JP6469400B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment Download PDF

Info

Publication number
JP6469400B2
JP6469400B2 JP2014193933A JP2014193933A JP6469400B2 JP 6469400 B2 JP6469400 B2 JP 6469400B2 JP 2014193933 A JP2014193933 A JP 2014193933A JP 2014193933 A JP2014193933 A JP 2014193933A JP 6469400 B2 JP6469400 B2 JP 6469400B2
Authority
JP
Japan
Prior art keywords
ultrafiltration membrane
water
ultrapure water
membrane module
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014193933A
Other languages
Japanese (ja)
Other versions
JP2016064342A5 (en
JP2016064342A (en
Inventor
菅原 広
広 菅原
史貴 市原
史貴 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2014193933A priority Critical patent/JP6469400B2/en
Publication of JP2016064342A publication Critical patent/JP2016064342A/en
Publication of JP2016064342A5 publication Critical patent/JP2016064342A5/ja
Application granted granted Critical
Publication of JP6469400B2 publication Critical patent/JP6469400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、限外ろ過膜モジュールを複数段直列に配列したことによる高い除粒子性能を有する限外ろ過膜装置を有する超純水製造装置に関する。   The present invention relates to an ultrapure water production apparatus having an ultrafiltration membrane device having high particle removal performance by arranging a plurality of ultrafiltration membrane modules in series.

半導体製造産業においては、不純物を高度に除去した超純水を用いてシリコンウエハの洗浄等が行われている。超純水は、一般に、原水(河川水、地下水、工業用水)中に含まれる懸濁物質や有機物等の一部を前処理工程で除去した後、その処理水を一次純水システム及び二次純水システム(サブシステム)で順次処理することによって製造され、ウエハ洗浄を行うユースポイントに供給される。超純水製造装置のサブシステム末端には、一般的に、超純水から微粒子、菌、コロイド、高分子化合物等を除去するためのろ過装置が設置されている。   In the semiconductor manufacturing industry, silicon wafers are cleaned using ultrapure water from which impurities are highly removed. Ultra-pure water generally removes part of suspended matter and organic matter contained in raw water (river water, groundwater, industrial water) in the pretreatment process, and then treats the treated water with the primary pure water system and the secondary water. Manufactured by sequential processing in a pure water system (subsystem), and supplied to a use point for wafer cleaning. Generally, a filtration device for removing fine particles, bacteria, colloids, polymer compounds and the like from ultrapure water is installed at the subsystem end of the ultrapure water production apparatus.

特許文献1には、一次純水製造装置と二次純水製造装置をサブシステムとして有し、処理水中の溶存酸素を低下させて水質を安定化させるための脱気装置を一次純水製造装置に設け、二次純水製造装置の末端に、クロスフロータイプの中空糸膜モジュールを有する限外ろ過膜装置を配置してユースポイントへ超純水を供給し、使用した残余の超純水を一次純水製造装置に循環する構成を有する超純水製造装置が開示されている。   Patent Document 1 discloses a primary pure water production apparatus having a primary pure water production apparatus and a secondary pure water production apparatus as subsystems, and a deaeration device for stabilizing dissolved water by reducing dissolved oxygen in treated water. An ultrafiltration membrane device with a cross-flow type hollow fiber membrane module is placed at the end of the secondary pure water production device to supply ultrapure water to the point of use, and the remaining ultrapure water used An ultrapure water production apparatus having a configuration circulating to a primary pure water production apparatus is disclosed.

また、非特許文献1には、限外ろ過膜と精密ろ過膜を組み合わせて用いることによる超純水からの12nmサイズの微粒子の除去についての開示がある。   Non-Patent Document 1 discloses the removal of 12 nm-sized fine particles from ultrapure water by using a combination of an ultrafiltration membrane and a microfiltration membrane.

特開平06−312175号公報Japanese Patent Laid-Open No. 06-312175

「Removal of 12 nm particles from UPW by a combination of Ultrafiltration and Microfiltration」、Donald C Grant等、ULTRAPURE WATER journal、2012、5月/6月号"Removal of 12 nm particles from UPW by a combination of Ultrafiltration and Microfiltration", Donald C Grant, ULTRAPURE WATER journal, 2012, May / June

非特許文献1では、精密ろ過膜の利点を利用するために精密ろ過膜を用いることを必須とし、限外ろ過膜(分画分子量10,000)を精密ろ過膜(30"、HR filter)と組み合わせてシステムを構成し、その除粒子性能を評価している。しかしながら、限外ろ過膜単独によって粒径が50nm未満の微粒子(sub-50nm微粒子)の超純水からの除去を行う点についての開示は非特許文献1には全くない。   In Non-Patent Document 1, it is essential to use a microfiltration membrane in order to utilize the advantages of a microfiltration membrane, and an ultrafiltration membrane (fractionated molecular weight 10,000) is combined with a microfiltration membrane (30 ", HR filter). However, the system has been evaluated and its particle removal performance has been evaluated.However, the disclosure about the removal of fine particles with a particle size of less than 50 nm (sub-50 nm fine particles) from ultrapure water using an ultrafiltration membrane alone Non-Patent Document 1 does not have any.

また、半導体デバイス製造用の超純水供給装置における超純水中の微粒子のモニタリング管理としてこれまで実績があるのは、50nm以上の微粒子についてであり、従来の限外ろ過膜を用いた超純水製造供給装置によって製造供給される超純水中のsub-50nm微粒子の挙動、数値実績は明確にされていない。すなわち、従来の限外ろ過膜を用いた場合、sub-50nm微粒子の超純水中での残存数に関する知見はほとんどなく、実質的に不明である。
限外ろ過膜、それを用いたモジュール並びにろ過装置の高性能化、高品質化、高信頼化を図るためには、一般に、限外ろ過膜自身の改良・改善、製造方法等の見直しや開発が必要となる。
sub-50nm微粒子の除去に用いる新しい限外ろ過膜の開発においては、純水や超純水中におけるsub-50nm微粒子の分布やろ過処理中における挙動を把握する必要があるが、これらの点に関する十分な情報が得られていないのが現状である。
In addition, what has been proven so far in the monitoring of fine particles in ultrapure water in ultrapure water supply equipment for manufacturing semiconductor devices is for fine particles of 50 nm or more, and ultrapure water using conventional ultrafiltration membranes. The behavior and numerical results of sub-50nm fine particles in ultrapure water produced and supplied by water production and supply equipment have not been clarified. That is, when a conventional ultrafiltration membrane is used, there is little knowledge about the remaining number of sub-50 nm fine particles in ultrapure water, and it is substantially unknown.
In order to improve the performance, quality, and reliability of ultrafiltration membranes, modules that use them, and filtration devices, generally improve and improve the ultrafiltration membrane itself, review and develop manufacturing methods, etc. Is required.
In developing a new ultrafiltration membrane used to remove sub-50nm fine particles, it is necessary to understand the distribution of sub-50nm fine particles in pure water and ultrapure water and the behavior during filtration. At present, sufficient information is not available.

本発明の目的は、被処理水からの微粒子除去に関する高性能化及び高信頼化を達成し得る超純水製造装置及び超純水製造方法を提供することにある。
An object of the present invention is to provide an ultrapure water production apparatus and an ultrapure water production method capable of achieving high performance and high reliability related to the removal of fine particles from water to be treated.

本発明に係る超純水製造装置は、限外ろ過膜装置を有する超純水製造装置であって、前記限外ろ過膜装置は、直列に接続された複数個の限外ろ過膜モジュールを有し、前記直列に接続された複数個の限外ろ過膜モジュールにおける後段の限外ろ過膜モジュールの濃縮水の水量が前段の限外ろ過膜モジュールの濃縮水の水量よりも小さく設定されることを特徴とする。
本発明に係る超純水製造方法は、被処理水を、限外ろ過膜装置を有する超純水製造装置に通水する超純水製造方法であって、前記限外ろ過膜装置は、直列に接続された複数個の限外ろ過膜モジュールを有し、前記直列に接続された複数個の限外ろ過膜モジュールにおける後段の限外ろ過膜モジュールの濃縮水の水量が前段の限外ろ過膜モジュールの濃縮水の水量よりも小さく設定されることを特徴とする
Ultrapure water production apparatus according to the present invention is a high-purity water producing apparatus having an ultrafiltration membrane device, the ultrafiltration membrane apparatus may have a plurality of ultrafiltration membrane modules connected in series The amount of concentrated water in the subsequent ultrafiltration membrane module in the plurality of ultrafiltration membrane modules connected in series is set to be smaller than the amount of concentrated water in the previous ultrafiltration membrane module. Features.
The ultrapure water production method according to the present invention is an ultrapure water production method for passing water to be treated through an ultrapure water production device having an ultrafiltration membrane device, wherein the ultrafiltration membrane device is connected in series. A plurality of ultrafiltration membrane modules connected in series, and the amount of concentrated water of the latter ultrafiltration membrane module in the plurality of ultrafiltration membrane modules connected in series is the former ultrafiltration membrane It is characterized by being set smaller than the amount of concentrated water of the module .

本発明に係る超純水製造装置においては、複数個の限外ろ過膜モジュールを直列に配置したことにより、より微粒子が除去された超純水を製造することができる。   In the ultrapure water production apparatus according to the present invention, ultrapure water from which fine particles have been removed can be produced by arranging a plurality of ultrafiltration membrane modules in series.

本発明の超純水装置の構成の一実施形態を説明するためのフロー図である。It is a flowchart for demonstrating one Embodiment of the structure of the ultrapure water apparatus of this invention.

図1に、本発明の超純水製造装置の一実施形態のフロー図を示す。図1に示す装置は、一次純水システム41とその下流側に接続された二次純水システム42(サブシステム)を有する。二次純水システム42は、一次純水を貯留する純水貯槽43の下流側に、熱交換器44(図中HEで示す)、紫外線酸化装置45(図中UVで示す)、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床による非再生型イオン交換装置46(図中CPで示す)、限外ろ過膜装置47(図中UFで示す)を、この順序に通水するように設置したものである。限外ろ過膜装置47には、限外ろ過膜モジュール47a、47bが直列に接続されて設置されている。
限外ろ過膜装置47からの超純水は、ユースポイント48に供給される。二次純水システム42では連続循環運転を行っており、得られた超純水の一部をユースポイント48に送るとともに、残部を純水貯槽43に循環している。なお、熱交換器44とその後段の紫外線酸化装置45との間に、紫外線酸化装置45とその後段の非再生型イオン交換装置46との間、非再生型イオン交換装置46とその後段の限外ろ過膜装置47との間には、必要に応じ、他の装置を設置してもよい。例えば、非再生型イオン交換装置46とその後段の限外ろ過膜装置47との間に、膜脱気装置(図示せず)を設けることができる。
In FIG. 1, the flowchart of one Embodiment of the ultrapure water manufacturing apparatus of this invention is shown. The apparatus shown in FIG. 1 has a primary pure water system 41 and a secondary pure water system 42 (subsystem) connected to the downstream side thereof. The secondary pure water system 42 has a heat exchanger 44 (indicated by HE in the figure), an ultraviolet oxidizer 45 (indicated by UV in the figure), a strong acidic positive water downstream of the pure water storage tank 43 that stores the primary pure water. A non-regenerative ion exchange apparatus 46 (indicated by CP in the figure) and an ultrafiltration membrane apparatus 47 (indicated by UF in the figure) using a mixed bed of an ion exchange resin and a strongly basic anion exchange resin are passed in this order. It was installed so that it could be watered. In the ultrafiltration membrane device 47, ultrafiltration membrane modules 47a and 47b are connected in series and installed.
The ultrapure water from the ultrafiltration membrane device 47 is supplied to the use point 48. In the secondary pure water system 42, continuous circulation operation is performed, and a part of the obtained ultrapure water is sent to the use point 48 and the remaining part is circulated to the pure water storage tank 43. It should be noted that there is a limitation between the heat exchanger 44 and the subsequent UV oxidizer 45, between the UV oxidizer 45 and the subsequent non-regenerative ion exchanger 46, and between the non-regenerative ion exchanger 46 and the subsequent stage. You may install another apparatus between the outer filtration membrane apparatus 47 as needed. For example, a membrane degassing device (not shown) can be provided between the non-regenerative ion exchange device 46 and the subsequent ultrafiltration membrane device 47.

限外ろ過膜装置47は、限外ろ過モジュール47a、47bと、限外ろ過モジュール47a、47bを接続する配管47−2と、被処理水を限外ろ過膜モジュール47aの一次側に供給する供給口47−1と、透過水を限外ろ過膜モジュール47bの二次側から取り出す取出口47−3と、を少なくとも有し、1段目に配置される限外ろ過モジュール47aには濃縮水を排出する排出口47a−1を有している。1段目よりも後段に配置される限外ろ過モジュール47bも濃縮水の排出口47b−1を有していてもよい。
複数段直列された限外ろ過膜モジュールの1段目の限外ろ過膜で除去しきれなかった微粒子は、1段目より後の後段において更に除去される。限外ろ過膜の孔径は完全な均一ではなく、通常は分画分子量を規定するメインの孔径を含むバラツキを有している。このメインの孔径を有する孔が孔径分布において最も大きな割合を占めるが、このメインの孔径よりも大きな孔があると、除去対象のサイズの微粒子がそこを通過して除去できない場合が生じる。即ち、規定された分画分子量よりも大きい分子量の物質が捕捉されない可能性がある。このような前段の限外ろ過膜モジュールを通過した規定の分画分子量より大きい微粒子を後段の限外ろ過膜モジュールで捕捉することができる。また、同様に、限外ろ過膜にはメインの孔径よりも小さい孔が存在する場合もあるので、前段の限外ろ過膜モジュールを通過した規定の分画分子量よりも小さい分子量の物質を後段の限外ろ過膜モジュールで捕捉することができる。したがって、複数段に設けられる限外ろ過膜モジュールは、後段になるに従い、除粒子性能の高い限外ろ過膜を使用する必要はなく、同等レベルのものを使用してもよい。例えば、前段の限外ろ過膜モジュールの分画分子量を6000とし、後段の限外ろ過膜モジュールの分画分子量を5000とする必要はなく、前段、後段ともに分画分子量6000の限外ろ過膜モジュールを2段直列に接続しても、1段のみの場合に比べて限外ろ過膜装置としての除粒子性能が向上する。
The ultrafiltration membrane device 47 supplies ultrafiltration modules 47a and 47b, piping 47-2 connecting the ultrafiltration modules 47a and 47b, and supply water to be treated to the primary side of the ultrafiltration membrane module 47a. The ultrafiltration module 47a disposed at the first stage has at least an outlet 47-1 and an outlet 47-3 for extracting permeate from the secondary side of the ultrafiltration membrane module 47b. It has a discharge port 47a-1 for discharging. The ultrafiltration module 47b disposed at a stage subsequent to the first stage may also have a concentrated water discharge port 47b-1.
The fine particles that could not be removed by the first ultrafiltration membrane of the ultrafiltration membrane modules arranged in a plurality of stages are further removed in the subsequent stage after the first stage. The pore size of the ultrafiltration membrane is not completely uniform, and usually has a variation including the main pore size that defines the fractional molecular weight. The holes having the main hole diameter occupy the largest ratio in the hole diameter distribution. However, if there is a hole larger than the main hole diameter, there are cases where fine particles having a size to be removed cannot pass through the hole and be removed. That is, there is a possibility that a substance having a molecular weight larger than the prescribed molecular weight cut-off is not captured. Fine particles having a molecular weight larger than the prescribed molecular weight that has passed through the preceding ultrafiltration membrane module can be captured by the subsequent ultrafiltration membrane module. Similarly, since there may be pores smaller than the main pore diameter in the ultrafiltration membrane, a substance having a molecular weight smaller than the prescribed fractional molecular weight that has passed through the previous ultrafiltration membrane module is added to the latter stage. It can be captured by an ultrafiltration membrane module. Therefore, as the ultrafiltration membrane module provided in a plurality of stages, it is not necessary to use an ultrafiltration membrane having a high particle removal performance as it becomes a subsequent stage, and modules having an equivalent level may be used. For example, it is not necessary to set the molecular weight cutoff of the ultrafiltration membrane module in the front stage to 6000, and the molecular weight cutoff of the ultrafiltration membrane module in the rear stage to 5000, but the ultrafiltration membrane module has a molecular weight cutoff of 6000 in both the front stage and the rear stage. Even when two stages are connected in series, the particle removal performance as an ultrafiltration membrane device is improved as compared with the case of only one stage.

1段目の構成及び運転条件は、後段における除粒子処理における目的効果を達成できる程度の超純水の水質が得られるものであればよく、従来の運用、運転であってもかまわない。例えば、5%(流量比)程度の濃縮水を排出しながらの運転方法を用いることができる。限外ろ過膜モジュールを直列に配置すると、通水差圧が大きくなるので、通水圧の確保が必要な場合は、通水圧上昇のための圧力付加補助手段としてのブースターポンプを設置したり、各段においてモジュールを複数本用い本数(膜面積)を多くすることによって単位膜モジュールあるいは単位膜面積当たりの通水量を少なくして、差圧上昇を抑えてもよい。   The configuration and operating conditions of the first stage may be any conventional operation and operation as long as the quality of ultrapure water that can achieve the target effect in the particle removal process in the subsequent stage is obtained. For example, an operation method while discharging concentrated water of about 5% (flow rate ratio) can be used. When the ultrafiltration membrane modules are arranged in series, the water flow differential pressure increases, so if it is necessary to secure the water flow pressure, a booster pump can be installed as a pressure addition auxiliary means for increasing the water flow pressure, A plurality of modules may be used in the stage to increase the number (membrane area), thereby reducing the amount of water flow per unit membrane module or unit membrane area to suppress an increase in differential pressure.

十分な設置スペースが得られない場合は、ブースターポンプを用いることが好ましい。ブースターポンプの設置位置は、限外ろ過膜装置の入口(一段目の限外ろ過膜モジュールの前)、サブシステムの限外ろ過膜装置の前のCP(非再生型イオン交換装置)の入口が好ましい。なお、限外ろ過膜装置の入口に設けることによってブースターポンプの圧力をより有効に利用することができる。しかし、ブースターポンプによっては微量金属の溶出物が排出される場合があり、微量金属溶出物の混入に対する対処が必要な場合には、CPによって微量金属溶出物を吸着除去できるので、CPの入口にブースターポンプを設置することが好ましい。CPの入口にブースターポンプを配置する場合には、CPでの通水圧が大きくなることを考慮して、CPの耐圧を高めた構造とすることが好ましい。   When a sufficient installation space cannot be obtained, a booster pump is preferably used. The booster pump is installed at the inlet of the ultrafiltration membrane device (in front of the first ultrafiltration membrane module) and at the inlet of the CP (non-regenerative ion exchange device) in front of the subsystem ultrafiltration membrane device. preferable. In addition, the pressure of a booster pump can be utilized more effectively by providing in the inlet_port | entrance of an ultrafiltration membrane apparatus. However, depending on the booster pump, trace metal eluate may be discharged, and if it is necessary to deal with the contamination of trace metal eluate, the trace metal eluate can be adsorbed and removed by CP. It is preferable to install a booster pump. In the case where a booster pump is disposed at the CP inlet, it is preferable to have a structure in which the pressure resistance of the CP is increased in consideration of an increase in water pressure at the CP.

直列配置された複数の限外ろ過膜モジュールの1段目の次に配置される2段目に供給される超純水は1段目の限外ろ過膜モジュールの透過水であるため、微粒子の量は低減されている。2段目の限外ろ過膜モジュールで処理された処理水(透過水)では、設置されている限外ろ過膜の除粒子性能に応じて微粒子の量が更に低減される。また、1段目の次に配置される後段が2以上の段数を有する場合は、後段を構成する各段についても微粒子量が低減される。また、クロスフローで流す濃縮水量を後段において少なくすることができる。濃縮水量は、超純水の製造、供給の効率に関係するため、できるだけ少ない方が好ましく1%以下(全ろ過運転での0%を含む)とすることが好ましい。各段に濃縮水のラインを設け濃縮水量を調節、設定することが好ましい。これらの濃縮水ラインを通じて、限外ろ過膜を透過しない微粒子や生菌などの微細固形分を定期的にあるいは非定期的に排除してもよい。1段目における濃縮水の量は、目詰まり防止や生菌などの微細固形分の排除に必要な量とすることが好ましいが、後段においては、微粒子や生菌などの微細固形分の量が低減されており、限外ろ過膜へのこれらの負荷は大きく低減されており、後段における濃縮水量を1段目よりも低くしても目詰まりなどの問題が生じることはない。しかし、メンテナンスなど非定常時に濃縮水量を増して膜洗浄などを実施できるように、後段を構成する限外ろ過膜モジュールにも濃縮水ラインを設けておくことが好ましい。   Since the ultrapure water supplied to the second stage arranged next to the first stage of the plurality of ultrafiltration membrane modules arranged in series is the permeated water of the first stage ultrafiltration membrane module, The amount is reduced. In the treated water (permeated water) treated by the second ultrafiltration membrane module, the amount of fine particles is further reduced according to the particle removal performance of the installed ultrafiltration membrane. In addition, when the rear stage arranged next to the first stage has two or more stages, the amount of fine particles is also reduced in each stage constituting the rear stage. In addition, the amount of concentrated water flowing in the cross flow can be reduced in the subsequent stage. Since the amount of concentrated water is related to the efficiency of production and supply of ultrapure water, it is preferably as small as possible, preferably 1% or less (including 0% in the total filtration operation). It is preferable to provide a concentrated water line at each stage to adjust and set the amount of concentrated water. Through these concentrated water lines, fine solids such as fine particles and viable bacteria that do not permeate the ultrafiltration membrane may be regularly or irregularly excluded. The amount of concentrated water in the first stage is preferably the amount necessary to prevent clogging and to eliminate fine solids such as viable bacteria, but in the latter stage, the amount of fine solids such as fine particles and viable bacteria is reduced. The load on the ultrafiltration membrane is greatly reduced, and clogging and other problems do not occur even if the amount of concentrated water in the latter stage is lower than that in the first stage. However, it is preferable to provide a concentrated water line in the ultrafiltration membrane module constituting the subsequent stage so that the membrane cleaning can be performed by increasing the amount of concentrated water during non-stationary conditions such as maintenance.

一方、定常運転における後段において、実質的に微粒子や生菌などの微細固形分の負荷がほとんどない場合、すなわち、透過せずに膜上に残された微細固形分による目詰まり等のろ過性能低下の可能性がない場合には、濃縮水を取出さずにデッドエンドで全量ろ過として運転、運用しても良い。特に、少なくとも最下段において、濃縮水量を最も少なくし、あるいは全量ろ過(濃縮水の取り出し:0%)とすることが好ましく、最下段から順に前段向けて濃縮水量が増えていくように設定することが好ましい。また、後段を構成する複数の限外ろ過モジュールの一部を全ろ過運転とする場合は、最下段を全ろ過運転とし、最下段から順に前段向けて必要段数を全ろ過運転とすることが好ましい。また、運転条件によっては、後段の全てにおいて全ろ過運転としてもよい。このように、後段における濃縮水量を低く設定し、あるいは全量ろ過とすることによって、被処理水に対する造水率を向上させ、造水量を増やすことができる。   On the other hand, in the latter stage of steady operation, when there is substantially no load of fine solids such as fine particles and viable bacteria, that is, filtration performance declines such as clogging due to fine solids remaining on the membrane without permeation If there is no possibility of this, it may be operated and operated as a total filtration at the dead end without removing the concentrated water. In particular, at least in the lowest stage, it is preferable to reduce the amount of concentrated water or to filter the whole volume (concentrated water removal: 0%), and set the concentrated water volume to increase from the lowest stage to the previous stage. Is preferred. In addition, when a part of the plurality of ultrafiltration modules constituting the latter stage is set as the total filtration operation, it is preferable that the lowermost stage is the total filtration operation, and the necessary number of stages is set to the total filtration operation from the lowest stage toward the previous stage. . Further, depending on the operating conditions, all filtration operations may be performed in all subsequent stages. In this way, by setting the amount of concentrated water in the subsequent stage to be low or by filtering the entire amount, it is possible to improve the water production rate relative to the water to be treated and increase the amount of water produced.

限外ろ過膜は、特に限定されるものではなく、ろ過処理される超純水の種類やろ過目的に応じて選択することができる。限外ろ過膜として、例えば、旭化成ケミカルズ製(OLT-6036H)、日東電工製(NTU-3306-K6R)を、プラント用限外ろ過膜モジュールとしてあげることができる。いずれも分画分子量6000のポリスルホン製中空糸膜モジュールである。   The ultrafiltration membrane is not particularly limited, and can be selected according to the type of ultrapure water to be filtered and the purpose of filtration. As the ultrafiltration membrane, for example, Asahi Kasei Chemicals (OLT-6036H) and Nitto Denko (NTU-3306-K6R) can be mentioned as the ultrafiltration membrane module for plants. Both are polysulfone hollow fiber membrane modules having a molecular weight cut off of 6000.

41 一次純水システム
42 二次純水システム
43 純水貯槽
44 熱交換器
45 紫外線酸化装置
46 非再生型イオン交換装置
47a、47b 限外ろ過モジュール
47−2 配管
47−1 供給口
47−3 取出口
47a−1、47b−1 濃縮水排出口
41 Primary pure water system 42 Secondary pure water system 43 Pure water storage tank 44 Heat exchanger 45 Ultraviolet oxidizer 46 Non-regenerative ion exchanger 47a, 47b Ultrafiltration module 47-2 Piping 47-1 Supply port 47-3 Outlet 47a-1, 47b-1 concentrated water outlet

Claims (6)

限外ろ過膜装置を有する超純水製造装置であって、
前記限外ろ過膜装置は、直列に接続された複数個の限外ろ過膜モジュールを有し、
前記直列に接続された複数個の限外ろ過膜モジュールにおける後段の限外ろ過膜モジュールの濃縮水の水量が前段の限外ろ過膜モジュールの濃縮水の水量よりも小さく設定される
ことを特徴とする超純水製造装置。
An ultrapure water production device having an ultrafiltration membrane device,
The ultrafiltration membrane device has a plurality of ultrafiltration membrane modules connected in series ,
The amount of concentrated water in the subsequent ultrafiltration membrane module among the plurality of ultrafiltration membrane modules connected in series is set smaller than the amount of concentrated water in the preceding ultrafiltration membrane module. An ultrapure water production apparatus characterized by that.
前記後段の限外ろ過膜モジュールの濃縮水の水量が該後段の限外ろ過膜モジュールに供給される被処理水の1容量%以下である請求項に記載の超純水製造装置。 Ultrapure water production apparatus according to claim 1 amount of water concentrated water of the subsequent ultrafiltration membrane module is less than 1% by volume of the treated water supplied to the ultrafiltration membrane module of the rear stage. 前記直列に接続された複数個の限外ろ過膜モジュールにおける少なくとも最下段の限外ろ過膜モジュールが全ろ過運転される請求項1または請求項2に記載の超純水製造装置。 The ultrapure water production apparatus according to claim 1 or 2 , wherein at least the lowest ultrafiltration membrane module among the plurality of ultrafiltration membrane modules connected in series is subjected to total filtration operation. 被処理水を、限外ろ過膜装置を有する超純水製造装置に通水する超純水製造方法であって、
前記限外ろ過膜装置は、直列に接続された複数個の限外ろ過膜モジュールを有し、
前記直列に接続された複数個の限外ろ過膜モジュールにおける後段の限外ろ過膜モジュールの濃縮水の水量が前段の限外ろ過膜モジュールの濃縮水の水量よりも小さく設定される
ことを特徴とする超純水製造方法
An ultrapure water production method for passing water to be treated through an ultrapure water production apparatus having an ultrafiltration membrane device,
The ultrafiltration membrane device has a plurality of ultrafiltration membrane modules connected in series,
The amount of concentrated water in the subsequent ultrafiltration membrane module in the plurality of ultrafiltration membrane modules connected in series is set smaller than the amount of concentrated water in the previous ultrafiltration membrane module.
An ultrapure water production method characterized by the above .
前記後段の限外ろ過膜モジュールの濃縮水の水量が該後段の限外ろ過膜モジュールに供給される被処理水の1容量%以下である請求項4に記載の超純水製造方法。The method for producing ultrapure water according to claim 4, wherein the amount of concentrated water in the latter ultrafiltration membrane module is 1% by volume or less of water to be treated supplied to the latter ultrafiltration membrane module. 前記直列に接続された複数個の限外ろ過膜モジュールにおける少なくとも最下段の限外ろ過膜モジュールが全ろ過運転される請求項4または請求項5に記載の超純水製造方法。The ultrapure water production method according to claim 4 or 5, wherein at least the lowest ultrafiltration membrane module among the plurality of ultrafiltration membrane modules connected in series is subjected to total filtration operation.
JP2014193933A 2014-09-24 2014-09-24 Ultrapure water production equipment Active JP6469400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193933A JP6469400B2 (en) 2014-09-24 2014-09-24 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193933A JP6469400B2 (en) 2014-09-24 2014-09-24 Ultrapure water production equipment

Publications (3)

Publication Number Publication Date
JP2016064342A JP2016064342A (en) 2016-04-28
JP2016064342A5 JP2016064342A5 (en) 2017-10-26
JP6469400B2 true JP6469400B2 (en) 2019-02-13

Family

ID=55804692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193933A Active JP6469400B2 (en) 2014-09-24 2014-09-24 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP6469400B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670206B2 (en) * 2016-08-24 2020-03-18 オルガノ株式会社 Ultrapure water production equipment
JP6921521B2 (en) * 2016-12-15 2021-08-18 サッポロビール株式会社 Antifreeze regeneration method and antifreeze regeneration system
JPWO2019188964A1 (en) 2018-03-27 2021-03-11 野村マイクロ・サイエンス株式会社 Ultrapure water production system and ultrapure water production method
KR20200134217A (en) 2018-03-27 2020-12-01 노무라마이크로사이엔스가부시키가이샤 Ultrapure water production system and operation method of ultrapure water production system
JPWO2019188965A1 (en) 2018-03-27 2021-03-11 野村マイクロ・サイエンス株式会社 Ultrapure water production system and ultrapure water production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615271A (en) * 1992-06-12 1994-01-25 Suido Kiko Kk Filter device for waterworks by permeating membrane
JPH1099855A (en) * 1996-08-05 1998-04-21 Sony Corp Ultrapure water supply plant equipped with ultrafiltration function and supply of ultrapure water
JP2008237971A (en) * 2007-03-26 2008-10-09 Miura Co Ltd Method for operating membrane filtration system
SG191728A1 (en) * 2011-01-17 2013-08-30 Siemens Water Technologies Llc Method and system for providing ultrapure water
JP6075032B2 (en) * 2012-11-26 2017-02-08 三浦工業株式会社 Pure water production equipment
CN105517960A (en) * 2013-10-04 2016-04-20 栗田工业株式会社 Ultrapure water production apparatus

Also Published As

Publication number Publication date
JP2016064342A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6469400B2 (en) Ultrapure water production equipment
JP6304259B2 (en) Ultrapure water production equipment
TWI771310B (en) Ultrapure water production device
JP5082661B2 (en) Water treatment system
JP5834492B2 (en) Ultrapure water production equipment
JP2015020131A (en) Method and device for treating boron-containing water
JP5900527B2 (en) Treatment method for water containing low molecular weight organic substances
JP5953726B2 (en) Ultrapure water production method and apparatus
CN104150624A (en) Treatment method for recycling silicon wafer grinding wastewater in semiconductor industry
JP6344114B2 (en) Water treatment apparatus and water treatment equipment cleaning method
US9993774B2 (en) Filtration system and filtration method
JP7171386B2 (en) Method for starting up ultrapure water production device and ultrapure water production device
JP2006218341A (en) Method and apparatus for treating water
KR20170057491A (en) Desalination system using controlled forward osmosis and reverse osmosis
JP7109505B2 (en) Ultrapure water production equipment
JP2002001069A (en) Method for producing pure water
JP2005046762A (en) Water treatment method and water treatment apparatus
JP6433737B2 (en) Preparation method of ultrafiltration membrane
JP3115750B2 (en) Pure water production method
CN210237337U (en) Silica device is removed in reverse osmosis and EDI equipment combination
CN216737922U (en) Purified water preparation system
JP5353562B2 (en) Cleaning method for UF membrane module
WO2020209036A1 (en) Method for cleaning membrane degassing devices and system for producing ultrapure water
TW201803811A (en) Organic wastewater treatment method for avoiding malfunctions due to mucus formed by propagation of bacteria in the organic wastewater such as factory wastewater
JP2023090374A (en) Water treatment apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250