WO2012114395A1 - Abrasive recovery method and abrasive recovery device - Google Patents

Abrasive recovery method and abrasive recovery device Download PDF

Info

Publication number
WO2012114395A1
WO2012114395A1 PCT/JP2011/004593 JP2011004593W WO2012114395A1 WO 2012114395 A1 WO2012114395 A1 WO 2012114395A1 JP 2011004593 W JP2011004593 W JP 2011004593W WO 2012114395 A1 WO2012114395 A1 WO 2012114395A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
membrane
abrasive
concentration
separation
Prior art date
Application number
PCT/JP2011/004593
Other languages
French (fr)
Japanese (ja)
Inventor
慶一郎 石井
正司 日沖
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to CN2011800667823A priority Critical patent/CN103347656A/en
Priority to KR1020137015764A priority patent/KR20140001954A/en
Publication of WO2012114395A1 publication Critical patent/WO2012114395A1/en
Priority to US13/972,364 priority patent/US20130333299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Definitions

  • the present invention relates to a method and apparatus for recovering abrasives, and more particularly, to a method of recovering abrasives capable of concentrating used polishing slurry to a high concentration and a recovery apparatus using the same.
  • the surface of a film such as an insulating film or metal thin film formed on a semiconductor wafer is required to be a highly flat surface.
  • CMP Chemical Mechanical Polishing
  • polishing is performed with a polishing slurry interposed between a polishing member such as a polishing pad and a semiconductor wafer.
  • silica fine particles having good dispersibility and uniform particle diameter, ceria having a high polishing rate, and alumina having high hardness and stability are used as a polishing agent used in CMP.
  • These abrasives are provided by the manufacturer as a slurry in which particles of predetermined particle size and concentration are dispersed in water. The slurry is used after being diluted to a predetermined concentration when supplied to a CMP machine, depending on each site.
  • pH adjusters such as potassium hydroxide, ammonia, organic acids and amines, dispersants such as surfactants, hydrogen peroxide, potassium iodate, iron nitrate (III And the like are added in advance.
  • dispersants such as surfactants, hydrogen peroxide, potassium iodate, iron nitrate (III And the like are added in advance.
  • these components are separately added to the slurry at the time of polishing.
  • polishing process waste water is diluted by a large number of cleaning process water and the like, and the concentration of the polishing agent is lowered.
  • semiconductor wafers, coating materials, polishing pad scraps, fine particles in which the polishing agent is broken, and solid impurities having a large particle diameter caused by aggregation of the polishing agent are mixed in the drainage of the polishing process. .
  • the wastewater from the CMP process is passed through a separation membrane such as a microfiltration membrane or an ultrafiltration membrane and subjected to membrane treatment, and a drug or ultrapure water is further added to adjust the concentration of the polishing agent or the dispersing agent Methods have been proposed for reuse as abrasive slurries.
  • a separation membrane such as a microfiltration membrane or an ultrafiltration membrane and subjected to membrane treatment
  • a drug or ultrapure water is further added to adjust the concentration of the polishing agent or the dispersing agent
  • Patent Document 1 for the purpose of improving the membrane permeation flow rate, the first membrane element is subjected to membrane separation while maintaining the slurry concentration of the circulating liquid at a predetermined value, and then a portion thereof is extracted.
  • a membrane treatment method of CMP drainage is further disclosed in which membrane separation is further performed by two membrane elements.
  • Patent Document 2 discloses a method of separating a slurry-like polishing slurry for a semiconductor, which is capable of removing agglomerates having a large diameter by aggregating fine particles and recovering abrasive particles having a desired particle diameter.
  • fine particles are removed by the ultrafiltration membrane 1m in the first step, and coarse particles causing polishing scratches are removed by the microfiltration membrane 2m in the second step.
  • the abrasive waste liquid in the CMP step is concentrated to 0.90 times to 0.96 times the specific gravity of the stock solution using a concentration filter such as an ultrafiltration membrane (primary concentration step), A method is disclosed in which the concentrate is further concentrated to 0.99 times to 1.01 times the specific gravity of the stock solution (secondary concentration step) to recycle the abrasive.
  • a concentration filter such as an ultrafiltration membrane
  • Patent Document 4 discloses a polishing agent recovery device in which the amount of water passing through the membrane separation means and the amount of dispersant in the drainage are reduced, and early clogging of the membrane is suppressed.
  • the concentrated solution concentrated by the first membrane separation means at the front stage is introduced into the second membrane separation means at the rear stage, and coarse solids are removed by the second membrane separation means.
  • Ultrafiltration membranes are widely used as the hollow fiber type separation membranes used in the above examples.
  • the hollow fiber type separation membrane is superior in cost because the longer the effective filtration length, the smaller the number of modules to be used, so that a filtration length of about 1 m is generally used.
  • the hollow fiber type separation membrane As the water to be treated has a high concentration, solid components are deposited as a cake on the inner wall, and the thickness of the cake gradually increases. For this reason, the effective inner diameter of the film is narrowed, and an increase in pressure loss and a film clogging may occur, so that the recovery rate of the polishing agent may be significantly reduced.
  • this tendency becomes remarkable when the concentration of the polishing agent exceeds about several percent. For this reason, the concentration to a few percent is practically limited. Even with the technology described in the above patent documents, it is difficult to sufficiently suppress the clogging of the separation membrane and the decrease in the recovery rate of the abrasive particles accompanying this when passing high-concentration treated water. there were.
  • the present invention has been made to solve the above-mentioned problems, and suppresses the increase in pressure loss and the drastic decrease in recovery rate due to clogging of the membrane, and an abrasive that can concentrate the abrasive to a high concentration. It is an object of the present invention to provide a recovery device and a method for recovering an abrasive.
  • the present inventor has intensively studied, as described above, the deposit of cake on the filtration surface of the separation membrane and the deposit of gel-like substance of the abrasive on the outlet side of the treated water. It has been found that the presence or absence mainly depends on the effective filtration length of the separation membrane, and the present invention has been completed.
  • the apparatus for recovering an abrasive according to the present invention is an apparatus for recovering the abrasive from the used abrasive slurry used in the CMP process, and the apparatus for recovering the abrasive has a passage through which the used abrasive slurry is introduced.
  • the separation membrane has a cylindrical shape, and the passage of the separation membrane has an effective filtration portion having a length of 0.8 m or less, and the recovery device for the polishing agent comprises the polishing agent concentration of the used polishing slurry Is concentrated to a concentration of 10% by mass or more.
  • the concentration of the abrasive introduced into the separation membrane is not particularly limited because it depends on the concentration of liquid discharged from the customer's factory, but in general, a used slurry having 0.02 to 5% by mass should be introduced. Can.
  • the used polishing slurry is passed through the hollow portion of the separation membrane in a cross flow manner.
  • the separation membrane is preferably provided in an internal pressure membrane separation unit.
  • the separation membrane is preferably a hollow fiber membrane.
  • the inner diameter of the separation membrane is preferably 0.1 mm or more and 0.8 mm or less.
  • the molecular weight cut off of the separation membrane is preferably 3,000 to 30,000.
  • the separation membrane is preferably made of polyethylene, tetrafluoroethylene, polyvinylidene fluoride, polypropylene, cellulose acetate, polyacrylonitrile, polyimide, polysulfone or polyethersulfone.
  • the abrasive recovery device may have an upstream separation membrane having an effective filtration length longer than that of the separation membrane and a cylindrical passage in the front stage of the separation membrane.
  • the length L1 of the effective filtration part of the pre-stage separation membrane is 0.8 to 1.5 m
  • the length L2 of the effective filtration part of the post-stage separation membrane provided in the latter stage of the pre-stage separation membrane is 0.2 to 0 It is preferable that it is .8 m or less.
  • the used abrasive slurry used in the CMP step is passed through a separation membrane having a cylindrical passage and an effective filtration portion having a length of 0.8 m or less, It is characterized in that the abrasive concentration of the used abrasive slurry is concentrated to a concentration of 10% by mass or more.
  • the used polishing slurry is passed through the hollow portion of the separation membrane by a cross flow method.
  • the inner diameter of the separation membrane is preferably 0.1 mm or more and 0.8 mm or less.
  • the circulation flow rate of the water to be treated in the effective filtration part of the separation membrane is preferably 0.5 to 2 m / sec.
  • a separation membrane with a long effective filtration length can be used.
  • the first filtration step is not particularly limited because it depends on the concentration of the polishing agent in the customer factory waste water, but in general, it is preferable to filter the used polishing slurry of 0.02 to 5% by mass at maximum 13% by mass, more preferably Is concentrated to 9 to 10% by mass, and in the second filtration step, the concentrated water of 13% by mass or less obtained in the first filtration step is filtered to a maximum of 26% by mass, more preferably 20 to 25%. It is preferable to concentrate to mass%. Moreover, it is preferable to use the collection
  • cake deposition on the filtration surface and polishing on the outlet side of the treated water can be achieved by using a separation membrane having a length of the effective filtration section equal to or less than a predetermined value. Problems such as gel-like deposition of the agent are less likely to occur. For this reason, the slurry can be concentrated to an abrasive concentration of about several tens of percent or more.
  • the used polishing slurry after being used in the CMP process can be concentrated to a high concentration with lower energy than before, and a slurry having a high concentration of the polishing agent is recovered to a level that can be used as a product. be able to. In addition, even if concentration is performed at such a high concentration, increase in pressure loss in the membrane and blocking of the separation membrane can be suppressed, and a polishing agent recovery device in which a significant decrease in recovery rate is suppressed can be obtained. .
  • a slurry in which the polishing agent is concentrated to a high concentration can be recovered to a level that can be used as a product without causing a significant decrease in recovery rate.
  • the amount of new slurry used in the CMP process can be reduced by 60% or more.
  • FIG. It is a figure which shows schematic structure of the collection
  • the relationship between the abrasive concentration in the treatment tank 13 and the amount of permeated water (flux) discharged from the first permeated water discharge pipe 22 in the recovery apparatus of FIG. 3 and the abrasive concentration in the treatment tank 17 and the second permeated water It is a figure which shows the relationship with the amount of permeated water (flux) discharged
  • polishing agent recovery apparatus and the polishing agent recovery method of the present invention will be described in detail.
  • FIG. 1 is a view showing a schematic configuration of a polishing agent recovery apparatus according to an embodiment of the present invention.
  • the polishing agent recovery apparatus 1 is a guard filter 2 for removing coarse particles contained in a used polishing slurry S (hereinafter referred to as a used polishing slurry S) after the semiconductor is polished by a CMP process.
  • a treatment tank 3 for containing the treated water of the guard filter 2 and a membrane separation unit 4 provided with a separation membrane 41 for filtering the used polishing slurry S are sequentially installed along the flow path.
  • the guard filter 2 is for capturing a solid impurity having a large particle size, which is generated by aggregation of abrasives, polishing pad scraps and the like when polishing a semiconductor wafer.
  • the guard filter 2 can be used without particular limitation as long as it has a pore diameter larger than the particle diameter of the abrasive particles.
  • the guard filter 2 and the processing tank 3 are connected by a pipe 5.
  • the processing tank 3 and the membrane separation unit 4 are connected by a pipe 6 provided with a pump P1.
  • the processing tank 3 is provided with a component densitometer C1.
  • a permeated water outlet pipe 7 and a concentrated water outlet pipe 8 having an on-off valve B1 are connected to the membrane separation unit 4.
  • the concentrated water outlet pipe 8 is opened to supply the concentrated water obtained by the membrane separation unit 4 to the concentrated water recovery tank 9.
  • the concentrated water obtained in the membrane separation unit 4 is returned to the processing tank 3 by closing the on-off valve B1 and opening the on-off valve B2.
  • a reflux line 10 is provided.
  • the separation membrane 41 has a cylindrical passage. By passing the used polishing slurry S inside or outside the passage, excess water in the used polishing slurry S is removed and concentrated.
  • a hollow fiber type, a tubular type, or a flat membrane type separation membrane can be applied as the first separation membrane 41 having a cylindrical passage.
  • a hollow fiber type separation membrane can be suitably used as the separation membrane 41 because a large membrane area can be obtained with a small space.
  • the length L of the effective filtration part of the separation membrane 41 is 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less according to the target concentration concentration.
  • solid components are deposited on the filtration surface 412 of the hollow fiber 410 while concentrated water passes through the effective filtration portion. Do.
  • a cake layer is formed by the solid components deposited on the filtering surface 412 and the thickness thereof increases (see FIG. 2).
  • the cake layer on the filtration surface 412 of the separation membrane 41 is more easily formed as the effective filtration length is longer.
  • the formation of the cake layer narrows the effective inner diameter 410S of the hollow fiber 410, causing an increase in pressure loss and clogging of the membrane, which may significantly reduce the recovery efficiency of the polishing agent.
  • the cake layer and the gel-like deposit are formed of the abrasive particles, the recovery rate of the abrasive particle decreases with the increase of the cake layer and the occurrence of the gel deposit.
  • the abrasive is deposited in the form of gel on the outlet side of the hollow fiber on the treated water side, making it difficult to continue the filtration process.
  • the amount of chemicals required for cleaning the filter surface and the cleaning time increase, which causes an increase in the cost required for the entire polishing agent recovery process.
  • the separation membrane 41 a separation membrane having a length L of the effective filtration portion of 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less is used. Use. When an effective filtration length module having such a predetermined value or less is used, clogging does not easily occur even when passing through a high concentration of used slurry. Therefore, the growth of the cake layer on the filter surface 412 is suppressed, and no gel-like deposition occurs.
  • coarse particles obtained by gelation of the abrasive particles may be separated from the cake layer and mixed in the water to be treated. If such coarse particles are mixed in the recovered abrasive, they will cause scratching on the wafer surface when reused in the CMP step, leading to a reduction in the product yield.
  • the separation membrane 41 a separation membrane having a length L of the effective filtration portion in the above range is used. Therefore, the formation of a cake layer inside the separation membrane and the formation of coarse particles due to the deposition of the gel-like substance are suppressed, and the amount of coarse particles mixed in the abrasive particles after recovery is extremely reduced. Therefore, it is possible to recover the polishing agent which can be polished with high accuracy, without causing scratches or the like on the surface of the wafer even if it is reused in the CMP process.
  • the thickness of the cake layer tends to increase on the filtration surface 412 of the separation membrane 41, and the pressure loss increases due to the narrowing of the effective inner diameter. And blockage of the membrane is likely to occur.
  • the length L of the effective filtration portion of the separation membrane 41 is preferably within the above range and 0.2 m or more. If the length L of the effective filtration part of the separation membrane 41 is less than 0.2 m, the number of modules of the separation membrane 41 installed in the recovery device 1 increases, and it becomes difficult to install an appropriate filtration treatment device.
  • the length L of the effective filtration part of the separation membrane 41 is preferably 0.2 to 0.3 m.
  • the separation film 41 may be an organic film made of an organic material or an inorganic film made of an inorganic ceramic.
  • organic film examples include polyethylene (PE), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), cellulose acetate (CA), polyacrylonitrile (PAN), polyimide (PI), polysulfone PS), and polyether sulfone (PES) can be suitably used.
  • PE polyethylene
  • PTFE tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PP polypropylene
  • CA cellulose acetate
  • PAN polyacrylonitrile
  • PI polyimide
  • PS polysulfone PS
  • PES polyether sulfone
  • a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used as the inorganic film.
  • a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used as the separation membrane 41.
  • PS polysulfone
  • PES polyethersulfone
  • the separation membrane 41 may be a microfiltration membrane or an ultrafiltration membrane as long as it has a hollow fiber type shape. From the viewpoint of recovering the abrasive particles in the concentrated solution after recovery most efficiently, an ultrafiltration membrane can be suitably used as the separation membrane 41.
  • the molecular weight cut-off of the separation membrane 41 is preferably 3,000 to 30,000. If the molecular weight cut-off of the separation membrane 41 is less than 3,000, it is necessary to increase the pressure supplied to the separation membrane 41 in order to pass the water to be treated through the separation membrane 41 to obtain permeated water. Therefore, the energy efficiency is lowered and the separation membrane 41 may be damaged.
  • the molecular weight cut-off of the separation membrane 41 exceeds 30,000, a part of the abrasive particles may pass through the separation membrane 41 and move to the permeated water side, and the abrasive particles may not be efficiently recovered. . Further, in this case, the fine particles having substantially the same diameter as the pore diameter of the separation membrane 41 may easily block the pores of the separation membrane 41, which may cause clogging.
  • the molecular weight cut-off of the separation membrane 41 is more preferably 6000 to 10000.
  • the inner diameter of each hollow fiber or the like is preferably 0.1 mm or more and 0.8 mm or less. If the inner diameter of each hollow fiber or the like of the separation membrane 41 is less than 0.1 mm, the pressure loss of the water to be treated flowing through the hollow portion of the membrane increases, and it becomes difficult to obtain an appropriate treatment efficiency. Also, in this case, the surface strength of the film may be reduced, and the film may be damaged as the concentration of the water to be treated is increased.
  • each hollow fiber or the like of the separation membrane 41 exceeds 0.8 mm, the shear rate of the water to be treated flowing through the hollow portion of the membrane is small, so that the abrasive and other impurities are easily deposited on the inner wall of the hollow fiber. , There is a risk of closing the hollow portion. In addition, a large amount of abrasive gel may be generated, which may reduce the concentration of the abrasive in the concentrate. In order to increase the shear rate, it is necessary to enlarge the equipment, and it is not preferable because it consumes a large amount of energy. Furthermore, there is a possibility that the pressure resistance to external pressure may be reduced.
  • the inner diameter of each hollow fiber or the like of the separation membrane 41 is more preferably 0.3 mm or more and 0.8 mm or less.
  • the membrane separation unit 4 may be an internal pressure type separation unit for passing treated water into the hollow fiber 410, and an external pressure type separation for passing treated water outside the support layer 411 of the hollow fiber 410. It may be a part.
  • the membrane separation unit 4 is an internal pressure type separation unit, the solid components deposited on the filter surface 412 are peeled off by the shear force of the water to be treated passed through the hollow fiber 410, and the cake layer It is preferable because growth can be suppressed.
  • the permeated water obtained from the permeated water outlet pipe 7 can be recovered and reused.
  • FIG. 3 is a view showing a schematic configuration of a polishing agent recovery apparatus according to an embodiment of the present invention.
  • the polishing agent recovery apparatus 11 is a guard filter 12 for removing coarse particles contained in a used polishing slurry S (hereinafter referred to as a used polishing slurry S) after the semiconductor is polished by a CMP process.
  • the front stage membrane separation unit (hereinafter referred to as “first stage separation membrane” 141 including a front stage treatment tank 13 for storing treated water of the guard filter 12 and a front stage separation membrane (hereinafter referred to as a first separation membrane) 141 , And a first membrane separation unit) 14 are sequentially installed along the flow path.
  • the guard filter 12 is for trapping solid impurities having a large particle size, which are generated by aggregation of abrasives, polishing pad scraps and the like when the semiconductor wafer is polished.
  • the guard filter 12 can be used without particular limitation as long as it has a pore diameter larger than the particle diameter of the abrasive particles.
  • the guard filter 12 and the pre-treatment tank 13 are connected by a pipe 15.
  • the pre-treatment tank 13 and the first membrane separation unit 14 are connected by a pipe 16 provided with a pump P2.
  • the pre-processing tank 13 is provided with a component concentration meter C2.
  • a recovery tank 19 for recovering concentrated water separated by the second membrane separation unit 18 (hereinafter sometimes referred to as second concentrated water) is sequentially installed.
  • the post-stage processing tank 17 is provided with a component densitometer C3.
  • the first membrane separation unit 14 and the post-stage processing tank 17 are connected by a pipe 20 provided with an on-off valve B3.
  • the post-treatment tank 17 and the second membrane separation unit 18 are connected by a pipe 21 provided with a pump P3.
  • a first permeated water outlet pipe 22 is connected to the first membrane separation unit 14. Further, between the front stage of the on-off valve B3 of the pipe 20 and the pre-treatment tank 13, the first concentrated water obtained in the first membrane separation unit 14 is obtained by closing the on-off valve B3 and opening the on-off valve B4. A reflux piping 23 for refluxing to the pre-treatment tank 13 is provided.
  • the second membrane separation unit 18 is connected to a concentrated water outlet pipe 25 provided with a second permeated water outlet pipe 24 and an on-off valve B5.
  • the concentrated water outlet pipe 25 is opened to supply the concentrated water obtained in the second membrane separation unit 18 to the recovery tank 19.
  • the first separation membrane 141 and the second separation membrane 181 have a cylindrical passage. By passing the used polishing slurry S inside or outside the passage, excess water in the used polishing slurry S is removed and concentrated.
  • a hollow fiber type, a tubular type, or a flat membrane type separation membrane can be applied as the first separation membrane 141 having a cylindrical passage.
  • a hollow fiber type separation membrane can be suitably used as the first separation membrane 141 and the second separation membrane 181 because a large membrane area can be obtained with a small space.
  • the second separation membrane 181 is to filter and further concentrate the concentrated water of the first separation membrane 141 provided in the previous stage, and to increase the concentration of the polishing agent.
  • the length L2 of the effective filtration part of the second separation membrane 181 is 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less
  • the separation membrane having the above effective filtration length as the second separation membrane 181
  • clogging of the membrane is less likely to occur even when water is used through high concentration spent slurry, and the growth of the cake layer is suppressed.
  • increase in pressure loss in the second separation membrane 181 and blockage of the membrane hardly occur, and the recovery device 11 is suppressed with a remarkable drop in recovery rate. be able to.
  • the length L2 of the effective filtration portion of the second separation membrane 181 exceeds 0.8 m, the thickness of the cake layer tends to increase on the filtration surface of the second separation membrane 181, and the effective internal diameter is narrowed. It is likely that the pressure loss increases and the membrane is clogged.
  • the length L2 of the effective filtration part of the second separation membrane 181 is particularly preferably 0.2 to 0.3 m, for the same reason as the separation membrane 41 in the first embodiment.
  • the length L2 of the effective filtration portion of the second separation membrane 181 is preferably shorter than the length L1 of the effective filtration portion of the first separation membrane 141. That is, it is preferable that the length L1 of the effective filtration part of the first separation membrane 141 be longer than the length L2 of the effective filtration part of the second separation membrane 181.
  • the first separation membrane 141 efficiently filters the used polishing slurry S of low concentration diluted with the dispersion medium, and the second separation membrane 181 obtains the first separation membrane 141.
  • the first concentrated water thus obtained is further filtered.
  • the slurry in which the abrasive particles are concentrated to a high concentration can be recovered with low energy to a level that can be reused as a product.
  • the two-stage configuration as described above enables the volume of the water to be treated to be significantly reduced by the first separation membrane 141 having a large membrane area provided in the former stage, and is provided in the latter stage.
  • the second separation membrane 181 can concentrate the water to be treated to a higher concentration without causing clogging. For this reason, it is possible to reduce the number of modules to be used compared to the first embodiment.
  • the cake layer of the second separation membrane 181 is formed.
  • the thickness tends to increase, and the narrowing of the effective inner diameter tends to cause an increase in pressure loss and a blockage of the membrane.
  • the length L1 of the effective filtration portion of the first separation membrane 141 is not particularly limited, but is preferably 0.8 to 1.5 m in consideration of the membrane area and the like. If the length L1 of the effective filtration part of the first separation membrane 141 is less than 0.8 m, the number of modules of the separation membrane 141 installed in the recovery apparatus 11 increases or the installation area becomes large, As an apparatus, there is a possibility that a sufficient effect can not be obtained.
  • the length L1 of the effective filtration part of the first separation membrane 141 is more preferably 0.8 to 1.5 m.
  • the first separation membrane 141 may be a microfiltration membrane or an ultrafiltration membrane as long as it has a cylindrical passage. Efficiently recover abrasive particles (abrasive particles), keep the particle size of the abrasive particles in the concentrated solution after recovery constant, and use an ultrafiltration membrane with a small pore diameter and excellent energy efficiency. Can.
  • the second separation membrane 181 may also be a microfiltration membrane or an ultrafiltration membrane as long as it has a hollow fiber type shape.
  • An ultrafiltration membrane can be suitably used from the viewpoint of maintaining a high recovery rate of the abrasive particles in the concentrated solution after recovery.
  • the molecular weight cut off of the first separation membrane 141 and the second separation membrane 181 is preferably 3,000 to 30,000. If the molecular weight cut-off of the first separation membrane 141 and the second separation membrane 181 is less than 3,000, the pressure supplied to the separation membrane is sufficient for passing water to be treated through the separation membrane to obtain permeated water. Need to rise. As a result, the energy efficiency is lowered and the separation membrane may be damaged.
  • the fractional molecular weight of the first separation membrane 141 and the second separation membrane 181 exceeds 30,000, a part of the abrasive particles passes through the first separation membrane 141 and moves to the permeated water side.
  • the recovery efficiency of the abrasive particles may be reduced.
  • the fine particles having substantially the same diameter as the pore diameter of the separation membrane 141 may easily block the holes of the separation membrane 141 and the second separation membrane 181, which may cause clogging.
  • the inner diameter thereof is preferably 0.1 mm or more and 0.8 mm or less.
  • the inner diameter of each hollow fiber or the like of the first separation membrane 141 is less than 0.1 mm, the pressure loss of the water to be treated flowing through the hollow portion of the membrane increases, and it becomes difficult to obtain appropriate treatment efficiency.
  • the membrane surface strength of the separation membrane 141 is lowered, and the membrane may be damaged as the concentration of the water to be treated is increased.
  • each hollow fiber or the like of the first separation membrane 141 is 0.8 mm or more, the shear rate of the water to be treated flowing through the hollow portion of the membrane is small, and the abrasive and other impurities are the inner wall of the hollow portion.
  • the hollow portion may be clogged, the hollow portion may be clogged, a large amount of gel in which abrasive particles are aggregated may be generated, and the concentration of the abrasive in the concentrated solution after recovery may be reduced.
  • the inner diameters of hollow fibers and the like of the first separation membrane 141 and the second separation membrane 181 are more preferably 0.3 mm or more and 0.8 mm or less.
  • the first separation film 141 and the second separation film 181 may be an organic film made of an organic material, or may be an inorganic film made of an inorganic ceramic.
  • the organic film include polyethylene (PE), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), cellulose acetate (CA), polyacrylonitrile (PAN), polyimide (PI), polysulfone PS), and polyether sulfone (PES) can be suitably used.
  • a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used as the inorganic film.
  • a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used as the inorganic film.
  • PS polysulfone
  • PES polyethersulfone
  • first separation membrane 141 and the second separation membrane 181 are hollow fiber type separation membranes
  • they may be internal pressure type separation parts that allow water to be treated to flow through the hollow fiber
  • It may be an external pressure type separation part in which the water to be treated flows through the outside of the support layer.
  • it is preferable because the solid component deposited on the filtration surface can be peeled off by the shear force of the water to be treated passed through the hollow fiber and the growth of the cake layer can be suppressed.
  • the dilute solution of the slurry can be concentrated to a certain extent by the first separation membrane 141, so that a large amount of CMP drainage can be efficiently concentrated.
  • the amount of drainage may exceed 1,000 tons per day, but by providing the first separation film 141, such a large amount of drainage can be about 1/10 to 1/500. Can be reduced to Therefore, compared with the first embodiment in which the first separation film 141 is not installed, the number of modules installed as a whole can be reduced.
  • the first separation 141 may not necessarily be a hollow fiber separation membrane as long as it has a cylindrical passage, and may be a tubular or flat membrane separation membrane.
  • the used polishing slurry S to be treated is not particularly limited as long as it contains an abrasive after being used in the CMP step (chemical mechanical polishing step).
  • abrasive particles include silicon particles and cerium particles.
  • the abrasive particles those having an average particle diameter of 0.01 to 1 ⁇ m are usually suitably used.
  • the average particle size of the polishing agent is appropriately selected according to the CMP process, and is, for example, 0.04 to 0.4 ⁇ m.
  • the used polishing slurry S used in the CMP step is supplied to the guard filter 12 via the pipe 15.
  • the used polishing slurry S is stored in the pre-treatment tank 13 after coarse particles having a particle diameter of several tens of ⁇ m or more are removed in the process of passing through the guard filter 12.
  • the concentration of the abrasive particles in the untreated stage of the used abrasive slurry S is not particularly limited because it depends on the customer factory.
  • the abrasive concentration of the used polishing slurry S in the CMP step is usually 0.02 to 5% by mass.
  • the used polishing slurry S stored in the pre-treatment tank 13 is provided with the first separation membrane 141 via the pipe 16 by the pump P2 in a state where the on-off valve B3 is closed and the on-off valve B4 is opened.
  • the pressure is supplied to the first membrane separation unit 14.
  • the used polishing slurry S is passed through the hollow fibers of the first separation membrane 141 by the cross flow method. In the process of passing through the effective filtration part, excess water is permeated and concentrated (first filtration step).
  • the dispersion medium or the like of the used polishing slurry S flows out to the permeate outlet pipe 22 through the separation membrane 141, and the abrasive particles in the used polishing slurry S are concentrated water of the first separation membrane 141. Remain on the first concentrated water side.
  • the first concentrated water is returned to the pre-treatment tank 13 through the reflux pipe 23.
  • the on-off valve B3 is opened, the on-off valve B4 is closed, and a part of the on-off valve B4 is supplied to the post-stage processing tank 17 via the pipe 20.
  • the flow rate of the water to be treated (the used polishing slurry S and the first concentrated water) passing through the effective filtration portion of the first separation membrane 141 is preferably 0.5 to 2 m / sec.
  • An abrasive is applied to the filtration surface of the separation membrane 141 if the flow rate of the water to be treated (the used polishing slurry S and the first concentrated water) in the effective filtration section of the first separation membrane 141 is less than 0.5 m / sec.
  • the particles tend to adhere and the amount of permeated water may decrease. In this case, the number of separation membranes 141 installed needs to be increased, and the manufacturing cost of the recovery apparatus 11 is increased.
  • the flow velocity of the water to be treated in the effective filtration section of the first separation membrane 141 exceeds 2.0 m / sec, the amount of liquid contacting the membrane surface becomes excessive, which may generate heat. In this case, both the separation membrane 141 and the concentrate may be damaged by heat and may be deteriorated. Moreover, in order to improve the flow velocity of the water to be treated of the separation membrane 141, it is necessary to increase the size of each pipe, valve, etc., and the manufacturing cost of the recovery device 11 becomes high.
  • the flow velocity of the treated water passing through the effective filtration portion of the first separation membrane 141 is more preferably 0.55 to 1.5 m / sec.
  • the first concentrated water stored in the second-stage processing tank 17 is closed with the on-off valve B5 and the on-off valve B6, and the pump P3 passes the second separation membrane 181 via the pipe 21.
  • the pressure is supplied to the provided second membrane separation unit 18.
  • the second separation membrane 181 has an effective filtration length L2 shorter than the effective filtration length L1 of the first separation membrane 141 and 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less. ing.
  • the first concentrated water is passed through the hollow portion of each hollow fiber in a crossflow flow manner. In the process of passing through the effective filtration portion of the hollow fiber, the first concentrated water is permeated with excess water and concentrated (second filtration step).
  • the dispersion medium or the like of the first concentrated water flows out to the permeate outlet pipe 24 through the separation membrane 181, and the abrasive particles contained in the first concentrated water are concentrated in the second separation membrane 181. It remains on the second concentrated water side, which is water.
  • the flow velocity of the water to be treated (first concentrated water) passing through the effective filtration portion of the second separation membrane 181 is preferably 0.5 to 2 m / sec.
  • the flow velocity of the water to be treated in the effective filtration part of the second separation membrane 181 is less than 0.5 m / sec, abrasive particles are likely to adhere to the filtration surface of the separation membrane 181, and blockage of the membrane is likely to occur.
  • the flow velocity of the treated water in the effective filtration part of the second separation membrane 181 exceeds 2 m / sec, an excessive amount of energy is added to the abrasive particles, and the particles are aggregated to form coarse particles. is there.
  • the flow velocity of the treated water passing through the effective filtration portion of the second separation membrane 181 is more preferably 0.6 to 1 m / sec.
  • the open / close valve B5 is opened when the concentration of the polishing agent in the stored water in the post-stage treatment tank 17 measured by the component densitometer C3 becomes the target concentration. Is closed, and a portion thereof is supplied to the recovery tank 19 via the pipe 25.
  • the concentration of stored water in the post-treatment tank 17 when supplied to the recovery tank 19 via the pipe 25 is preferably 10% by mass or more and at most 26% by mass, and more preferably 20 to 25% by mass. is there.
  • the pressure loss of the water to be treated on the filtration surface of the second separation membrane 181 is preferably 0.1 MPa or less, more preferably 0.08 MPa or less.
  • the second separation membrane 181 having an effective filtration length shorter than the first effective filtration length is used in the abrasive recovery method of the present invention, the pressure loss at the filtration surface of the second separation membrane is increased. In addition, it is possible to efficiently recover the used polishing slurry S in which the abrasive particles are concentrated to a high concentration to a level that can be used as a product while suppressing the blocking of the film.
  • the first filtration step and the second filtration step show a method of performing filtration processing by an internal pressure type in which the water to be treated is passed through the hollow portion of the hollow fiber
  • the present invention Is not necessarily limited to such a form.
  • the water to be treated may be supplied to the outside of the hollow fiber and may be filtered by an external pressure system.
  • the permeated water obtained from the first permeated water outlet pipe 22 and the second permeated water outlet pipe 24 can be recovered and reused.
  • Example 1 Using the polishing agent recovery apparatus 1 shown in FIG. 1, the used slurry was filtered in the CMP process.
  • a Levitro pump “LEV300” manufactured by Iwaki Co., Ltd., trade name
  • a hollow fiber type UF membrane module “FB02-VC-FUST653” (Daisen Membrane Systems) Made in Japan, product name) was used.
  • a concentration tank (made of PVC) was used as the treatment tank 3 and the concentrated water recovery tank 9.
  • the hollow fiber type UF membrane module “FB02-VC-FUST653” had a molecular weight cut-off of 6000, a hollow fiber inner diameter of 0.5 mm, a membrane area of 0.5 m 2 and an effective filtration length of 0.26 m.
  • a used polishing slurry solution having a polishing agent concentration of about 1 mass% (pH: 9.8) was supplied from the pipe 5 to the processing tank 3 via the guard filter 2.
  • the on-off valve B1 was closed, and the on-off valve B2 was opened, and the used polishing slurry in the processing tank 3 was passed through the membrane separation unit 4.
  • the circulation flow rate in each pipe of the used slurry was 8.1 L / min, and the linear velocity in the hollow fiber membrane 41 was 0.55 m / sec.
  • the impeller rotational speed of the pump P1 (Levitro pump) and the opening / closing degree of the on-off valve B2 in the latter stage of the membrane separation unit 4 are set so that the pressure in the hollow fiber membrane 41 near the used polishing slurry Prepared.
  • Water treatment was performed in this state, and the abrasive concentration in the treatment tank 3 measured by the component densitometer C1 and the amount of permeated water (flux) discharged from the permeate outlet pipe were measured.
  • Example 2 A passing-through treatment of the used polishing slurry is carried out in the same manner as in Example 1 except that a hollow fiber type UF membrane module "M81S60001N" (trade name of SPECTRUM) is used as the membrane separation part 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1.
  • the hollow fiber type UF membrane module “M81S60001N” had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.46 m.
  • Example 3 The used abrasive slurry is treated with water in the same manner as in Example 1 except that a hollow fiber type UF membrane module “KM1S60001N” (trade name of SPECTRUM) is used as the membrane separation unit 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1.
  • the hollow fiber type UF membrane module “KM1S60001N” had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.63 m.
  • Example 1 A passing-through treatment of the used polishing slurry is carried out in the same manner as in Example 1 except that a hollow fiber type UF membrane module "KM1S30001N" (trade name of SPECTRUM) is used as the membrane separation unit 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1.
  • the hollow fiber type UF membrane module "KM1S30001N” had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.81 m.
  • Example 2 Used polishing in the same manner as in Example 1 except that a hollow fiber type UF membrane module “AMK-VC-FUST 653” (trade name of Daisen Membrane Systems Co., Ltd.) is used as the membrane separation unit 4
  • the slurry was subjected to water flow treatment, and in the same manner as in Example 1, the abrasive concentration in the treatment tank 3 was measured.
  • the hollow fiber type UF membrane module “AMK-VC-FUST653” had a hollow fiber inner diameter of 0.5 mm, an effective filtration length of 1.0 m, and a membrane area of 1.5 m 2 .
  • Example 1 and Comparative Example 2 the relationship between the abrasive concentration in the processing tank 3 measured by the component densitometer C1 and the amount of permeated water (flux) discharged from the permeated water discharge pipe 7 is shown in FIG.
  • the broken line indicates the amount of permeated water from the permeate outlet pipe 7 in Example 1
  • the solid line indicates the amount of permeated water from the permeate outlet pipe 7 in Comparative Example 2.
  • Table 1 the hollow fiber inner diameter, the membrane area, the effective filtration length, and the material of each of the hollow fiber separation membranes 41 of Examples 1 to 3 and Comparative Examples 1 to 2 are treated water abrasives at the water passing start time. It shows the concentration, and the concentration of the treated water abrasive (concentable maximum concentration) when concentration processing becomes impossible.
  • the Si concentration of the water to be treated is 13 mass%. When it exceeded, the amount of permeated water (flux) decreased rapidly, and it was difficult to carry out further filtration processing.
  • the recovery apparatus of Example 1 using the separation membrane 41 having an effective filtration length of 0.8 m or less as the membrane separation part 4 even if the concentration of the water to be treated exceeds 20% by mass, No reduction occurred, and the filtration process could be stably performed even if the concentration of the treated water was high.
  • the polishing agent concentration of the waste water from the CMP step can be concentrated to a concentration of about 25% that can be used as a product
  • the recovered concentrated solution is again subjected to CMP. It can be used in the process, and high recycling efficiency can be obtained.
  • Example 4 With the linear velocity in the hollow fiber membrane 41 set to 0.6 m / sec and the other conditions being the same as in Example 1, the used polishing slurry was passed through the recovery device 1 and filtration processing was performed. After this process was performed for 80 minutes, the on-off valve B1 was opened, the on-off valve B2 was closed, and the concentrated water in the membrane separation unit 4 was recovered from the concentrated water outlet pipe 8 into the concentrated water recovery tank 9.
  • Example 5 The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered.
  • a hollow fiber type UF membrane module "SLP-1053" (trade name, manufactured by Asahi Kasei Chemicals Corp .; trade name: hollow fiber inner diameter 1.4 mm, instead of the hollow fiber type UF membrane module "FB02-VC-FUST653" as the membrane separation unit 4 , Fractional molecular weight: 10000 Membrane area: 0.12 m 2 Effective filtration length 0.20 m Membrane material: polysulfone) was used.
  • the used abrasive slurry supplied to the processing tank 3 has an abrasive concentration of about 0.8% by mass (pH: 10.5), and the circulating flow rate of the used slurry in each pipe is 9.0 L / min.
  • the pressure in the vicinity of the used polishing slurry inlet was 41 MPa, and the linear velocity in the hollow fiber membrane 41 was 0.69 m / sec.
  • Example 3 The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered.
  • a hollow fiber type UF membrane module "AMK-VC-FUS0181” (trade name: manufactured by Daisen Membrane Systems Co., Ltd., hollow) in place of the hollow fiber type UF membrane module "FB02-VC-FUST 653" as the membrane separation unit 4.
  • Example 4 The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered.
  • a hollow fiber type UF membrane module “AMK-VC-FUS03C1” (trade name: manufactured by Daisen Membrane Systems Co., Ltd., hollow, instead of the hollow fiber type UF membrane module “FB02-VC-FUST 653” as the membrane separation unit 4.
  • Effective filtration length 1 m Membrane material: PES)
  • the linear velocity in the hollow fiber membrane 41 was 0.85 m / sec.
  • the abrasive concentration of the concentrated water recovered in the concentrated water recovery tank 9 and the recovery rate of the abrasive for Examples 4 to 5 and Comparative Examples 3 to 6 are shown in Table 2.
  • the linear velocity in the hollow fiber membranes 41 of Examples 4 to 5 and Comparative Examples 3 to 6, the inner diameter of the hollow fiber, and the abrasive concentration value in the concentrate calculated from the amount of permeated water are shown in Table 2 together. Shown in.
  • Example 4 using a separation membrane having an effective filtration length of 0.8 m or less and an inner diameter of the separation membrane of 0.1 mm or more and 0.8 mm or less, the recovered concentrated liquid It was found that the polishing agent concentration exceeded 25% by mass, and a higher recovery rate could be obtained.
  • Example 5 in which the effective filtration length is shortened and the inner diameter of the hollow fiber is increased to reduce the pressure loss as compared with Example 4, the permeated water having a predetermined amount or more is increased to a relatively high concentration region. Although obtained, it could not be concentrated to 25% by mass or more.
  • the concentration of the abrasive contained in the concentrated solution after recovery is lower than the abrasive concentration (calculated value) calculated from the amount of permeated water, and the abrasive is recovered with the increase of the hollow fiber inner diameter (fiber diameter). It was observed that the rate slightly decreased. It is considered that this is because the abrasive particle component (abrasive particles) adheres to the inside of the hollow fiber to form a cake layer, and the effective inner diameter is narrowed.
  • Example 6 The used slurry was filtered in the CMP process using the polishing agent recovery apparatus 11 shown in FIG.
  • a Levitro pump "LEV300” (manufactured by Iwaki Co., Ltd., trade name) is used.
  • treatment tanks made of PE
  • concentration tanks made of PVC
  • the hollow fiber type UF membrane module “AMK-VC-FUST 653” which is the first membrane separation unit 14 has a molecular weight cut-off of 6000, an inner diameter of the hollow fiber of 0.5 mm, a membrane area of 1.5 m 2 , an effective filtration length;
  • the hollow fiber type UF membrane module “FB02-VC-FUST 653” which is 1 m and is the second membrane separation unit 18 has a molecular weight cut-off of 6000, a hollow fiber inner diameter of 0.5 mm, a membrane area of 0.5 m 2 , The effective filtration length was 0.26 m.
  • 200 L of a used polishing slurry solution having a polishing agent concentration of about 1 mass% (pH: 9.8) was supplied from the piping 15 to the processing tank 13 via the guard filter 12.
  • the on-off valve B3 was closed, and the on-off valve B4 was opened, so that the used polishing slurry in the processing tank 13 was passed through the first membrane separation unit 14.
  • the circulation flow rate in each pipe of the used slurry was 8.0 L / min, and the linear velocity in the hollow fiber membrane 141 was 0.7 m / sec.
  • the impeller rotational speed of the pump P2 (Levitro pump) and the open / close valve B4 at the rear stage of the membrane separation unit 14 are adjusted so that the pressure in the vicinity of the used polishing slurry inlet in the hollow fiber membrane 141 Prepared.
  • the on-off valve B4 was closed, and the on-off valve B3 was opened to supply the used polishing slurry in the processing tank 13 to the post-stage processing tank 17 as a whole.
  • the on-off valve B5 was closed, and the on-off valve B6 was opened, and the used polishing slurry in the post-stage treatment tank 17 was passed through the second membrane separation unit 18.
  • the circulation flow rate in each pipe of the used slurry was 8.0 L / min, and the linear velocity in the hollow fiber membrane 181 was 0.7 m / sec.
  • the impeller rotational speed of the pump P3 (Levitro pump) and the open / close valve B6 at the rear stage of the membrane separation unit 18 are adjusted so that the pressure in the vicinity of the used polishing slurry inlet in the hollow fiber membrane 181 is 0.2 MPa.
  • Example 6 the relationship between the abrasive concentration in the processing tank 13 measured by the component densitometer C2 and the amount of permeated water (flux) discharged from the first permeated water discharge pipe 22, and the component concentration meter C3
  • the relationship between the concentration of the abrasive in the processing tank 17 and the amount of permeated water (flux) discharged from the second permeated water discharge pipe 24 is shown in FIG.
  • the solid line indicates the permeated water of the first membrane separation unit 14 discharged from the first permeated water discharge pipe 22, and the broken line indicates the second membrane separation discharged from the second permeated water discharge pipe 24.
  • the permeated water of the part 18 is shown.
  • the abrasive recovery device 1 of Example 1 (first embodiment) and the abrasive of Example 6 The recovery device 11 (second embodiment) was designed and manufactured.
  • the number of hollow fiber UF membrane modules used can be reduced by 87% as compared with the polishing agent recovery apparatus 1 of the first embodiment. .
  • the effects of simplification of the piping configuration as the whole recovery apparatus, reduction of the installation area and cost reduction were obtained.

Abstract

Provided are an abrasive recovery method and abrasive recovery device capable of recovering a slurry comprising a highly-concentrated abrasive while avoiding increases in pressure loss and large decreases in the recovery rate due to membrane blocking. A device (1) for recovering an abrasive from a used polishing slurry which has been used in a CMP process has a separation membrane (41) with a cylindrical hole passage into which the used polishing slurry is introduced. The hole passage of the separation membrane (41) is no more than 0.8m in length in an effective filtration unit. The abrasive recovery device (1) concentrates the abrasive of the used polishing slurry to a concentration of 10 mass% or greater.

Description

研磨剤の回収方法および研磨剤の回収装置Abrasive recovery method and polishing agent recovery apparatus
 本発明は、研磨剤の回収方法及び回収装置に係り、特に、使用済み研磨スラリーを高濃度に濃縮することができる研磨剤の回収方法及びこれを用いた回収装置に関する。 The present invention relates to a method and apparatus for recovering abrasives, and more particularly, to a method of recovering abrasives capable of concentrating used polishing slurry to a high concentration and a recovery apparatus using the same.
 半導体ウェーハの上に形成された絶縁膜、メタル薄膜などの被膜の表面は、高度な平坦面であることが要求されている。その要求に応えるために、研磨パッドなどの研磨部材と半導体ウェーハとの間に研磨スラリーを介在させた状態で研磨を行なうCMP(化学的機械研磨:Chemical Mechanical Polishing)が採用されている。 The surface of a film such as an insulating film or metal thin film formed on a semiconductor wafer is required to be a highly flat surface. In order to meet the demand, CMP (Chemical Mechanical Polishing) is employed in which polishing is performed with a polishing slurry interposed between a polishing member such as a polishing pad and a semiconductor wafer.
 CMPで用いられる研磨剤としては、分散性がよく粒子径が揃っているシリカ微粒子や、研磨速度の大きいセリア、硬度が高く安定なアルミナなどが使用されている。これらの研磨剤は、所定粒子径、濃度の粒子が水中に分散したスラリーとしてメーカーにより提供される。スラリーは、各現場に応じて、CMPマシンに供給する際に所定濃度に希釈されて使用されている。 As a polishing agent used in CMP, silica fine particles having good dispersibility and uniform particle diameter, ceria having a high polishing rate, and alumina having high hardness and stability are used. These abrasives are provided by the manufacturer as a slurry in which particles of predetermined particle size and concentration are dispersed in water. The slurry is used after being diluted to a predetermined concentration when supplied to a CMP machine, depending on each site.
 通常、このスラリー中には研磨剤の他に、水酸化カリウム、アンモニア、有機酸、アミン類などのpH調整剤、界面活性剤などの分散剤、過酸化水素、ヨウ素酸カリウム、硝酸鉄(III)などの酸化剤などが予め添加される。あるいは、これらの成分が、研磨時に別途スラリーに添加される。 Generally, in this slurry, in addition to the polishing agent, pH adjusters such as potassium hydroxide, ammonia, organic acids and amines, dispersants such as surfactants, hydrogen peroxide, potassium iodate, iron nitrate (III And the like are added in advance. Alternatively, these components are separately added to the slurry at the time of polishing.
 これらの研磨スラリーは、使用量が多く高価である点、また、産業廃棄物量低減の観点から、再利用することが望まれる。しかしながら、研磨工程排水は、多数の洗浄工程水等によって希釈され研磨剤濃度が低下している。加えて、研磨工程排水には、半導体ウェーハや、被膜材料、研磨パッド屑、研磨剤が破壊された微細粒子や、研磨剤が凝集することによって生じる粒子径の大きい固形不純物などが混入している。このため、このような研磨工程排水を無処理で研磨剤として再利用すると、研磨剤濃度の低下により、平坦化する研磨速度が低下したり、ウェーハ表面にキズが発生して製品の歩留まりが低下したりする。 It is desirable that these polishing slurries be reused from the viewpoint of reducing the amount of industrial waste, as they are used in large amounts and are expensive. However, the polishing process waste water is diluted by a large number of cleaning process water and the like, and the concentration of the polishing agent is lowered. In addition, semiconductor wafers, coating materials, polishing pad scraps, fine particles in which the polishing agent is broken, and solid impurities having a large particle diameter caused by aggregation of the polishing agent are mixed in the drainage of the polishing process. . For this reason, if such polishing process waste water is recycled without treatment and as an abrasive, the polishing rate to be planarized is reduced due to the decrease in the concentration of the abrasive, and the wafer surface is scratched to reduce the product yield. Do.
 したがって、再利用にあたっては、研磨排水から粗大固形物、塩類などの不純物の除去処理を行い、さらに濃縮処理を行って、所定組成の研磨スラリーを再調整することが必要である。 Therefore, in reutilization, it is necessary to remove impurities such as coarse solids and salts from the polishing waste water, and further to perform concentration processing to readjust the polishing slurry of a predetermined composition.
 従来より、CMP工程排水処理のために、さまざまな技術の開発が試みられている。
例えば、CMP工程排水を、精密濾過膜、限外濾過膜等の分離膜に通水して膜処理し、さらに薬剤や超純水を添加して、研磨剤や分散剤の濃度を調製し、研磨剤スラリーとして再利用する方法が提案されている。
Conventionally, development of various techniques has been attempted for CMP process wastewater treatment.
For example, the wastewater from the CMP process is passed through a separation membrane such as a microfiltration membrane or an ultrafiltration membrane and subjected to membrane treatment, and a drug or ultrapure water is further added to adjust the concentration of the polishing agent or the dispersing agent Methods have been proposed for reuse as abrasive slurries.
例えば特許文献1には、膜透過流速を向上させることを目的として、第1の膜エレメントにおいて、循環液のスラリー濃度を所定値に維持して膜分離した後、その一部を抜き出して、第2の膜エレメントでさらに膜分離するCMP排水の膜処理方法が開示されている。 For example, in Patent Document 1, for the purpose of improving the membrane permeation flow rate, the first membrane element is subjected to membrane separation while maintaining the slurry concentration of the circulating liquid at a predetermined value, and then a portion thereof is extracted. A membrane treatment method of CMP drainage is further disclosed in which membrane separation is further performed by two membrane elements.
 また、特許文献2には、微細粒子が凝集して大径化した凝集物を除去し、所望粒径の研磨剤粒子を回収可能な半導体用スラリー状研磨液の分離方法が開示されている。特許文献2では、第1工程の限外濾過膜1mで、微細粒子を除去するとともに、第2工程の精密濾過膜2mで、研磨傷の原因となる粗大粒子を除去している。 Further, Patent Document 2 discloses a method of separating a slurry-like polishing slurry for a semiconductor, which is capable of removing agglomerates having a large diameter by aggregating fine particles and recovering abrasive particles having a desired particle diameter. In Patent Document 2, fine particles are removed by the ultrafiltration membrane 1m in the first step, and coarse particles causing polishing scratches are removed by the microfiltration membrane 2m in the second step.
 さらに特許文献3には、CMP工程の研磨剤廃液を、限外濾過膜等の濃縮用フィルターを用いて原液の比重の0.90倍~0.96倍に濃縮した後(一次濃縮工程)、この濃縮液をさらに原液の比重の0.99倍~1.01倍まで濃縮して(二次濃縮工程)、研磨剤をリサイクルする方法が開示されている。 Furthermore, according to Patent Document 3, the abrasive waste liquid in the CMP step is concentrated to 0.90 times to 0.96 times the specific gravity of the stock solution using a concentration filter such as an ultrafiltration membrane (primary concentration step), A method is disclosed in which the concentrate is further concentrated to 0.99 times to 1.01 times the specific gravity of the stock solution (secondary concentration step) to recycle the abrasive.
特許文献4には、膜分離手段への通水量や排水中の分散剤量を低減し、膜の早期の目詰まりを抑制した研磨剤の回収装置が開示されている。特許文献4では、前段の第1の膜分離手段で濃縮された濃縮液を、後段の第2の膜分離手段に導入し、この第2の膜分離手段により粗大固形物を除去している。 Patent Document 4 discloses a polishing agent recovery device in which the amount of water passing through the membrane separation means and the amount of dispersant in the drainage are reduced, and early clogging of the membrane is suppressed. In Patent Document 4, the concentrated solution concentrated by the first membrane separation means at the front stage is introduced into the second membrane separation means at the rear stage, and coarse solids are removed by the second membrane separation means.
 上記の例において使用されている中空糸型の分離膜は、限外濾過膜が汎用されている。中空糸型の分離膜は、その有効濾過長が長いほど使用するモジュール本数が抑えられるため、コスト面で優れており、通常は1m程度の濾過長のものが汎用されている。 Ultrafiltration membranes are widely used as the hollow fiber type separation membranes used in the above examples. The hollow fiber type separation membrane is superior in cost because the longer the effective filtration length, the smaller the number of modules to be used, so that a filtration length of about 1 m is generally used.
 一方、中空糸型の分離膜では、被処理水が高濃度となるにしたがい、その内壁に固形成分がケークとして堆積し、次第にケークの厚みが増大する。このため、膜の有効内径が狭小化し、圧力損失の増大や、膜の閉塞が発生して、研磨剤の回収率が著しく低下するおそれがある。特にCMP工程の排出水の処理の場合には、研磨剤濃度が数%程度を超えるとこの傾向が顕著となる。このため、現実的には数%程度までの濃縮が限界であった。上記特許文献に記載の技術でも、高濃度の被処理水を通水した場合には、分離膜の目詰まりや、これに伴う研磨剤粒子の回収率の低下を十分に抑制するのは困難であった。 On the other hand, in the hollow fiber type separation membrane, as the water to be treated has a high concentration, solid components are deposited as a cake on the inner wall, and the thickness of the cake gradually increases. For this reason, the effective inner diameter of the film is narrowed, and an increase in pressure loss and a film clogging may occur, so that the recovery rate of the polishing agent may be significantly reduced. In particular, in the case of the treatment of the discharged water in the CMP process, this tendency becomes remarkable when the concentration of the polishing agent exceeds about several percent. For this reason, the concentration to a few percent is practically limited. Even with the technology described in the above patent documents, it is difficult to sufficiently suppress the clogging of the separation membrane and the decrease in the recovery rate of the abrasive particles accompanying this when passing high-concentration treated water. there were.
特開2001-113273号公報JP, 2001-113273, A 特開平11-28338号公報Japanese Patent Application Laid-Open No. 11-28338 特開2008-34827号公報JP, 2008-34827, A 特開2002-83789号公報JP 2002-83789 A
 一般に、分離膜による濾過処理では、被処理水濃度が所定値を超えると膜の目詰まりの進行速度が急激に上昇する。先に述べたように、研磨スラリーの場合には、研磨剤濃度が数%程度を超えたときに目詰まりが急激に進行する。このため、廃水処理等の従来の技術では、固形分としての濃縮は、現実的には数%程度が限界であり、この程度の濃度では、研磨スラリーとして直接CMP工程に再利用することは困難であった。 In general, in the filtration process by the separation membrane, when the concentration of water to be treated exceeds a predetermined value, the progress rate of clogging of the membrane rapidly increases. As described above, in the case of the polishing slurry, clogging rapidly progresses when the concentration of the polishing agent exceeds about several percent. For this reason, with conventional techniques such as waste water treatment, concentration as solid content is practically limited to about several percent, and with this concentration, it is difficult to reuse directly as a polishing slurry in a CMP step Met.
 さらに、中空糸型の分離膜を用いた場合、スラリー中の研磨剤濃度が数%程度を超えるまで濃縮すると、先に述べたように、中空糸内部では、次第にケークの堆積が進行する。その後さらに濃縮処理を継続すると、図8に示すように、ゲル状となった研磨剤が中空糸の被処理水出口側に堆積することが判明した。このような状態となると、濃縮水を得られなくなり、さらにモジュール自体の使用継続が不能となる。さらに研磨剤がゲル状に堆積するため、研磨剤の回収率が急激に低下する。 Furthermore, in the case of using a hollow fiber type separation membrane, when the abrasive concentration in the slurry is concentrated to a few percent or more, as described above, cake deposition gradually progresses inside the hollow fiber. After that, when concentration processing was further continued, as shown in FIG. 8, it was found that the gelled abrasive was deposited on the outlet side of the hollow fiber on the side of the water to be treated. In such a state, the concentrated water can not be obtained, and the module itself can not be used continuously. Furthermore, since the abrasive deposits in a gel form, the recovery rate of the abrasive drops sharply.
 本願発明は、上記課題を解決するためになされたものであって、圧力損失の増大や、膜の閉塞による回収率の大幅な低下を抑制し、かつ研磨剤が高濃度に濃縮可能な研磨剤の回収装置および研磨剤の回収方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and suppresses the increase in pressure loss and the drastic decrease in recovery rate due to clogging of the membrane, and an abrasive that can concentrate the abrasive to a high concentration. It is an object of the present invention to provide a recovery device and a method for recovering an abrasive.
 上記目的を達成するため、本発明者が鋭意検討したところ、上記のような、分離膜の濾過面上へのケークの堆積や、被処理水出口側での研磨剤のゲル状物質の堆積の有無は、主に分離膜の有効濾過長に依存することを見出し、本願発明を完成するに至った。 In order to achieve the above object, the present inventor has intensively studied, as described above, the deposit of cake on the filtration surface of the separation membrane and the deposit of gel-like substance of the abrasive on the outlet side of the treated water. It has been found that the presence or absence mainly depends on the effective filtration length of the separation membrane, and the present invention has been completed.
 本発明の研磨剤の回収装置は、CMP工程で使用された使用済み研磨スラリーから研磨剤を回収する装置であって、前記研磨剤の回収装置は、前記使用済み研磨スラリーが導入される孔道が円筒状である分離膜を有しており、前記分離膜の孔道は、有効濾過部の長さが0.8m以下であり、前記研磨剤の回収装置は、前記使用済み研磨スラリーの研磨剤濃度を、10質量%以上の濃度に濃縮することを特徴とする。 The apparatus for recovering an abrasive according to the present invention is an apparatus for recovering the abrasive from the used abrasive slurry used in the CMP process, and the apparatus for recovering the abrasive has a passage through which the used abrasive slurry is introduced. The separation membrane has a cylindrical shape, and the passage of the separation membrane has an effective filtration portion having a length of 0.8 m or less, and the recovery device for the polishing agent comprises the polishing agent concentration of the used polishing slurry Is concentrated to a concentration of 10% by mass or more.
 前記分離膜に導入される研磨剤濃度は、客先工場の排液濃度に依存する為特に限定されないが、一般には0.02~5質量%である使用済みスラリーが導入されるものとすることができる。前記分離膜の中空部には、前記使用済み研磨スラリーがクロスフロー方式で通水されることが好ましい。前記分離膜は、内圧型の膜分離部に設けられることが好ましい。前記分離膜が中空糸膜であることが好ましい。前記分離膜の内径は0.1mm以上0.8mm以下であることが好ましい。前記分離膜の分画分子量は3,000~30,000であることが好ましい。前記分離膜は、ポリエチレン、4フッ化エチレン、ポリフッ化ビニリデン、ポリプロピレン、酢酸セルロース、ポリアクリロニトリル、ポリイミド、ポリスルホン、またはポリエーテルスルホンのいずれかで構成されていることが好ましい。 The concentration of the abrasive introduced into the separation membrane is not particularly limited because it depends on the concentration of liquid discharged from the customer's factory, but in general, a used slurry having 0.02 to 5% by mass should be introduced. Can. Preferably, the used polishing slurry is passed through the hollow portion of the separation membrane in a cross flow manner. The separation membrane is preferably provided in an internal pressure membrane separation unit. The separation membrane is preferably a hollow fiber membrane. The inner diameter of the separation membrane is preferably 0.1 mm or more and 0.8 mm or less. The molecular weight cut off of the separation membrane is preferably 3,000 to 30,000. The separation membrane is preferably made of polyethylene, tetrafluoroethylene, polyvinylidene fluoride, polypropylene, cellulose acetate, polyacrylonitrile, polyimide, polysulfone or polyethersulfone.
 前記研磨剤の回収装置は、前記分離膜の前段に、この分離膜より長い有効濾過長を有しており、孔道が円筒状である前段分離膜を有するものとすることができる。前記前段分離膜の有効濾過部の長さL1が0.8~1.5mであり、前記前段分離膜の後段に設けられた後段分離膜の有効濾過部の長さL2が0.2~0.8m以下であることが好ましい。 The abrasive recovery device may have an upstream separation membrane having an effective filtration length longer than that of the separation membrane and a cylindrical passage in the front stage of the separation membrane. The length L1 of the effective filtration part of the pre-stage separation membrane is 0.8 to 1.5 m, and the length L2 of the effective filtration part of the post-stage separation membrane provided in the latter stage of the pre-stage separation membrane is 0.2 to 0 It is preferable that it is .8 m or less.
 本発明の研磨剤の回収方法は、CMP工程で使用された使用済み研磨スラリーを、孔道が円筒状であり、有効濾過部の長さが0.8m以下である分離膜に通水し、前記使用済み研磨スラリーの研磨剤濃度を、10質量%以上の濃度に濃縮することを特徴とする。前記分離膜の中空部には、前記使用済み研磨スラリーをクロスフロー方式で通水することが好ましい。また、前記分離膜の内径は、0.1mm以上0.8mm以下であることが好ましい。また、前記分離膜の有効濾過部における被処理水の循環流速は、0.5~2m/secであることが好ましい。 In the method of recovering an abrasive according to the present invention, the used abrasive slurry used in the CMP step is passed through a separation membrane having a cylindrical passage and an effective filtration portion having a length of 0.8 m or less, It is characterized in that the abrasive concentration of the used abrasive slurry is concentrated to a concentration of 10% by mass or more. Preferably, the used polishing slurry is passed through the hollow portion of the separation membrane by a cross flow method. The inner diameter of the separation membrane is preferably 0.1 mm or more and 0.8 mm or less. Further, the circulation flow rate of the water to be treated in the effective filtration part of the separation membrane is preferably 0.5 to 2 m / sec.
 孔道が円筒状である前段分離膜に、CMP工程で使用された使用済み研磨スラリーを通水して前記使用済み研磨スラリーを濃縮する第1の濾過工程と、有効濾過部の長さが0.8m以下である後段分離膜に、前記第1の分離膜の濃縮水を通水して濃縮する第2の濾過工程と、を有しており、前記前段分離膜として、前記後段分離膜よりも長い有効濾過長を有する分離膜を用いるものとすることができる。前記第1の濾過工程では、客先工場排水の研磨剤濃度に依存する為特に限定されないが、一般には0.02~5質量%の使用済み研磨スラリーを濾過して最大13質量%、より好ましくは9~10質量%まで濃縮し、前記第2の濾過工程では、前記第1の濾過工程で得られた13質量%以下の濃縮水を濾過して最大26質量%、より好ましくは20~25質量%まで濃縮することが好ましい。また、前記研磨剤の回収方法は、上記した本発明の研磨剤の回収装置を用いることが好ましい。 A first filtration step of passing water through the used polishing slurry used in the CMP step to concentrate the used polishing slurry in a pre-stage separation membrane having a cylindrical passage, and a length of an effective filtration portion of 0. And a second filtration step in which concentrated water of the first separation membrane is passed through and concentrated in a second-stage separation membrane having a length of 8 m or less, and the first-stage separation membrane is more than the second-stage separation membrane. A separation membrane with a long effective filtration length can be used. The first filtration step is not particularly limited because it depends on the concentration of the polishing agent in the customer factory waste water, but in general, it is preferable to filter the used polishing slurry of 0.02 to 5% by mass at maximum 13% by mass, more preferably Is concentrated to 9 to 10% by mass, and in the second filtration step, the concentrated water of 13% by mass or less obtained in the first filtration step is filtered to a maximum of 26% by mass, more preferably 20 to 25%. It is preferable to concentrate to mass%. Moreover, it is preferable to use the collection | recovery apparatus of the polishing agent of this invention mentioned above for the collection | recovery method of the said polishing agent.
 本発明の使用済み研磨剤の回収装置によれば、有効濾過部の長さが所定値以下である分離膜を用いることで、濾過面へのケークの堆積や、被処理水出口側での研磨剤のゲル状堆積等の不具合が生じ難くなる。このため、十数%程度以上の研磨剤濃度まで、スラリーを濃縮可能となる。また、CMP工程で使用した後の使用済み研磨スラリーを、従来より低エネルギーで高濃度に濃縮することができ、製品として利用可能なレベルまで、研磨剤が高濃度に濃縮されたスラリーを回収することができる。また、このように高濃度の濃縮を行っても、膜内の圧力損失の増大や、分離膜の閉塞を抑制でき、回収率の著しい低下が抑制された研磨剤の回収装置とすることができる。 According to the used abrasive recovery apparatus of the present invention, cake deposition on the filtration surface and polishing on the outlet side of the treated water can be achieved by using a separation membrane having a length of the effective filtration section equal to or less than a predetermined value. Problems such as gel-like deposition of the agent are less likely to occur. For this reason, the slurry can be concentrated to an abrasive concentration of about several tens of percent or more. In addition, the used polishing slurry after being used in the CMP process can be concentrated to a high concentration with lower energy than before, and a slurry having a high concentration of the polishing agent is recovered to a level that can be used as a product. be able to. In addition, even if concentration is performed at such a high concentration, increase in pressure loss in the membrane and blocking of the separation membrane can be suppressed, and a polishing agent recovery device in which a significant decrease in recovery rate is suppressed can be obtained. .
 また、本発明の使用済み研磨スラリーの回収方法では、回収率の著しい低下を生じることなく、製品として利用可能なレベルまで、研磨剤が高濃度に濃縮されたスラリーを回収することができる。これにより、CMP工程に用いる新たなスラリーの使用量を、60%以上削減可能である。 In addition, according to the method of recovering a used polishing slurry of the present invention, a slurry in which the polishing agent is concentrated to a high concentration can be recovered to a level that can be used as a product without causing a significant decrease in recovery rate. As a result, the amount of new slurry used in the CMP process can be reduced by 60% or more.
本発明の一実施形態に係る研磨剤の回収装置の概略構成を示す図である。It is a figure which shows schematic structure of the collection | recovery apparatus of the abrasives based on one Embodiment of this invention. 分離膜41を構成する一の中空糸の断面を拡大して示す図である。It is a figure which expands and shows the cross section of one hollow fiber which comprises the separation membrane 41. As shown in FIG. 本発明の一実施形態に係る研磨剤の回収装置の概略構成を示す図である。It is a figure which shows schematic structure of the collection | recovery apparatus of the abrasives based on one Embodiment of this invention. 処理タンク内の研磨剤濃度と、透過水排出配管から排出される透過水量(flux)との関係を示す図である。It is a figure which shows the relationship between the abrasive | polishing agent density | concentration in a process tank, and the amount of permeated water (flux) discharged | emitted from permeated water discharge piping. 図3の回収装置における、処理タンク13内の研磨剤濃度と第1透過水排出配管22から排出される透過水量(flux)との関係、及び処理タンク17内の研磨剤濃度と第2透過水排出配管24から排出される透過水量(flux)との関係を示す図である。The relationship between the abrasive concentration in the treatment tank 13 and the amount of permeated water (flux) discharged from the first permeated water discharge pipe 22 in the recovery apparatus of FIG. 3 and the abrasive concentration in the treatment tank 17 and the second permeated water It is a figure which shows the relationship with the amount of permeated water (flux) discharged | emitted from the discharge piping 24. As shown in FIG. 分離膜が閉塞した時点での、膜分離部入口の状態を示す写真である。It is a photograph which shows the state of the membrane separation part inlet when the separation membrane obstruct | occluded. 図6の拡大写真である。It is an enlarged photograph of FIG. 分離膜が閉塞した時点での、膜分離部出口の状態を示す写真である。It is a photograph which shows the state of the membrane separation part exit when the separation membrane obstruct | occluded.
 以下、本発明の研磨剤の回収装置および研磨剤の回収方法について詳細に説明する Hereinafter, the polishing agent recovery apparatus and the polishing agent recovery method of the present invention will be described in detail.
(第1実施形態)
 図1は、本発明の一実施形態に係る研磨剤の回収装置の概略構成を示す図である。本実施形態における研磨剤の回収装置1は、CMP工程により半導体を研磨した後の使用済みの研磨スラリーS(以下、使用済み研磨スラリーSと示す。)に含まれる粗大粒子を除去するガードフィルター2と、ガードフィルター2の処理水を収容する処理タンク3と、使用済み研磨スラリーSを濾過する分離膜41を備えた膜分離部4が、流路にそって順次設置されている。
First Embodiment
FIG. 1 is a view showing a schematic configuration of a polishing agent recovery apparatus according to an embodiment of the present invention. The polishing agent recovery apparatus 1 according to this embodiment is a guard filter 2 for removing coarse particles contained in a used polishing slurry S (hereinafter referred to as a used polishing slurry S) after the semiconductor is polished by a CMP process. A treatment tank 3 for containing the treated water of the guard filter 2 and a membrane separation unit 4 provided with a separation membrane 41 for filtering the used polishing slurry S are sequentially installed along the flow path.
 なお、ガードフィルター2は、研磨剤や、半導体ウェーハを研磨した際の研磨パッド屑等が凝集して生じる粒子径の大きい固形不純物を捕捉するものである。ガードフィルター2は、研磨剤粒子の粒径より大きい孔径を有するものであれば、特に限定することなく用いることができる。 The guard filter 2 is for capturing a solid impurity having a large particle size, which is generated by aggregation of abrasives, polishing pad scraps and the like when polishing a semiconductor wafer. The guard filter 2 can be used without particular limitation as long as it has a pore diameter larger than the particle diameter of the abrasive particles.
 ガードフィルター2及び処理タンク3間は、配管5によって接続されている。処理タンク3及び膜分離部4間は、ポンプP1を備えた配管6によって接続されている。なお、処理タンク3には、成分濃度計C1が設けられている。 The guard filter 2 and the processing tank 3 are connected by a pipe 5. The processing tank 3 and the membrane separation unit 4 are connected by a pipe 6 provided with a pump P1. The processing tank 3 is provided with a component densitometer C1.
 膜分離部4には、透過水出口配管7、及び開閉弁B1を備えた濃縮水出口配管8が接続されている。濃縮水出口配管8は、膜分離部4で得られた濃縮水を濃縮水回収タンク9に供給するように開口されている。 A permeated water outlet pipe 7 and a concentrated water outlet pipe 8 having an on-off valve B1 are connected to the membrane separation unit 4. The concentrated water outlet pipe 8 is opened to supply the concentrated water obtained by the membrane separation unit 4 to the concentrated water recovery tank 9.
 濃縮水出口配管8の開閉弁B1の上流部と処理タンク3間には、開閉弁B1の閉鎖及び開閉弁B2の開放により、膜分離部4で得られた濃縮水を処理タンク3に還流させる還流配管10が設けられている。 Between the processing tank 3 and the upstream portion of the on-off valve B1 of the concentrated water outlet pipe 8, the concentrated water obtained in the membrane separation unit 4 is returned to the processing tank 3 by closing the on-off valve B1 and opening the on-off valve B2. A reflux line 10 is provided.
 分離膜41は、円筒状の孔道を有している。この孔道内部、またはその外側に使用済み研磨スラリーSを通過させることで、使用済み研磨スラリーSの過剰の水分が除去されて濃縮されるようになっている。 The separation membrane 41 has a cylindrical passage. By passing the used polishing slurry S inside or outside the passage, excess water in the used polishing slurry S is removed and concentrated.
 円筒状の孔道を有する第1の分離膜41としては、例えば中空糸型、管状型、または平膜型の分離膜を適用することができる。これらの中でも、中空糸型の分離膜は、省スペースで大きな膜面積を得られるため、分離膜41として好適に用いられる。 For example, a hollow fiber type, a tubular type, or a flat membrane type separation membrane can be applied as the first separation membrane 41 having a cylindrical passage. Among these, a hollow fiber type separation membrane can be suitably used as the separation membrane 41 because a large membrane area can be obtained with a small space.
 分離膜41の有効濾過部の長さLは、目的濃縮濃度により0.8m以下、好ましくは、0.5m以下、より好ましくは0.3m以下である。一般に、例えば中空糸型の分離膜の場合、高濃度のスラリーを分離膜に通水すると、その有効濾過部を濃縮水が通過する過程で、中空糸410の濾過面412上に固形成分が堆積する。さらに通水を継続すると、濾過面412上に堆積した固形成分によりケーク層が形成されてその厚みが増大する(図2参照。)。分離膜41の濾過面412上のケーク層は、その有効濾過長が長いほど形成され易い。ケーク層の形成により、中空糸410の有効内径410Sが狭小化し、圧力損失の増大や、膜の閉塞が発生して、研磨剤の回収効率が著しく低下することがある。また、ケーク層やゲル状の堆積物は研磨剤粒子で形成されるため、ケーク層の増大やゲル状堆積物の発生に伴って研磨剤粒子の回収率が低下する。 The length L of the effective filtration part of the separation membrane 41 is 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less according to the target concentration concentration. In general, for example, in the case of a hollow fiber type separation membrane, when a high concentration slurry is passed through the separation membrane, solid components are deposited on the filtration surface 412 of the hollow fiber 410 while concentrated water passes through the effective filtration portion. Do. When water flow is further continued, a cake layer is formed by the solid components deposited on the filtering surface 412 and the thickness thereof increases (see FIG. 2). The cake layer on the filtration surface 412 of the separation membrane 41 is more easily formed as the effective filtration length is longer. The formation of the cake layer narrows the effective inner diameter 410S of the hollow fiber 410, causing an increase in pressure loss and clogging of the membrane, which may significantly reduce the recovery efficiency of the polishing agent. In addition, since the cake layer and the gel-like deposit are formed of the abrasive particles, the recovery rate of the abrasive particle decreases with the increase of the cake layer and the occurrence of the gel deposit.
 さらに、図8に示すように、中空糸の被処理水出口側に研磨剤がゲル状に堆積し、濾過処理の継続が困難となる。また、濾過面の洗浄に要する薬品量や洗浄時間が増加し、研磨剤回収工程全体に要するコストが増大する原因となる。 Furthermore, as shown in FIG. 8, the abrasive is deposited in the form of gel on the outlet side of the hollow fiber on the treated water side, making it difficult to continue the filtration process. In addition, the amount of chemicals required for cleaning the filter surface and the cleaning time increase, which causes an increase in the cost required for the entire polishing agent recovery process.
 本発明の研磨剤の回収装置1では、分離膜41として、その有効濾過部の長さLが0.8m以下、好ましくは、0.5m以下、より好ましくは0.3m以下である分離膜を用いる。このような所定値以下の有効濾過長モジュールを用いた場合には、高濃度の使用済みスラリーを通水しても、目詰まりの発生が生じ難い。このため、濾過面412上でのケーク層の成長が抑制されるとともに、ゲル状の堆積が生じない。 In the polishing agent recovery apparatus 1 of the present invention, as the separation membrane 41, a separation membrane having a length L of the effective filtration portion of 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less is used. Use. When an effective filtration length module having such a predetermined value or less is used, clogging does not easily occur even when passing through a high concentration of used slurry. Therefore, the growth of the cake layer on the filter surface 412 is suppressed, and no gel-like deposition occurs.
 したがって、高濃度の被処理水を通水しても、分離膜41における圧力損失の増大や、膜の閉塞が生じ難く、回収率の著しい低下が抑制された回収装置1とすることができる。 Therefore, even if water to be treated with high concentration passes, increase in pressure loss in the separation membrane 41 and blockage of the membrane hardly occur, and the recovery device 1 in which a significant decrease in recovery rate is suppressed can be obtained.
 また、上記のように、濾過面412上にケーク層が形成すると、研磨剤粒子がゲル化した粗大粒子がケーク層から剥離し、被処理水中に混入することもある。このような粗大粒子が回収後の研磨剤に混入すると、CMP工程で再利用したときに、ウェーハ表面でスクラッチを引き起こし、製品の歩留まりを低下させる原因となる。 In addition, as described above, when the cake layer is formed on the filter surface 412, coarse particles obtained by gelation of the abrasive particles may be separated from the cake layer and mixed in the water to be treated. If such coarse particles are mixed in the recovered abrasive, they will cause scratching on the wafer surface when reused in the CMP step, leading to a reduction in the product yield.
 本発明の研磨剤の回収装置1では、分離膜41として、その有効濾過部の長さLが上記範囲の分離膜を用いている。このため、分離膜内部でのケーク層の形成や、ゲル状物質の堆積による粗大粒子の生成が抑制されており、回収後の研磨剤粒子への粗大粒子の混入量が極めて低減されている。したがって、CMP工程に再利用しても、ウェーハ表面のスクラッチ等を殆ど生じさせず、高精度に研磨可能な研磨剤を回収することができる。 In the polishing agent recovery apparatus 1 of the present invention, as the separation membrane 41, a separation membrane having a length L of the effective filtration portion in the above range is used. Therefore, the formation of a cake layer inside the separation membrane and the formation of coarse particles due to the deposition of the gel-like substance are suppressed, and the amount of coarse particles mixed in the abrasive particles after recovery is extremely reduced. Therefore, it is possible to recover the polishing agent which can be polished with high accuracy, without causing scratches or the like on the surface of the wafer even if it is reused in the CMP process.
 分離膜41の有効濾過部の長さLが0.8mを超える場合には、分離膜41の濾過面412上で、ケーク層の厚みが増大し易く、有効内径の狭小化による圧力損失の増大や、膜の閉塞が生じ易くなる。 If the length L of the effective filtration portion of the separation membrane 41 exceeds 0.8 m, the thickness of the cake layer tends to increase on the filtration surface 412 of the separation membrane 41, and the pressure loss increases due to the narrowing of the effective inner diameter. And blockage of the membrane is likely to occur.
 分離膜41の有効濾過部の長さLは、上記の範囲内で、かつ0.2m以上であることが好ましい。分離膜41の有効濾過部の長さLが0.2m未満であると、回収装置1に設置する分離膜41のモジュール本数が増加し、適切な濾過処理装置を設置する事が困難となる。分離膜41の有効濾過部の長さLは、好ましくは0.2~0.3mである。 The length L of the effective filtration portion of the separation membrane 41 is preferably within the above range and 0.2 m or more. If the length L of the effective filtration part of the separation membrane 41 is less than 0.2 m, the number of modules of the separation membrane 41 installed in the recovery device 1 increases, and it becomes difficult to install an appropriate filtration treatment device. The length L of the effective filtration part of the separation membrane 41 is preferably 0.2 to 0.3 m.
 分離膜41は、有機材料からなる有機膜であってもよく、無機セラミックスからなる無機膜であってもよい。 The separation film 41 may be an organic film made of an organic material or an inorganic film made of an inorganic ceramic.
 有機膜としては、例えばポリエチレン(PE)、4フッ化エチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリプロピレン(PP)、酢酸セルロース(CA)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリスルホン(PS)、およびポリエーテルスルホン(PES)等を好適に用いることができる。 Examples of the organic film include polyethylene (PE), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), cellulose acetate (CA), polyacrylonitrile (PAN), polyimide (PI), polysulfone PS), and polyether sulfone (PES) can be suitably used.
 また、無機膜としては、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)のセラミックス材料や、ステンレス(SUS)、ガラス(SPG)等を用いることができる。これらの中でも、分離膜41としては、ポリスルホン(PS)、ポリエーテルスルホン(PES)を好適に用いることができる。 Further, as the inorganic film, a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used. Among these, polysulfone (PS) and polyethersulfone (PES) can be suitably used as the separation membrane 41.
 分離膜41は、中空糸型の形状を有するものであれば、精密濾過膜であってもよく、限外濾過膜であってもよい。回収後の濃縮液中の研磨剤粒子を最も効率よく回収する観点から、分離膜41は、限外濾過膜を好適に用いることができる。 The separation membrane 41 may be a microfiltration membrane or an ultrafiltration membrane as long as it has a hollow fiber type shape. From the viewpoint of recovering the abrasive particles in the concentrated solution after recovery most efficiently, an ultrafiltration membrane can be suitably used as the separation membrane 41.
 分離膜41の分画分子量は、3,000~30,000であることが好ましい。分離膜41の分画分子量が3,000未満であると、分離膜41に被処理水を通水して透過水を得る為に、分離膜41への供給圧力を上昇させる必要がある。このため、エネルギー効率が低下するとともに、分離膜41に損傷を与えるおそれがある。 The molecular weight cut-off of the separation membrane 41 is preferably 3,000 to 30,000. If the molecular weight cut-off of the separation membrane 41 is less than 3,000, it is necessary to increase the pressure supplied to the separation membrane 41 in order to pass the water to be treated through the separation membrane 41 to obtain permeated water. Therefore, the energy efficiency is lowered and the separation membrane 41 may be damaged.
 一方、分離膜41の分画分子量が30,000を超えると、研磨剤粒子の一部が分離膜41を通過して透過水側に移動し、研磨剤粒子を効率的に回収できないおそれがある。またこの場合、分離膜41の孔径と略同径を有する微細粒子により、分離膜41の孔が閉塞され易くなり、目詰まりを生じるおそれがある。分離膜41の分画分子量は、6000~10000がより好ましい。 On the other hand, when the molecular weight cut-off of the separation membrane 41 exceeds 30,000, a part of the abrasive particles may pass through the separation membrane 41 and move to the permeated water side, and the abrasive particles may not be efficiently recovered. . Further, in this case, the fine particles having substantially the same diameter as the pore diameter of the separation membrane 41 may easily block the pores of the separation membrane 41, which may cause clogging. The molecular weight cut-off of the separation membrane 41 is more preferably 6000 to 10000.
 分離膜41が中空糸型分離膜または管状分離膜である場合、各中空糸等の内径は、0.1mm以上0.8mm以下であることが好ましい。分離膜41の各中空糸等の内径が0.1mm未満であると、膜の中空部を流れる被処理水の圧力損失が増大し、適切な処理効率を得るのが困難となる。またこの場合、膜面強度が低下し、被処理水の濃度上昇に伴い膜が破損するおそれがある。一方、分離膜41の各中空糸等の内径が0.8mmを超えると、膜の中空部を流れる被処理水の剪断速度が小さいため、研磨剤その他の不純物が中空糸内壁に堆積し易くなり、中空部を閉塞させるおそれがある。また、研磨剤のゲルが大量に発生し、濃縮液中の研磨剤濃度が低下するおそれもある。剪断速度を上昇させるには、設備を大きくする必要があり、またエネルギーを多く消費する為好ましくない。さらに、外圧に対する耐圧性が低下するおそれもある。分離膜41の各中空糸等の内径は、0.3mm以上0.8mm以下がより好ましい。 When the separation membrane 41 is a hollow fiber separation membrane or a tubular separation membrane, the inner diameter of each hollow fiber or the like is preferably 0.1 mm or more and 0.8 mm or less. If the inner diameter of each hollow fiber or the like of the separation membrane 41 is less than 0.1 mm, the pressure loss of the water to be treated flowing through the hollow portion of the membrane increases, and it becomes difficult to obtain an appropriate treatment efficiency. Also, in this case, the surface strength of the film may be reduced, and the film may be damaged as the concentration of the water to be treated is increased. On the other hand, if the inner diameter of each hollow fiber or the like of the separation membrane 41 exceeds 0.8 mm, the shear rate of the water to be treated flowing through the hollow portion of the membrane is small, so that the abrasive and other impurities are easily deposited on the inner wall of the hollow fiber. , There is a risk of closing the hollow portion. In addition, a large amount of abrasive gel may be generated, which may reduce the concentration of the abrasive in the concentrate. In order to increase the shear rate, it is necessary to enlarge the equipment, and it is not preferable because it consumes a large amount of energy. Furthermore, there is a possibility that the pressure resistance to external pressure may be reduced. The inner diameter of each hollow fiber or the like of the separation membrane 41 is more preferably 0.3 mm or more and 0.8 mm or less.
 膜分離部4は、中空糸410内部に被処理水を通水する内圧型の分離部であってもよく、中空糸410の支持層411の外側に被処理水を通水する外圧型の分離部であってもよい。膜分離部4は、内圧型の分離部とした場合には、濾過面412上に堆積する固形成分が、中空糸410内に通水される被処理水の剪断力により剥離され、ケーク層の成長を抑制できるため好ましい。 The membrane separation unit 4 may be an internal pressure type separation unit for passing treated water into the hollow fiber 410, and an external pressure type separation for passing treated water outside the support layer 411 of the hollow fiber 410. It may be a part. When the membrane separation unit 4 is an internal pressure type separation unit, the solid components deposited on the filter surface 412 are peeled off by the shear force of the water to be treated passed through the hollow fiber 410, and the cake layer It is preferable because growth can be suppressed.
 このような回収装置1とすることで、透過水出口配管7より得られる透過水は、回収して再利用することが可能である。具体的には、たとえば未処理のまま、もしくは透過水の水質に応じた処理をした上で、超純水装置の原水等として利用することが可能である。また、工場内の他のユーティリティー、たとえば生活用水、クーリングタワー用水等として利用することも可能である。 By setting it as such a recovery device 1, the permeated water obtained from the permeated water outlet pipe 7 can be recovered and reused. Specifically, for example, it is possible to use it as raw water or the like of the ultrapure water apparatus after processing untreated or in accordance with the quality of the permeate water. Moreover, it is also possible to use as another utility in a factory, such as domestic water, cooling tower water, etc.
(第2実施形態)
 図3は、本発明の一実施形態に係る研磨剤の回収装置の概略構成を示す図である。本実施形態における研磨剤の回収装置11は、CMP工程により半導体を研磨した後の使用済みの研磨スラリーS(以下、使用済み研磨スラリーSと示す。)に含まれる粗大粒子を除去するガードフィルター12の後段に、ガードフィルター12の処理水を収容する前段処理タンク13、使用済み研磨スラリーSを濾過する前段分離膜(以下、第1の分離膜と示す)141を備えた前段膜分離部(以下、第1の膜分離部と示す。)14が、流路にそって順次設置されている。
Second Embodiment
FIG. 3 is a view showing a schematic configuration of a polishing agent recovery apparatus according to an embodiment of the present invention. The polishing agent recovery apparatus 11 according to this embodiment is a guard filter 12 for removing coarse particles contained in a used polishing slurry S (hereinafter referred to as a used polishing slurry S) after the semiconductor is polished by a CMP process. The front stage membrane separation unit (hereinafter referred to as “first stage separation membrane” 141 including a front stage treatment tank 13 for storing treated water of the guard filter 12 and a front stage separation membrane (hereinafter referred to as a first separation membrane) 141 , And a first membrane separation unit) 14 are sequentially installed along the flow path.
 なお、ガードフィルター12は、研磨剤や、半導体ウェーハを研磨した際の研磨パッド屑等が凝集して生じる粒子径の大きい固形不純物を捕捉するものである。ガードフィルター12は、研磨剤粒子の粒径より大きい孔径を有するものであれば、特に限定することなく用いることができる。ガードフィルター12及び前段処理タンク13間は、配管15によって接続されている。前段処理タンク13及び第1の膜分離部14間は、ポンプP2を備えた配管16によって接続されている。なお、前段処理タンク13には、成分濃度計C2が設けられている。 The guard filter 12 is for trapping solid impurities having a large particle size, which are generated by aggregation of abrasives, polishing pad scraps and the like when the semiconductor wafer is polished. The guard filter 12 can be used without particular limitation as long as it has a pore diameter larger than the particle diameter of the abrasive particles. The guard filter 12 and the pre-treatment tank 13 are connected by a pipe 15. The pre-treatment tank 13 and the first membrane separation unit 14 are connected by a pipe 16 provided with a pump P2. The pre-processing tank 13 is provided with a component concentration meter C2.
 第1の膜分離部14の後段には、第1の膜分離部14で分離された濃縮水(以下、第1の濃縮水と示すことがある。)を収容する後段処理タンク17と、後段処理タンク17から供給された第1の濃縮水を濾過する後段分離膜(以下、第2の分離膜と示す。)181を備えた後段膜分離部(以下、第2の膜分離部と示す)18と、第2の膜分離部18で分離された濃縮水(以下、第2の濃縮水と示すことがある。)を回収する回収タンク19と、が順次設置されている。なお、後段処理タンク17には、成分濃度計C3が設けられている。 A post-stage processing tank 17 for storing the concentrated water separated by the first membrane separation unit 14 (hereinafter sometimes referred to as a first concentrated water) in the rear stage of the first membrane separation unit 14, and a rear stage Post-stage membrane separation unit (hereinafter, referred to as second membrane separation unit) including the post-stage separation membrane (hereinafter, referred to as second separation membrane) 181 for filtering the first concentrated water supplied from the treatment tank 17 A recovery tank 19 for recovering concentrated water separated by the second membrane separation unit 18 (hereinafter sometimes referred to as second concentrated water) is sequentially installed. The post-stage processing tank 17 is provided with a component densitometer C3.
 第1の膜分離部14及び後段処理タンク17間は、開閉弁B3を備えた配管20によって接続されている。後段処理タンク17及び第2の膜分離部18間は、ポンプP3を備えた配管21によって接続されている。 The first membrane separation unit 14 and the post-stage processing tank 17 are connected by a pipe 20 provided with an on-off valve B3. The post-treatment tank 17 and the second membrane separation unit 18 are connected by a pipe 21 provided with a pump P3.
 第1の膜分離部14には、第1透過水出口配管22が接続されている。また、配管20の開閉弁B3の前段と前段処理タンク13間には、開閉弁B3の閉鎖及び開閉弁B4の開放により、第1の膜分離部14で得られた第1の濃縮水を、前段処理タンク13に還流させる還流配管23が設けられている。 A first permeated water outlet pipe 22 is connected to the first membrane separation unit 14. Further, between the front stage of the on-off valve B3 of the pipe 20 and the pre-treatment tank 13, the first concentrated water obtained in the first membrane separation unit 14 is obtained by closing the on-off valve B3 and opening the on-off valve B4. A reflux piping 23 for refluxing to the pre-treatment tank 13 is provided.
 第2の膜分離部18には、第2透過水出口配管24、及び開閉弁B5を備えた濃縮水出口配管25が接続されている。濃縮水出口配管25は、第2の膜分離部18で得られた濃縮水を回収タンク19に供給するように開口されている。濃縮水出口配管25の開閉弁B5の上流部と後段処理タンク17間には、開閉弁B5の閉鎖及び開閉弁B6の開放により、第2の膜分離部18で得られた第2の濃縮水を、後段処理タンク17に還流させる還流配管26が設けられている。 The second membrane separation unit 18 is connected to a concentrated water outlet pipe 25 provided with a second permeated water outlet pipe 24 and an on-off valve B5. The concentrated water outlet pipe 25 is opened to supply the concentrated water obtained in the second membrane separation unit 18 to the recovery tank 19. The second concentrated water obtained in the second membrane separation unit 18 between the upstream portion of the on-off valve B5 of the concentrated water outlet pipe 25 and the rear processing tank 17 by closing the on-off valve B5 and opening the on-off valve B6. Is connected to the post-stage processing tank 17.
 第1の分離膜141、第2の分離膜181は、円筒状の孔道を有している。この孔道内部、またはその外側に使用済み研磨スラリーSを通過させることで、使用済み研磨スラリーSの過剰の水分が除去されて濃縮されるようになっている。円筒状の孔道を有する第1の分離膜141としては、例えば中空糸型、管状型、または平膜型の分離膜を適用することができる。これらの中でも、中空糸型の分離膜は、省スペースで大きな膜面積を得られるため、第1の分離膜141、第2の分離膜181として好適に用いられる。 The first separation membrane 141 and the second separation membrane 181 have a cylindrical passage. By passing the used polishing slurry S inside or outside the passage, excess water in the used polishing slurry S is removed and concentrated. For example, a hollow fiber type, a tubular type, or a flat membrane type separation membrane can be applied as the first separation membrane 141 having a cylindrical passage. Among these, a hollow fiber type separation membrane can be suitably used as the first separation membrane 141 and the second separation membrane 181 because a large membrane area can be obtained with a small space.
 第2の分離膜181は、前段に設けられた第1の分離膜141の濃縮水を濾過してさらに濃縮し、その研磨剤濃度を高めるものである。第2の分離膜181の有効濾過部の長さL2は、0.8m以下、好ましくは、0.5m以下、より好ましくは0.3m以下である The second separation membrane 181 is to filter and further concentrate the concentrated water of the first separation membrane 141 provided in the previous stage, and to increase the concentration of the polishing agent. The length L2 of the effective filtration part of the second separation membrane 181 is 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less
 第2の分離膜181として、上記の有効濾過長の分離膜を用いることで、高濃度の使用済みスラリーを通水しても、膜の目詰まりが生じ難く、ケーク層の成長が抑制される。このため、高濃度の被処理水を通水しても、第2の分離膜181における圧力損失の増大や、膜の閉塞が生じ難く、回収率の著しい低下が抑制された回収装置11とすることができる。 By using the separation membrane having the above effective filtration length as the second separation membrane 181, clogging of the membrane is less likely to occur even when water is used through high concentration spent slurry, and the growth of the cake layer is suppressed. . For this reason, even if water to be treated with high concentration passes, increase in pressure loss in the second separation membrane 181 and blockage of the membrane hardly occur, and the recovery device 11 is suppressed with a remarkable drop in recovery rate. be able to.
 第2の分離膜181の有効濾過部の長さL2が0.8mを超える場合には、第2の分離膜181の濾過面上で、ケーク層の厚みが増大し易く、有効内径の狭小化による圧力損失の増大や、膜の閉塞が生じ易くなる。第2の分離膜181の有効濾過部の長さL2は、第1の実施形態における分離膜41と同様の理由から、特に好ましくは0.2~0.3mである。 If the length L2 of the effective filtration portion of the second separation membrane 181 exceeds 0.8 m, the thickness of the cake layer tends to increase on the filtration surface of the second separation membrane 181, and the effective internal diameter is narrowed. It is likely that the pressure loss increases and the membrane is clogged. The length L2 of the effective filtration part of the second separation membrane 181 is particularly preferably 0.2 to 0.3 m, for the same reason as the separation membrane 41 in the first embodiment.
 第2の分離膜181の有効濾過部の長さL2は、第1の分離膜141の有効濾過部の長さL1よりも短く形成されていることが好ましい。すなわち、第1の分離膜141の有効濾過部の長さL1は、第2の分離膜181の有効濾過部の長さL2よりも長く形成されていることが好ましい。 The length L2 of the effective filtration portion of the second separation membrane 181 is preferably shorter than the length L1 of the effective filtration portion of the first separation membrane 141. That is, it is preferable that the length L1 of the effective filtration part of the first separation membrane 141 be longer than the length L2 of the effective filtration part of the second separation membrane 181.
 これにより、第1の分離膜141では、分散媒体で希釈された低濃度の使用済み研磨スラリーSを効率的に濾過処理するとともに、第2の分離膜181では、第1の分離膜141で得られた第1の濃縮水を、さらに濾過処理する。これにより、製品として再利用可能なレベルまで、研磨剤粒子が高濃度に濃縮されたスラリーを、低エネルギーで回収することができる。 As a result, the first separation membrane 141 efficiently filters the used polishing slurry S of low concentration diluted with the dispersion medium, and the second separation membrane 181 obtains the first separation membrane 141. The first concentrated water thus obtained is further filtered. Thereby, the slurry in which the abrasive particles are concentrated to a high concentration can be recovered with low energy to a level that can be reused as a product.
 近年では、CMP工程で排出される使用済みスラリーは、一日当りの排出量が1000mを超える場合がある。このため、より効率的な処理により、スラリーに含まれる水を除去、回収するとともに、研磨剤成分を回収する技術が求められている。 In recent years, the amount of used slurry discharged in the CMP process may exceed 1000 m 3 per day. Therefore, there is a need for a technique for removing and recovering water contained in the slurry and for recovering the polishing agent component by more efficient processing.
 本実施形態では、上記のように二段構成とすることで、前段に設けた、膜面積の大きい第1の分離膜141により、被処理水の体積を大幅に低減できるとともに、後段に設けた第2の分離膜181により、目詰まりを生じることなく、被処理水をより高濃度に濃縮することができる。このため、第1の実施形態と比較して、使用するモジュールの本数を低減することが可能となる。 In the present embodiment, the two-stage configuration as described above enables the volume of the water to be treated to be significantly reduced by the first separation membrane 141 having a large membrane area provided in the former stage, and is provided in the latter stage. The second separation membrane 181 can concentrate the water to be treated to a higher concentration without causing clogging. For this reason, it is possible to reduce the number of modules to be used compared to the first embodiment.
 第2の分離膜181の有効濾過部の長さL2が、第1の分離膜141の長さL1と同等かまたはこれを超える場合には、第2の分離膜181の内部において、ケーク層の厚みが増大し易く、有効内径の狭小化による、圧力損失の増大や、膜の閉塞が生じ易くなる When the length L2 of the effective filtration portion of the second separation membrane 181 is equal to or exceeds the length L1 of the first separation membrane 141, the cake layer of the second separation membrane 181 is formed. The thickness tends to increase, and the narrowing of the effective inner diameter tends to cause an increase in pressure loss and a blockage of the membrane.
 第1の分離膜141の有効濾過部の長さL1は、特に限定されないが、膜面積などを考慮して0.8~1.5mであることが好ましい。第1の分離膜141の有効濾過部の長さL1が0.8m未満であると、回収装置11に設置する分離膜141のモジュール本数が増大したり、設置面積が大きくなったりして、回収装置として、十分な効果を得られないおそれがある。 The length L1 of the effective filtration portion of the first separation membrane 141 is not particularly limited, but is preferably 0.8 to 1.5 m in consideration of the membrane area and the like. If the length L1 of the effective filtration part of the first separation membrane 141 is less than 0.8 m, the number of modules of the separation membrane 141 installed in the recovery apparatus 11 increases or the installation area becomes large, As an apparatus, there is a possibility that a sufficient effect can not be obtained.
 一方、第1の分離膜141の有効濾過部の長さL1が1.5mを超えると、第1の分離膜141の設置高さに制限が生じたり、分離膜141のハンドリングが困難となったりするおそれがある。第1の分離膜141の有効濾過部の長さL1は、より好ましくは0.8~1.5mである。 On the other hand, if the length L1 of the effective filtration part of the first separation membrane 141 exceeds 1.5 m, the installation height of the first separation membrane 141 is limited, or the handling of the separation membrane 141 becomes difficult There is a risk of The length L1 of the effective filtration part of the first separation membrane 141 is more preferably 0.8 to 1.5 m.
 第1の分離膜141は、円筒状の孔道を有するものであれば、精密濾過膜であってもよく、限外濾過膜であってもよい。研磨剤粒子(砥粒)を効率よく回収し、また回収後の濃縮液中の研磨剤粒子の粒度を一定に保ち、孔径が小さく、またエネルギー効率に優れた限外濾過膜を好適に用いることができる。 The first separation membrane 141 may be a microfiltration membrane or an ultrafiltration membrane as long as it has a cylindrical passage. Efficiently recover abrasive particles (abrasive particles), keep the particle size of the abrasive particles in the concentrated solution after recovery constant, and use an ultrafiltration membrane with a small pore diameter and excellent energy efficiency. Can.
 また、第2の分離膜181も、中空糸型の形状を有するものであれば、精密濾過膜であってもよく、限外濾過膜であってもよい。回収後の濃縮液中の研磨剤粒子の回収率を高く保つ観点から、限外濾過膜を好適に用いることができる。 The second separation membrane 181 may also be a microfiltration membrane or an ultrafiltration membrane as long as it has a hollow fiber type shape. An ultrafiltration membrane can be suitably used from the viewpoint of maintaining a high recovery rate of the abrasive particles in the concentrated solution after recovery.
 第1の分離膜141及び第2の分離膜181の分画分子量は、3,000~30,000であることが好ましい。第1の分離膜141及び第2の分離膜181の分画分子量が3,000未満であると、分離膜に被処理水を通水して透過水を得る為に、分離膜への供給圧力を上昇させる必要がある。このため、エネルギー効率が低下するとともに、分離膜に損傷を与えるおそれがある。 The molecular weight cut off of the first separation membrane 141 and the second separation membrane 181 is preferably 3,000 to 30,000. If the molecular weight cut-off of the first separation membrane 141 and the second separation membrane 181 is less than 3,000, the pressure supplied to the separation membrane is sufficient for passing water to be treated through the separation membrane to obtain permeated water. Need to rise. As a result, the energy efficiency is lowered and the separation membrane may be damaged.
 一方、第1の分離膜141及び第2の分離膜181の分画分子量が30,000を超えると、研磨剤粒子の一部が第1の分離膜141を通過して透過水側に移動し、研磨剤粒子の回収効率が低下するおそれがある。また、この場合、分離膜141の孔径と略同径を有する微細粒子により、分離膜141及び第2の分離膜181の孔が閉塞され易くなり、目詰まりを生じるおそれがある。 On the other hand, when the fractional molecular weight of the first separation membrane 141 and the second separation membrane 181 exceeds 30,000, a part of the abrasive particles passes through the first separation membrane 141 and moves to the permeated water side. The recovery efficiency of the abrasive particles may be reduced. Further, in this case, the fine particles having substantially the same diameter as the pore diameter of the separation membrane 141 may easily block the holes of the separation membrane 141 and the second separation membrane 181, which may cause clogging.
 第1の分離膜141及び第2の分離膜181が中空糸型分離膜または管状型分離膜である場合、その内径は、0.1mm以上0.8mm以下であることが好ましい。第1の分離膜141の各中空糸等の内径が0.1mm未満であると、膜の中空部を流れる被処理水の圧力損失が増大し、適切な処理効率を得るのが困難となるとともに、分離膜141の膜面強度が低下し、被処理水の濃度上昇に伴って膜が破損するおそれがある。一方、第1の分離膜141の各中空糸等の内径が0.8mm以上であると、膜の中空部を流れる被処理水の剪断速度が小さく、研磨剤やその他の不純物が中空部の内壁に堆積し易くなり、中空部を閉塞させたり、研磨剤粒子が凝集したゲルが大量に発生し、回収後の濃縮液中の研磨剤濃度が低下したりするおそれがある。第1の分離膜141及び第2の分離膜181の中空糸等の内径は、0.3mm以上0.8mm以下がより好ましい。 When the first separation membrane 141 and the second separation membrane 181 are hollow fiber separation membranes or tubular separation membranes, the inner diameter thereof is preferably 0.1 mm or more and 0.8 mm or less. When the inner diameter of each hollow fiber or the like of the first separation membrane 141 is less than 0.1 mm, the pressure loss of the water to be treated flowing through the hollow portion of the membrane increases, and it becomes difficult to obtain appropriate treatment efficiency. The membrane surface strength of the separation membrane 141 is lowered, and the membrane may be damaged as the concentration of the water to be treated is increased. On the other hand, if the inner diameter of each hollow fiber or the like of the first separation membrane 141 is 0.8 mm or more, the shear rate of the water to be treated flowing through the hollow portion of the membrane is small, and the abrasive and other impurities are the inner wall of the hollow portion. The hollow portion may be clogged, the hollow portion may be clogged, a large amount of gel in which abrasive particles are aggregated may be generated, and the concentration of the abrasive in the concentrated solution after recovery may be reduced. The inner diameters of hollow fibers and the like of the first separation membrane 141 and the second separation membrane 181 are more preferably 0.3 mm or more and 0.8 mm or less.
 第1の分離膜141及び第2の分離膜181は、有機材料からなる有機膜であってもよく、無機セラミックスからなる無機膜であってもよい。有機膜としては、例えばポリエチレン(PE)、4フッ化エチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリプロピレン(PP)、酢酸セルロース(CA)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリスルホン(PS)、およびポリエーテルスルホン(PES)等を好適に用いることができる。 The first separation film 141 and the second separation film 181 may be an organic film made of an organic material, or may be an inorganic film made of an inorganic ceramic. Examples of the organic film include polyethylene (PE), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), cellulose acetate (CA), polyacrylonitrile (PAN), polyimide (PI), polysulfone PS), and polyether sulfone (PES) can be suitably used.
 また、無機膜としては、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)のセラミックス材料や、ステンレス(SUS)、ガラス(SPG)等を用いることができる。これらの中でも、第1の分離膜141及び第2の分離膜181としては、ポリスルホン(PS)、ポリエーテルスルホン(PES)を好適に用いることができる。 Further, as the inorganic film, a ceramic material of aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), stainless steel (SUS), glass (SPG) or the like can be used. Among these, polysulfone (PS) and polyethersulfone (PES) can be suitably used as the first separation membrane 141 and the second separation membrane 181.
 第1の分離膜141、第2の分離膜181が中空糸型の分離膜である場合には、中空糸内部に被処理水を通水する内圧型の分離部であってもよく、中空糸の支持層の外側に被処理水を通水する外圧型の分離部であってもよい。内圧型の分離部とした場合には、濾過面上に堆積する固形成分が、中空糸内に通水される被処理水の剪断力により剥離され、ケーク層の成長を抑制できるため好ましい。 In the case where the first separation membrane 141 and the second separation membrane 181 are hollow fiber type separation membranes, they may be internal pressure type separation parts that allow water to be treated to flow through the hollow fiber, It may be an external pressure type separation part in which the water to be treated flows through the outside of the support layer. When it is set as an internal pressure type separation part, it is preferable because the solid component deposited on the filtration surface can be peeled off by the shear force of the water to be treated passed through the hollow fiber and the growth of the cake layer can be suppressed.
 このような回収装置11では、第1の分離膜141により、スラリーの希薄溶液をある程度まで濃縮できるため、大量のCMP排水を効率的に濃縮することができる。特に製造規模の大きい半導体工場では、1日当たり排水量が1000トン以上になることがあるが、第1の分離膜141を設けることで、このような大量の排水を、約1/10~1/500の量に低減することができる。したがって、第1の分離膜141を設置しない第1の実施形態と比較して、全体として設置するモジュール本数を低減することができる。 In such a recovery apparatus 11, the dilute solution of the slurry can be concentrated to a certain extent by the first separation membrane 141, so that a large amount of CMP drainage can be efficiently concentrated. In particular, in a large-scale semiconductor factory, the amount of drainage may exceed 1,000 tons per day, but by providing the first separation film 141, such a large amount of drainage can be about 1/10 to 1/500. Can be reduced to Therefore, compared with the first embodiment in which the first separation film 141 is not installed, the number of modules installed as a whole can be reduced.
 以上、本発明の研磨剤の回収装置11についてその一例を挙げて説明したが、本発明の趣旨に反しない限度において、その構成を適宜変更することができる。 As mentioned above, although the collection | recovery apparatus 11 of the abrasive | polishing agent of this invention was mentioned as the example, it can change the structure suitably in the limit which is not contrary to the meaning of this invention.
 次に、図3に基づいて、本発明の研磨剤の回収装置11を用いた研磨剤の回収方法について説明する。なお、本実施形態では、第1の分離膜141、第2の分離膜181として、いずれも中空糸型の限外濾過膜を備えた研磨剤の回収装置11を用いた場合について説明する。第1の分離141は、円筒状の孔道を有するものであれば必ずしも中空糸型の分離膜でなくてもよく、管状型や平膜型ものもであってもよい。 Next, based on FIG. 3, a method of recovering the abrasive using the abrasive recovery apparatus 11 of the present invention will be described. In the present embodiment, the case where a polishing agent recovery device 11 having a hollow fiber type ultrafiltration membrane is used as the first separation membrane 141 and the second separation membrane 181 will be described. The first separation 141 may not necessarily be a hollow fiber separation membrane as long as it has a cylindrical passage, and may be a tubular or flat membrane separation membrane.
 処理対象である使用済み研磨スラリーSは、CMP工程(化学的機械的研磨工程)で使用された後の研磨剤を含有するものであれば、特に限定されない。このような研磨剤粒子としては、例えばケイ素粒子、セリウム粒子等を挙げることができる。研磨剤粒子としては、通常、平均粒子径が0.01~1μmのものが好適に用いられる。研磨剤の平均粒子径は、CMP工程によって適宜選定されるが、例えば0.04~0.4μmである。 The used polishing slurry S to be treated is not particularly limited as long as it contains an abrasive after being used in the CMP step (chemical mechanical polishing step). Examples of such abrasive particles include silicon particles and cerium particles. As the abrasive particles, those having an average particle diameter of 0.01 to 1 μm are usually suitably used. The average particle size of the polishing agent is appropriately selected according to the CMP process, and is, for example, 0.04 to 0.4 μm.
 初めに、CMP工程で使用された使用済み研磨スラリーSは、配管15を経由してガードフィルター12に供給される。使用済み研磨スラリーSは、ガードフィルター12を通過する過程で粒径数十μm以上の粗大粒子が除去された後、前段処理タンク13に貯留される。 First, the used polishing slurry S used in the CMP step is supplied to the guard filter 12 via the pipe 15. The used polishing slurry S is stored in the pre-treatment tank 13 after coarse particles having a particle diameter of several tens of μm or more are removed in the process of passing through the guard filter 12.
 使用済み研磨スラリーSの、未処理段階での研磨剤粒子の濃度は、客先工場に依存する為特に限定されない。CMP工程での使用済み研磨スラリーSの研磨剤濃度は、通常、0.02~5質量%である。 The concentration of the abrasive particles in the untreated stage of the used abrasive slurry S is not particularly limited because it depends on the customer factory. The abrasive concentration of the used polishing slurry S in the CMP step is usually 0.02 to 5% by mass.
 前段処理タンク13に貯留された使用済み研磨スラリーSは、開閉弁B3を閉とし、開閉弁B4を開とした状態で、ポンプP2により配管16を経由して、第1の分離膜141を備えた第1の膜分離部14に加圧供給される。使用済み研磨スラリーSは、ガードフィルター12を通過する過程で粒径数十μm以上の粗大粒子が除去された後、第1の分離膜141の各中空糸内部にクロスフロー方式で通水され、その有効濾過部を通過する過程で過剰の水分が透過され、濃縮される(第1の濾過工程)。この際、使用済み研磨スラリーSの分散媒体等は、分離膜141を通って透過水出口配管22に流出し、使用済み研磨スラリーS内の研磨剤粒子は、第1の分離膜141の濃縮水である第1の濃縮水側に残留する。 The used polishing slurry S stored in the pre-treatment tank 13 is provided with the first separation membrane 141 via the pipe 16 by the pump P2 in a state where the on-off valve B3 is closed and the on-off valve B4 is opened. The pressure is supplied to the first membrane separation unit 14. After the coarse particles having a particle diameter of several tens of μm or more are removed in the process of passing through the guard filter 12, the used polishing slurry S is passed through the hollow fibers of the first separation membrane 141 by the cross flow method. In the process of passing through the effective filtration part, excess water is permeated and concentrated (first filtration step). At this time, the dispersion medium or the like of the used polishing slurry S flows out to the permeate outlet pipe 22 through the separation membrane 141, and the abrasive particles in the used polishing slurry S are concentrated water of the first separation membrane 141. Remain on the first concentrated water side.
 第1の濃縮水は、還流配管23を通って前段処理タンク13へ還流される。この工程を所定時間継続した後、成分濃度計C2で計測される前段処理タンク13内の貯留水の研磨剤の濃度が最大13質量%、より好ましくは9~10質量%となった段階で、開閉弁B3が開、開閉弁B4が閉とされ、その一部が配管20を経由して後段処理タンク17に供給される。 The first concentrated water is returned to the pre-treatment tank 13 through the reflux pipe 23. After continuing this process for a predetermined time, when the concentration of the polishing agent in the stored water in the pre-treatment tank 13 measured by the component densitometer C2 reaches a maximum of 13 mass%, more preferably 9 to 10 mass%, The on-off valve B3 is opened, the on-off valve B4 is closed, and a part of the on-off valve B4 is supplied to the post-stage processing tank 17 via the pipe 20.
 第1の分離膜141の有効濾過部を通過する、被処理水(使用済み研磨スラリーSおよび第1の濃縮水)の流速は0.5~2m/secであることが好ましい。第1の分離膜141の有効濾過部における、被処理水(使用済み研磨スラリーSおよび第1の濃縮水)の流速が0.5m/sec未満であると、分離膜141の濾過面に研磨剤粒子が付着し易くなり、透過水量が低下することがある。この場合、分離膜141の設置本数を増加させる必要があり、回収装置11の製造コストが高くなる。一方、第1の分離膜141の有効濾過部における被処理水の流速が2.0m/secを超えると、膜面に接触する液量が過剰となり、発熱が生じることがある。この場合、分離膜141、濃縮液が共に熱による損傷を受け、劣化するおそれがある。また、分離膜141の被処理水の流速を向上させるには、各配管やバルブ等のサイズを大きくする必要があり、回収装置11の製造コストが高くなる。第1の分離膜141の有効濾過部を通過する被処理水の流速は、より好ましくは0.55~1.5m/secである。 The flow rate of the water to be treated (the used polishing slurry S and the first concentrated water) passing through the effective filtration portion of the first separation membrane 141 is preferably 0.5 to 2 m / sec. An abrasive is applied to the filtration surface of the separation membrane 141 if the flow rate of the water to be treated (the used polishing slurry S and the first concentrated water) in the effective filtration section of the first separation membrane 141 is less than 0.5 m / sec. The particles tend to adhere and the amount of permeated water may decrease. In this case, the number of separation membranes 141 installed needs to be increased, and the manufacturing cost of the recovery apparatus 11 is increased. On the other hand, when the flow velocity of the water to be treated in the effective filtration section of the first separation membrane 141 exceeds 2.0 m / sec, the amount of liquid contacting the membrane surface becomes excessive, which may generate heat. In this case, both the separation membrane 141 and the concentrate may be damaged by heat and may be deteriorated. Moreover, in order to improve the flow velocity of the water to be treated of the separation membrane 141, it is necessary to increase the size of each pipe, valve, etc., and the manufacturing cost of the recovery device 11 becomes high. The flow velocity of the treated water passing through the effective filtration portion of the first separation membrane 141 is more preferably 0.55 to 1.5 m / sec.
 後段処理タンク17に貯留された第1の濃縮水は、開閉弁B5を閉とし、開閉弁B6を開とした状態で、ポンプP3により、配管21を経由して、第2の分離膜181を備えた第2の膜分離部18に加圧供給される。第2の分離膜181は、第1の分離膜141の有効濾過長L1より短く、かつ0.8m以下、好ましくは0.5m以下、より好ましくは0.3m以下の有効濾過長L2を有している。第2の分離膜181は、各中空糸の中空部に、第1の濃縮水がクロスフフロー方式で通水される。第1の濃縮水は、中空糸の有効濾過部を通過する過程で過剰の水分が透過され、濃縮される(第2の濾過工程)。この際、第1の濃縮水の分散媒体等は、分離膜181を通って透過水出口配管24に流出し、第1の濃縮水に含まれる研磨剤粒子は、第2の分離膜181の濃縮水である第2の濃縮水側に残留する。 The first concentrated water stored in the second-stage processing tank 17 is closed with the on-off valve B5 and the on-off valve B6, and the pump P3 passes the second separation membrane 181 via the pipe 21. The pressure is supplied to the provided second membrane separation unit 18. The second separation membrane 181 has an effective filtration length L2 shorter than the effective filtration length L1 of the first separation membrane 141 and 0.8 m or less, preferably 0.5 m or less, more preferably 0.3 m or less. ing. In the second separation membrane 181, the first concentrated water is passed through the hollow portion of each hollow fiber in a crossflow flow manner. In the process of passing through the effective filtration portion of the hollow fiber, the first concentrated water is permeated with excess water and concentrated (second filtration step). At this time, the dispersion medium or the like of the first concentrated water flows out to the permeate outlet pipe 24 through the separation membrane 181, and the abrasive particles contained in the first concentrated water are concentrated in the second separation membrane 181. It remains on the second concentrated water side, which is water.
 第2の分離膜181の有効濾過部を通過する、被処理水(第1の濃縮水)の流速は0.5~2m/secであることが好ましい。第2の分離膜181の有効濾過部における被処理水の流速が0.5m/sec未満であると、分離膜181の濾過面に研磨剤粒子が付着し易くなり、膜の閉塞が生じ易くなる。一方、第2の分離膜181の有効濾過部における被処理水の流速が2m/secを超えると、研磨剤粒子に過剰量のエネルギーが加わり、この粒子が凝集して粗大粒子を形成することがある。回収後の研磨剤に粗大粒子が混入すると、CMP工程にリサイクル使用したときに、ウェーハ等の表面にスクラッチを生じさせ、製品の歩留まりを低下させることがある。また、このような粗大粒子が発生すると、分離膜の濾過面にケーク層が形成され、洗浄時間や薬品の使用量が増加するおそれがある。第2の分離膜181の有効濾過部を通過する被処理水の流速は、より好ましくは0.6~1m/secである。 The flow velocity of the water to be treated (first concentrated water) passing through the effective filtration portion of the second separation membrane 181 is preferably 0.5 to 2 m / sec. When the flow velocity of the water to be treated in the effective filtration part of the second separation membrane 181 is less than 0.5 m / sec, abrasive particles are likely to adhere to the filtration surface of the separation membrane 181, and blockage of the membrane is likely to occur. . On the other hand, when the flow velocity of the treated water in the effective filtration part of the second separation membrane 181 exceeds 2 m / sec, an excessive amount of energy is added to the abrasive particles, and the particles are aggregated to form coarse particles. is there. If coarse particles are mixed in the recovered abrasive, it may cause scratches on the surface of a wafer or the like when it is recycled for use in the CMP step, which may lower the yield of the product. In addition, when such coarse particles are generated, a cake layer may be formed on the filtration surface of the separation membrane, which may increase the washing time and the amount of chemicals used. The flow velocity of the treated water passing through the effective filtration portion of the second separation membrane 181 is more preferably 0.6 to 1 m / sec.
 上記の処理工程を所定時間継続した後、成分濃度計C3で計測される後段処理タンク17内の貯留水の研磨剤の濃度が目標濃度となった段階で、開閉弁B5が開、開閉弁B6が閉とされ、その一部が配管25を経由して回収タンク19に供給される。配管25を経由して回収タンク19に供給する際の後段処理タンク17内の貯留水の濃度は、好ましくは10質量%以上でかつ最大26質量%であり、さらに好ましくは20~25質量%である。 After continuing the above-mentioned treatment process for a predetermined time, the open / close valve B5 is opened when the concentration of the polishing agent in the stored water in the post-stage treatment tank 17 measured by the component densitometer C3 becomes the target concentration. Is closed, and a portion thereof is supplied to the recovery tank 19 via the pipe 25. The concentration of stored water in the post-treatment tank 17 when supplied to the recovery tank 19 via the pipe 25 is preferably 10% by mass or more and at most 26% by mass, and more preferably 20 to 25% by mass. is there.
 第2の分離膜181の濾過面における、被処理水の圧力損失は0.1MPa以下であることが好ましく、0.08MPa以下であることがより好ましい。 The pressure loss of the water to be treated on the filtration surface of the second separation membrane 181 is preferably 0.1 MPa or less, more preferably 0.08 MPa or less.
 本発明の研磨剤の回収方法では、第1の有効濾過長よりも短い有効濾過長を有する第2の分離膜181を用いているため、第2の分離膜の濾過面での圧力損失の増大や、膜の閉塞を抑制しつつ、製品として使用可能なレベルまで、研磨剤粒子が高濃度に濃縮された使用済み研磨スラリーSを効率的に回収することができる。 Since the second separation membrane 181 having an effective filtration length shorter than the first effective filtration length is used in the abrasive recovery method of the present invention, the pressure loss at the filtration surface of the second separation membrane is increased. In addition, it is possible to efficiently recover the used polishing slurry S in which the abrasive particles are concentrated to a high concentration to a level that can be used as a product while suppressing the blocking of the film.
 なお、本実施形態では、第1の濾過工程、第2の濾過工程とも、中空糸の中空部に被処理水を通水する、内圧型の方式で濾過処理する方法を示したが、本発明は必ずしもこのような形態に限定されない。例えば被処理水を中空糸の外側に通水する、外圧型の方式で濾過処理することとしてもよい。 In the present embodiment, although the first filtration step and the second filtration step show a method of performing filtration processing by an internal pressure type in which the water to be treated is passed through the hollow portion of the hollow fiber, the present invention Is not necessarily limited to such a form. For example, the water to be treated may be supplied to the outside of the hollow fiber and may be filtered by an external pressure system.
 第1透過水出口配管22および第2透過水出口配管24より得られる透過水は、回収して再利用することが可能である。たとえば未処理のまま、もしくは透過水の水質に応じた処理をした上で、超純水装置の原水等として利用することが可能である。また、工場内の他のユーティリティー、たとえば、生活用水、クーリングタワー用水等として利用することも可能である。 The permeated water obtained from the first permeated water outlet pipe 22 and the second permeated water outlet pipe 24 can be recovered and reused. For example, it is possible to use it as raw water of an ultrapure water device or the like without treatment or after treatment according to the quality of the permeate water. Moreover, it is also possible to use as another utility in a factory, for example, domestic water, cooling tower water, etc.
 以下、実施例及び比較例により本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples.
(実施例1)
 図1に示した研磨剤の回収装置1を用いてCMP工程での使用済みスラリーの濾過処理を行った。
Example 1
Using the polishing agent recovery apparatus 1 shown in FIG. 1, the used slurry was filtered in the CMP process.
 図1におけるポンプP1としては、レビトロポンプ「LEV300」(株式会社イワキ製、商品名)を用い、膜分離部4としては、中空糸型UF膜モジュール「FB02-VC-FUST653」(ダイセン・メンブレン・システムズ株式会社製、商品名)を用いた。処理タンク3、濃縮水回収タンク9としては、濃縮タンク(PVC製)を用いた。中空糸型UF膜モジュール「FB02-VC-FUST653」は、分画分子量;6000、中空糸内径;0.5mm、膜面積;0.5m、有効濾過長;0.26mであった。 As the pump P1 in FIG. 1, a Levitro pump “LEV300” (manufactured by Iwaki Co., Ltd., trade name) is used, and as the membrane separation unit 4, a hollow fiber type UF membrane module “FB02-VC-FUST653” (Daisen Membrane Systems) Made in Japan, product name) was used. A concentration tank (made of PVC) was used as the treatment tank 3 and the concentrated water recovery tank 9. The hollow fiber type UF membrane module “FB02-VC-FUST653” had a molecular weight cut-off of 6000, a hollow fiber inner diameter of 0.5 mm, a membrane area of 0.5 m 2 and an effective filtration length of 0.26 m.
 まず、研磨剤濃度約1質量%(pH:9.8)の使用済み研磨スラリー溶液を、配管5からガードフィルター2を経由して、処理タンク3に供給した。次いで、開閉弁B1を閉とし、開閉弁B2を開として、処理タンク3内の使用済み研磨スラリーを、膜分離部4に通水した。使用済みスラリーの各配管内の循環流量は8.1L/minとし、中空糸膜41内の線速は、0.55m/secとした。また、中空糸膜41における、使用済み研磨スラリー流入口近傍の圧力が0.2MPaとなるように、ポンプP1(レビトロポンプ)のインペラ回転数、及び膜分離部4後段の開閉弁B2の開閉度を調製した。この状態で通水処理を行い、成分濃度計C1で計測される処理タンク3内の研磨剤濃度、及び透過水出口配管から排出される透過水量(flux)を測定した。 First, a used polishing slurry solution having a polishing agent concentration of about 1 mass% (pH: 9.8) was supplied from the pipe 5 to the processing tank 3 via the guard filter 2. Next, the on-off valve B1 was closed, and the on-off valve B2 was opened, and the used polishing slurry in the processing tank 3 was passed through the membrane separation unit 4. The circulation flow rate in each pipe of the used slurry was 8.1 L / min, and the linear velocity in the hollow fiber membrane 41 was 0.55 m / sec. In addition, the impeller rotational speed of the pump P1 (Levitro pump) and the opening / closing degree of the on-off valve B2 in the latter stage of the membrane separation unit 4 are set so that the pressure in the hollow fiber membrane 41 near the used polishing slurry Prepared. Water treatment was performed in this state, and the abrasive concentration in the treatment tank 3 measured by the component densitometer C1 and the amount of permeated water (flux) discharged from the permeate outlet pipe were measured.
(実施例2)
 膜分離部4として、中空糸型UF膜モジュール「M81S60001N」(SPECTRUM社製、商品名)を用いたこと以外は、実施例1と同様にして使用済み研磨スラリーの通水処理を行い、実施例1と同様にして、処理タンク3内の研磨剤濃度を測定した。
なお、中空糸型UF膜モジュール「M81S60001N」は、中空糸内径;0.5mm、有効濾過長;0.46mであった。
(Example 2)
A passing-through treatment of the used polishing slurry is carried out in the same manner as in Example 1 except that a hollow fiber type UF membrane module "M81S60001N" (trade name of SPECTRUM) is used as the membrane separation part 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1.
The hollow fiber type UF membrane module “M81S60001N” had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.46 m.
(実施例3)
 膜分離部4として、中空糸型UF膜モジュール「KM1S60001N」(SPECTRUM社製、商品名)を用いたこと以外は、実施例1と同様にして使用済み研磨スラリーの通水処理を行い、実施例1と同様にして、処理タンク3内の研磨剤濃度を測定した。
なお、中空糸型UF膜モジュール「KM1S60001N」は、中空糸内径;0.5mm、有効濾過長;0.63mであった。
(Example 3)
The used abrasive slurry is treated with water in the same manner as in Example 1 except that a hollow fiber type UF membrane module "KM1S60001N" (trade name of SPECTRUM) is used as the membrane separation unit 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1.
The hollow fiber type UF membrane module “KM1S60001N” had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.63 m.
(比較例1)
 膜分離部4として、中空糸型UF膜モジュール「KM1S30001N」(SPECTRUM社製、商品名)を用いたこと以外は、実施例1と同様にして使用済み研磨スラリーの通水処理を行い、実施例1と同様にして、処理タンク3内の研磨剤濃度を測定した。なお、中空糸型UF膜モジュール「KM1S30001N」は、中空糸内径;0.5mm、有効濾過長;0.81mであった。
(Comparative example 1)
A passing-through treatment of the used polishing slurry is carried out in the same manner as in Example 1 except that a hollow fiber type UF membrane module "KM1S30001N" (trade name of SPECTRUM) is used as the membrane separation unit 4, The abrasive concentration in the treatment tank 3 was measured in the same manner as in 1. The hollow fiber type UF membrane module "KM1S30001N" had a hollow fiber inner diameter of 0.5 mm and an effective filtration length of 0.81 m.
(比較例2)
 膜分離部4として、中空糸型UF膜モジュール「AMK-VC-FUST653」(ダイセン・メンブレン・システムズ株式会社製、商品名)を用いたこと以外は、実施例1と同様にして、使用済み研磨スラリーの通水処理を行い、実施例1と同様にして、処理タンク3内の研磨剤濃度を測定した。なお、中空糸型UF膜モジュール「AMK-VC-FUST653」は、中空糸内径;0.5mm、有効濾過長;1.0m、膜面積;1.5mであった。
(Comparative example 2)
Used polishing in the same manner as in Example 1 except that a hollow fiber type UF membrane module “AMK-VC-FUST 653” (trade name of Daisen Membrane Systems Co., Ltd.) is used as the membrane separation unit 4 The slurry was subjected to water flow treatment, and in the same manner as in Example 1, the abrasive concentration in the treatment tank 3 was measured. The hollow fiber type UF membrane module “AMK-VC-FUST653” had a hollow fiber inner diameter of 0.5 mm, an effective filtration length of 1.0 m, and a membrane area of 1.5 m 2 .
 実施例1及び比較例2において、成分濃度計C1で計測される処理タンク3内の研磨剤濃度と透過水排出配管7から排出される透過水量(flux)との関係を、図4に示す。
なお、図4において、破線は実施例1における透過水出口配管7からの透過水量を示し、実線は比較例2における透過出口配管7からの透過水量を示す。また、表1に、実施例1~3、比較例1~2の各中空糸分離膜41の中空糸内径、膜面積、有効濾過長、材質と共に、通水開始時点での被処理水研磨剤濃度、及び濃縮処理が不可となった時点での被処理水研磨剤濃度(濃縮可能最大濃度)を示す。
In Example 1 and Comparative Example 2, the relationship between the abrasive concentration in the processing tank 3 measured by the component densitometer C1 and the amount of permeated water (flux) discharged from the permeated water discharge pipe 7 is shown in FIG.
In FIG. 4, the broken line indicates the amount of permeated water from the permeate outlet pipe 7 in Example 1, and the solid line indicates the amount of permeated water from the permeate outlet pipe 7 in Comparative Example 2. In addition, in Table 1, the hollow fiber inner diameter, the membrane area, the effective filtration length, and the material of each of the hollow fiber separation membranes 41 of Examples 1 to 3 and Comparative Examples 1 to 2 are treated water abrasives at the water passing start time. It shows the concentration, and the concentration of the treated water abrasive (concentable maximum concentration) when concentration processing becomes impossible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、分離膜41の有効濾過長が0.8m以下である実施例1~3の回収装置では、濾過処理終了時点において、20質量%以上の高濃度の研磨剤濃度を有する処理水を得られており、有効濾過長が短くなるにしたがって、濃縮可能最大濃度が増大することが認められた。一方、0.8mを超える有効濾過長を有する比較例1の回収装置では、濃縮可能最大濃度が20質量%未満となっており、高濃度領域で目詰まりが生じ易いことが認められた。 As is apparent from Table 1, in the recovery apparatus of Examples 1 to 3 in which the effective filtration length of the separation membrane 41 is 0.8 m or less, the abrasive concentration of 20 mass% or more at a high concentration is It was found that the treated water was obtained, and that the maximum concentration that can be concentrated increased as the effective filtration length became shorter. On the other hand, in the recovery device of Comparative Example 1 having an effective filtration length exceeding 0.8 m, the maximum concentration that can be concentrated is less than 20% by mass, and it was recognized that clogging easily occurs in the high concentration region.
 また、図4に示すように、膜分離部4として、0.8mを超える有効濾過長を有する分離膜41を用いた比較例2の回収装置では、被処理水のSi濃度が13質量%を超えた時点で透過水量(flux)が急激に減少しており、これ以上の濾過処理を行うことが困難であった。一方、膜分離部4として、0.8m以下の有効濾過長を有する分離膜41を用いた実施例1の回収装置では、被処理水の濃度が20質量%を超えても、透過水量の急激な減少は発生せず、被処理水が高濃度となっても濾過処理を安定して行うことができた。 Further, as shown in FIG. 4, in the recovery apparatus of Comparative Example 2 using the separation membrane 41 having an effective filtration length exceeding 0.8 m as the membrane separation unit 4, the Si concentration of the water to be treated is 13 mass%. When it exceeded, the amount of permeated water (flux) decreased rapidly, and it was difficult to carry out further filtration processing. On the other hand, in the recovery apparatus of Example 1 using the separation membrane 41 having an effective filtration length of 0.8 m or less as the membrane separation part 4, even if the concentration of the water to be treated exceeds 20% by mass, No reduction occurred, and the filtration process could be stably performed even if the concentration of the treated water was high.
 以上の結果から、膜分離部4として、有効濾過長が0.8m以下である分離膜41を用いた場合、CMP工程から排出された低濃度の使用済みスラリーを、高濃度領域まで安定して濃縮できることが認められた。 From the above results, when the separation membrane 41 having an effective filtration length of 0.8 m or less is used as the membrane separation unit 4, the low-concentration spent slurry discharged from the CMP step is stabilized to the high concentration region. It was found that it could be concentrated.
 シリカ粒子等の研磨剤粒子を含む排液は、排水基準を遵守する必要性から、従来より固液分離することが行われていた。しかしながら、固液分離に限外濾過膜を用いても、固形分としての濃縮は、数%程度が限界であった。砥粒成分の濃度が数%程度では、研磨スラリーとしてCMP工程に再利用することは困難なため、固形分は一般に、産業廃棄物として廃棄処理されていた。 In the prior art, it has been practiced to separate solid solution from waste fluid containing abrasive particles such as silica particles, in order to comply with waste water standards. However, even if an ultrafiltration membrane is used for solid-liquid separation, concentration as a solid content is limited to about several percent. The solid content is generally disposed of as industrial waste because it is difficult to reuse it as a polishing slurry in a CMP process if the concentration of the abrasive grain component is about several percent.
 本発明では、実施例1~3で示すように、CMP工程からの排水の研磨剤濃度を、製品として使用可能な25%程度の濃度まで濃縮処理できるため、回収された濃縮液を、再度CMP工程に使用することができ、高いリサイクル効率を得ることができる。 In the present invention, as shown in Examples 1 to 3, since the polishing agent concentration of the waste water from the CMP step can be concentrated to a concentration of about 25% that can be used as a product, the recovered concentrated solution is again subjected to CMP. It can be used in the process, and high recycling efficiency can be obtained.
 次に、実施例1で用いた研磨剤の回収装置1を用い、膜分離部4の被処理水入口での圧力は実施例1と同一とし、分離膜の圧力損失を変化させて、実施例4~5、比較例3~6を行った。 Next, using the polishing agent recovery apparatus 1 used in Example 1, the pressure at the treated water inlet of the membrane separation unit 4 is made the same as in Example 1, and the pressure loss of the separation membrane is changed. 4 to 5 and comparative examples 3 to 6 were performed.
(実施例4)
 中空糸膜41内の線速を0.6m/secとし、それ以外の条件は実施例1と同様にして、使用済み研磨スラリーを回収装置1に通水し、濾過処理を行った。この処理を80分間行った後、開閉弁B1を開とし、開閉弁B2を閉として、膜分離部4の濃縮水を濃縮水出口配管8から濃縮水回収タンク9に回収した。
(Example 4)
With the linear velocity in the hollow fiber membrane 41 set to 0.6 m / sec and the other conditions being the same as in Example 1, the used polishing slurry was passed through the recovery device 1 and filtration processing was performed. After this process was performed for 80 minutes, the on-off valve B1 was opened, the on-off valve B2 was closed, and the concentrated water in the membrane separation unit 4 was recovered from the concentrated water outlet pipe 8 into the concentrated water recovery tank 9.
(実施例5)
 以下の点を変更したこと以外は、実施例2と同様にして濾過処理を行い、膜分離部4の濃縮水を回収した。膜分離部4として、中空糸型UF膜モジュール「FB02-VC-FUST653」に代えて、中空糸型UF膜モジュール「SLP-1053」(旭化成ケミカルズ株式会社製、商品名。中空糸内径 1.4mm、分画分子量:10000 膜面積:0.12m 有効濾過長 0.20m 膜材質:ポリスルホン)を用いた。
(Example 5)
The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered. A hollow fiber type UF membrane module "SLP-1053" (trade name, manufactured by Asahi Kasei Chemicals Corp .; trade name: hollow fiber inner diameter 1.4 mm, instead of the hollow fiber type UF membrane module "FB02-VC-FUST653" as the membrane separation unit 4 , Fractional molecular weight: 10000 Membrane area: 0.12 m 2 Effective filtration length 0.20 m Membrane material: polysulfone) was used.
 処理タンク3に供給する使用済み研磨スラリーを、研磨剤濃度約0.8質量%(pH:10.5)、各配管内の使用済みスラリーの循環流量を9.0L/minとし、中空糸膜41における、使用済み研磨スラリー流入口近傍の圧力を0.2MPa、中空糸膜41内の線速を0.69m/secとした。 The used abrasive slurry supplied to the processing tank 3 has an abrasive concentration of about 0.8% by mass (pH: 10.5), and the circulating flow rate of the used slurry in each pipe is 9.0 L / min. The pressure in the vicinity of the used polishing slurry inlet was 41 MPa, and the linear velocity in the hollow fiber membrane 41 was 0.69 m / sec.
(比較例3)
 以下の点を変更したこと以外は、実施例2と同様にして濾過処理を行い、膜分離部4の濃縮水を回収した。膜分離部4として、中空糸型UF膜モジュール「FB02-VC-FUST653」に代えて、中空糸型UF膜モジュール「AMK-VC-FUS0181」(ダイセン・メンブレン・システムズ株式会社製、商品名。中空糸内径 0.8mm、分画分子量:10000 膜面積:0.5m 有効濾過長 1m 膜材質:PES)を用い、中空糸膜41内の線速を0.55m/secとした。
(Comparative example 3)
The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered. A hollow fiber type UF membrane module "AMK-VC-FUS0181" (trade name: manufactured by Daisen Membrane Systems Co., Ltd., hollow) in place of the hollow fiber type UF membrane module "FB02-VC-FUST 653" as the membrane separation unit 4. The inner diameter of yarn: 0.8 mm, molecular weight cut off: 10,000, membrane area: 0.5 m 2 effective filtration length: 1 m Membrane material: PES), and the linear velocity in the hollow fiber membrane 41 was 0.55 m / sec.
(比較例4)
 以下の点を変更したこと以外は、実施例2と同様にして濾過処理を行い、膜分離部4の濃縮水を回収した。膜分離部4として、中空糸型UF膜モジュール「FB02-VC-FUST653」に代えて、中空糸型UF膜モジュール「AMK-VC-FUS03C1」(ダイセン・メンブレン・システムズ株式会社製、商品名。中空糸内径 1.2mm、分画分子量:30000 膜面積:0.3m 有効濾過長1m 膜材質:PES)を用い、中空糸膜41内の線速を0.85m/secとした。
(Comparative example 4)
The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered. A hollow fiber type UF membrane module “AMK-VC-FUS03C1” (trade name: manufactured by Daisen Membrane Systems Co., Ltd., hollow, instead of the hollow fiber type UF membrane module “FB02-VC-FUST 653” as the membrane separation unit 4. Yarn inner diameter: 1.2 mm, molecular weight cut off: 30,000 Membrane area: 0.3 m 2 Effective filtration length: 1 m Membrane material: PES) The linear velocity in the hollow fiber membrane 41 was 0.85 m / sec.
(比較例5)
 以下の点を変更したこと以外は、実施例2と同様にして濾過処理を行い、膜分離部4の濃縮水を回収した。膜分離部4として、中空糸型UF膜モジュール「FB02-VC-FUST653」に代えて、「AMK-VC-FUS03C1」(ダイセン・メンブレン・システムズ株式会社製、商品名。中空糸内径 1.2mm、分画分子量:30000 膜面積:0.3m 有効濾過長 1m 膜材質:PES)を用い、中空糸膜41内の線速を1.8m/secとした。
(Comparative example 5)
The filtration process was performed in the same manner as in Example 2 except that the following points were changed, and the concentrated water in the membrane separation unit 4 was recovered. Instead of the hollow fiber type UF membrane module “FB02-VC-FUST653” as the membrane separation unit 4, “AMK-VC-FUS03C1” (trade name: manufactured by Daisen Membrane Systems Co., Ltd .; hollow fiber inner diameter: 1.2 mm, Fractional molecular weight: 30,000 Membrane area: 0.3 m 2 Effective filtration length 1 m Membrane material: PES) The linear velocity in the hollow fiber membrane 41 was 1.8 m / sec.
(比較例6)
 以下の点を変更したこと以外は、実施例2と同様の条件で濾過処理を行い、膜分離部4の濃縮水を回収した。膜分離部4として、中空糸型UF膜モジュール「FB02-VC-FUST653」に代えて、「AMK-VC-FUST653」(ダイセン・メンブレン・システムズ株式会社製、商品名。中空糸内径 0.5mm、分画分子量:6000 膜面積:1.5m 有効濾過長 1m 膜材質:PES)を用いた。中空糸膜41内の線速は実施例2と同一とした。
(Comparative example 6)
The filtration process was performed under the same conditions as in Example 2 except that the following points were changed, and the concentrated water of the membrane separation unit 4 was recovered. Instead of the hollow fiber type UF membrane module “FB02-VC-FUST653” as the membrane separation unit 4, “AMK-VC-FUST653” (trade name: manufactured by Daisen Membrane Systems Co., Ltd. hollow fiber inner diameter 0.5 mm, Fractional molecular weight: 6000 Membrane area: 1.5 m 2 Effective filtration length 1 m Membrane material: PES) was used. The linear velocity in the hollow fiber membrane 41 was the same as in Example 2.
 実施例4~5及び比較例3~6について、濃縮水回収タンク9内に回収された濃縮水の研磨剤濃度、及び研磨剤の回収率を表2に示す。また、実施例4~5及び比較例3~6の中空糸膜41内の線速、中空糸内径、及び透過水の排出量から算出される濃縮液中の研磨剤濃度値を併せて表2に示す。 The abrasive concentration of the concentrated water recovered in the concentrated water recovery tank 9 and the recovery rate of the abrasive for Examples 4 to 5 and Comparative Examples 3 to 6 are shown in Table 2. In addition, the linear velocity in the hollow fiber membranes 41 of Examples 4 to 5 and Comparative Examples 3 to 6, the inner diameter of the hollow fiber, and the abrasive concentration value in the concentrate calculated from the amount of permeated water are shown in Table 2 together. Shown in.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、有効濾過長が0.8m以下であり、分離膜の内径が0.1mm以上0.8mm以下である分離膜を用いた実施例4では、回収後の濃縮液の研磨剤濃度が25質量%を超えており、より高い回収率を得られることが認められた。また、実施例4と比較して、有効濾過長を短くするとともに、中空糸内径を増大して圧力損失を低下させた実施例5では、比較的高濃度の領域まで所定量以上の透過水を得られたものの、25質量%以上に濃縮処理することはできなかった。また、回収後の濃縮液に含まれる研磨剤濃度は、透過水量から算出された研磨剤濃度(計算値)を下回っており、中空糸内径(ファイバー径)の増大に伴って、研磨剤の回収率が若干低下することが認められた。これは、中空糸内部に砥粒成分(研磨剤粒子)が付着してケーク層が形成され、有効内径が狭小化したものと考えられる。 As is apparent from Table 2, in Example 4 using a separation membrane having an effective filtration length of 0.8 m or less and an inner diameter of the separation membrane of 0.1 mm or more and 0.8 mm or less, the recovered concentrated liquid It was found that the polishing agent concentration exceeded 25% by mass, and a higher recovery rate could be obtained. In addition, in Example 5 in which the effective filtration length is shortened and the inner diameter of the hollow fiber is increased to reduce the pressure loss as compared with Example 4, the permeated water having a predetermined amount or more is increased to a relatively high concentration region. Although obtained, it could not be concentrated to 25% by mass or more. Further, the concentration of the abrasive contained in the concentrated solution after recovery is lower than the abrasive concentration (calculated value) calculated from the amount of permeated water, and the abrasive is recovered with the increase of the hollow fiber inner diameter (fiber diameter). It was observed that the rate slightly decreased. It is considered that this is because the abrasive particle component (abrasive particles) adheres to the inside of the hollow fiber to form a cake layer, and the effective inner diameter is narrowed.
 一方、0.8mより長い有効濾過長を有しており、かつ中空糸内径が0.1~0.8mmの範囲である比較例3、6では、研磨剤の回収率は76%付近となっており、回収後の濃縮液に含まれる研磨剤濃度は、透過水量から算出された研磨剤濃度(理論値)を下回っていた。また、中空糸の内径を1.2mmと増大させた比較例4、5では、研磨剤の回収率がさらに低くなっていた。中空糸内部で砥粒成分(研磨剤粒子)が付着してケーク層が形成され、有効内径が狭小化したものと考えられる。 On the other hand, in Comparative Examples 3 and 6 in which the effective filtration length is longer than 0.8 m and the inner diameter of the hollow fiber is in the range of 0.1 to 0.8 mm, the recovery rate of the abrasive is around 76%. The concentration of the abrasive contained in the concentrated solution after recovery was lower than the concentration (theoretical value) of the abrasive calculated from the amount of permeated water. Moreover, in Comparative Examples 4 and 5 in which the inner diameter of the hollow fiber was increased to 1.2 mm, the recovery rate of the polishing agent was further lowered. It is considered that the abrasive particle component (abrasive particles) adheres inside the hollow fiber to form a cake layer, and the effective inner diameter is narrowed.
(比較例7)
 図1で示す回収装置1に、膜分離部4として限外濾過膜「MLE-7101H」(株式会社クラレ製、商品名。有効濾過長;1m、中空糸内径;1.2mm、分画分子量;13000、膜材質;ポリスルホン)を設置し、濾過処理を行った。濾過処理は内圧型のクロスフロー方式で行った。分離膜は、濃縮液に含まれる研磨剤濃度が14質量%となった段階から徐々に閉塞した。その後ポンプの出力を上げて被処理水に対する圧力を高めて濾過処理を継続したが、被処理水のSi濃度が19質量%となった段階で濃縮処理が不可能となった。図6に、濾過処理が不能となった時点での、膜分離部4入口の状態を示し、図7に、図6の一部を拡大して示し、図8に、同時点での膜分離部4出口の状態を示す。
(Comparative example 7)
Ultrafiltration membrane "MLE-7101H" (made by Kuraray Co., Ltd., trade name. Effective filtration length: 1 m, hollow fiber inner diameter: 1.2 mm, fractionated molecular weight; 13000, membrane material: polysulfone) was placed, and filtration processing was performed. The filtration process was performed by an internal pressure type cross flow method. The separation membrane was gradually blocked from the stage when the concentration of the abrasive contained in the concentrate became 14% by mass. Thereafter, the output of the pump was increased to increase the pressure against the water to be treated, and the filtration process was continued. However, the concentration process became impossible when the Si concentration of the water to be treated became 19% by mass. 6 shows the inlet of the membrane separation unit 4 at the time when the filtration process becomes impossible, and FIG. 7 shows a part of FIG. 6 in an enlarged scale, and FIG. 8 shows the membrane separation at the same time. The state of the part 4 exit is shown.
 図8で示すように、濃縮処理が困難となった時点での膜分離部には、被処理水の通水方向の後段(膜分離部4の出口)に、研磨剤が凝集したゲル状の粗大粒子が一帯に形成されていた。これにより、分離膜41の中空部が閉塞して濃縮処理の継続が困難となった。 As shown in FIG. 8, in the membrane separation part at the time when concentration processing becomes difficult, a gel-like material in which an abrasive is aggregated at the latter stage (outlet of the membrane separation part 4) of the water flow direction Coarse particles were formed in one area. As a result, the hollow portion of the separation membrane 41 is blocked, making it difficult to continue the concentration process.
(実施例6)
 図3に示した研磨剤の回収装置11を用いてCMP工程での使用済みスラリーの濾過処理を行った。
(Example 6)
The used slurry was filtered in the CMP process using the polishing agent recovery apparatus 11 shown in FIG.
 図3におけるポンプP2およびP3としては、レビトロポンプ「LEV300」(株式会社イワキ製、商品名)を用い、膜分離部14としては、中空糸型UF膜モジュール「AMK-VC-FUST653」(ダイセン・メンブレン・システムズ株式会社製、商品名)を用い、また、第2の膜分離部18としては中空糸型UF膜間ジュール「FB02-VC-FUST653」(ダイセン・メンブレン・システムズ株式会社製、商品名)を用いた。また、処理タンク13及び後段処理タンク17としては処理タンク(PE製)、濃縮水回収タンク19としては、濃縮タンク(PVC製)を用いた。 As the pumps P2 and P3 in FIG. 3, a Levitro pump "LEV300" (manufactured by Iwaki Co., Ltd., trade name) is used. As the membrane separation unit 14, a hollow fiber type UF membrane module "AMK-VC-FUST 653" · A system made by Systems Inc., a trade name, and a second membrane separation unit 18 is a hollow fiber type UF inter-membrane joule "FB02-VC-FUST 653" (a trade name made by Daisen Membrane Systems, Inc.) Was used. Further, treatment tanks (made of PE) were used as the treatment tank 13 and the post-stage treatment tank 17, and concentration tanks (made of PVC) were used as the concentrated water recovery tank 19.
 第1の膜分離部14である中空糸型UF膜モジュール「AMK-VC-FUST653」は、分画分子量;6000、中空糸内径;0.5mm、膜面積;1.5m、有効濾過長;1mであり、第2の膜分離部18である中空糸型UF膜モジュール「FB02-VC-FUST653」は、分画分子量;6000、中空糸内径;0.5mm、膜面積;0.5m、有効濾過長;0.26mであった。 The hollow fiber type UF membrane module “AMK-VC-FUST 653” which is the first membrane separation unit 14 has a molecular weight cut-off of 6000, an inner diameter of the hollow fiber of 0.5 mm, a membrane area of 1.5 m 2 , an effective filtration length; The hollow fiber type UF membrane module “FB02-VC-FUST 653” which is 1 m and is the second membrane separation unit 18 has a molecular weight cut-off of 6000, a hollow fiber inner diameter of 0.5 mm, a membrane area of 0.5 m 2 , The effective filtration length was 0.26 m.
 まず、研磨剤濃度約1質量%(pH:9.8)の使用済み研磨スラリー溶液を、配管15からガードフィルター12を経由して、処理タンク13に200L供給した。次いで、開閉弁B3を閉とし、開閉弁B4を開として、処理タンク13内の使用済み研磨スラリーを、第1の膜分離部14に通水した。使用済みスラリーの各配管内の循環流量は8.0L/minとし、中空糸膜141内の線速は、0.7m/secとした。また、中空糸膜141における、使用済み研磨スラリー流入口近傍の圧力が0.2MPaとなるように、ポンプP2(レビトロポンプ)のインペラ回転数、及び膜分離部14後段の開閉弁B4の開閉度を調製した。 First, 200 L of a used polishing slurry solution having a polishing agent concentration of about 1 mass% (pH: 9.8) was supplied from the piping 15 to the processing tank 13 via the guard filter 12. Next, the on-off valve B3 was closed, and the on-off valve B4 was opened, so that the used polishing slurry in the processing tank 13 was passed through the first membrane separation unit 14. The circulation flow rate in each pipe of the used slurry was 8.0 L / min, and the linear velocity in the hollow fiber membrane 141 was 0.7 m / sec. In addition, the impeller rotational speed of the pump P2 (Levitro pump) and the open / close valve B4 at the rear stage of the membrane separation unit 14 are adjusted so that the pressure in the vicinity of the used polishing slurry inlet in the hollow fiber membrane 141 Prepared.
 この状態で通水処理を行い、成分濃度計C2で計測される処理タンク3内の研磨剤濃度が9質量%となるまで透過水出口配管22から排出される透過水量(flux)を測定した。この時の処理タンク13内の使用済み研磨スラリーは約22Lであった。 Water treatment was performed in this state, and the amount of permeated water (flux) discharged from the permeated water outlet pipe 22 was measured until the abrasive concentration in the processing tank 3 measured by the component densitometer C2 became 9 mass%. The used polishing slurry in the processing tank 13 at this time was about 22 liters.
 次いで、開閉弁B4を閉とし、開閉弁B3を開として、処理タンク13内の使用済み研磨スラリーを、全量後段処理タンク17へ供給した。次いで、開閉弁B5を閉とし、開閉弁B6を開として、後段処理タンク17内の使用済み研磨スラリーを、第2の膜分離部18に通水した。使用済みスラリーの各配管内の循環流量は8.0L/minとし、中空糸膜181内の線速は、0.7m/secとした。また、中空糸膜181における、使用済み研磨スラリー流入口近傍の圧力が0.2MPaとなるように、ポンプP3(レビトロポンプ)のインペラ回転数、及び膜分離部18後段の開閉弁B6の開閉度を調製した。
この状態で通水処理を行い、成分濃度計C3で計測される処理タンク3内の研磨剤濃度が25質量%となるまで透過水出口配管から排出される透過水量(flux)を測定した。
Next, the on-off valve B4 was closed, and the on-off valve B3 was opened to supply the used polishing slurry in the processing tank 13 to the post-stage processing tank 17 as a whole. Next, the on-off valve B5 was closed, and the on-off valve B6 was opened, and the used polishing slurry in the post-stage treatment tank 17 was passed through the second membrane separation unit 18. The circulation flow rate in each pipe of the used slurry was 8.0 L / min, and the linear velocity in the hollow fiber membrane 181 was 0.7 m / sec. In addition, the impeller rotational speed of the pump P3 (Levitro pump) and the open / close valve B6 at the rear stage of the membrane separation unit 18 are adjusted so that the pressure in the vicinity of the used polishing slurry inlet in the hollow fiber membrane 181 is 0.2 MPa. Prepared.
Water treatment was carried out in this state, and the amount of permeated water (flux) discharged from the permeated water outlet pipe was measured until the abrasive concentration in the processing tank 3 measured by the component densitometer C3 became 25 mass%.
 実施例6において、成分濃度計C2で計測される処理タンク13内の研磨剤濃度と第1透過水排出配管22から排出される透過水量(flux)との関係、及び成分濃度計C3で計測される処理タンク17内の研磨剤濃度と第2透過水排出配管24から排出される透過水量(flux)との関係を図5に示す。なお、図5において、実線は第1透過水排出配管22から排出される第1の膜分離部14の透過水を示し、破線は第2透過水排出配管24から排出される第2の膜分離部18の透過水を示す。 In Example 6, the relationship between the abrasive concentration in the processing tank 13 measured by the component densitometer C2 and the amount of permeated water (flux) discharged from the first permeated water discharge pipe 22, and the component concentration meter C3 The relationship between the concentration of the abrasive in the processing tank 17 and the amount of permeated water (flux) discharged from the second permeated water discharge pipe 24 is shown in FIG. In FIG. 5, the solid line indicates the permeated water of the first membrane separation unit 14 discharged from the first permeated water discharge pipe 22, and the broken line indicates the second membrane separation discharged from the second permeated water discharge pipe 24. The permeated water of the part 18 is shown.
 実施例1の計測データ(図4)、実施例6の計測データ(図5)に基づいて、実施例1の研磨剤の回収装置1(第1実施形態)、及び実施例6の研磨剤の回収装置11(第2実施形態)を設計し、製作した。第2実施形態の研磨剤の回収装置11では、第1実施形態の研磨剤の回収装置1と比較して、中空糸型UF膜モジュールの使用本数を87%少なくして製作することができた。その結果、回収装置全体としての配管構成の簡素化、設置面積の縮小化及びコスト削減の効果を得られた。 On the basis of the measurement data of Example 1 (FIG. 4) and the measurement data of Example 6 (FIG. 5), the abrasive recovery device 1 of Example 1 (first embodiment) and the abrasive of Example 6 The recovery device 11 (second embodiment) was designed and manufactured. In the polishing agent recovery apparatus 11 of the second embodiment, the number of hollow fiber UF membrane modules used can be reduced by 87% as compared with the polishing agent recovery apparatus 1 of the first embodiment. . As a result, the effects of simplification of the piping configuration as the whole recovery apparatus, reduction of the installation area and cost reduction were obtained.
1、11…研磨剤の回収装置、2、12…ガードフィルター、3…処理タンク、4…膜分離部、41…分離膜、410…中空糸、410S…有効内径、411…支持層、412…濾過面、5~6…配管、7…透過水出口配管、8…濃縮水出口配管、9…濃縮水回収タンク、10…還流配管、13…前段処理タンク、14…第1の膜分離部、141…第1の分離膜、15~16、20~21…配管、17…後段処理タンク、18…第2の膜分離部、181…第2の分離膜、19…回収タンク、22…第1透過水出口配管、23…還流配管、24…第2透過水出口配管、25…濃縮水出口配管、26…還流配管、P1~P3…ポンプ、C1~C3…成分濃度計、B1~B6…開閉弁 DESCRIPTION OF SYMBOLS 1, 11 ... collection | recovery apparatus of abrasives, 2, 12 ... guard filter, 3 ... treatment tank, 4 ... membrane separation part, 41 ... separation membrane, 410 ... hollow fiber, 410S ... effective inside diameter, 411 ... support layer, 412 ... Filtration surface, 5-6: piping, 7: permeated water outlet piping, 8: concentrated water outlet piping, 9: concentrated water recovery tank, 10: reflux piping, 13: pre-treatment tank, 14: first membrane separation unit, 141: first separation membrane, 15 to 16, 20 to 21: piping, 17: post treatment tank, 18: second membrane separation unit, 181: second separation membrane, 19: recovery tank, 22: first Permeate water outlet piping, 23: Reflux piping, 24: Second permeation water outlet piping, 25: Concentrated water outlet piping, 26: Reflux piping, P1 to P3: Pump, C1 to C3: Component concentration meter, B1 to B6: opening and closing valve

Claims (18)

  1.  CMP工程で使用された使用済み研磨スラリーから研磨剤を回収する装置であって、
     前記研磨剤の回収装置は、前記使用済み研磨スラリーが導入される孔道が円筒状である分離膜を有しており、
     前記分離膜の孔道は、有効濾過部の長さが0.8m以下であり、
     前記研磨剤の回収装置は、前記使用済み研磨スラリーの研磨剤濃度を、10質量%以上の濃度に濃縮することを特徴とする研磨剤の回収装置。
    An apparatus for recovering an abrasive from a used polishing slurry used in a CMP process, comprising:
    The polishing agent recovery apparatus has a separation membrane whose passage through which the used polishing slurry is introduced is cylindrical.
    In the pores of the separation membrane, the length of the effective filtration section is 0.8 m or less,
    The polishing agent recovery device is characterized in that the polishing agent concentration of the used polishing slurry is concentrated to a concentration of 10% by mass or more.
  2.  前記分離膜の中空部に、前記使用済み研磨スラリーがクロスフロー方式で通水される請求項1記載の研磨剤の回収装置。 The apparatus for recovering an abrasive according to claim 1, wherein the used polishing slurry is passed through the hollow portion of the separation membrane in a cross flow manner.
  3.  前記分離膜が、内圧型の膜分離部に設けられる請求項1記載の研磨剤の回収装置。 The abrasive recovery apparatus according to claim 1, wherein the separation membrane is provided in an internal pressure membrane separation unit.
  4.  前記分離膜が中空糸膜である請求項1記載の研磨剤の回収装置。 The abrasive recovery device according to claim 1, wherein the separation membrane is a hollow fiber membrane.
  5.  前記分離膜の内径が0.1mm以上0.8mm以下である請求項1記載の研磨剤の回収装置。 The abrasive recovery apparatus according to claim 1, wherein the inner diameter of the separation membrane is 0.1 mm or more and 0.8 mm or less.
  6.  前記分離膜の分画分子量が3,000~30,000である請求項1記載の研磨剤の回収装置。 The polishing agent recovery apparatus according to claim 1, wherein a molecular weight cut off of the separation membrane is 3,000 to 30,000.
  7.  前記分離膜が、ポリエチレン、4フッ化エチレン、ポリフッ化ビニリデン、ポリプロピレン、酢酸セルロース、ポリアクリロニトリル、ポリイミド、ポリスルホン、またはポリエーテルスルホンのいずいれかで構成されている、請求項1記載の研磨剤の回収装置。 The abrasive according to claim 1, wherein the separation membrane is made of any of polyethylene, tetrafluoroethylene, polyvinylidene fluoride, polypropylene, cellulose acetate, polyacrylonitrile, polyimide, polysulfone or polyethersulfone. Recovery device.
  8.  前記分離膜の前段に、この分離膜より長い有効濾過長を有しており、孔道が円筒状である前段分離膜を有する請求項1又は4記載の研磨剤の回収装置。 The abrasive recovery apparatus according to claim 1 or 4, further comprising an upstream separation membrane having an effective filtration length longer than the separation membrane and having a cylindrical passage at a front stage of the separation membrane.
  9.  前記前段分離膜の有効濾過部の長さL1が0.8~1.5mであり、前記前段分離膜の後段に設けられた後段分離膜の有効濾過部の長さL2が0.2~0.8mである請求項8記載の研磨剤の回収装置。 The length L1 of the effective filtration part of the pre-stage separation membrane is 0.8 to 1.5 m, and the length L2 of the effective filtration part of the post-stage separation membrane provided in the latter stage of the pre-stage separation membrane is 0.2 to 0 The abrasive recovery device according to claim 8, which is .8 m.
  10.  CMP工程で使用された使用済み研磨スラリーを、孔道が円筒状であり、有効濾過部の長さが0.8m以下である分離膜に通水し、前記使用済み研磨スラリーの研磨剤濃度を、10質量%以上の濃度に濃縮することを特徴とする研磨剤の回収方法。 The used polishing slurry used in the CMP step is passed through a separation membrane having a cylindrical passage and having a length of effective filter of 0.8 m or less, and the concentration of the polishing slurry of the used polishing slurry is 1. A method of recovering an abrasive, comprising concentration to a concentration of 10% by mass or more.
  11.  前記分離膜の中空部に、前記使用済み研磨スラリーをクロスフロー方式で通水する、請求項10記載の研磨剤の回収方法。 11. The method of recovering an abrasive according to claim 10, wherein the used polishing slurry is passed through the hollow portion of the separation membrane by a cross flow method.
  12.  前記分離膜の内径が0.1mm以上0.8mm以下である請求項10記載の研磨剤の回収方法。 The method according to claim 10, wherein the inner diameter of the separation membrane is 0.1 mm or more and 0.8 mm or less.
  13.  前記分離膜の有効濾過部における被処理水の循環流速が0.5~2m/secである、請求項10記載の研磨剤の回収方法。 The method for collecting an abrasive according to claim 10, wherein a circulating flow rate of the water to be treated in an effective filtration part of the separation membrane is 0.5 to 2 m / sec.
  14.  前記分離膜に導入される前記使用済み研磨スラリーの研磨剤濃度が0.02~5質量%である請求項10記載の研磨剤の回収方法。 The method for recovering an abrasive according to claim 10, wherein the abrasive concentration of the used abrasive slurry introduced into the separation film is 0.02 to 5% by mass.
  15.  孔道が円筒状である前段分離膜に、CMP工程で使用された使用済み研磨スラリーを通水して前記使用済み研磨スラリーを濃縮する第1の濾過工程と、有効濾過部の長さが0.8m以下である後段分離膜に、前記第1の分離膜の濃縮水を通水して濃縮する第2の濾過工程と、を有しており、
     前記前段分離膜として、前記後段分離膜よりも長い有効濾過長を有する分離膜を用いる請求項10記載の研磨剤の回収方法。
    A first filtration step of passing water through the used polishing slurry used in the CMP step to concentrate the used polishing slurry in a pre-stage separation membrane having a cylindrical passage, and a length of an effective filtration portion of 0. And a second filtration step in which concentrated water from the first separation membrane is passed through a second stage separation membrane having a length of 8 m or less.
    The method according to claim 10, wherein a separation membrane having an effective filtration length longer than the rear separation membrane is used as the front separation membrane.
  16.  前記第1の濾過工程では、使用済み研磨スラリーを濾過して最大13質量%まで濃縮し、前記第2の濾過工程では、前記第1の濾過工程で得られた濃縮水を濾過して最大26質量%まで濃縮する、請求項15記載の研磨剤の回収方法。 In the first filtration step, the used polishing slurry is filtered to concentrate up to 13% by mass, and in the second filtration step, the concentrated water obtained in the first filtration step is filtered to a maximum of 26%. The method for recovering an abrasive according to claim 15, wherein the concentration is concentrated to mass%.
  17.  前記前段分離膜に導入される前記使用済み研磨スラリーの研磨剤濃度が0.02~5質量%である請求項15記載の研磨剤の回収方法。 The method for collecting an abrasive according to claim 15, wherein the concentration of the abrasive in the used abrasive slurry introduced into the pre-stage separation film is 0.02 to 5% by mass.
  18.  前記使用済み研磨スラリーに含まれる研磨剤粒子の平均粒子径が0.01~1μmである請求項10又は15記載の研磨剤の回収方法。 The method for recovering an abrasive according to claim 10, wherein the average particle diameter of the abrasive particles contained in the used abrasive slurry is 0.01 to 1 μm.
PCT/JP2011/004593 2011-02-25 2011-08-16 Abrasive recovery method and abrasive recovery device WO2012114395A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800667823A CN103347656A (en) 2011-02-25 2011-08-16 Abrasive recovery method and abrasive recovery device
KR1020137015764A KR20140001954A (en) 2011-02-25 2011-08-16 Abrasive recovery method and abrasive recovery device
US13/972,364 US20130333299A1 (en) 2011-02-25 2013-08-21 Abrasive recovery method and abrasive recovery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039948 2011-02-25
JP2011039948A JP2012178418A (en) 2011-02-25 2011-02-25 Method and apparatus for collecting polishing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/972,364 Continuation US20130333299A1 (en) 2011-02-25 2013-08-21 Abrasive recovery method and abrasive recovery device

Publications (1)

Publication Number Publication Date
WO2012114395A1 true WO2012114395A1 (en) 2012-08-30

Family

ID=46720217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004593 WO2012114395A1 (en) 2011-02-25 2011-08-16 Abrasive recovery method and abrasive recovery device

Country Status (6)

Country Link
US (1) US20130333299A1 (en)
JP (1) JP2012178418A (en)
KR (1) KR20140001954A (en)
CN (1) CN103347656A (en)
TW (1) TW201235090A (en)
WO (1) WO2012114395A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619579B (en) * 2014-12-30 2018-04-01 Mtr Inc Chemical mechanical polishing slurry regeneration method and regeneration device
JP6496931B2 (en) * 2015-03-10 2019-04-10 能勢鋼材株式会社 Processing fluid treatment system
EP3222340A1 (en) * 2016-03-23 2017-09-27 André Holzer Use of hollow-fibre membranes for the treatment of wastewater by filtration
CN112272600B (en) * 2018-03-23 2023-06-02 柯尼卡美能达株式会社 Abrasive recycling system and abrasive recycling/regenerating method
CN109940516A (en) * 2019-03-12 2019-06-28 上海新昇半导体科技有限公司 Slurry recovery system and its clean method
CN111346897B (en) * 2020-03-09 2021-12-28 清华大学 Organic solid waste pretreatment system and process, and corresponding organic solid waste continuous hydrothermal treatment system and process
CN112239540B (en) * 2020-12-21 2021-03-19 富海(东营)新材料科技有限公司 Industrial purification process and purification device for polysulfone resin material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121408A (en) * 1997-10-15 1999-04-30 Kurita Water Ind Ltd Device for recovering abrasive slurry
JP2001077066A (en) * 1999-09-07 2001-03-23 Hitachi Ltd Manufacture of semiconductor device and semiconductor manufacturing device
JP2002016027A (en) * 2000-06-27 2002-01-18 Kurita Water Ind Ltd Abrasive material recovering device
JP2002075929A (en) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd Method for regenerating polishing spent liquid
JP2008000750A (en) * 2007-08-16 2008-01-10 Japan Organo Co Ltd Apparatus for treating waste water from cmp process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606156B2 (en) * 1994-10-14 1997-04-30 栗田工業株式会社 Method for collecting abrasive particles
US6623637B1 (en) * 1996-12-24 2003-09-23 Kitz Corporation Hollow-fiber membrane module
JP3426149B2 (en) * 1998-12-25 2003-07-14 富士通株式会社 Method and apparatus for recycling polishing waste liquid in semiconductor manufacturing
JP2001009723A (en) * 1999-07-02 2001-01-16 Kurita Water Ind Ltd Abrasive recovering device
JP2001113273A (en) * 1999-10-20 2001-04-24 Hitachi Plant Eng & Constr Co Ltd Membrane treatment of cmp waste water
JP2001198823A (en) * 2000-01-14 2001-07-24 Kurita Water Ind Ltd Recovery device for abrasive
US6929532B1 (en) * 2003-05-08 2005-08-16 Lsi Logic Corporation Method and apparatus for filtering a chemical polishing slurry of a wafer fabrication process
WO2008078498A1 (en) * 2006-12-25 2008-07-03 Ngk Insulators, Ltd. Wastewater treatment system and method of wastewater treatment
JP2010167551A (en) * 2008-12-26 2010-08-05 Nomura Micro Sci Co Ltd Method for regenerating used slurry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121408A (en) * 1997-10-15 1999-04-30 Kurita Water Ind Ltd Device for recovering abrasive slurry
JP2001077066A (en) * 1999-09-07 2001-03-23 Hitachi Ltd Manufacture of semiconductor device and semiconductor manufacturing device
JP2002016027A (en) * 2000-06-27 2002-01-18 Kurita Water Ind Ltd Abrasive material recovering device
JP2002075929A (en) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd Method for regenerating polishing spent liquid
JP2008000750A (en) * 2007-08-16 2008-01-10 Japan Organo Co Ltd Apparatus for treating waste water from cmp process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Asahikasei UF Module Microza SLP-2053 Toriatsukai Setsumeisho", TORIATSUKAI SETSUMEISHO, 22 October 2008 (2008-10-22), pages 20, 25 *
"Microza UF Labmodule Toriatsukai Setsumeisho", TORIATSUKAI SETSUMEISHO, 7 August 2008 (2008-08-07), pages 4 - 5 *

Also Published As

Publication number Publication date
US20130333299A1 (en) 2013-12-19
CN103347656A (en) 2013-10-09
KR20140001954A (en) 2014-01-07
JP2012178418A (en) 2012-09-13
TW201235090A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
WO2012114395A1 (en) Abrasive recovery method and abrasive recovery device
JPH07112185A (en) Waste water treating device and washing method therefor
CN109562964B (en) Ultrapure water production equipment
JP5873020B2 (en) Recycling method and apparatus for recycling waste water containing slurry from semiconductor processing processes, particularly chemical mechanical polishing processes
JP6050831B2 (en) How to clean the filter
JP2011083764A (en) Method for operating water purification system and water purification system
JP6469400B2 (en) Ultrapure water production equipment
JP2013188711A (en) Membrane filtration apparatus and membrane filtration method
JP3598912B2 (en) Operation method of membrane separator
CN111373075A (en) Method for pickling steel sheets
US20200289988A1 (en) Filtering membrane cleaning method
TWI619579B (en) Chemical mechanical polishing slurry regeneration method and regeneration device
JP2023002895A (en) Method for cleaning slurry concentration device using separation membrane used in crossflow filtration
CN110078247A (en) A kind of processing system and processing method of germanium processing waste water
JP7099688B2 (en) Membrane filter adapter and CMP slurry regeneration device
JP2005334992A (en) Waste fluid treating device, waste fluid treating method, and manufacturing system for semiconductor device
WO2016103397A1 (en) Cmp slurry regeneration method and regeneration device
US20230019509A1 (en) Methods and apparatus for removing contaminants from an aqueous material
JP2013237130A (en) Method for recovering coolant
JP2001225070A (en) Apparatus for recovering abrasive material
JP2002083789A (en) Recovery apparatus for abrasive
JPH0380921A (en) Driving method of membrane filtration apparatus
JPH11138162A (en) Polishing waste water treating device
JPS6211507A (en) Treatment of suspended matters in water and treating device therefor
JP2001198823A (en) Recovery device for abrasive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859271

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20137015764

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859271

Country of ref document: EP

Kind code of ref document: A1