JP5358266B2 - Method for recovering useful solid components in waste slurry - Google Patents

Method for recovering useful solid components in waste slurry Download PDF

Info

Publication number
JP5358266B2
JP5358266B2 JP2009106759A JP2009106759A JP5358266B2 JP 5358266 B2 JP5358266 B2 JP 5358266B2 JP 2009106759 A JP2009106759 A JP 2009106759A JP 2009106759 A JP2009106759 A JP 2009106759A JP 5358266 B2 JP5358266 B2 JP 5358266B2
Authority
JP
Japan
Prior art keywords
waste slurry
foreign matter
solid components
useful solid
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009106759A
Other languages
Japanese (ja)
Other versions
JP2010253393A (en
Inventor
嗣 阿部
泉里 小島
慶一郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2009106759A priority Critical patent/JP5358266B2/en
Publication of JP2010253393A publication Critical patent/JP2010253393A/en
Application granted granted Critical
Publication of JP5358266B2 publication Critical patent/JP5358266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、スラリーを用いて所定の処理を行った際に排出される不要な異物や金属イオン成分を含む排スラリーから、前記不要な異物や金属イオン成分を除去する排スラリー中の有用固形成分の回収方法に関する。   The present invention provides a useful solid component in a waste slurry that removes the unnecessary foreign matter and metal ion component from the waste slurry containing unnecessary foreign matter and metal ion component that are discharged when a predetermined treatment is performed using the slurry. It is related with the collection method.

近年、半導体や各種基板の製造工程において、各種薬品を含む研磨用スラリーを用いて、半導体や各種基板の表面に形成された各層の配線金属を研磨することが行われている。   In recent years, in manufacturing processes of semiconductors and various substrates, polishing of wiring metal of each layer formed on the surface of the semiconductors and various substrates is performed using a polishing slurry containing various chemicals.

これらの配線金属の研磨に用いられたスラリーは、処理工程が終わると、使用済み洗浄液(超純水)とともに回収タンクに溜められて、その後廃棄される。   The slurry used for polishing these wiring metals is stored in a collection tank together with a used cleaning liquid (ultra pure water) after the treatment process is completed, and then discarded.

しかし、これらの研磨用のスラリーは、通常、高価であるので、使用済みの排スラリー中の研磨材などの有用固形成分を再生(リサイクル)して再利用することが、環境的にもコスト的にも望ましい。このため、研磨材などが再生使用可能な場合には、排スラリーのろ過濃縮、洗浄等の再生処理が施され、さらに固形分や添加薬品などの成分調整を行って再使用することが検討されている。   However, since these polishing slurries are usually expensive, it is environmentally costly to recycle (recycle) useful solid components such as abrasives in the used waste slurry. Also desirable. For this reason, when abrasives are recyclable, the waste slurry is subjected to recycling treatment such as filtration and concentration, washing, etc., and it is considered to adjust the components such as solids and additive chemicals for reuse. ing.

ところで、これらの排スラリーの中には、タンクに溜めている間に金属イオンが化学反応を起こして水酸化物などの不溶性の物質を生成したり、水溶性の有機物が酸化してゲル状物質を生成したりして、大量の水で希釈しても局部的に薬品が高濃度で付着した研磨材等が再使用される可能性がある。   By the way, in these waste slurries, metal ions cause a chemical reaction while being stored in the tank to generate insoluble substances such as hydroxides, or water-soluble organic substances are oxidized to form gel-like substances. Even if diluted with a large amount of water, there is a possibility that an abrasive or the like to which a chemical is locally attached at a high concentration is reused.

また、回収された研磨材に半導体等の表面に形成された金属層の微細な破片などが混入している可能性もある。   Further, there is a possibility that fine fragments of a metal layer formed on the surface of a semiconductor or the like are mixed in the collected abrasive.

また、このような不要の異物を含む排スラリーは、再生する場合にもフィルターの目詰まりを起こしたり、再生したスラリーにこれらの異物が混入したりして、再生されたスラリーの品質を低下させるという問題があった。   In addition, the waste slurry containing such unnecessary foreign matter causes clogging of the filter even when it is regenerated, or these foreign matters are mixed in the regenerated slurry, thereby reducing the quality of the regenerated slurry. There was a problem.

本発明は、上記課題を解決するためになされたもので、上記問題のない排スラリー中の有用固形成分の回収方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for recovering useful solid components in waste slurry without the above-mentioned problems.

本発明の排スラリー中の有用固形成分の回収方法の一形態は、所定の処理工程で使用され排出される不要な異物を含み、かつ洗浄水で希釈された排スラリーから前記不要な異物を除去して前記排スラリー中の有用固形成分を回収する方法において、前記排スラリーを濃縮する濃縮工程と、濃縮された排スラリーに前記異物を溶解する薬液を添加して前記異物を溶解し、溶解した異物成分と前記薬液の一部をろ過して系外に排出する操作を繰り返し行って、前記異物を除去する工程と、前記濃縮工程で異物の除去された排スラリーを、イオン交換装置及び/又はキレート化装置に通液させて前記排スラリー中のイオン成分を除去するイオン成分除去工程とを備えたことを特徴とする。   One form of the method for recovering useful solid components in the waste slurry of the present invention includes unnecessary foreign matter that is used and discharged in a predetermined treatment step, and removes the unnecessary foreign matter from the waste slurry diluted with washing water. Then, in the method of recovering useful solid components in the waste slurry, a concentration step for concentrating the waste slurry, and a chemical solution for dissolving the foreign matter is added to the concentrated waste slurry to dissolve and dissolve the foreign matter. An operation of repeatedly filtering the foreign substance component and a part of the chemical solution and discharging it out of the system is repeated, and the step of removing the foreign substance, and the waste slurry from which the foreign substance has been removed in the concentration process, are converted into an ion exchange device and / or And an ionic component removal step of removing an ionic component in the waste slurry by passing the solution through a chelating device.

また、本発明の排スラリー中の有用固形成分の回収方法の他の形態は、所定の処理工程で使用され排出される不要な異物を含み、かつ洗浄水で希釈された排スラリーから前記不要な異物を除去して前記排スラリー中の有用固形成分を回収する方法において、前記排スラリーを濃縮する濃縮工程と、前記濃縮工程で濃縮された排スラリーに前記異物を溶解する薬液を連続的に添加して前記異物を溶解しつつ、溶解した異物成分と前記薬液の一部をろ過して系外に排出する操作を連続的に行って、前記異物を除去する異物除去工程と、前記異物除去工程で異物の除去された排スラリーを、イオン交換装置及び/又はキレート化装置に通液させて前記排スラリー中のイオン成分を除去するイオン成分除去工程とを備えたことを特徴とする。   In another embodiment of the method for recovering useful solid components in the waste slurry of the present invention, the unnecessary solid component is contained in the waste slurry that is used in a predetermined treatment step and is discharged and diluted with washing water. In the method of removing foreign matter and recovering useful solid components in the waste slurry, a concentration step for concentrating the waste slurry, and a chemical solution for dissolving the foreign matter in the waste slurry concentrated in the concentration step are continuously added. The foreign matter removing step for removing the foreign matter by continuously performing an operation of filtering and discharging a part of the dissolved foreign matter component and the chemical solution out of the system while dissolving the foreign matter, and the foreign matter removing step And an ionic component removal step of removing the ionic component in the waste slurry by passing the waste slurry from which foreign matter has been removed through an ion exchange device and / or a chelating device.

一般に、所定の処理工程を経て回収された排スラリーは、大量の洗浄液(超純水)とともに、同一のタンクに回収されるため、元のスラリーに対して100〜500倍程度、特に回収を意図する場合には、5〜50倍程度に希釈されている。   In general, waste slurry collected through a predetermined treatment process is collected in the same tank together with a large amount of cleaning liquid (ultra pure water), so it is intended to be collected about 100 to 500 times the original slurry. If it is, it is diluted about 5 to 50 times.

したがって、本発明の濃縮工程では、排スラリーは、セラミックフィルターなどにより元のスラリーの比重値(1.03)付近まで濃縮される。   Therefore, in the concentration step of the present invention, the waste slurry is concentrated to around the specific gravity value (1.03) of the original slurry by a ceramic filter or the like.

なお、排スラリー中には、有用固形成分が含まれている。   The waste slurry contains useful solid components.

このとき、排出された透過水は、溶解成分を適宜除去して(例えば、紫外線照射による過酸化水素の分解処理など)洗浄水などとして再利用される。   At this time, the discharged permeated water is reused as washing water or the like by appropriately removing dissolved components (for example, decomposition treatment of hydrogen peroxide by ultraviolet irradiation).

本発明における異物除去工程では、酸、アルカリ、酸化剤、還元剤、溶剤および界面活性剤から選ばれた1種または2種以上の薬液による不要な異物の溶解(イオン化を含む。以下、同じ)が行われる。   In the foreign matter removing step in the present invention, unnecessary foreign matter is dissolved by one or more chemical solutions selected from acids, alkalis, oxidizing agents, reducing agents, solvents and surfactants (including ionization, the same applies hereinafter). Is done.

これらの薬液は、いずれもスラリー中の回収目的の有用な固形成分(例えば研磨材のような無機粒子)は溶解せずに、無用な異物を選択的に溶解する薬品及びその濃度を考慮して選択使用される。回収対象の固形成分と反応したり、除去対象の異物と不溶性の反応生成物を生成する薬品は好ましくない。これらの薬品は、相互に反応するものでなければ複数種類を同時に使用してもよく、また、相互に反応する薬品でも超純水による洗浄工程を挟んで使用することができる。   All of these chemical solutions do not dissolve useful solid components (for example, inorganic particles such as abrasives) for recovery purposes in the slurry, but take into consideration chemicals and concentrations that selectively dissolve unwanted foreign substances. Select used. A chemical that reacts with the solid component to be collected or produces a reaction product insoluble with the foreign matter to be removed is not preferred. As long as these chemicals do not react with each other, a plurality of types may be used at the same time, and even chemicals that react with each other can be used with a cleaning process using ultrapure water.

本発明の異物除去工程で使用される薬液のうち、酸としては、塩酸、硫酸、硝酸等の無機酸や酢酸などの有機酸等が挙げられ、アルカリとしては、苛性ソーダ、苛性カリ等の無機アルカリ、テトラメチルアンモニウムハイドロオキサイド(TMAH)等の有機のアルカリが挙げられる。   Among the chemicals used in the foreign matter removing step of the present invention, the acid includes inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as acetic acid, and the alkali includes inorganic alkalis such as caustic soda and caustic potash, An organic alkali such as tetramethylammonium hydroxide (TMAH) can be used.

また、酸化剤としては、過酸化水素やオゾン水を使用することができ、還元剤としては、例えば水素水を用いることができる。   Moreover, hydrogen peroxide or ozone water can be used as the oxidizing agent, and hydrogen water can be used as the reducing agent, for example.

溶剤としては、メタノール、エタノール、アセトン等の水溶性の有機溶剤を使用することができ、界面活性剤としては、例えばドデシルベンゼンスルホン酸ナトリウム(DBS)が適しているが、他にも公知の各種のアニオン系、カチオン系、ノニオン系の界面活性剤が使用可能である。   As the solvent, a water-soluble organic solvent such as methanol, ethanol, and acetone can be used, and as the surfactant, for example, sodium dodecylbenzenesulfonate (DBS) is suitable. Anionic, cationic and nonionic surfactants can be used.

本発明の異物除去工程で使用される薬液は、酸、アルカリ、酸化剤、還元剤、溶剤および界面活性剤を超純水又は超純水に準ずる高純度の水に溶解したものである。なお、液状の有機溶剤などは、高純度の水に溶解することなく、そのままで使用することも可能である。   The chemical solution used in the foreign matter removing step of the present invention is obtained by dissolving an acid, an alkali, an oxidizing agent, a reducing agent, a solvent and a surfactant in ultrapure water or high purity water equivalent to ultrapure water. A liquid organic solvent or the like can be used as it is without dissolving in high-purity water.

各種異物の溶解に対して有効な「薬液」は次のとおりである。   The “chemical solutions” effective for dissolving various foreign substances are as follows.

タングステン:塩酸……系をほぼpH2にする量と過酸化水素……500ppm
の組合せ(又は過酸化水素のみ500〜1000ppm)
チタン: 塩酸……系をpH2未満にする量と
過酸化水素……2%の組合せ(又は、過酸化水素のみ2〜3%)
銅: 塩酸又は硫酸……系をpH3未満にする量
ウレタン: 濃硝酸もしくは濃硫酸
微粒子状DBS
これらの薬液は、異物除去工程において、常温で、又は90℃以下で沸点以下の温度に加温して用いられる。
Tungsten: Hydrochloric acid ... The amount that makes the system almost pH 2 and hydrogen peroxide ... 500ppm
Combination (or hydrogen peroxide only 500-1000ppm)
Titanium: Hydrochloric acid ... with an amount to make the system less than pH 2
Hydrogen peroxide ... 2% combination (or hydrogen peroxide only 2-3%)
Copper: Hydrochloric acid or sulfuric acid: Amount to make the system less than pH 3 Urethane: Concentrated nitric acid or concentrated sulfuric acid
Particulate DBS
These chemical solutions are used at a normal temperature or heated to a temperature of 90 ° C. or lower and a boiling point or lower in the foreign substance removing step.

この後、不要な異物を溶解した薬液は、膜ろ過によりろ別され、系外に排出される。系外に排出された透過水は、イオン交換装置などにより溶解成分を適宜除去して洗浄水などとして再利用される。   Thereafter, the chemical solution in which unnecessary foreign matters are dissolved is filtered by membrane filtration and discharged out of the system. The permeated water discharged out of the system is reused as washing water or the like by appropriately removing dissolved components by an ion exchange device or the like.

薬液の添加操作と膜ろ過の操作は、その間に不要な異物を溶解するための十分な時間をおいて複数回、好ましくは5回以上繰り返される。   The operation of adding a chemical solution and the operation of membrane filtration are repeated a plurality of times, preferably 5 times or more, with a sufficient time for dissolving unnecessary foreign substances therebetween.

この場合、膜ろ過ごとに薬液の種類を変えるようにしてもよい。   In this case, you may make it change the kind of chemical | medical solution for every membrane filtration.

なお、薬液の添加操作と膜ろ過の操作は、不要な異物が薬液の底の方に沈殿することを利用して、排スラリーを収容した処理容器の上部から連続的に薬液を注入するとともに、底部からろ過膜を介して連続的に異物を溶解した薬液を抽出する方法を採ることも可能である。   In addition, while adding the chemical solution continuously and injecting the chemical solution from the upper part of the processing container containing the waste slurry, the extraneous foreign matter is precipitated toward the bottom of the chemical solution in the operation of membrane filtration. It is also possible to take a method of extracting a chemical solution in which foreign matters are continuously dissolved from the bottom through a filtration membrane.

膜ろ過に用いられる膜としては、逆浸透膜、中空糸タイプ、セラミック膜等のろ過膜を使用することができる。   As a membrane used for membrane filtration, a filtration membrane such as a reverse osmosis membrane, a hollow fiber type, or a ceramic membrane can be used.

異物除去工程では、薬液(希釈した超純水等を含む量)は、濃縮工程で濃縮された排スラリーの量の2〜7倍程度の量が加えられ、0.7〜1.0倍程度の容積となるよう膜ろ過される。この薬液添加と膜ろ過は複数回、通常5回以上行なわれる。   In the foreign matter removing step, the chemical solution (amount containing diluted ultrapure water, etc.) is added in an amount of about 2 to 7 times the amount of the waste slurry concentrated in the concentration step, and about 0.7 to 1.0 times. The membrane is filtered so that the volume of This chemical addition and membrane filtration are performed a plurality of times, usually 5 times or more.

異物物除去工程の済んだ排スラリーは、再度薬液を添加して、又は必要に応じて超純水でリンスして、イオン交換装置やキレート化装置に通液され、残存する金属イオンその他のイオン成分が除去される。   The waste slurry after the foreign substance removal step is added again with chemicals or rinsed with ultra-pure water as necessary, and passed through an ion exchange device or a chelating device to leave remaining metal ions or other ions. Ingredients are removed.

本発明に使用されるイオン交換装置としては、従来、純水又は超純水の製造に用いられていたものであれば特に限定されずに用いることができ例えば強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂または、これらの組み合わせることが可能である。   The ion exchange apparatus used in the present invention can be used without particular limitation as long as it has been conventionally used in the production of pure water or ultrapure water, for example, a strong acid cation exchange resin, a weak acid It is possible to use a cation exchange resin, a strong base anion exchange resin, a weak base anion exchange resin, or a combination thereof.

キレート化装置に用いられるキレート化剤としては、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン(DTPA)、グルカミン、4.5ジヒドロキシ−1,3ベンゼンジスルホン酸二ナトリウムー水和物(タイロン)などのマスキング剤がある。   Examples of chelating agents used in the chelating apparatus include masking agents such as ethylenediaminetetraacetic acid (EDTA), diethylenetriamine (DTPA), glucamine, and disodium dibenzene-1,3benzenedisulfonate-hydrate (Tyrone). is there.

なお、濃縮工程や異物除去工程でもイオン成分は除去されるが、K、Fe、W、Tiなどの金属イオンを確実に1ppm未満まで除去するためには、イオン交換装置及び/又はキレート化装置への通液が必要である。   The ion component is also removed in the concentration step and the foreign matter removal step, but in order to reliably remove metal ions such as K, Fe, W, and Ti to less than 1 ppm, go to the ion exchange device and / or chelation device. Is necessary.

このようにして回収された有用な固形成分、例えばシリカ、アルミナ、ジルコニア、セリアなどの砥粒は、粒度や成分、例えば硝酸第二鉄や過酸化水素水などの研磨性能を向上させる物質を添加し、pHを調整して、再度CMP(化学的機械的研磨)装置に供給することが可能である。   Useful solid components recovered in this way, such as silica, alumina, zirconia, ceria and other abrasive grains, are added with a particle size or component, for example, a substance that improves polishing performance such as ferric nitrate or hydrogen peroxide. Then, the pH can be adjusted and supplied again to the CMP (Chemical Mechanical Polishing) apparatus.

本発明によれば、濃縮した排スラリーを、異物を溶解する薬液を添加して異物を溶解し、薬液の一部を膜ろ過する操作を繰り返し行うか、又は濃縮された排スラリーに異物を溶解する薬液を連続的に添加して異物を溶解しつつ、溶解した異物成分と薬液の一部をろ過する操作を連続的に行い、さらにイオン交換装置及び/又はキレート化装置に通液することにより、排スラリーに含有される金属イオンを、1ppm未満にまで低減することができ、また固形の異物も溶解除去することができる。   According to the present invention, the concentrated waste slurry is added with a chemical solution that dissolves foreign matter to dissolve the foreign matter, and a part of the chemical solution is subjected to membrane filtration repeatedly, or the foreign matter is dissolved in the concentrated waste slurry. By continuously adding the chemical solution to be dissolved and dissolving the foreign matter, continuously filtering the dissolved foreign matter component and a part of the chemical solution, and further passing through the ion exchange device and / or chelation device The metal ions contained in the waste slurry can be reduced to less than 1 ppm, and solid foreign matters can be dissolved and removed.

特に本発明では、異物除去工程の前に大量の洗浄水等の液体成分を排出する濃縮工程をおいたことにより、この段階で有用な固形成分に付着していた異物等の相当部分が系外に排出され、また、処理対象の排スラリーの体積が減少することにより濃縮工程で添加される薬液の使用量が少なくて済むという利点がある。   In particular, in the present invention, since a concentration step for discharging a large amount of liquid components such as washing water is provided before the foreign matter removal step, a considerable part of the foreign matter attached to the useful solid components at this stage is outside the system. Further, since the volume of the waste slurry to be treated is reduced, there is an advantage that the amount of the chemical solution added in the concentration step can be reduced.

さらに、請求項1の発明では、添加した薬液の一部を系外に排出しつつ繰り返し新たな薬液を添加することにより、異物表面が新しい薬液と繰り返し接触することになって溶解しやすくなり、請求項2の発明でも、添加された薬液の一部を連続的に系外に排出しつつ、新しい薬液を連続的に添加するので、異物表面が新しい薬液と常時接触することになり、異物の溶解を迅速に行うことができるという利点がある。   Furthermore, in the invention of claim 1, by repeatedly adding a new chemical solution while discharging a part of the added chemical solution out of the system, the surface of the foreign matter is repeatedly brought into contact with the new chemical solution and easily dissolved, Also in the invention of claim 2, since a new chemical solution is continuously added while part of the added chemical solution is continuously discharged out of the system, the surface of the foreign matter is always in contact with the new chemical solution. There is an advantage that dissolution can be performed quickly.

したがって、回収した有用固形成分を新しいスラリーの成分として有効利用することができる。   Therefore, the recovered useful solid component can be effectively used as a component of a new slurry.

本発明の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of this invention.

以下に、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施の形態を示すフローチャートであって、特に、本実施の形態を、半導体製造プロセスのCMP(化学的機械的研磨)工程で生じた排スラリー中の不要な異物を溶解除去し、金属イオン成分を低減して排スラリーの再生(リサイクル)を行う装置に適用した場合を示すものである。   FIG. 1 is a flowchart showing an embodiment of the present invention. In particular, the present embodiment is used to remove unnecessary foreign matters in waste slurry generated in a CMP (chemical mechanical polishing) process of a semiconductor manufacturing process. This shows a case where the present invention is applied to an apparatus for regenerating (recycling) waste slurry by dissolving and removing the metal ion component.

図1に示すように、本発明の排スラリー中の有用固形成分の回収方法では、洗浄水などで100〜200倍程度に希釈された排スラリーがセラミックフィルターなどを通すことにより、本来のスラリーの比重1.03程度まで濃縮される(S1)。本例では排スラリー中の研磨用粒子成分(例えば、シリカ、アルミナ、ジルコニア、セリアなど)は濃縮側に回収され、透過水は系外に排出され、含有する薬品成分が除去されて洗浄水などとして再使用される。   As shown in FIG. 1, in the method for recovering useful solid components in the waste slurry of the present invention, the waste slurry diluted about 100 to 200 times with washing water or the like is passed through a ceramic filter or the like. It is concentrated to a specific gravity of about 1.03 (S1). In this example, the abrasive particle components (for example, silica, alumina, zirconia, ceria, etc.) in the waste slurry are collected on the concentration side, the permeate is discharged out of the system, the contained chemical components are removed, and washing water, etc. As reused.

このとき、濃縮側の排スラリーに含有される金属不純物の量は、K:20ppm、Fe:30ppm、W:10ppm、Ti:20ppm程度である。   At this time, the amount of metal impurities contained in the exhaust slurry on the concentration side is about K: 20 ppm, Fe: 30 ppm, W: 10 ppm, and Ti: 20 ppm.

この後、濃縮された排スラリーには、不要な固形異物を溶解する薬液、例えば超純水、30%塩酸、過酸化水素を添加する(S2)。   Thereafter, a chemical solution that dissolves unnecessary solid foreign matters, for example, ultrapure water, 30% hydrochloric acid, and hydrogen peroxide is added to the concentrated waste slurry (S2).

この状態でセラミックフィルターを用いて、比重1.03程度になるまで濃縮する(S3)。ここで生じた透過水も系外に排出され、含有する薬品成分が除去されて洗浄水などとして再使用される。   In this state, using a ceramic filter, it concentrates until it becomes about 1.03 specific gravity (S3). The permeated water generated here is also discharged out of the system, the chemical components contained are removed, and reused as washing water or the like.

この排スラリーに対する薬液添加、濃縮の工程を少なくとも5回繰り返す(S4)。   The process of adding and concentrating the chemical to the waste slurry is repeated at least 5 times (S4).

この工程により濃縮側の排スラリーに含有される金属不純物の量は、K:5ppm、Fe:3ppm、W:1ppm、Ti5ppm程度になる。   By this step, the amount of metal impurities contained in the concentrated-side waste slurry becomes about K: 5 ppm, Fe: 3 ppm, W: 1 ppm, and Ti 5 ppm.

最後の濃縮工程の後、同じ薬液が同量添加されて(S5)イオン交換樹脂(カチオン交換樹脂とアニオン交換樹脂)装置に通液される(S6)。   After the final concentration step, the same amount of the same chemical solution is added (S5) and passed through an ion exchange resin (cation exchange resin and anion exchange resin) apparatus (S6).

これによって、金属不純物の量は、K、Fe、W、Tiのいずれも1ppm未満になる。   As a result, the amount of metal impurities is less than 1 ppm for all of K, Fe, W, and Ti.

金属イオンの濃度が規定値以下になっていることが確認されると、この濃縮側のスラリーには、粒度調整、pH調整、成分調整が行われてスラリーとして再使用される(S7)。   When it is confirmed that the metal ion concentration is below the specified value, the slurry on the concentration side is subjected to particle size adjustment, pH adjustment, and component adjustment and reused as a slurry (S7).

なお、イオン交換樹脂装置を、キレート化装置と2段にして用いたり、キレート化装置に代えることもできる。   In addition, an ion exchange resin apparatus can be used in two stages with a chelating apparatus, or can be replaced with a chelating apparatus.

次に、本発明の実施例(実験例)について説明する。   Next, examples (experimental examples) of the present invention will be described.

使用排スラリーとして、酸性スラリー(タングステン研磨用スラリー)とアルカリ性スラリー(酸化膜研磨用スラリー)の混合排スラリーを使用した。   As the used waste slurry, a mixed waste slurry of an acidic slurry (tungsten polishing slurry) and an alkaline slurry (oxide film polishing slurry) was used.

この排スラリーは、洗浄液(超純水)で元のスラリーの100〜200倍に希釈されており、pHはほぼ8、比重は1.000〜1.001、成分として、K、Fe、W、Ti、Ca、Na、HNO、シリカ、有機酸を含み、他に金属の水酸化物と思われる凝集小塊や金属酸化物と思われる微少粒子を含んでいる。 This waste slurry is diluted 100 to 200 times the original slurry with a cleaning liquid (ultra pure water), has a pH of about 8, a specific gravity of 1.000 to 1.001, and the components are K, Fe, W, It contains Ti, Ca, Na, HNO 3 , silica, and organic acid, and also contains aggregated nodules that are considered to be metal hydroxides and fine particles that are considered to be metal oxides.

この実施例で使用した排スラリー濃縮装置は、プレフィルター、濃縮タンク、ポンプ、セラミックフィルターから構成されている。   The waste slurry concentrator used in this example is composed of a prefilter, a concentration tank, a pump, and a ceramic filter.

まず、濃縮タンクに、この排スラリーを10000L受け、セラミックフィルターにより濃縮して、比重を1.03(新スラリーの比重は1.03)付近とした(約100倍濃縮)。   First, 10,000 L of this waste slurry was received in a concentration tank and concentrated by a ceramic filter to make the specific gravity around 1.03 (the specific gravity of the new slurry was 1.03) (concentration about 100 times).

次に、濃縮された排スラリーに、薬液として、超純水、塩酸、過酸化水素の水溶液(超純水は排スラリーが2〜3倍程度に希釈された状態となる量、塩酸はpHが1.8〜2.0の範囲になる量、過酸化水素は500ppm〜1000ppmの範囲になる量)を、それぞれ添加した。   Next, ultrapure water, hydrochloric acid, and an aqueous solution of hydrogen peroxide as chemicals are added to the concentrated waste slurry (ultrapure water is the amount that the waste slurry is diluted about 2 to 3 times, hydrochloric acid has a pH of An amount in the range of 1.8 to 2.0 and an amount of hydrogen peroxide in the range of 500 ppm to 1000 ppm) were added.

この状態でセラミックフィルターを用いて、元の容積、すなわち比重1.03になるまで濃縮した。   In this state, using a ceramic filter, it was concentrated to the original volume, that is, the specific gravity of 1.03.

この薬品添加、濃縮の操作を5回繰り返した。   This chemical addition and concentration operation was repeated five times.

この後、濃縮したスラリーに、殺菌、有機不純物の分解及び過酸化水素の分解の目的で、紫外線照射装置(185nm、254nmの紫外線を照射することが可能な水銀ランプと反応槽を備えた装置)により紫外線を照射し、さらに塩素イオンを除去するために、アニオン交換樹脂装置に通液させた。   Thereafter, an ultraviolet irradiation device (an apparatus having a mercury lamp and a reaction tank capable of irradiating ultraviolet rays of 185 nm and 254 nm) for the purpose of sterilization, decomposition of organic impurities and decomposition of hydrogen peroxide on the concentrated slurry. In order to remove chlorine ions, the solution was passed through an anion exchange resin apparatus.

その後凝集しているスラリーを分散させ、砥粒表面や砥粒表面近くに存在している金属不純物を除去するために、スラリーにKOHを添加しpHを11とした。   Thereafter, the agglomerated slurry was dispersed, and KOH was added to the slurry to adjust the pH to 11 in order to remove metal impurities present on the abrasive grain surface or near the abrasive grain surface.

次に、溶解した金属不純物とともに、イオン状のシリカを除去するために、このスラリーをアニオン交換樹脂装置にSV2〜6/hで通液させた。その後、このスラリーに、後工程のカチオン交換樹脂処理後のpHが1.8〜2.0になる量のHClを添加し、カチオン交換樹脂にSV2〜6/hで通液してKを除去した。   Next, in order to remove the ionic silica together with the dissolved metal impurities, this slurry was passed through the anion exchange resin apparatus at SV2 to 6 / h. Thereafter, HCl is added in an amount such that the pH after treatment of the cation exchange resin in the subsequent step becomes 1.8 to 2.0, and K is removed by passing the solution through the cation exchange resin at SV2 to 6 / h. did.

さらに、このスラリーに過酸化水素を500から1000ppmになるよう添加して、残存している金属不純物を溶解しイオン化させてSV 2〜6/hでカチオン交換樹脂に通液させた。   Further, hydrogen peroxide was added to the slurry so as to be 500 to 1000 ppm, and the remaining metal impurities were dissolved and ionized, and passed through the cation exchange resin at SV 2 to 6 / h.

その後、上述した紫外線照射装置により紫外線照射をHが分解するまで行って、殺菌、有機不純物の分解及び過酸化水素の分解を行い、さらに塩素イオンを除去するために、SV2〜6/hでアニオン交換樹脂に通液した。 Thereafter, UV irradiation is performed by the above-described ultraviolet irradiation apparatus until H 2 O 2 is decomposed, and sterilization, decomposition of organic impurities and decomposition of hydrogen peroxide are performed, and in order to further remove chlorine ions, SV2-6 / The solution was passed through the anion exchange resin with h.

処理後のスラリーへ硝酸第二鉄、有機酸、硝酸を添加しpH2.0〜2.3に調整した。その後0.5μm以上の異物が除去可能なフィルターにより粒度調整を行った。   Ferric nitrate, organic acid, and nitric acid were added to the treated slurry to adjust the pH to 2.0 to 2.3. Thereafter, the particle size was adjusted with a filter capable of removing foreign matters of 0.5 μm or more.

リサイクルされたスラリーをタングステンの成膜された8インチウェハを用いてCMP装置によりタングステンの除去速度、面内均一性、マイクロスクラッチ数から研磨特性を調べたところ、タングステン除去速度は300nm/min、均一性7%と新液と同等程度マイクロスクラッチも同等程度の特性が得られた。   Polishing properties of the recycled slurry were examined from the removal rate of tungsten, in-plane uniformity, and the number of micro scratches with a CMP apparatus using an 8-inch wafer on which tungsten was deposited. The tungsten removal rate was 300 nm / min, uniform. The microscratch of the same level as that of the new solution was obtained with the same level of characteristics as 7%.

Claims (8)

所定の処理工程で使用され排出される不要な異物を含み、かつ洗浄水で希釈された排スラリーから前記不要な異物を除去して前記排スラリー中の有用固形成分を回収する方法において、
前記排スラリーを濃縮する濃縮工程と、
濃縮された排スラリーに前記異物を溶解する薬液を添加して前記異物を溶解し、溶解した異物成分と前記薬液の一部をろ過して系外に排出する操作を繰り返し行って、前記異物を除去する異物除去工程と、
前記異物除去工程で異物の除去された排スラリーを、イオン交換装置及び/又はキレート化装置に通液させて前記排スラリー中のイオン成分を除去するイオン成分除去工程と
を備えたことを特徴とする排スラリー中の有用固形成分の回収方法。
In a method for recovering useful solid components in the waste slurry by removing the unnecessary foreign matter from waste slurry diluted with washing water, including unnecessary foreign matter used and discharged in a predetermined treatment step,
A concentration step of concentrating the waste slurry;
Adding a chemical solution that dissolves the foreign matter to the concentrated waste slurry to dissolve the foreign matter, filtering the dissolved foreign matter component and a part of the chemical solution, and discharging it out of the system are repeated to remove the foreign matter. A foreign matter removing step to be removed;
An ionic component removal step of removing the ionic component in the waste slurry by passing the waste slurry from which the foreign matter has been removed in the foreign matter removal step through an ion exchange device and / or a chelating device. A method for recovering useful solid components in waste slurry.
所定の処理工程で使用され排出される不要な異物を含み、かつ洗浄水で希釈された排スラリーから前記不要な異物を除去して前記排スラリー中の有用固形成分を回収する方法において、
前記排スラリーを濃縮する濃縮工程と、
前記濃縮工程で濃縮された排スラリーに前記異物を溶解する薬液を連続的に添加して前記異物を溶解しつつ、溶解した異物成分と前記薬液の一部をろ過して系外に排出する操作を連続的に行って、前記異物を除去する異物除去工程と、
前記異物除去工程で異物の除去された排スラリーを、イオン交換装置及び/又はキレート化装置に通液して前記排スラリー中のイオン成分を除去するイオン成分除去工程と
を備えたことを特徴とする排スラリー中の有用固形成分の回収方法。
In a method for recovering useful solid components in the waste slurry by removing the unnecessary foreign matter from waste slurry diluted with washing water, including unnecessary foreign matter used and discharged in a predetermined treatment step,
A concentration step of concentrating the waste slurry;
An operation of continuously adding a chemical solution that dissolves the foreign matter to the waste slurry concentrated in the concentration step to dissolve the foreign matter, and filtering and discharging a part of the dissolved foreign matter component and the chemical solution to the outside of the system Continuously removing the foreign matter, and removing the foreign matter,
An ionic component removal step of removing the ionic component in the waste slurry by passing the waste slurry from which the foreign matter has been removed in the foreign matter removal step through an ion exchange device and / or a chelating device. A method for recovering useful solid components in waste slurry.
前記異物除去工程において、前記ろ過が膜ろ過であって、濃縮された排スラリーに添加される薬液の量は、前記濃縮工程で濃縮された排スラリーの量の2〜7倍の量であることを特徴とする請求項1又は2記載の排スラリー中の有用固形成分の回収方法。 In the foreign matter removing step, the filtration is membrane filtration, and the amount of the chemical solution added to the concentrated waste slurry is 2 to 7 times the amount of the waste slurry concentrated in the concentration step. The method for recovering useful solid components in the waste slurry according to claim 1 or 2. 前記異物の溶解は、酸、アルカリ、酸化剤、還元剤、溶剤および界面活性剤から選ばれた1種または2種以上の薬液を用いて行われることを特徴とする請求項1乃至3のいずれか1項記載の排スラリー中の有用固形成分の回収方法。   The dissolution of the foreign matter is performed using one or more chemical solutions selected from acids, alkalis, oxidizing agents, reducing agents, solvents and surfactants. A method for recovering useful solid components in the waste slurry according to claim 1. 前記薬液は、酸化性又は還元性の気体を溶解した水に各薬液の有効成分を溶解させたものであることを特徴とする請求項1乃至4のいずれか1項記載の排スラリー中の有用固形成分の回収方法。   The said chemical | medical solution is what dissolved the active ingredient of each chemical | medical solution in the water which melt | dissolved oxidizing or reducing gas, The usefulness in the waste slurry of any one of Claim 1 thru | or 4 characterized by the above-mentioned. A method for recovering solid components. 前記排スラリーを加温して行うことを特徴とする請求項1乃至5のいずれか1項記載の排スラリー中の有用固形成分の回収方法。   The method for recovering useful solid components in waste slurry according to any one of claims 1 to 5, wherein the waste slurry is heated. 異物の溶解は、ろ過操作を挟む薬品添加操作ごとに、異なる薬液を添加することを特徴とする請求項1乃至6のいずれか1項記載の排スラリー中の有用固形成分の回収方法。 The method for recovering useful solid components in waste slurry according to any one of claims 1 to 6, wherein the foreign substances are dissolved by adding different chemical solutions for each chemical addition operation including a filtration operation. 前記イオン成分除去工程の前に、前記排スラリーに前記薬液又は超純水が添加されることを特徴とする請求項1乃至7のいずれか1項記載の排スラリー中の有用固形成分の回収方法。   The method for recovering useful solid components in waste slurry according to any one of claims 1 to 7, wherein the chemical solution or ultrapure water is added to the waste slurry before the ion component removing step. .
JP2009106759A 2009-04-24 2009-04-24 Method for recovering useful solid components in waste slurry Expired - Fee Related JP5358266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106759A JP5358266B2 (en) 2009-04-24 2009-04-24 Method for recovering useful solid components in waste slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106759A JP5358266B2 (en) 2009-04-24 2009-04-24 Method for recovering useful solid components in waste slurry

Publications (2)

Publication Number Publication Date
JP2010253393A JP2010253393A (en) 2010-11-11
JP5358266B2 true JP5358266B2 (en) 2013-12-04

Family

ID=43314953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106759A Expired - Fee Related JP5358266B2 (en) 2009-04-24 2009-04-24 Method for recovering useful solid components in waste slurry

Country Status (1)

Country Link
JP (1) JP5358266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919477B (en) * 2021-03-12 2023-11-03 成信实业股份有限公司 Silicon dioxide regeneration method of semiconductor waste silicon mud
CN116120981A (en) * 2022-12-20 2023-05-16 无锡中天固废处置有限公司 Recycling method of aluminum wiredrawing waste oil

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110540A (en) * 1997-06-23 1999-01-19 Speedfam Co Ltd Slurry recycling system of cmp device and its method
JP4534241B2 (en) * 2000-06-28 2010-09-01 栗田工業株式会社 Abrasive recovery method
JP4585100B2 (en) * 2000-08-24 2010-11-24 日本化学工業株式会社 How to recycle polishing used liquid
JP2002331456A (en) * 2001-05-08 2002-11-19 Kurita Water Ind Ltd Recovering device of abrasive
JP2003094337A (en) * 2001-09-21 2003-04-03 E & E:Kk Treatment method of wafer polishing waste liquid and its recycle control system
JP2004075859A (en) * 2002-08-19 2004-03-11 Chubu Kiresuto Kk Method for cleaning polishing slurry
JP4472391B2 (en) * 2004-03-17 2010-06-02 野村マイクロ・サイエンス株式会社 Method for recycling used semiconductor polishing slurry
ITRM20050329A1 (en) * 2005-06-24 2006-12-25 Guido Fragiacomo PROCEDURE FOR TREATING ABRASIVE SUSPENSIONS EXHAUSTED FOR THE RECOVERY OF THEIR RECYCLABLE COMPONENTS AND ITS PLANT.
JP4849660B2 (en) * 2005-10-06 2012-01-11 株式会社D−process Slurry regeneration method
JP2008124213A (en) * 2006-11-10 2008-05-29 Nippon Valqua Ind Ltd Method of recycling used cmp slurry
JP4353991B2 (en) * 2007-07-22 2009-10-28 株式会社キーファー・テック Method and apparatus for regenerating slurry waste liquid
JP4580433B2 (en) * 2008-04-14 2010-11-10 野村マイクロ・サイエンス株式会社 Method for regenerating polishing slurry
JP2010167551A (en) * 2008-12-26 2010-08-05 Nomura Micro Sci Co Ltd Method for regenerating used slurry
JP2012521896A (en) * 2009-03-25 2012-09-20 アプライド マテリアルズ インコーポレイテッド Point-of-use recycling system for CMP slurry

Also Published As

Publication number Publication date
JP2010253393A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP2003205299A (en) Hydrogen dissolved water manufacturing system
JP2011236467A (en) Etching acid waste liquid disposal system, etching acid waste liquid disposal method and etching acid waste liquid disposal apparatus applied thereto
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JP2013126928A (en) Method for recovering cerium oxide
JP5358266B2 (en) Method for recovering useful solid components in waste slurry
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP4273440B2 (en) Cleaning water for electronic material and cleaning method for electronic material
JPH1129794A (en) Cleaning water for electronic material its reparation, and cleaning of electronic material
JP4161389B2 (en) Polishing wastewater treatment method and apparatus
JP3928484B2 (en) Functional water recovery method
JPH10225664A (en) Wet treating device
JPH10128254A (en) Washing method for electronic members and device therefor
JP5604062B2 (en) Method for recovering useful solid components in waste slurry
JP5891800B2 (en) Glass polishing method
KR100790370B1 (en) Recycling method and apparatus of waste etching solution
KR101296797B1 (en) Recovery Method of High-purified poly Silicon from a waste solar wafer
JP2005131630A (en) Method for washing reverse osmosis membrane, and waste water recovering method using this method
JP3826497B2 (en) Pure water production method
JPH11192480A (en) Device for recovering and treating waste alkaline silica polishing water
JP3101642B2 (en) Ultrapure water production method
JPH11186207A (en) Cleaning water for electronic material
TWI725782B (en) Method and device for treating molybdenum-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees