JPH11121408A - Device for recovering abrasive slurry - Google Patents

Device for recovering abrasive slurry

Info

Publication number
JPH11121408A
JPH11121408A JP28233597A JP28233597A JPH11121408A JP H11121408 A JPH11121408 A JP H11121408A JP 28233597 A JP28233597 A JP 28233597A JP 28233597 A JP28233597 A JP 28233597A JP H11121408 A JPH11121408 A JP H11121408A
Authority
JP
Japan
Prior art keywords
polishing
liquid
membrane
slurry
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28233597A
Other languages
Japanese (ja)
Other versions
JP4253048B2 (en
Inventor
Masahiro Furukawa
征弘 古川
Osamu Ota
治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28233597A priority Critical patent/JP4253048B2/en
Publication of JPH11121408A publication Critical patent/JPH11121408A/en
Application granted granted Critical
Publication of JP4253048B2 publication Critical patent/JP4253048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for recovering abrasive slurry wherein, with no clogging, large impurity and file impurity are removed to recover colloidal silica and low molecular weight electrolyte, which is reused as an abrasive slurry while a transmission liquid is reused as a raw water for a low-quality pure water and a secondary pure water device. SOLUTION: An abrasion waste liquid provided after chemical machinery polishing with a semiconductor substrate or a coat formed over it in a polishing system 2 is fully filtered at a filtration device 4 to remove impurities comprising solid substance. Then, a filtered liquid is membrane-separated with a UF membrane at a membrane separation device 6 into a concentrated liquid comprising abrasives and a transmission liquid, the transmission liquid is separated by reverse infiltration with a RO membrane at a reverse infiltration device 8 into a concentrated liquid comprising low molecular weight electrolyte and low-quality pure water, and the concentrated liquids of the membrane separation device 6 and the reverse infiltration device 8 are mixed to recover an abrasive slurry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体基板ある
いはその上に形成された被膜の化学機械研磨(Chemical
Mechanical Polishing)に使用した研磨剤廃液から研
磨剤スラリ粒子を回収する装置に関する。
The present invention relates to a chemical mechanical polishing (Chemical mechanical polishing) of a semiconductor substrate or a film formed thereon.
The present invention relates to an apparatus for recovering abrasive slurry particles from abrasive waste liquid used for mechanical polishing.

【0002】[0002]

【従来の技術】半導体基板およびその上に形成された被
膜の表面を平坦化することが行われている。半導体集積
回路の製造では、回路パターンを形成するため光露光を
用いてフォトレジストのパターニング工程を行う際、可
能な限り平坦な露光面が必要とされている。
2. Description of the Related Art The surface of a semiconductor substrate and a film formed thereon are planarized. 2. Description of the Related Art In the manufacture of a semiconductor integrated circuit, when performing a photoresist patterning process using light exposure to form a circuit pattern, an exposure surface that is as flat as possible is required.

【0003】すなわち微細な回路パターンを形成するに
は、半導体基板表面またはその上に形成された被膜表面
が平坦であることが要求され、配線層が立体的に配置さ
れた多層配線層を有する半導体集積回路を形成する場合
も、下地配線パターンの存在する層間絶縁膜表面を平坦
にする必要がある。また、素子分離酸化膜を基板に埋込
んで基板表面が完全平坦面となるトレンチ素子分離構造
の形成にも、基板および埋め込み絶縁膜の平坦化が必要
となっている。さらに絶縁膜に形成された配線溝上にリ
フロースパッタ法や化学気相成良法でAl、Wあるいは
Cuを成膜し、これら金属膜を化学機械研磨することで
配線溝に金属を埋め込んだ平坦化配線を形成する場合に
も、平坦化の必要がある。
That is, in order to form a fine circuit pattern, the surface of a semiconductor substrate or the surface of a coating film formed thereon is required to be flat, and a semiconductor having a multilayer wiring layer in which wiring layers are three-dimensionally arranged. Even when an integrated circuit is formed, it is necessary to flatten the surface of the interlayer insulating film where the underlying wiring pattern exists. In addition, flattening the substrate and the buried insulating film is also required for forming a trench element isolation structure in which the element isolation oxide film is embedded in the substrate and the substrate surface becomes a completely flat surface. Further, a flattened wiring in which Al, W or Cu is formed on the wiring groove formed in the insulating film by a reflow sputtering method or a chemical vapor deposition method, and a metal is buried in the wiring groove by chemically and mechanically polishing the metal film. Also needs to be planarized.

【0004】このような半導体基板や、その上に形成さ
れた絶縁膜、メタル薄膜等の被膜の埋込み平坦化には、
研磨剤を用いて化学機械研磨する方法が採用されてい
る。この方法では、研磨パッド等の研磨部材と半導体基
板との間にスラリー状の研磨剤を介在させた状態で研磨
を行い、半導体基板あるいはシリコン酸化膜や金属薄膜
等被膜表面を平坦化する。このとき用いる研磨剤として
は、分散性がよく、平均粒子径が揃っている等の理由
で、シリカ微粒子(コロイダルシリカ)が利用されてい
る場合が多く、水等の分散媒中にコロイダルシリカを分
散させ、これに水酸化カリウム、アンモニア水等のアル
カリおよび場合によってはさらに有機酸などの低分子電
解質の酸を添加した研磨剤スラリとして使用する場合が
一般的である。
In order to bury and flatten such a semiconductor substrate and a film such as an insulating film and a metal thin film formed thereon,
A chemical mechanical polishing method using an abrasive has been adopted. In this method, polishing is performed with a slurry-like abrasive interposed between a polishing member such as a polishing pad and a semiconductor substrate to flatten the surface of a semiconductor substrate or a coating film such as a silicon oxide film or a metal thin film. As the abrasive used at this time, silica fine particles (colloidal silica) are often used because of good dispersibility and uniform average particle diameter, and colloidal silica is used in a dispersion medium such as water. In general, the slurry is used as an abrasive slurry to which an alkali such as potassium hydroxide and aqueous ammonia and optionally an acid of a low molecular electrolyte such as an organic acid are added.

【0005】このような研磨剤スラリを用いて研磨を行
うと、半導体基板の表面や被膜層を形成する薄膜材料や
研磨パッドが削り取られた研磨屑とともに、研磨剤とし
てのシリカ微粒子が破壊された極微細な粒子や、研磨さ
れた薄膜材料片と研磨粒子とが凝集することによって生
じる粒径の大きな研磨屑が研磨剤に混じった状態の研磨
廃液が排出される。
When polishing is performed using such an abrasive slurry, silica fine particles as an abrasive are destroyed together with the thin film material for forming the surface and the coating layer of the semiconductor substrate and the abrasive debris from the polishing pad. The polishing waste liquid is discharged in a state in which ultrafine particles or polishing swarf having a large particle diameter caused by agglomeration of the polished thin film material pieces and the polishing particles are mixed with the abrasive.

【0006】このような研磨廃液を無処理で再び研磨剤
として用いると、研磨廃液に含まれる大粒径の研磨屑お
よび凝集物は基板表面にキズを発生させる原因になり、
また研磨屑の蓄積により研磨力が低下する。さらに、研
磨剤濃度が低下すると、シリコン基板表面被膜(ここで
はシリコン酸化膜)の研磨速度が低下することから、希
釈された研磨廃液をそのまま循環再利用することはでき
ない。
If such a polishing waste liquid is used again as an abrasive without treatment, the large-diameter polishing dust and agglomerates contained in the polishing waste liquid will cause scratches on the substrate surface,
Further, the polishing power is reduced due to accumulation of the polishing debris. Further, when the polishing agent concentration decreases, the polishing rate of the silicon substrate surface coating (here, the silicon oxide film) decreases, so that the diluted polishing waste liquid cannot be circulated and reused as it is.

【0007】従来このような研磨剤廃液から研磨剤粒子
を回収する方法として、特開平8−115892号が公
開されている。図2は特開平8−115892号に示さ
れた従来の研磨剤粒子の回収方法を示す系統図である。
図2において、101は精密濾過装置、102は限外濾
過装置であって、それぞれ精密濾過膜101a、限外濾
過膜102aにより濃縮液室101b、102bおよび
透過液室101c、102cに分割されている。103
は被処理液槽、104は中間処理液槽である。
Conventionally, Japanese Patent Application Laid-Open No. Hei 8-115892 discloses a method for recovering abrasive particles from such an abrasive waste liquid. FIG. 2 is a system diagram showing a conventional method for collecting abrasive particles disclosed in JP-A-8-115892.
In FIG. 2, 101 is a microfiltration device, and 102 is an ultrafiltration device, which is divided into a concentrate chamber 101b, 102b and a permeate chamber 101c, 102c by a microfiltration membrane 101a and an ultrafiltration membrane 102a, respectively. . 103
Denotes a liquid tank to be processed, and 104 denotes a liquid tank for intermediate processing.

【0008】研磨液から研磨剤粒子であるコロイダルシ
リカの回収方法は、まず使用済研磨液105を被処理液
槽103に導入し、これをポンプP1で加圧して精密濾
過装置101の濃縮液室101bに供給し、精密濾過膜
101aにより精密濾過を行う。これにより粒径が50
0nm以下のコロイダルシリカ、微細不純物および分散
媒は透過液室101cに透過し、透過液は中間処理液1
06として中間処理液槽104に取出される。粒径が5
00nmを越える粗大不純物は濃縮液側に残留して濃縮
される。濃縮液は弁107を通して被処理液槽103に
循環する。この操作を継続し、濃縮液の濃縮倍率が30
〜50倍になった時点で、弁108から濃縮液を廃液1
13aとして廃液路109に排出する。
A method for recovering colloidal silica, which is abrasive particles, from a polishing liquid is as follows. First, a used polishing liquid 105 is introduced into a liquid tank 103 to be treated, and is pressurized by a pump P 1 to concentrate the concentrated liquid in the microfiltration apparatus 101. The mixture is supplied to the chamber 101b and subjected to microfiltration by the microfiltration membrane 101a. This results in a particle size of 50
Colloidal silica having a diameter of 0 nm or less, fine impurities, and a dispersion medium pass through the permeation liquid chamber 101c, and the permeation liquid is the intermediate treatment liquid 1c.
As 06, it is taken out to the intermediate treatment liquid tank 104. Particle size is 5
The coarse impurities exceeding 00 nm remain on the concentrate side and are concentrated. The concentrated liquid is circulated to the liquid tank 103 through the valve 107. This operation is continued until the concentration ratio of the concentrated liquid is 30.
At the time when the concentration becomes 50 times, the concentrated liquid is discharged from the valve 108 to the waste liquid 1
13a is discharged to the waste liquid passage 109.

【0009】精密濾過により粗大不純物を除去した中間
処理液106は、中間処理液槽104からポンプP2
より限外濾過装置102の濃縮液室102bに加圧下に
供給され、限外濾過膜102aにより限外濾過を行う。
これにより粒径が数10nm未満の微細不純物および分
散媒が透過液室102cに透過し、透過液は廃液113
bとして廃液路110に排出する。粒径が数10〜50
0nmのコロイダルシリカ粒子は濃縮液側に残留する。
濃縮液は弁111を通して中間処理液槽104に循環す
る。この操作を継続し、濃縮液が所定濃度(10〜30
重量%)になった時点で、コロイダルシリカを含む回収
液114として弁112を通して回収する。
[0009] Intermediate treatment liquid 106 to remove coarse impurities by microfiltration by the pump P 2 from the intermediate processing liquid tank 104 is supplied under pressure to the concentrate chamber 102b of the ultrafiltration device 102, the ultrafiltration membrane 102a Perform ultrafiltration.
As a result, fine impurities having a particle size of less than several tens of nanometers and a dispersion medium permeate into the permeate chamber 102c, and the permeate becomes a waste liquid 113.
It is discharged to the waste liquid passage 110 as b. Particle size is several tens to 50
The 0 nm colloidal silica particles remain on the concentrate side.
The concentrated liquid circulates through the valve 111 to the intermediate processing liquid tank 104. This operation is continued until the concentration of the concentrate becomes a predetermined concentration (10 to 30).
(% By weight), is collected through a valve 112 as a collection liquid 114 containing colloidal silica.

【0010】以上の通り、従来の研磨剤の回収方法は2
段階の濾過濃縮機能部から構成され、第1段階では精密
濾過膜101aを用いた精密濾過装置101に研磨廃液
(使用済研磨液105)を循環濾過することで粗大不純
物を濃縮液室101bに濃縮して除去し、その透過液を
第2段階で限外濾過装置102により濃縮して、その濃
縮液を研磨剤として回収している。
[0010] As described above, the conventional method of recovering an abrasive is 2
In the first stage, the polishing waste liquid (used polishing liquid 105) is circulated and filtered in the microfiltration apparatus 101 using the microfiltration membrane 101a to concentrate coarse impurities in the concentration liquid chamber 101b. Then, the permeated liquid is concentrated by the ultrafiltration device 102 in the second stage, and the concentrated liquid is recovered as an abrasive.

【0011】このように従来法では使用可能なコロイダ
ルシリカを回収することができるが、研磨廃液に含まれ
ている水酸化カリウム等のアルカリ、溶解性シリカおよ
び有機酸などは透過液として排出される。一方、回収し
たコロイダルシリカは水酸化カリウム等のアルカリや有
機酸などを添加して研磨液として使用されている。
As described above, usable colloidal silica can be recovered by the conventional method, but alkali such as potassium hydroxide, soluble silica, and organic acids contained in the polishing waste liquid are discharged as a permeate. . On the other hand, the recovered colloidal silica is used as a polishing liquid by adding an alkali such as potassium hydroxide or an organic acid.

【0012】このようにアルカリや有機酸等は消耗品と
して無駄に使用されており、薬剤使用量が多く、薬剤コ
ストを高くするほか、廃棄される透過液は中和等により
排水処理を行う必要があり、これが研磨コストを引き上
げるという問題点があった。また除去しようとする粗大
不純物の粒径と、回収しようとする研磨剤の粒径との中
間の孔径を有する精密濾過膜102aを用いて研磨屑を
濃縮して除去すると、精密濾過膜101aの目詰まりが
急速に起こり、頻繁に膜の洗浄または交換を行う必要が
あるという問題点があった。さらに、透過液を純水装置
の原水として回収する場合、イオンや溶解性シリカなど
が多く含まれていると、イオン交換塔や逆浸透装置に負
荷がかかるという問題があった。
As described above, alkalis, organic acids, and the like are wasted as consumables, which consumes a large amount of chemicals, thereby increasing the cost of chemicals. In addition, the permeated liquid to be discarded must be subjected to wastewater treatment by neutralization or the like. This raises the problem that the polishing cost is increased. In addition, when the polishing debris is concentrated and removed using the microfiltration membrane 102a having a pore diameter intermediate between the particle diameter of the coarse impurities to be removed and the particle diameter of the abrasive to be recovered, the fine filtration membrane 101a There is a problem that clogging occurs rapidly and the membrane needs to be cleaned or replaced frequently. Further, when the permeated liquid is recovered as raw water of a pure water apparatus, there is a problem in that if a large amount of ions, soluble silica, and the like are contained, a load is applied to the ion exchange tower and the reverse osmosis apparatus.

【0013】[0013]

【発明が解決しようとする課題】本発明の課題は、目詰
まりを起こすことなく、粗大不純物および微細不純物を
除去して、コロイダルシリカおよび低分子電解質を回収
し、これを研磨スラリとして再利用するとともに、透過
液も低品位純水として再利用できる研磨剤スラリ回収装
置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to remove coarse and fine impurities without clogging, recover colloidal silica and a low molecular electrolyte, and reuse them as a polishing slurry. In addition, an object of the present invention is to provide an abrasive slurry recovery apparatus that can reuse a permeated liquid as low-grade pure water.

【0014】[0014]

【課題を解決するための手段】本発明は、半導体基板あ
るいはその上に形成された被膜の化学機械研磨を行った
後の研磨廃液から研磨剤スラリを回収するための装置で
あって、研磨廃液を濾過して固形物を含む不純物を除去
する全量濾過形の濾過装置と、濾過装置の濾過液を膜分
離により研磨剤を含む濃縮液と透過液に分離する膜分離
装置と、膜分離装置の透過液を逆浸透により低分子の電
解質を含む濃縮液と低品位純水とに分離する逆浸透装置
と、膜分離装置の濃縮と逆浸透装置の濃縮液を受け入れ
て研磨剤スラリを調製するスラリ調製槽とを含む研磨剤
スラリ回収装置である。
SUMMARY OF THE INVENTION The present invention relates to an apparatus for recovering an abrasive slurry from a polishing waste liquid obtained by subjecting a semiconductor substrate or a film formed thereon to a chemical mechanical polishing, comprising: a polishing waste liquid; A filtration device of a total filtration type for removing impurities including solids by filtering the membrane, a membrane separation device for separating a filtrate of the filtration device into a concentrated solution containing an abrasive and a permeate by membrane separation, and a membrane separation device. A reverse osmosis device that separates the permeate into a concentrated solution containing a low-molecular electrolyte and low-grade pure water by reverse osmosis, and a slurry that concentrates the membrane separation device and receives the concentrated solution from the reverse osmosis device to prepare an abrasive slurry An abrasive slurry recovery device including a preparation tank.

【0015】研磨の対象となる半導体基板は、IC、L
SI等の半導体素子を構成するシリコンウエハー、この
上に形成される多層配線用層間絶縁膜、トレンチ素子分
離用の埋め込み酸化膜、平坦埋込配線用メタル膜など、
半導体基板あるいは基板被膜層として研磨の対象となる
ものをすべて含む。
The semiconductor substrate to be polished is IC, L
Silicon wafers constituting semiconductor elements such as SI, interlayer insulating films for multilayer wiring formed on this, buried oxide films for trench element isolation, metal films for flat buried wiring, etc.
Includes all semiconductor substrates or substrate coating layers that are subject to polishing.

【0016】このような半導体基板の化学機械研磨は、
無機酸化物微粒子あるいは該微粒子の複数個が凝集した
微粒子集合体を、水酸化カリウム等のアルカリならびに
有機酸などの低分子電解質を含む液層に分散させた研磨
剤スラリをパッド等の研磨部材と半導体基板との間に介
在させて研磨する場合のほか、一定濃度に調整した研磨
剤スラリを循環しながら研磨する場合その他の研磨方法
を含む。また研磨剤の材料は特に限定されず、シリカ、
アルミナあるいは酸化セリウム等の無機酸化物微粒子あ
るいはその集合体を含むが、コロイダルシリカを含むも
のが好ましい。
The chemical mechanical polishing of such a semiconductor substrate is as follows.
An abrasive slurry such as a pad is prepared by dispersing an inorganic oxide fine particle or a fine particle aggregate obtained by aggregating a plurality of the fine particles into a liquid layer containing a low molecular electrolyte such as an alkali such as potassium hydroxide and an organic acid. In addition to the case where the polishing is performed while being interposed between the semiconductor substrate and the semiconductor substrate, the case where the polishing is performed while circulating an abrasive slurry adjusted to a certain concentration is included. The material of the abrasive is not particularly limited, silica,
Inorganic oxide fine particles such as alumina or cerium oxide or aggregates thereof are included, but those containing colloidal silica are preferable.

【0017】また、本発明において処理対象とする研磨
廃液には、無機酸化物微粒子および低分子電解質を含む
研磨剤スラリを半導体基板あるいはその上の被膜の化学
機械研磨に使用した研磨工程から排出される研磨剤スラ
リ、研磨屑および研磨パッドの洗浄液としての純水を含
有する液であり、研磨力が大幅に低下した使用済の研磨
剤スラリでも、未だ研磨力が残存する研磨途中の研磨剤
スラリを含有する液でもよい。この研磨剤スラリを含有
する液はコロイダルシリカ等の無機酸化物微粒子および
低分子電解質を含んでいればよく、これら以外の成分を
含んでいても差支えない。
The polishing waste liquid to be treated in the present invention is discharged from a polishing step in which an abrasive slurry containing inorganic oxide fine particles and a low molecular electrolyte is used for chemical mechanical polishing of a semiconductor substrate or a film thereon. This is a liquid containing abrasive slurry, polishing debris, and pure water as a cleaning liquid for the polishing pad. May be used. The liquid containing the abrasive slurry only needs to contain inorganic oxide fine particles such as colloidal silica and a low molecular electrolyte, and may contain components other than these.

【0018】さらに、最も一般的なシリコン酸化膜の化
学機械研磨に使用される研磨剤スラリは、30〜300
nmの粒径を有する液相成長あるいは気相成長シリカ微
粒子を主体とするコロイダルシリカを含んでおり、コロ
イダルシリカ濃度は一般に15〜20重量%となってい
る。研磨後の研磨廃液は研磨工程およびリンス工程初期
の濃厚廃液を集めて処理する。このような濃厚廃液には
コロイダルシリカが0.5〜5重量%含まれており、上
記の研磨剤成分の他に、粒径700〜1500nmの大
粒径の研磨屑を含んでおり、この大粒径の研磨屑がキズ
の原因となる。
Further, the most common abrasive slurry used for chemical mechanical polishing of a silicon oxide film is 30 to 300.
It contains colloidal silica mainly composed of liquid phase grown or vapor phase grown silica fine particles having a particle size of nm, and the colloidal silica concentration is generally 15 to 20% by weight. The polishing waste liquid after polishing collects and treats the concentrated waste liquid at the beginning of the polishing step and the rinsing step. Such a concentrated waste liquid contains 0.5 to 5% by weight of colloidal silica and contains, in addition to the above-mentioned abrasive component, polishing debris having a large particle diameter of 700 to 1500 nm. Abrasive dust having a particle size causes scratches.

【0019】本発明では研磨廃液中の研磨屑等の固形物
を含む不純物を除去するために全量濾過形の濾過装置を
使用する。理論的には研磨剤の粒径と研磨屑の粒径の中
間の孔径の精密濾過膜を用いれば両者を分離することが
できるわけであるが、このような精密濾過膜を用いると
目詰まりが激しくなる。この原因を調べた結果、膜面に
ケーキ層が形成されるため、比較的小粒径のコロイダル
シリカが捕捉され、その結果目詰まりが発生し、差圧が
上昇することがわかった。
In the present invention, a filtration apparatus of a wholly filtration type is used to remove impurities including solid matter such as polishing wastes in the polishing waste liquid. Theoretically, if a microfiltration membrane with a pore size between the particle size of the abrasive and the particle size of the polishing debris is used, the two can be separated from each other. It becomes intense. As a result of investigating the cause, it was found that since a cake layer was formed on the film surface, colloidal silica having a relatively small particle diameter was captured, and as a result, clogging occurred and the differential pressure increased.

【0020】本発明ではこのような点を改善するため
に、研磨屑等の固形物の粒径よりも大きい目開きの全量
濾過形の濾材を用いる。この場合、濾材の目開きは10
〜100μm、好ましくは25〜75μmのものが用い
られる。このような濾過器としてはポリプロピレン等の
プラスチックその他の材質からなる25〜100μm単
繊維をワインドしたワインドタイプの濾過エレメントを
有する濾過器を用いるのが好ましい。
In the present invention, in order to improve such a point, a filter material of a wholly filtration type having openings larger than the particle diameter of a solid such as abrasive dust is used. In this case, the aperture of the filter medium is 10
100100 μm, preferably 25-75 μm. As such a filter, it is preferable to use a filter having a wind-type filter element obtained by winding a 25 to 100 μm single fiber made of a plastic or other material such as polypropylene.

【0021】ワインドタイプの濾過エレメントを用いる
場合は支持板上に支持し、0.01〜0.5MPaの圧
力で、使用した研磨廃液を全量通過させることにより濾
過が行われ、大粒径の研磨屑、凝集物、ゲル化物等の研
磨時のキズの原因となる固形物が除去される。このとき
固形物の架橋によりケーキが形成され、濾材の目開きよ
りも小粒径の不純物、特に従来透過液とともに排棄され
ていた微小不純物も除去され、しかも目詰まりが防止さ
れる。
When a wind type filter element is used, filtration is performed by supporting the support on a support plate and passing the entire amount of used polishing waste liquid at a pressure of 0.01 to 0.5 MPa, thereby polishing a large particle size. Solids that cause scratches during polishing, such as debris, agglomerates, and gels, are removed. At this time, a cake is formed by the cross-linking of the solid matter, and impurities having a smaller particle size than the openings of the filter medium, particularly minute impurities which have been discarded together with the permeate, are removed, and clogging is prevented.

【0022】膜分離装置は上記濾過装置の濾過液または
その濃縮液を受け入れて膜分離を行い、研磨剤を含む濃
縮液と分離液に分離するように構成される。この膜分離
装置としては分離膜として孔径0.05〜0.1μmの
MF膜を有するマイクロフィルタ、または孔径2〜10
0nm(分画分子量5000〜20000)のUF膜を
有する限外濾過器などが用いられる。
The membrane separation device is configured to receive the filtrate from the above-mentioned filtration device or its concentrated solution, perform membrane separation, and separate it into a concentrated solution containing an abrasive and a separated solution. As this membrane separation device, a microfilter having an MF membrane having a pore size of 0.05 to 0.1 μm as a separation membrane, or a pore size of 2 to 10
An ultrafilter having a UF membrane of 0 nm (fraction molecular weight: 5,000 to 20,000) is used.

【0023】MF膜としては、ポリカーボネート、三酢
化セルロース、ポリアミド(ナイロン)、ポリ塩化ビニ
ル、ポリフッ化ビニリデン等の材質からなる濾過膜があ
げられる。UF膜としては、コロジオン膜、ホルムアル
デヒド硬化ゼラチン、セロハン、セルロース、酢酸セル
ロース、ポリエチレン、ポリプロピレン、アセチルセル
ロース、ポリプロピレンとアセチルセルロースの混合
物、ポリアクリロニトリル、ポリスルホン、スルホン化
−2,5−ジメチルポリフェニレンオキサイド、ポリイ
オンコンプレックス、ポリビニルアルコール、ポリ塩化
ビニル等の材質からなる分離膜があり、分子量103
109の原子集団からなる分子コロイド、ミセルコロイ
ドや会合コロイドなどの粒子やウイルスなどを濾別する
ためのものが使用できる。
Examples of the MF membrane include a filtration membrane made of a material such as polycarbonate, cellulose triacetate, polyamide (nylon), polyvinyl chloride, and polyvinylidene fluoride. Examples of the UF membrane include collodion membrane, formaldehyde-hardened gelatin, cellophane, cellulose, cellulose acetate, polyethylene, polypropylene, acetylcellulose, a mixture of polypropylene and acetylcellulose, polyacrylonitrile, polysulfone, sulfonated-2,5-dimethylpolyphenylene oxide, and polyion. There are separation membranes made of materials such as complex, polyvinyl alcohol, and polyvinyl chloride, and have a molecular weight of 10 3 to
For filtering out particles such as molecular colloids, micellar colloids, associated colloids, etc., particles, viruses, etc., composed of 10 9 atomic groups can be used.

【0024】上記の膜分離装置は中空糸状のMF膜また
はUF膜を用い、中空糸膜の内側に濾過液または濃縮液
を0.01〜0.5MPaの圧力で流し、濃縮物の堆積
を防止しながら膜分離を行うことにより、膜面における
目詰まりなしに膜分離を行うことができる。膜分離装置
の濃縮液はスラリ調整槽に循環して濃縮を行い、コロイ
ダルシリカ15〜20重量%の濃度になった段階で回収
スラリとして研磨剤スラリに利用する。
The above-mentioned membrane separation device uses a hollow fiber MF membrane or UF membrane, and a filtrate or a concentrate is flowed at a pressure of 0.01 to 0.5 MPa inside the hollow fiber membrane to prevent accumulation of the concentrate. By performing membrane separation while performing membrane separation, membrane separation can be performed without clogging on the membrane surface. The concentrated liquid of the membrane separation device is circulated to a slurry adjusting tank for concentration, and when the concentration of the colloidal silica reaches 15 to 20% by weight, the concentrated slurry is used as a recovered slurry in an abrasive slurry.

【0025】逆浸透装置はRO膜を有し、膜分離装置の
透過液を低分子の電解質を含む濃縮液と低品位純水とに
分離し、濃縮液をスラリ調整槽に返送するように構成さ
れる。RO膜としては酢酸セルロース、ポリアミド等の
膜が使用できる。
The reverse osmosis device has an RO membrane, is configured to separate the permeate of the membrane separation device into a concentrated solution containing a low-molecular electrolyte and low-grade pure water, and return the concentrated solution to a slurry adjustment tank. Is done. As the RO film, a film of cellulose acetate, polyamide or the like can be used.

【0026】逆浸透装置としては中空糸形、スパイラル
形、チューブラ形、平膜形などで任意の形式のRO膜を
用い、0.7〜2MPa、好ましくは1.4〜1.5M
Paの圧力で、膜分離装置の透過液を循環しながら逆浸
透処理し、濃縮液を研磨剤スラリの成分として利用す
る。透過液は主たる成分である研磨剤粒子および低分子
電解質は除去されているので、低品位純水として超純水
製造用の原料水または一般の雑用純水として使用され
る。
As the reverse osmosis device, an RO membrane of any type such as a hollow fiber type, a spiral type, a tubular type and a flat membrane type is used, and 0.7 to 2 MPa, preferably 1.4 to 1.5 M is used.
At a pressure of Pa, reverse osmosis treatment is performed while circulating the permeate of the membrane separation device, and the concentrated solution is used as a component of the abrasive slurry. The permeated liquid is used as raw water for producing ultrapure water or general pure water as low-grade pure water since abrasive particles and low molecular electrolytes, which are main components, have been removed.

【0027】スラリ調整槽は膜分離装置の濃縮液および
逆浸透装置の濃縮液を受け入れ、これに不足するコロイ
ダルシリカ等の研磨剤ならびに水酸化カリウム等のアル
カリや有機酸等の低分子電解質などの補給薬剤を混合し
て、研磨剤スラリを調整するように構成される。このス
ラリ調整槽は濾過装置の濾過液を受け入れ、濃縮液を循
環するスラリ濃縮槽を兼用することができる。
The slurry adjusting tank receives the concentrated solution of the membrane separation device and the concentrated solution of the reverse osmosis device, and lacks abrasives such as colloidal silica and low molecular electrolytes such as alkali and organic acids such as potassium hydroxide. The makeup agent is configured to mix to adjust the abrasive slurry. This slurry adjustment tank can also serve as a slurry concentration tank that receives the filtrate of the filtration device and circulates the concentrated liquid.

【0028】本発明の研磨剤スラリ回収装置では、半導
体基板あるいはその上に形成された被膜の化学研磨工程
の研磨廃液を濾過装置で濾過することにより粗大固形物
を含む不純物を除去する。これにより目詰まりなしに粗
大固形物を含む不純物が除去され、この時同時に微小な
不純物も除去される。
In the polishing slurry recovery apparatus of the present invention, impurities including coarse solids are removed by filtering a polishing waste liquid in a chemical polishing step of a semiconductor substrate or a film formed thereon on a polishing apparatus. Thereby, impurities including coarse solids are removed without clogging, and at the same time, minute impurities are also removed.

【0029】濾過装置の濾過液は膜分離装置で膜分離す
ることにより研磨剤を含む濃縮液と透過液に分離し、濃
縮液はスラリ調製槽に導入する。透過液は逆浸透装置で
逆浸透を行うことにより低分子電解質を含む濃縮液と分
離液に分離し、濃縮液はスラリ調製槽に導入する。分離
液は低品位純水として利用でき、また2次純水装置の原
水としても利用可能である。
The filtrate from the filtration device is separated into a concentrated solution containing an abrasive and a permeate by membrane separation with a membrane separator, and the concentrated solution is introduced into a slurry preparation tank. The permeate is subjected to reverse osmosis with a reverse osmosis device to separate into a concentrated solution containing a low molecular electrolyte and a separated solution, and the concentrated solution is introduced into a slurry preparation tank. The separated liquid can be used as low-grade pure water, and can also be used as raw water for a secondary pure water apparatus.

【0030】スラリ調整槽に導入した膜分離装置の濃縮
液と逆浸透装置の濃縮液に、不足する研磨剤および低分
子電解質を添加して研磨剤スラリを調製し、研磨工程に
返送し、研磨に利用する。
Insufficient abrasive and low molecular electrolyte are added to the concentrated solution of the membrane separation device and the concentrated solution of the reverse osmosis device introduced into the slurry adjusting tank to prepare an abrasive slurry, and the slurry is returned to the polishing process and polished. Use for

【0031】従来装置のように研磨剤粒径と研磨屑粒径
の中間の孔径を有する精密濾過膜を用いると目詰まりが
激しくなるが、全量濾過形の濾過器、特に単繊維のワイ
ンド形の濾過器で濾過することにより、目詰まりなしに
粗大固形物を含む不純物が除去され、これと同時に微小
不純物も除去される。
When a microfiltration membrane having a pore diameter intermediate between the abrasive particle diameter and the polishing debris particle diameter is used as in the conventional apparatus, clogging becomes severe. However, an all-filtration type filter, particularly a single fiber wind type filter, is used. By filtering with a filter, impurities including coarse solids are removed without clogging, and at the same time, minute impurities are also removed.

【0032】また理論的には、逆浸透装置を用いれば、
研磨剤と低分子電解質を同時に除去できるが、この場合
も目詰まりが激しくなる。これに対して膜分離装置によ
り研磨剤を濃縮し、逆浸透装置で低分子電解質を濃縮す
ることにより、目詰まりなしにこれらを分離して濃縮す
ることができる。特に膜分離装置として中空糸形の透過
膜を使用し、その内側に濃縮液を循環させる形式のもの
は濃縮物の堆積が少なく目詰まりは生じない。
In theory, if a reverse osmosis device is used,
Although the abrasive and the low molecular electrolyte can be removed at the same time, clogging also becomes severe in this case. On the other hand, by concentrating the abrasive with a membrane separation device and concentrating the low molecular electrolyte with a reverse osmosis device, these can be separated and concentrated without clogging. In particular, a type in which a hollow fiber permeable membrane is used as a membrane separation apparatus and a concentrated solution is circulated inside the membrane has little accumulation of the concentrated substance and does not cause clogging.

【0033】[0033]

【発明の効果】本発明によれば、濾過器で濾過し、膜分
離装置で濃縮液と透過液に分離し、透過液を逆浸透装置
で逆浸透し両方の濃縮液を回収して再利用するようにし
たので目詰まりを起こすことなく、粗大不純物および微
細不純物を除去して、コロイダルシリカおよび低分子電
解質を回収し、これを研磨スラリとして再利用するとと
もに、透過液も低品位純水として再利用できる研磨剤ス
ラリの回収装置が得られる。
According to the present invention, the filtrate is filtered by a filter, separated into a concentrate and a permeate by a membrane separator, and the permeate is reverse osmosis by a reverse osmosis device to collect and reuse both concentrates. As it does so, it removes coarse and fine impurities without clogging, recovers colloidal silica and low molecular electrolyte, reuses it as a polishing slurry, and uses permeate as low-grade pure water. A reusable abrasive slurry recovery device is obtained.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態の研磨剤スラリ回収装
置の系統図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of the abrasive slurry recovery device of the embodiment.

【0035】図1において、1はスラリ貯槽、2は研磨
系、3は廃液貯槽、4は濾過装置、5はスラリ調製槽、
6は膜分離装置、7は中間槽、8は逆浸透装置、9は回
収水槽である。
In FIG. 1, 1 is a slurry storage tank, 2 is a polishing system, 3 is a waste liquid storage tank, 4 is a filtration device, 5 is a slurry preparation tank,
6 is a membrane separation device, 7 is an intermediate tank, 8 is a reverse osmosis device, and 9 is a recovery water tank.

【0036】スラリ貯槽1は研磨剤スラリ11を貯留
し、ポンプP1を有するライン21により研磨系2に連
絡している。研磨系2は半導体基板を搬入し、基体の表
面またはその上に形成された被膜を化学機械研磨するよ
うに構成されている。研磨系2から濃厚な研磨廃液を排
出するライン22が廃液貯槽3に連絡している。廃液貯
槽3からポンプP2を有するライン23が濾過装置4に
連絡し、研磨廃液12を供給するように構成されてい
る。
The slurry storage tank 1 storing the abrasive slurry 11 in communication with the polishing system 2 by the line 21 having a pump P 1. The polishing system 2 is configured to carry in the semiconductor substrate and perform chemical mechanical polishing of the surface of the base or the coating formed thereon. A line 22 for discharging a concentrated polishing waste liquid from the polishing system 2 is connected to the waste liquid storage tank 3. A line 23 having a pump P 2 is connected to the filtration device 4 from the waste liquid storage tank 3 to supply the polishing waste liquid 12.

【0037】濾過装置はポリプロピレン等のプラスチッ
クからなる25〜100μm径の単繊維をワインドした
ワインドタイプの濾材を有するカートリッジ式の濾過エ
レメントを内部に収容した全量濾過形の濾過装置であっ
て、濾材の目開は10〜100μmとされている。濾過
装置4から濾過液を移送するライン24がスラリ調製槽
5に連絡している。濾過エレメントは使い捨てタイプで
あってもよく、また逆洗洗浄等により再生使用するタイ
プであってもよい。
The filter device is a filter device of a total filtration type in which a cartridge type filter element having a wind-type filter material obtained by winding a monofilament having a diameter of 25 to 100 μm made of a plastic such as polypropylene is housed. The opening is 10 to 100 μm. A line 24 for transferring the filtrate from the filtration device 4 is connected to the slurry preparation tank 5. The filtration element may be a disposable type, or may be a type that is regenerated by backwashing or the like.

【0038】スラリ調製槽5からポンプP3を有するラ
イン25が膜分離装置6に連絡し、槽内液13を供給す
るように構成されている。膜分離装置6はUF膜、MF
膜等の透過膜6aにより濃縮液室6bと透過液室6cに
分割されている。透過膜6aは中空糸状であって内部を
濃縮液が循環する構造とされている。濃縮液室6bの出
口から、弁V1を有するライン26がスラリ調製槽5に
連絡し、また弁V2を有するライン27がスラリ貯槽1
に連絡している。また透過液室6cからライン28が中
間槽7に連絡している。
A line 25 having a pump P 3 is connected from the slurry preparation tank 5 to the membrane separation device 6 so as to supply the liquid 13 in the tank. Membrane separation device 6 is UF membrane, MF
The concentrated liquid chamber 6b and the permeated liquid chamber 6c are divided by a permeable membrane 6a such as a membrane. The permeable membrane 6a is in the form of a hollow fiber and has a structure in which the concentrated liquid circulates. From the outlet of the concentrate chamber 6b, the valve V 1 line 26 with the contact slurry preparation tank 5, also the line 27 the slurry storage tank 1 having a valve V 2
Contact A line 28 communicates with the intermediate tank 7 from the permeated liquid chamber 6c.

【0039】中間槽7からポンプP4を有するライン2
9が逆浸透装置8に連絡し、槽内液14を供給するよう
に構成されている。逆浸透装置8はRO膜8aにより濃
縮液室8bと透過液室8cに分割されている。RO膜8
aとしては前記の任意の材質および形式のものが使用で
きる。濃縮液室8bの出口から弁V3を有するライン3
0が中間槽7に連絡し、弁V4を有するライン31がス
ラリ調製槽5に連絡している。透過液室8cからライン
32が回収水槽9に連絡している。回収水槽9には貯留
される回収水15を排出するライン33が系外に連絡し
ている。
Line 2 having pump P 4 from intermediate tank 7
9 is configured to communicate with the reverse osmosis device 8 and supply the in-tank liquid 14. The reverse osmosis device 8 is divided into a concentrated liquid chamber 8b and a permeated liquid chamber 8c by an RO membrane 8a. RO film 8
As a, any of the materials and types described above can be used. Line 3 from the outlet of the concentrate chamber 8b having a valve V 3
0 communicates with the intermediate tank 7 and a line 31 with valve V 4 communicates with the slurry preparation tank 5. A line 32 communicates with the recovery tank 9 from the permeated liquid chamber 8c. The collection water tank 9 is connected to a line 33 for discharging the collected water 15 stored outside the system.

【0040】上記の研磨剤スラリ回収装置においては、
スラリ貯槽1に貯留された研磨剤スラリ11をライン2
1からポンプP1により研磨系2に供給し、半導体基板
およびその上に形成された被膜の化学機械研磨を行う。
そして研磨工程およびリンス工程初期に排出される濃厚
研磨廃液12を廃液貯槽3に貯留する。コロイダルシリ
カ濃度は研磨剤スラリが15〜20重量%であるのに対
し、研磨廃液は0.1〜5重量%となっている。
In the above-mentioned abrasive slurry recovery apparatus,
Abrasive slurry 11 stored in slurry storage tank 1 is supplied to line 2
1 is supplied to the polishing system 2 by a pump P 1 from a chemical mechanical polishing of the coating film formed on a semiconductor substrate and thereon.
Then, the concentrated polishing waste liquid 12 discharged at the beginning of the polishing step and the rinsing step is stored in the waste liquid storage tank 3. The colloidal silica concentration of the abrasive slurry is 15 to 20% by weight, whereas the polishing waste liquid is 0.1 to 5% by weight.

【0041】研磨廃液12はライン23からポンプP2
により濾過装置4に供給され、ここで全量濾過が行われ
て、研磨屑や研磨用パッド破砕片等の固形物を含む不純
物が除去される。この場合粗大固形物の架橋によりケー
キが形成され、目詰まりなしに微小な固形物を含む不純
物も除去される。濾過液はライン24からスラリ調製槽
5に入る。
The polishing waste liquid 12 is supplied from a line 23 to a pump P 2.
To the filtration device 4, where the whole amount is filtered to remove impurities including solids such as polishing debris and crushed polishing pad fragments. In this case, a cake is formed by the cross-linking of the coarse solids, and impurities including fine solids are also removed without clogging. The filtrate enters the slurry preparation tank 5 from the line 24.

【0042】スラリ調製槽5の槽内液13はライン25
からポンプP3により膜分離装置6の濃縮液室6bに入
り、膜分離によって研磨剤(コロイダルシリカ)を含む
濃縮液と透過液に分離される。この場合中空糸状の透過
膜6aを用いてその内側を濃縮液室6bとして濃縮液を
0.1〜0.2MPaの圧力、1.5〜2.0m/hr
の高速で循環させることにより、膜面におけるコロイダ
ルシリカの濃縮を防止して目詰まりを防止することがで
きる。濃縮液は弁V1を開くことによりライン26から
スラリ調製槽5に戻って循環し、濃縮が継続して行われ
る。透過液はライン28から中間槽7に入る。
The liquid 13 in the slurry preparation tank 5 is supplied to a line 25.
Enters the concentrate chamber 6b of the membrane separation device 6 by a pump P 3 from is separated into permeate and concentrate containing abrasive (colloidal silica) by membrane separation. In this case, a hollow fiber-shaped permeable membrane 6a is used, and the inside thereof is made into a concentrated liquid chamber 6b, and the concentrated liquid is supplied at a pressure of 0.1 to 0.2 MPa and 1.5 to 2.0 m / hr.
By circulating at high speed, the concentration of colloidal silica on the membrane surface can be prevented, and clogging can be prevented. Concentrate is circulated back from the line 26 by opening the valve V 1 to the slurry preparation tank 5 is performed enrichment continues. The permeate enters the intermediate tank 7 via line 28.

【0043】中間槽7の槽内液14はライン29からポ
ンプP4により逆浸透装置8の濃縮液室8bに入り、
0.7〜2MPaの圧力で逆浸透分離することにより水
酸化カリウム等のアルカリ、有機酸などの低分子の電解
質および溶解性シリカを含む濃縮液と透過液に分離され
る。濃縮液は弁V3を開くことにより、ライン30から
中間槽7に戻って循環し、逆浸透処理が継続する。透過
液はライン32から回収水槽9に入る。
[0043] Tank solution of the intermediate tank 7 14 enters the concentrate chamber 8b of the reverse osmosis device 8 by the pump P 4 from the line 29,
By performing reverse osmosis separation at a pressure of 0.7 to 2 MPa, the solution is separated into a concentrated solution containing a low molecular electrolyte such as an alkali such as potassium hydroxide, an organic acid and the like, and soluble silica, and a permeate. The concentrate opening valve V 3, cycles back through the line 30 to the intermediate tank 7, reverse osmosis treatment continues. The permeate enters the recovery tank 9 via line 32.

【0044】スラリ調製槽5の槽内液13のコロイダル
シリカ濃度が15〜20重量%となったことを比重計等
の検知手段で検知し、一方、中間槽7の槽内液14の低
分子電解質濃度が1〜10重量%になったことを電気伝
導率計等の検知手段により検知した時点で、弁V3を閉
じて弁V4を開き、中間槽7の槽内液をライン31から
スラリ調製槽5に送って混合する。
When the colloidal silica concentration of the liquid 13 in the slurry preparation tank 5 becomes 15 to 20% by weight, a detection means such as a hydrometer detects the low molecular weight of the liquid 14 in the tank 14 of the intermediate tank 7. when the electrolyte concentration is detected by the detection means of the electrical conductivity meter or the like that has become 1 to 10 wt%, opening valve V 4 is closed the valve V 3, the intracisternal solution of intermediate tank 7 from the line 31 It is sent to the slurry preparation tank 5 and mixed.

【0045】ここで電気伝導率計等の検知手段により低
分子電解質濃度をチェックし、不足する場合はライン3
4からアルカリや有機酸等の薬剤を補給して所定組成の
研磨剤スラリを調製する。こうして調製された研磨剤ス
ラリは弁V2を開くことにより、ライン27からスラリ
貯槽1に供給し、再利用される。
Here, the concentration of the low-molecular electrolyte is checked by a detecting means such as an electric conductivity meter.
A polishing slurry having a predetermined composition is prepared by replenishing a chemical such as an alkali or an organic acid from Step 4. Abrasive slurry thus prepared by opening the valve V 2, supplied from the line 27 to the slurry tank 1 for reuse.

【0046】回収水槽9の回収水は電気伝導率5〜50
μS/cm程度の低品位純水であるので、これをライン
33から取出して超純水製造系に供給し、超純水として
研磨系2の研磨用水として利用することができる。この
ほか回収水はそのまま低品位純水として冷却塔その他の
雑用水として使用することもできる。
The recovered water in the recovery tank 9 has an electric conductivity of 5 to 50.
Since it is low-grade pure water of about μS / cm, it can be taken out from the line 33 and supplied to the ultrapure water production system, and can be used as ultrapure water as polishing water for the polishing system 2. In addition, the recovered water can be used as it is as low-grade pure water as a cooling tower or other miscellaneous water.

【0047】上記の処理において、濾過装置4、膜分離
装置6および逆浸透装置8はそれぞれ連続的処理を行っ
てもよく、またいずれか1または2の装置の運転中他の
装置を停止してもよい。例えば、スラリ調製槽5の槽内
液13の濃縮が終了するまで逆浸透装置8を停止して、
透過液を中間槽7に貯留しておき、濃縮終了後逆浸透処
理を行ってもよい。
In the above process, the filtration device 4, the membrane separation device 6 and the reverse osmosis device 8 may each perform a continuous process, or the other device may be stopped during operation of any one or two of the devices. Is also good. For example, the reverse osmosis device 8 is stopped until the concentration of the liquid 13 in the slurry preparation tank 5 is completed,
The permeated liquid may be stored in the intermediate tank 7, and reverse osmosis treatment may be performed after the concentration.

【0048】逆浸透装置8による低分子電解質の濃縮が
十分で、中間槽7の槽内液14の低分子電解質の濃度が
所定濃度を確保できる場合は、ライン34からの薬剤の
補給が不要になる場合があるが、槽内液14の濃度が不
十分の場合はライン34から補給薬剤を添加することが
できるほか、薬剤をスラリ貯槽1に添加してもよい。
When the concentration of the low-molecular electrolyte by the reverse osmosis device 8 is sufficient and the concentration of the low-molecular electrolyte in the liquid 14 in the intermediate tank 7 can be maintained at a predetermined concentration, the supply of the drug from the line 34 becomes unnecessary. However, when the concentration of the in-tank liquid 14 is insufficient, a replenishing agent can be added from the line 34, or the agent may be added to the slurry storage tank 1.

【0049】[0049]

【実施例】以下、本発明の実施例について説明する。実
施例中、%は重量%である。
Embodiments of the present invention will be described below. In Examples,% is% by weight.

【0050】実施例1 コロイダルシリカ濃度15重量%、水酸化カリウム濃度
1重量%の研磨剤スラリを用いるKOH系酸化膜CMP
研磨系の研磨廃液(コロイダルシリカ1%、電気伝導率
4000μS/cm)を図1の装置で処理した。濾過装
置4はポリプロピレン長繊維不燃糸のワインドフィルタ
(目開き50μm)の濾過装置を用いて全量濾過を行
い、固形物を含む不純物を除去した。
Example 1 KOH-based oxide film CMP using an abrasive slurry having a colloidal silica concentration of 15% by weight and a potassium hydroxide concentration of 1% by weight
Polishing waste liquid (colloidal silica 1%, electric conductivity 4000 μS / cm) of the polishing system was treated by the apparatus shown in FIG. The filtration device 4 was subjected to total filtration using a filtration device of a polypropylene long fiber non-combustible yarn wind filter (mesh size: 50 μm) to remove impurities including solids.

【0051】膜分離装置6は分画分子量13000のポ
リサルフォン製の中空糸状UF膜を透過膜とするもの
で、その内側に濃縮液を0.2MPa、2.0m/hr
の速度で循環して、クロスフロー方式で濃縮を行い、コ
ロイダルシリカ濃度20%に濃縮した。この時の濃度コ
ントロールは比重計により行った。
The membrane separation device 6 uses a hollow fiber-shaped UF membrane made of polysulfone having a molecular weight cut off of 13,000 as a permeable membrane, and a concentrated solution of 0.2 MPa and 2.0 m / hr is placed inside the membrane.
The mixture was circulated at a speed of, and concentrated by a cross-flow method, and concentrated to a colloidal silica concentration of 20%. At this time, the concentration was controlled with a hydrometer.

【0052】逆浸透装置8はスパイラル型のポリアミド
のRO膜を有する装置であり、中間槽7内のpHを調整
して0.7MPaの圧力で逆浸透分離を行うことによ
り、電気伝導率504μS/cm、溶解性シリカ105
mg/lの膜分離装置透過液が1400μS/cm、溶
解性シリカ228mg/lの濃縮液と46μS/cm、
溶解性シリカ4.5mg/lの回収水に分離された。
The reverse osmosis device 8 is a device having a spiral type RO membrane of polyamide. The reverse osmosis separation is performed at a pressure of 0.7 MPa by adjusting the pH in the intermediate tank 7 to obtain an electric conductivity of 504 μS / cm, soluble silica 105
mg / l membrane separator permeate 1400 μS / cm, soluble silica 228 mg / l concentrate and 46 μS / cm,
The soluble silica was separated into 4.5 mg / l of recovered water.

【0053】この濃縮液を膜分離装置の濃縮液と混合す
ることにより、コロイダルシリカ濃度15%、電気伝導
率3000μS/cmの研磨剤スラリが回収された。電
気伝導率が高く検出されたのはコロイダルシリカの荷電
によるものである。原研磨スラリの電気伝導率は400
0μS/cmであるため、上記回収スラリにKOHを添
加して電気伝導率を4000μS/cmとすることによ
り研磨剤スラリとして利用することができる。
By mixing this concentrate with the concentrate of the membrane separation apparatus, an abrasive slurry having a colloidal silica concentration of 15% and an electric conductivity of 3000 μS / cm was recovered. The high electrical conductivity was detected due to the charge of the colloidal silica. Electric conductivity of raw polishing slurry is 400
Since it is 0 μS / cm, it can be used as an abrasive slurry by adding KOH to the above-mentioned recovered slurry to have an electric conductivity of 4000 μS / cm.

【0054】この時のKOH添加量は逆浸透装置により
低分子電解質を回収しない場合のKOH添加量の約1/
6であった。
The amount of KOH added at this time is about 1/100 of the amount of KOH added when the low molecular electrolyte is not recovered by the reverse osmosis device.
It was 6.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の研磨剤スラリ回収装置の系統図であ
る。
FIG. 1 is a system diagram of an abrasive slurry recovery apparatus according to an embodiment.

【図2】従来の研磨剤粒子の回収方法を示す系統図であ
る。
FIG. 2 is a system diagram showing a conventional method for collecting abrasive particles.

【符号の説明】[Explanation of symbols]

1 スラリ貯槽 2 研磨系 3 廃液貯槽 4 濾過装置 5 スラリ調製槽 6 膜分離装置 7 中間槽 8 逆浸透装置 9 回収水槽 11 研磨剤スラリ 12 研磨廃液 13、14 槽内液 15 回収水 21〜34 ライン P1〜P4 ポンプ V1〜V4DESCRIPTION OF SYMBOLS 1 Slurry storage tank 2 Polishing system 3 Waste liquid storage tank 4 Filtration device 5 Slurry preparation tank 6 Membrane separation device 7 Intermediate tank 8 Reverse osmosis device 9 Recovery water tank 11 Abrasive slurry 12 Polishing waste liquid 13, 14 Tank liquid 15 Recovery water 21-34 line P 1 ~P 4 pump V 1 ~V 4 valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板あるいはその上に形成された
被膜の化学機械研磨を行った後の研磨廃液から研磨剤ス
ラリを回収するための装置であって、 研磨廃液を濾過して固形物を含む不純物を除去する全量
濾過形の濾過装置と、 濾過装置の濾過液を膜分離により研磨剤を含む濃縮液と
透過液に分離する膜分離装置と、 膜分離装置の透過液を逆浸透により低分子の電解質を含
む濃縮液と低品位純水とに分離する逆浸透装置と、 膜分離装置の濃縮液と逆浸透装置の濃縮液を受け入れて
研磨剤スラリを調製するスラリ調製槽とを含む研磨剤ス
ラリ回収装置。
1. An apparatus for recovering an abrasive slurry from a polishing waste liquid after a chemical mechanical polishing of a semiconductor substrate or a film formed on the semiconductor substrate, the polishing waste liquid being filtered to contain a solid matter. A filtration device of a total filtration type that removes impurities, a membrane separation device that separates the filtrate of the filtration device into a concentrated solution containing an abrasive and a permeate by membrane separation, and a low molecule by reverse osmosis of the permeate of the membrane separation device Osmosis device that separates a concentrated solution containing the electrolyte of the present invention into low-grade pure water, and a slurry preparation tank that receives the concentrated solution of the membrane separation device and the concentrated solution of the reverse osmosis device and prepares an abrasive slurry. Slurry recovery device.
JP28233597A 1997-10-15 1997-10-15 Abrasive slurry recovery device Expired - Fee Related JP4253048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28233597A JP4253048B2 (en) 1997-10-15 1997-10-15 Abrasive slurry recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28233597A JP4253048B2 (en) 1997-10-15 1997-10-15 Abrasive slurry recovery device

Publications (2)

Publication Number Publication Date
JPH11121408A true JPH11121408A (en) 1999-04-30
JP4253048B2 JP4253048B2 (en) 2009-04-08

Family

ID=17651084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28233597A Expired - Fee Related JP4253048B2 (en) 1997-10-15 1997-10-15 Abrasive slurry recovery device

Country Status (1)

Country Link
JP (1) JP4253048B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077814A (en) * 1998-03-30 1999-10-25 오바라 히로시 Slurry recycling system of CMP apparatus and method of same
JP2001162534A (en) * 1999-12-10 2001-06-19 Lsi Logic Corp Cmp slurry circulating device and cmp slurry circulating method
JP2001308040A (en) * 1999-12-21 2001-11-02 Applied Materials Inc High throughput copper cmp with reduced erosion and dishing
JP2002011664A (en) * 2000-06-28 2002-01-15 Kurita Water Ind Ltd Abrasive recovering device
JP2002016027A (en) * 2000-06-27 2002-01-18 Kurita Water Ind Ltd Abrasive material recovering device
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from cmp waste water containing high toc
JP2007136572A (en) * 2005-11-16 2007-06-07 Disco Abrasive Syst Ltd Circulation device for cutting liquid
DE102007033258A1 (en) * 2007-07-17 2009-01-22 Schott Ag Waste fluid separating medium regeneration method for use during manufacture of solar cells, involves removing solvent from fluid mixture after separation of solid particle and under pressure using ceramic nano-filtration unit
JP2010115719A (en) * 2008-11-11 2010-05-27 Ihi Compressor & Machinery Co Ltd Method and device for oscillating filtration
JP2010253442A (en) * 2009-04-28 2010-11-11 Idemitsu Kosan Co Ltd Method of concentrating particulate dispersion
WO2012114395A1 (en) * 2011-02-25 2012-08-30 野村マイクロ・サイエンス株式会社 Abrasive recovery method and abrasive recovery device
TWI619579B (en) * 2014-12-30 2018-04-01 Mtr Inc Chemical mechanical polishing slurry regeneration method and regeneration device
CN113351019A (en) * 2020-05-22 2021-09-07 台湾积体电路制造股份有限公司 Liquid supply system, filter device and cleaning method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077814A (en) * 1998-03-30 1999-10-25 오바라 히로시 Slurry recycling system of CMP apparatus and method of same
JP2001162534A (en) * 1999-12-10 2001-06-19 Lsi Logic Corp Cmp slurry circulating device and cmp slurry circulating method
JP4657412B2 (en) * 1999-12-10 2011-03-23 エルエスアイ コーポレーション Apparatus and method for polishing a semiconductor wafer
JP2001308040A (en) * 1999-12-21 2001-11-02 Applied Materials Inc High throughput copper cmp with reduced erosion and dishing
JP2002016027A (en) * 2000-06-27 2002-01-18 Kurita Water Ind Ltd Abrasive material recovering device
JP4552168B2 (en) * 2000-06-27 2010-09-29 栗田工業株式会社 Abrasive recovery device
JP2002011664A (en) * 2000-06-28 2002-01-15 Kurita Water Ind Ltd Abrasive recovering device
JP4534241B2 (en) * 2000-06-28 2010-09-01 栗田工業株式会社 Abrasive recovery method
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from cmp waste water containing high toc
JP2007136572A (en) * 2005-11-16 2007-06-07 Disco Abrasive Syst Ltd Circulation device for cutting liquid
DE102007033258A1 (en) * 2007-07-17 2009-01-22 Schott Ag Waste fluid separating medium regeneration method for use during manufacture of solar cells, involves removing solvent from fluid mixture after separation of solid particle and under pressure using ceramic nano-filtration unit
JP2010115719A (en) * 2008-11-11 2010-05-27 Ihi Compressor & Machinery Co Ltd Method and device for oscillating filtration
JP2010253442A (en) * 2009-04-28 2010-11-11 Idemitsu Kosan Co Ltd Method of concentrating particulate dispersion
WO2012114395A1 (en) * 2011-02-25 2012-08-30 野村マイクロ・サイエンス株式会社 Abrasive recovery method and abrasive recovery device
JP2012178418A (en) * 2011-02-25 2012-09-13 Nomura Micro Sci Co Ltd Method and apparatus for collecting polishing agent
TWI619579B (en) * 2014-12-30 2018-04-01 Mtr Inc Chemical mechanical polishing slurry regeneration method and regeneration device
CN113351019A (en) * 2020-05-22 2021-09-07 台湾积体电路制造股份有限公司 Liquid supply system, filter device and cleaning method thereof
CN113351019B (en) * 2020-05-22 2024-03-26 台湾积体电路制造股份有限公司 Liquid supply system, filter device and cleaning method thereof

Also Published As

Publication number Publication date
JP4253048B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP2606156B2 (en) Method for collecting abrasive particles
JP3341601B2 (en) Method and apparatus for collecting and reusing abrasives
KR100859045B1 (en) Apparatus for recovering abrasives
JP4253048B2 (en) Abrasive slurry recovery device
US20120261339A1 (en) Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process, in particular from a chemico-mechanical polishing process
JP2010167551A (en) Method for regenerating used slurry
JP5261090B2 (en) Method and apparatus for treating wastewater containing silicon
US7438804B2 (en) Coagulation treatment apparatus
Wu et al. Characterization and reduction of membrane fouling during nanofiltration of semiconductor indium phosphide (InP) wastewater
JPH1133362A (en) Recovery method and apparatus of polishing agent
JP4161389B2 (en) Polishing wastewater treatment method and apparatus
JP2000288935A (en) Method and device for recovering non-colloidal abrasive material
JP2001009723A (en) Abrasive recovering device
JP3569605B2 (en) Water recovery method from wastewater containing colloidal silica
JP2000126768A (en) Method nd apparatus for treating cmp waste solution
JP4552168B2 (en) Abrasive recovery device
CN111410332A (en) Method and device for treating silicon wafer processing wastewater
JPH11347569A (en) Polishing waste water treatment method
JP2001121421A (en) Water recovery system
JP4534241B2 (en) Abrasive recovery method
JPH1128338A (en) Method and device for separating slurried polishing liquid for semiconductor
JP4457444B2 (en) Abrasive recovery method
JPH11192480A (en) Device for recovering and treating waste alkaline silica polishing water
JP2002083789A (en) Recovery apparatus for abrasive
JPH11138162A (en) Polishing waste water treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Effective date: 20061120

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A521 Written amendment

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees