいずれのシステ
ムによる場合も原水に戻す(即ち、市水や工業用水と混
合する)ことができる。また、少なくとも単床の陰イオ
ン交換樹脂を含むイオン交換処理装置で処理を行うこと
によりシリカを充分に除去できるので、この場合は、ア
ルカリ系シリカ研磨用一次純水あるいは他の超純水製造
用一次純水として回収することも可能である。
The treated water recovered through at least the membrane separation device and the ion exchange treatment device can be returned to raw water (that is, mixed with city water or industrial water) in any of the above-described systems. Further, since silica can be sufficiently removed by performing the treatment with an ion exchange treatment apparatus containing at least a single bed of anion exchange resin, in this case, primary pure water for polishing alkaline silica or other ultrapure water for production It can be recovered as primary pure water.

【0034】また、回収される処理水を研磨装置に返送
して水研磨用水や洗浄水とする場合は、シリカ濃度は余
り問題にならないので、メインラインの一次純水を補給
水として混合し、ローカルリサイクルを行っても良い。
In the case where the recovered treated water is returned to the polishing apparatus to be used as water for polishing or cleaning water, the silica concentration does not matter so much. Local recycling may be performed.

【0035】なお、陰イオン交換樹脂や陽イオン交換樹
脂としては、処理効率の点で繊維状や粒状等のスチレン
系やアクリル系等のイオン交換樹脂が好ましい。陰イオ
ン交換樹脂は水酸化物イオン形(OH形)を用い、陽イ
オン交換樹脂は水素イオン形(H形)を用いるのが好ま
しいことは言うまでも無い。
As the anion exchange resin or cation exchange resin, fibrous or granular ion exchange resins such as styrene or acrylic are preferred from the viewpoint of processing efficiency. Needless to say, it is preferable to use a hydroxide ion form (OH form) as the anion exchange resin and a hydrogen ion form (H form) as the cation exchange resin.

【0036】[0036]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれらに限定されるものでは無い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0037】先ず、本発明のアルカリ系シリカ研磨排水
の回収処理装置の基本的なフロー図を図1に示す。研磨
装置は、ウェハや半導体デバイスの中間製品等の被研磨
物の研磨工程を実行する装置であり、単独の研磨工程の
ための装置でも、複数の研磨工程のための装置であって
もよい。この研磨装置は、ポリウレタン等からなる研磨
パッドを張り付けた回転基盤とこの上方に被研磨物を保
持する基板保持ヘッドを有している。そして、研磨液を
研磨パッド上に滴下し、研磨パッドに研磨液を染み込ま
せた状態で、基板保持ヘッドに固定したウェハや層間絶
縁膜層が形成された半導体デバイスの中間製品等の被研
磨物を回転させながら研磨パッドに押し当てる。これに
よって、研磨剤粒子としてのコロイダルシリカによる機
械的研磨作用とアルカリの化学的エッチング作用を併せ
て利用することにより、ウェハや半導体デバイスの中間
製品等の被研磨物の精密な研磨が達成される。なお、研
磨前後や研磨中においては、適宜(超)純水等を用いた
洗浄が行われると共に、研磨液による研磨の後に(超)
純水による水研磨も行う。
First, FIG. 1 shows a basic flow chart of an apparatus for collecting and processing alkaline silica polishing wastewater of the present invention. The polishing apparatus is an apparatus for performing a polishing step of an object to be polished such as a wafer or an intermediate product of a semiconductor device, and may be an apparatus for a single polishing step or an apparatus for a plurality of polishing steps. This polishing apparatus has a rotating base on which a polishing pad made of polyurethane or the like is adhered, and a substrate holding head for holding an object to be polished above the rotating base. Then, the polishing liquid is dropped on the polishing pad, and the polishing pad is impregnated with the polishing liquid, and the object to be polished, such as a wafer fixed to a substrate holding head or an intermediate product of a semiconductor device having an interlayer insulating film layer formed thereon. Press against the polishing pad while rotating. Thereby, precise polishing of the object to be polished, such as a wafer or an intermediate product of a semiconductor device, is achieved by utilizing both the mechanical polishing action of colloidal silica as the abrasive particles and the chemical etching action of alkali. . Before and after polishing and during polishing, cleaning using (ultra) pure water or the like is appropriately performed, and after polishing with a polishing liquid, (ultra)
Water polishing with pure water is also performed.

【0038】研磨装置から排出される研磨排水は、一旦
研磨排水槽に貯留され、次いで研磨排水槽から図示され
ていないポンプにより限外濾過膜等の分離膜を備えた膜
分離装置にアルカリ系シリカ研磨排水を送水し、ここで
コロイダルシリカを含む濃縮水と溶存シリカやアルカリ
等の不純物を含む透過水とに分離する。この透過水を少
なくとも陰イオン交換樹脂を含むイオン交換樹脂を充填
したイオン交換処理装置に送水する。ここで溶存シリカ
を始めとする不純物を除去し、得られる処理水を回収す
る。なお、図示されていないが、膜分離装置の前に、粗
大な固形不純物を除去するためのプレフィルター(孔径
25μm以下の保安フィルター)を設置するのが好まし
い。
The polishing wastewater discharged from the polishing apparatus is temporarily stored in a polishing wastewater tank, and then is supplied from a polishing wastewater tank to a membrane separation apparatus provided with a separation membrane such as an ultrafiltration membrane by a pump (not shown). The polishing wastewater is fed, where it is separated into concentrated water containing colloidal silica and permeated water containing impurities such as dissolved silica and alkali. The permeated water is sent to an ion exchange treatment device filled with an ion exchange resin containing at least an anion exchange resin. Here, impurities such as dissolved silica are removed, and the resulting treated water is recovered. Although not shown, a pre-filter (a security filter having a pore diameter of 25 μm or less) for removing coarse solid impurities is preferably installed before the membrane separation device.

【0039】このイオン交換処理装置において、好まし
いシステム(フロー)は下記の通りである。 (1)陰イオン交換樹脂→陽イオン交換樹脂 (2)陰イオン交換樹脂→混床(陰イオン交換樹脂と陽
イオン交換樹脂との混合イオン交換樹脂) (3)陽イオン交換樹脂→陰イオン交換樹脂 (4)混床→陰イオン交換樹脂 前述したように、これらの各イオン交換樹脂層は複数の
別個のカラムや塔に充填し、イオン交換処理装置として
構成してもよいが、例えば、陰イオン交換樹脂と陽イオ
ン交換樹脂とを積層した形で1個のカラムや塔に充填し
てイオン交換処理装置として構成してもよい。これら以
外にも、例えば、上記(1)〜(4)のシステムの任意
の場所に、必要に応じて混床、陰イオン交換樹脂、陽イ
オン交換樹脂を更に加えて配置してもよい。目的によっ
ては、陽イオン交換樹脂のみでも良い場合もあるが、本
発明では溶存シリカを除去するために少なくとも陰イオ
ン交換樹脂を含めたものである。また、陰イオン交換樹
脂と陽イオン交換樹脂の混床のみでもよい場合もある
が、溶存シリカを効果的に除去し、高純度の処理水を得
るためには、上記(1)〜(4)のシステムのように、
単床の陰イオン交換樹脂を含めるのが好ましいことは前
述の通りである。
A preferred system (flow) of the ion exchange apparatus is as follows. (1) anion exchange resin → cation exchange resin (2) anion exchange resin → mixed bed (mixed ion exchange resin of anion exchange resin and cation exchange resin) (3) cation exchange resin → anion exchange Resin (4) Mixed Bed → Anion Exchange Resin As described above, each of these ion exchange resin layers may be packed in a plurality of separate columns or columns to constitute an ion exchange treatment apparatus. The ion-exchange resin and the cation-exchange resin may be stacked in a single column or column to form an ion-exchange treatment apparatus. In addition to these, for example, a mixed bed, an anion exchange resin, and a cation exchange resin may be further added and arranged at an arbitrary place in the system of (1) to (4) as needed. Depending on the purpose, the cation exchange resin alone may be sufficient, but in the present invention, at least an anion exchange resin is included in order to remove dissolved silica. In some cases, only a mixed bed of an anion exchange resin and a cation exchange resin may be used. However, in order to effectively remove dissolved silica and obtain high-purity treated water, the above (1) to (4) Like the system of
As described above, it is preferable to include a single-bed anion exchange resin.

【0040】一方、膜分離装置から得られる濃縮水は、
業者引取処分するか、研磨液として回収する。研磨液と
して回収する場合は、例えば、特開平8−115892
号公報に開示されるシステムのように、膜分離装置を第
1段の精密濾過膜処理装置と第2段の限外濾過膜処理装
置で構成し、研磨排水を先ず精密濾過膜処理装置で精密
濾過し、粗大不純物を濃縮水側に濃縮して除去し(濃縮
水は、排水として処理される)、その透過水を限外濾過
膜処理装置で限外濾過して、その濃縮水をコロイダルシ
リカを含む研磨液として回収すると共にその透過水をイ
オン交換処理装置に送水するように本発明の装置を構成
してもよいし、また、本出願人が特願平9−19760
9号において提案した装置(システム)のように、膜分
離装置を限外濾過膜処理装置で構成し、その透過水はイ
オン交換処理装置に送水し、一方、限外濾過膜処理装置
から生じる所定径以上の粒子が濃縮された濃縮水を精密
濾過処理する精密濾過膜処理装置を設置し、これで上記
濃縮水を処理し、研磨剤として不適当な粗大粒子を精密
濾過膜の濃縮水側に除去して(濃縮水は、排水として処
理される)、その透過水を研磨液として回収するように
構成してもよい。
On the other hand, the concentrated water obtained from the membrane separation device is
Dispose of by a supplier or collect as a polishing liquid. In the case of collecting as a polishing liquid, for example, Japanese Patent Application Laid-Open No.
As shown in the system disclosed in Japanese Patent Application Publication, the membrane separation device is composed of a first-stage microfiltration membrane treatment device and a second-stage ultrafiltration membrane treatment device. Filtration removes coarse impurities by concentrating to the concentrated water side (concentrated water is treated as wastewater), ultrafiltrate the permeated water with an ultrafiltration membrane treatment device, and concentrate the concentrated water to colloidal silica. The apparatus of the present invention may be configured to collect the polishing liquid containing the water and send the permeated water to the ion exchange treatment apparatus.
As in the device (system) proposed in No. 9, the membrane separation device is constituted by an ultrafiltration membrane treatment device, and the permeated water is sent to an ion exchange treatment device, while a predetermined water generated from the ultrafiltration membrane treatment device is generated. Install a microfiltration membrane processing device that performs microfiltration processing of concentrated water in which particles having a diameter greater than or equal to the diameter are concentrated, and treat the above concentrated water with this. It may be configured to remove (the concentrated water is treated as waste water) and recover the permeated water as a polishing liquid.

【0041】次に、図1の装置に加えて超純水製造用の
二次純水製造サブシステムを組み込み、図1の装置から
回収される処理水を循環使用できる様に構成された本発
明のアルカリ系シリカ研磨排水の回収処理装置につい
て、図2を参照しつつ説明する。
Next, a secondary pure water production subsystem for producing ultrapure water is incorporated in addition to the apparatus shown in FIG. 1, and the present invention is constructed so that the treated water recovered from the apparatus shown in FIG. 1 can be recycled. The apparatus for recovering the alkaline silica polishing wastewater will be described with reference to FIG.

【0042】図1の装置の場合と同様に、研磨装置から
排出される研磨排水は一旦研磨排水槽に貯留された後、
限外濾過膜処理装置等の膜分離装置で濃縮水と透過水と
に分離され、透過水はイオン交換処理装置に通水され、
得られる処理水はラインL1を経由して原水槽に送水さ
れ、ここで、工業用水や市水と合流するか、または、処
理水純度が一次純水のレベルの時にはラインL2を経由
して一次純水槽に送水される。原水槽中の水は一次純水
製造装置に送水され、得られる一次純水は一次純水槽に
一旦貯留される。この一次純水槽から一次純水は二次純
水製造サブシステムに送水され、ここで、超純水にまで
精製され、ユースポイント(P.O.U.)で各種用途
に使用される。少なくとも一部の超純水は、ラインL3
を経由して研磨装置に送水され、洗浄水や水研磨用水と
して用いられる。余分の超純水はラインL4を経由して
一次純水槽へと返送、循環される。
As in the case of the apparatus shown in FIG. 1, the polishing wastewater discharged from the polishing apparatus is temporarily stored in a polishing wastewater tank,
It is separated into concentrated water and permeated water by a membrane separation device such as an ultrafiltration membrane treatment device, and the permeated water is passed through an ion exchange treatment device,
The obtained treated water is sent to a raw water tank via a line L1, where it is combined with industrial water or city water, or when the treated water purity is at the level of the primary purified water, the primary treated water is supplied via a line L2. Water is sent to the pure water tank. The water in the raw water tank is sent to the primary pure water production device, and the obtained primary pure water is temporarily stored in the primary pure water tank. From the primary pure water tank, the primary pure water is sent to a secondary pure water production subsystem, where it is purified to ultrapure water and used at various points of use at the point of use (POU). At least some of the ultrapure water is supplied through line L3
The water is sent to the polishing apparatus via the water, and is used as cleaning water or water for water polishing. The extra ultrapure water is returned to the primary pure water tank via line L4 and circulated.

【0043】次に、図1の装置に加えて研磨用(超)純
水製造用の研磨用二次純水製造サブシステムを組み込
み、図1の装置から回収される処理水をローカルリサイ
クル使用できる様に構成された本発明のアルカリ系シリ
カ研磨排水の回収処理装置について、図3を参照しつつ
説明する。
Next, in addition to the apparatus shown in FIG. 1, a polishing secondary pure water producing subsystem for producing (ultra) pure water for polishing is incorporated, and the treated water recovered from the apparatus shown in FIG. 1 can be locally recycled and used. With reference to FIG. 3, a description will be given of an apparatus for collecting and processing alkaline silica polishing wastewater of the present invention configured as described above.

【0044】図1の装置の場合と同様に、研磨装置から
排出される研磨排水は一旦研磨排水槽に貯留された後、
限外濾過膜処理装置等の膜分離装置で濃縮水と透過水と
に分離され、透過水はイオン交換処理装置に通水され、
得られる処理水は研磨用の一次純水として処理水槽に送
水され、ここで、図3の右側のメインの超純水製造装置
の一次純水槽からラインL5を経由して送水される補給
水と合流する。処理水槽中の水は研磨用二次純水製造サ
ブシステムに送水され、ここで、研磨用(超)純水にま
で精製され、研磨装置に送水され、洗浄水や水研磨用水
として用いられる。上記のメインの超純水製造装置につ
いては、図2について説明したことと大差無いので、そ
の説明を省略する。
As in the case of the apparatus shown in FIG. 1, the polishing wastewater discharged from the polishing apparatus is temporarily stored in a polishing wastewater tank,
It is separated into concentrated water and permeated water by a membrane separation device such as an ultrafiltration membrane treatment device, and the permeated water is passed through an ion exchange treatment device,
The obtained treated water is sent to the treated water tank as the primary purified water for polishing, where the makeup water supplied from the primary purified water tank of the main ultrapure water producing apparatus on the right side of FIG. Join. The water in the treated water tank is sent to the secondary polishing pure water production subsystem, where it is purified to (ultra) pure water for polishing, sent to the polishing apparatus, and used as washing water and water for water polishing. The main ultrapure water production apparatus described above does not differ greatly from that described with reference to FIG.

【0045】二次純水製造サブシステムとしては、得ら
れる超純水の用途に応じて各種のシステムを用いること
ができるが、その一具体例として、「熱交換器→紫外線
酸化装置→カートリッジポリッシャー→限外濾過膜処理
装置」を挙げることができる。
As the secondary pure water production subsystem, various systems can be used according to the use of the ultrapure water to be obtained. One specific example is “heat exchanger → ultraviolet oxidizer → cartridge polisher”. → Ultrafiltration membrane treatment device ”.

【0046】[0046]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこの実施例により限定されるもので
は無い。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0047】実施例1 半導体デバイス研磨工程から排出されたアルカリ系シリ
カ排水をサンプリングし、旭化成工業(株)製の限外濾
過膜モジュール「ACP−1050」を備えた限外濾過
膜処理装置で処理し、濃縮水と透過水を得た。透過水の
水質は、pHが9.7、電気伝導率が120μS/c
m、イオン状シリカ濃度が162ppm、全シリカ濃度
が162ppmであった。なお、イオン状シリカ濃度は
モリブデン黄色吸光光度法(JIS K0101)によ
り測定し、全シリカ濃度は透過水サンプルにアルカリを
加え、加熱してコロイダルシリカをイオン状シリカに転
化した後、同様にモリブデン黄色吸光光度法により測定
した。
Example 1 Alkaline silica wastewater discharged from a semiconductor device polishing step was sampled and processed by an ultrafiltration membrane processing apparatus equipped with an ultrafiltration membrane module “ACP-1050” manufactured by Asahi Kasei Corporation. Then, concentrated water and permeated water were obtained. The quality of the permeated water has a pH of 9.7 and an electric conductivity of 120 μS / c.
m, the ionic silica concentration was 162 ppm, and the total silica concentration was 162 ppm. The ionic silica concentration was measured by a molybdenum yellow absorption spectrophotometer (JIS K0101). The total silica concentration was determined by adding an alkali to a permeated water sample and heating to convert colloidal silica to ionic silica, and then similarly to the molybdenum yellow color. It was measured by the spectrophotometric method.

【0048】次に、この透過水をイオン交換処理装置に
空間速度SV=10で通水し、処理水を得た。イオン交
換処理装置として、下記の5装置を構成し、それぞれに
ついて処理水を得た。 1.陰イオン交換樹脂充填カラム→陽イオン交換樹脂充
填カラム 2.陰イオン交換樹脂充填カラム→混床充填カラム 3.陽イオン交換樹脂充填カラム→陰イオン交換樹脂充
填カラム 4.混床充填カラム→陰イオン交換樹脂充填カラム 5.混床充填カラム
Next, the permeated water was passed through an ion exchange treatment apparatus at a space velocity SV = 10 to obtain treated water. The following five devices were configured as ion exchange treatment devices, and treated water was obtained for each of them. 1. 1. Anion exchange resin packed column → Cation exchange resin packed column 2. Anion exchange resin packed column → mixed bed packed column 3. Cation exchange resin packed column → anion exchange resin packed column 4. Mixed bed packed column → anion exchange resin packed column Mixed bed packed column

【0049】陰イオン交換樹脂としては、強塩基性陰イ
オン交換樹脂アンバーライトIRA−402BL(OH
形、ローム・アンド・ハース社製)を用い、陽イオン交
換樹脂としては、強酸性陽イオン交換樹脂アンバーライ
トIR−124(H形、ローム・アンド・ハース社製)
を用いた。混床は、上記の陰イオン交換樹脂と上記の陽
イオン交換樹脂を陰イオン交換樹脂/陽イオン交換樹脂
容量比=2/1で混合し、カラムに充填して用いた。各
処理水の水質データを表1に示す。
As the anion exchange resin, a strongly basic anion exchange resin Amberlite IRA-402BL (OH
Form, manufactured by Rohm and Haas Co.), and as the cation exchange resin, a strongly acidic cation exchange resin Amberlite IR-124 (H form, manufactured by Rohm and Haas Co.)
Was used. In the mixed bed, the above anion exchange resin and the above cation exchange resin were mixed at an anion exchange resin / cation exchange resin volume ratio of 2/1 and packed in a column for use. Table 1 shows the water quality data of each treated water.

【0050】[0050]

【表1】 ─────────────────────────────────── イオン交換処理装置 処理水 1 2 3 4 5 ─────────────────────────────────── 比抵抗(MΩ・cm) >18 >18 >18 >18 >18 イオン状シリカ(ppm) <2 <2 <2 <2 <2 全シリカ(ppm) <2 <2 <2 <2 4.1 ───────────────────────────────────[Table 1] ─────────────────────────────────── Ion exchange treatment equipment Treated water 1 2 3 4 5 ─────────────────────────────────── Specific resistance (MΩcm)> 18> 18> 18> 18 > 18 Ionic silica (ppm) <2 <2 <2 <2 <2 Total silica (ppm) <2 <2 <2 <2 4.1 ──────────────── ───────────────────

【0051】表1から、全ての処理水がイオン状シリカ
濃度及び全シリカ濃度ともに低いこと、単床の陰イオン
交換樹脂充填カラムがイオン交換処理装置に含まれてい
る方が混床のみよりも全シリカ濃度において良好な結果
が得られることが分かる。
From Table 1, it can be seen that all of the treated water has a low ionic silica concentration and a low total silica concentration, and that a single-bed anion-exchange resin-filled column is included in the ion-exchange treatment apparatus rather than a mixed-bed only. It can be seen that good results are obtained at all silica concentrations.

【0052】[0052]

【発明の効果】本発明のアルカリ系シリカ研磨排水の回
収処理装置は、膜分離装置の後段に少なくとも陰イオン
交換樹脂を含むイオン交換処理装置を配設しており、膜
分離装置から得られる透過水中の溶存シリカ及びそれか
ら生成するコロイダルシリカを陰イオン交換樹脂により
簡単且つ効果的に除去できる。
According to the present invention, there is provided an apparatus for recovering alkaline silica polishing wastewater, which is provided with an ion-exchange treatment apparatus containing at least an anion-exchange resin at the subsequent stage of the membrane separation apparatus. Dissolved silica in water and colloidal silica formed therefrom can be easily and effectively removed by an anion exchange resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のアルカリ系シリカ研磨排水の
回収処理装置の基本的なフロー図である。
FIG. 1 is a basic flow chart of an apparatus for collecting and processing alkaline silica polishing wastewater of the present invention.

【図2】図2は、図1の装置に加えて超純水製造用の二
次純水製造サブシステムを組み込み、図1の装置から回
収される処理水を循環使用できる様に構成された本発明
のアルカリ系シリカ研磨排水の回収処理装置の一例を示
すフロー図である。
FIG. 2 is a diagram showing a configuration in which a secondary pure water production subsystem for producing ultrapure water is incorporated in addition to the apparatus shown in FIG. 1 so that the treated water recovered from the apparatus shown in FIG. 1 can be recycled. BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows an example of the collection | recovery processing apparatus of the alkaline silica polishing wastewater of this invention.

【図3】図3は、図1の装置に加えて研磨用(超)純水
製造用の研磨用二次純水製造サブシステムを組み込み、
図1の装置から回収される処理水をローカルリサイクル
使用できる様に構成された本発明のアルカリ系シリカ研
磨排水の回収処理装置の他の一例を示すフロー図であ
る。
FIG. 3 incorporates a polishing secondary pure water production subsystem for polishing (ultra) pure water in addition to the apparatus of FIG. 1;
FIG. 2 is a flowchart showing another example of the apparatus for collecting and processing alkaline silica polishing wastewater of the present invention configured so that treated water recovered from the apparatus of FIG. 1 can be locally recycled.

【図4】図4は、コロイダルシリカ−水系におけるpH
の効果を示すグラフ図である。
FIG. 4 shows pH in colloidal silica-water system.
It is a graph which shows the effect of.

【図5】図5は、シリカ溶解度とpHの関係を示すグラ
フ図である。
FIG. 5 is a graph showing the relationship between silica solubility and pH.

【図6】図6は、水中における溶存シリカの濃度分布及
びその化学種(電荷)分布を示すグラフ図である。
FIG. 6 is a graph showing a concentration distribution of dissolved silica in water and a chemical species (charge) distribution thereof.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 61/58 B01D 61/58 B01J 39/04 B01J 39/04 J 41/04 41/04 J 47/04 47/04 B C02F 1/44 C02F 1/44 E 1/60 1/60 Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 61/58 B01D 61/58 B01J 39/04 B01J 39/04 J 41/04 41/04 J 47/04 47/04 B C02F 1/44 C02F 1/44 E 1/60 1/60

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体デバイス製造プロセスにおけるケ
ミカルメカニカルポリッシング(CMP)工程から排出
されるアルカリ系シリカ研磨排水を分離膜を用いて膜分
離処理する膜分離装置、及び、前記膜分離装置から得ら
れる透過水を少なくとも陰イオン交換樹脂を含むイオン
交換樹脂と接触させて処理水を得るイオン交換処理装置
を含むことを特徴とするアルカリ系シリカ研磨排水の回
収処理装置。
1. A membrane separation apparatus for subjecting an alkaline silica polishing wastewater discharged from a chemical mechanical polishing (CMP) step in a semiconductor device manufacturing process to a membrane separation treatment using a separation membrane, and a permeation obtained from the membrane separation apparatus. An alkaline silica polishing wastewater recovery treatment device, comprising an ion exchange treatment device for obtaining treated water by bringing water into contact with an ion exchange resin containing at least an anion exchange resin.
【請求項2】 前記イオン交換処理装置が、少なくとも
単床の陰イオン交換樹脂を含むことを特徴とする請求項
1に記載のアルカリ系シリカ研磨排水の回収処理装置。
2. The apparatus according to claim 1, wherein the ion exchange processing apparatus includes at least a single-bed anion exchange resin.
【請求項3】 前記陰イオン交換樹脂が、少なくとも強
塩基性陰イオン交換樹脂を含むことを特徴とする請求項
1又は2に記載のアルカリ系シリカ研磨排水の回収処理
装置。
3. The apparatus according to claim 1, wherein the anion exchange resin contains at least a strongly basic anion exchange resin.
【請求項4】 前記イオン交換処理装置が、上流側に陽
イオン交換樹脂及び/又は陽イオン交換樹脂と陰イオン
交換樹脂とを混合した混合イオン交換樹脂(混床)を配
設し、下流側に陰イオン交換樹脂を配設していることを
特徴とする請求項1から3のいずれかに記載のアルカリ
系シリカ研磨排水の回収処理装置。
4. The ion exchange treatment apparatus further comprises a cation exchange resin and / or a mixed ion exchange resin (mixed bed) obtained by mixing a cation exchange resin and an anion exchange resin on an upstream side, and a downstream side. 4. The apparatus for recovering and polishing alkaline silica polishing wastewater according to claim 1, wherein an anion exchange resin is disposed in the apparatus.
【請求項5】 前記イオン交換処理装置が、上流側に陰
イオン交換樹脂を配設し、下流側に陽イオン交換樹脂及
び/又は陽イオン交換樹脂と陰イオン交換樹脂とを混合
した混合イオン交換樹脂(混床)を配設していることを
特徴とする請求項1から3のいずれかに記載のアルカリ
系シリカ研磨排水の回収処理装置。
5. The mixed ion exchange apparatus according to claim 1, wherein the ion exchange treatment device has an anion exchange resin disposed upstream and a cation exchange resin and / or a mixture of the cation exchange resin and the anion exchange resin disposed downstream. 4. The apparatus according to claim 1, wherein a resin (mixed bed) is provided.
【請求項6】 前記分離膜の孔径が、1nm〜100n
mであることを特徴とする請求項1から5のいずれかに
記載のアルカリ系シリカ研磨排水の回収処理装置。
6. The separation membrane has a pore size of 1 nm to 100 n.
The apparatus for collecting and processing alkaline silica polishing wastewater according to any one of claims 1 to 5, wherein m is m.
【請求項7】 前記イオン交換処理装置の後段に処理水
を逆浸透膜処理する逆浸透膜処理装置を更に含むことを
特徴とする請求項1から6のいずれかに記載のアルカリ
系シリカ研磨排水の回収処理装置。
7. The alkaline silica polishing wastewater according to claim 1, further comprising a reverse osmosis membrane treatment device for treating the treated water with a reverse osmosis membrane at a stage subsequent to the ion exchange treatment device. Collection processing equipment.
【請求項8】 回収される処理水を一旦貯留する一次純
水槽、及び、一次純水を処理して超純水又は研磨用
(超)純水を製造するための二次純水製造サブシステム
を更に含むことを特徴とする請求項1から7のいずれか
に記載のアルカリ系シリカ研磨排水の回収処理装置。
8. A primary pure water tank for temporarily storing recovered treated water, and a secondary pure water production subsystem for processing the primary pure water to produce ultrapure water or polishing (ultra) pure water. The apparatus for recovering alkaline silica polishing wastewater according to any one of claims 1 to 7, further comprising:
JP01002698A 1998-01-05 1998-01-05 Alkali silica polishing wastewater recovery treatment equipment Expired - Fee Related JP3940864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01002698A JP3940864B2 (en) 1998-01-05 1998-01-05 Alkali silica polishing wastewater recovery treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01002698A JP3940864B2 (en) 1998-01-05 1998-01-05 Alkali silica polishing wastewater recovery treatment equipment

Publications (2)

Publication Number Publication Date
JPH11192480A true JPH11192480A (en) 1999-07-21
JP3940864B2 JP3940864B2 (en) 2007-07-04

Family

ID=11738897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01002698A Expired - Fee Related JP3940864B2 (en) 1998-01-05 1998-01-05 Alkali silica polishing wastewater recovery treatment equipment

Country Status (1)

Country Link
JP (1) JP3940864B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041878A (en) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd Waste working liquid treatment apparatus
EP2357152A1 (en) * 2010-02-17 2011-08-17 Woongjin Coway Co., Ltd. Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
CN102259951A (en) * 2010-05-26 2011-11-30 上海巴安水务股份有限公司 Microfiltration membrane forming filter tank and filtering method thereof
JP2014064983A (en) * 2012-09-25 2014-04-17 Miura Co Ltd Silica removal system and water treating system equipped with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041878A (en) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd Waste working liquid treatment apparatus
EP2357152A1 (en) * 2010-02-17 2011-08-17 Woongjin Coway Co., Ltd. Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
JP2011168478A (en) * 2010-02-17 2011-09-01 Woongjin Coway Co Ltd Hydrogen energy production system and method for producing hydrogen energy utilizing silicon wastewater
CN102259951A (en) * 2010-05-26 2011-11-30 上海巴安水务股份有限公司 Microfiltration membrane forming filter tank and filtering method thereof
CN102259951B (en) * 2010-05-26 2016-01-20 上海巴安水务股份有限公司 A kind of microfiltration film forming filter tank and filter method thereof
JP2014064983A (en) * 2012-09-25 2014-04-17 Miura Co Ltd Silica removal system and water treating system equipped with the same

Also Published As

Publication number Publication date
JP3940864B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP2606156B2 (en) Method for collecting abrasive particles
US6203705B1 (en) Process for treating waste water containing copper
US6506306B1 (en) Method and an apparatus for treating wastewater from a chemical-mechanical polishing process used in chip fabrication
JP2002520142A (en) Ion exchange removal of metal ions from wastewater
US20040108277A1 (en) Reverse osmosis pretreatment using low pressure filtration
JP4609675B2 (en) Metal polishing CMP process wastewater treatment apparatus and method
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JPH11121408A (en) Device for recovering abrasive slurry
JP4032496B2 (en) CMP process wastewater treatment equipment
KR101336174B1 (en) Recycling system of waste water produced during chemical-mechanical planarization and die sawing process of semi-conductor
TWI417430B (en) Method and system for point of use treatment of substrate polishing fluids
JPH11192480A (en) Device for recovering and treating waste alkaline silica polishing water
JP4161389B2 (en) Polishing wastewater treatment method and apparatus
JP3417052B2 (en) Ultrapure water production method
EP1078887A1 (en) A process for treating aqueous waste containing copper and copper CMP particles
JP4618073B2 (en) Method and apparatus for recovering water from CMP wastewater containing high TOC
JPH09253638A (en) Ultrapure water making apparatus
JPH1133362A (en) Recovery method and apparatus of polishing agent
JPH11347569A (en) Polishing waste water treatment method
JP5891800B2 (en) Glass polishing method
JP2000126768A (en) Method nd apparatus for treating cmp waste solution
JP3928484B2 (en) Functional water recovery method
JP4135324B2 (en) Waste liquid treatment method
JP5358266B2 (en) Method for recovering useful solid components in waste slurry
US20230174394A1 (en) Treatment of slurry copper wastewater with ultrafiltration and ion exchange

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees