JP2010253442A - Method of concentrating particulate dispersion - Google Patents

Method of concentrating particulate dispersion Download PDF

Info

Publication number
JP2010253442A
JP2010253442A JP2009109575A JP2009109575A JP2010253442A JP 2010253442 A JP2010253442 A JP 2010253442A JP 2009109575 A JP2009109575 A JP 2009109575A JP 2009109575 A JP2009109575 A JP 2009109575A JP 2010253442 A JP2010253442 A JP 2010253442A
Authority
JP
Japan
Prior art keywords
fine particle
particle dispersion
membrane
particles
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109575A
Other languages
Japanese (ja)
Inventor
Yasunobu Kaneko
安延 金子
Noriki Akamatsu
憲樹 赤松
Shinichi Nakao
真一 中尾
Yoshi Kan
芳 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009109575A priority Critical patent/JP2010253442A/en
Publication of JP2010253442A publication Critical patent/JP2010253442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of concentrating particulate dispersion, which can be executed by a simple apparatus and can continuously treat the particulate dispersion of a relatively high concentration. <P>SOLUTION: In the method of concentrating the particulate dispersion, the particulate dispersion which contains zeolite particles or silica particles in an average particle size of 1-1,000 nm for 0.01-30 volume% and whose flow rate is 20-200 L/min/m<SP>2</SP>is supplied to a fixed ultrafiltration membrane having a pore diameter of 1-100 nm by a pressure of 0.03-1.0 MPa. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微粒子分散液の濃縮方法に関する。   The present invention relates to a method for concentrating a fine particle dispersion.

微粒子分散液は、電子材料、触媒、熱線遮蔽、コーティング剤等の広い分野に用いられている。
上記微粒子分散液中の微粒子の平均粒径は、通常、数10nmであるが、平均粒径が1〜100nm程度になると、デッドエンドろ過では液と微粒子の分離に非常に時間がかかる問題があった。
Fine particle dispersions are used in a wide range of fields such as electronic materials, catalysts, heat ray shielding, and coating agents.
The average particle size of the fine particles in the fine particle dispersion is usually several tens of nm. However, when the average particle size is about 1 to 100 nm, there is a problem that it takes a very long time to separate the liquid and the fine particles in dead end filtration. It was.

微粒子分散液の濃縮は、通常、遠心分離機が用いられる。しかし、遠心分離機は大型化が困難であり、また連続操作することができないので、大量の微粒子分散液を処理することはできなかった。   For the concentration of the fine particle dispersion, a centrifuge is usually used. However, the centrifuge is difficult to increase in size and cannot be operated continuously, so that a large amount of the fine particle dispersion cannot be processed.

逆浸透膜又は限外ろ過膜を用いて微粒子分散液を濃縮する場合、分離対象物質は通常、微粒子分散液に含まれる微粒子が分子又は高分子オーダーで、その濃度も通常、体積1%以下である。微粒子の粒径が1μm超であれば、通常のろ過を用いることができる。   When the fine particle dispersion is concentrated using a reverse osmosis membrane or an ultrafiltration membrane, the substance to be separated is usually in the order of molecules or polymers in the fine particle dispersion, and the concentration is usually 1% or less. is there. If the particle size of the fine particles exceeds 1 μm, normal filtration can be used.

上記逆浸透膜又は限外ろ過膜を用いる方法は、いくつか提案されているが(特許文献1、並びに非特許文献1及び非特許文献2)、微粒子と液が完全に分離され、且つ分離対象である微粒子の粒径がナノオーダー(1〜1000nm)である濃縮方法の開示はなかった。   Several methods using the reverse osmosis membrane or ultrafiltration membrane have been proposed (Patent Document 1, and Non-Patent Document 1 and Non-Patent Document 2), but the fine particles and the liquid are completely separated, and the separation target There is no disclosure of a concentration method in which the particle size of the fine particles is nano-order (1 to 1000 nm).

米国特許第6521562号明細書US Pat. No. 6,521,562

From Zeolites to Porous MOF Materials the 40th Anniversary of International Zeolite Conference, R.Xu, Z.Gao, J.Chen and W.Yan(Editors), Elsevier, 242-249(2007)From Zeolites to Porous MOF Materials the 40th Anniversary of International Zeolite Conference, R.Xu, Z.Gao, J.Chen and W.Yan (Editors), Elsevier, 242-249 (2007) J.Am.Chem.Soc., 128, 3190-3197(2006)J. Am. Chem. Soc., 128, 3190-3197 (2006)

本発明の目的は、簡単な装置で実施でき、比較的高濃度の微粒子分散液を連続処理をすることができる微粒子分散液の濃縮方法を提供することである。   An object of the present invention is to provide a method for concentrating a fine particle dispersion which can be carried out with a simple apparatus and can continuously process a relatively high concentration fine particle dispersion.

本発明によれば、以下の濃縮方法が提供される。
1.平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む流量が20〜200L/min/mである微粒子分散液を、圧力0.03〜1.0MPaで1〜100nmの孔径を有する固定限外ろ過膜に供給する微粒子分散液の濃縮方法。
2.平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む微粒子分散液を、圧力0.03〜1.0MPaで周速が1.5〜12m/sである1〜100nmの孔径を有する円盤状回転限外ろ過膜に供給する微粒子分散液の濃縮方法。
3.前記ゼオライト粒子がMFI型ゼオライト粒子である1又は2に記載の微粒子分散液の濃縮方法。
According to the present invention, the following concentration method is provided.
1. A fine particle dispersion having a flow rate of 20 to 200 L / min / m 2 containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm is applied at a pressure of 0.03 to 1.0 MPa. A method for concentrating a fine particle dispersion supplied to a fixed ultrafiltration membrane having a pore diameter of ˜100 nm.
2. A fine particle dispersion containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm is a pressure of 0.03 to 1.0 MPa and a peripheral speed of 1.5 to 12 m / s. A method for concentrating a fine particle dispersion to be supplied to a disk-shaped rotary ultrafiltration membrane having a pore diameter of ˜100 nm.
3. 3. The method for concentrating a fine particle dispersion according to 1 or 2, wherein the zeolite particles are MFI type zeolite particles.

本発明によれば、簡単な装置で実施でき、比較的高濃度の微粒子分散液を連続処理をすることができる微粒子分散液の濃縮方法が提供できる。   According to the present invention, it is possible to provide a method for concentrating a fine particle dispersion which can be carried out with a simple apparatus and can continuously process a relatively high concentration fine particle dispersion.

本発明の一実施形態に係る微粒子分散液の濃縮方法のシステム図である。It is a system diagram of the concentration method of the fine particle dispersion according to an embodiment of the present invention. 実施例1〜6で使用した微粒子分散液の濃縮方法のシステム図である。It is a system diagram of the concentration method of the fine particle dispersion used in Examples 1-6. 実施例7及び8で使用した微粒子分散液の濃縮方法のシステム図である。It is a system diagram of the concentration method of the fine particle dispersion used in Examples 7 and 8.

本発明の微粒子分散液の濃縮方法は、平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む流量が20〜200L/min/mである微粒子分散液を、圧力0.03〜1.0MPaで1〜100nmの孔径を有する固定限外ろ過膜に供給する。 The method for concentrating a fine particle dispersion of the present invention comprises a fine particle dispersion having a flow rate of 20 to 200 L / min / m 2 containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm. , And supplied to a fixed ultrafiltration membrane having a pore size of 1 to 100 nm at a pressure of 0.03 to 1.0 MPa.

また、本発明の微粒子分散液の濃縮方法は、平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む微粒子分散液を、圧力0.03〜1.0MPaで周速が1.5〜12m/sである1〜100nmの孔径を有する回転限外ろ過膜に供給する。   Moreover, the concentration method of the fine particle dispersion of the present invention is a fine particle dispersion containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm at a pressure of 0.03 to 1.0 MPa. It supplies to the rotation ultrafiltration membrane which has a hole diameter of 1-100 nm whose peripheral speed is 1.5-12 m / s.

含まれる微粒子の粒径がナノオーダー(1〜1000nm)である場合、通常、微粒子分散液は固液分離しにくいが、本発明の微粒子分散液の濃縮方法を用いることにより、簡単な装置で連続して一定以上の流量(例えば透過流量で1×10−6/m/s以上)で濃縮することができる。
また、本発明の微粒子分散液の濃縮方法を用いることにより、微粒子分散液を例えば20〜30体積%にまで濃縮することができる。
When the particle size of the contained fine particles is nano-order (1 to 1000 nm), the fine particle dispersion is usually difficult to separate into solid and liquid, but by using the method for concentrating fine particle dispersion of the present invention, it is continuous with a simple apparatus. Then, it can be concentrated at a flow rate above a certain level (for example, 1 × 10 −6 m 3 / m 2 / s or more in permeate flow rate).
Further, by using the method for concentrating fine particle dispersion of the present invention, the fine particle dispersion can be concentrated to, for example, 20 to 30% by volume.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る微粒子分散液の濃縮方法のシステム図である。
図1に示すように、微粒子分散液は、分散液供給槽10から輸送ポンプ20により膜分離モジュール30に供給される。膜分離モジュール30において微粒子分散液は濾過され、濾液は排出路40から排出され、微粒子の濃縮液は循環路50からバルブ60を通じて分散液供給槽10に戻される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a method for concentrating a fine particle dispersion according to an embodiment of the present invention.
As shown in FIG. 1, the fine particle dispersion is supplied from the dispersion supply tank 10 to the membrane separation module 30 by the transport pump 20. In the membrane separation module 30, the fine particle dispersion is filtered, the filtrate is discharged from the discharge path 40, and the fine particle concentrate is returned from the circulation path 50 to the dispersion supply tank 10 through the valve 60.

本発明の濃縮方法に用いる微粒子分散液(以下、単に本発明の微粒子分散液という場合がある)に含まれる微粒子はゼオライト粒子又はシリカ粒子であり、好ましくはMFI型ゼオライト粒子である。
上記ゼオライト粒子及びシリカ粒子の平均粒子径は、それぞれ1〜1000nmであり、好ましくは10〜500nmである。この平均粒子径は、動的散乱法を用いて得られる値であり、例えばELS−Z2(大塚電子株式会社製)を用いることにより測定できる。
尚、合成されるゼオライト粒子は、通常10〜1000nmである。
The fine particles contained in the fine particle dispersion used in the concentration method of the present invention (hereinafter sometimes simply referred to as the fine particle dispersion of the present invention) are zeolite particles or silica particles, preferably MFI type zeolite particles.
The average particle diameters of the zeolite particles and the silica particles are each 1 to 1000 nm, preferably 10 to 500 nm. This average particle diameter is a value obtained using a dynamic scattering method, and can be measured, for example, by using ELS-Z2 (manufactured by Otsuka Electronics Co., Ltd.).
The synthesized zeolite particles are usually 10 to 1000 nm.

本発明の微粒子分散液の微粒子の含有量は、0.01〜30体積%であり、好ましくは0.1〜10体積%である。微粒子の含有量が30体積%超の場合、透過液流量が減るおそれがある。
尚、図1のシステムのように微粒子分散液を循環させる場合において、処理する最初の微粒子分散液の濃度及びろ過後の濃縮水の濃度が低い場合がある。例えば、濾液分だけ洗浄液を加えて、濃度を上げずに洗浄してもよい。
The content of fine particles in the fine particle dispersion of the present invention is 0.01 to 30% by volume, preferably 0.1 to 10% by volume. When the content of fine particles exceeds 30% by volume, the flow rate of the permeate may be reduced.
In the case where the fine particle dispersion is circulated as in the system of FIG. 1, the concentration of the first fine particle dispersion to be processed and the concentration of concentrated water after filtration may be low. For example, the washing liquid may be added only for the filtrate, and the washing may be performed without increasing the concentration.

本発明の微粒子分散液の分散溶媒としては、例えば水;エタノール、メタノール等のアルコール等を用いることができる。   As a dispersion solvent for the fine particle dispersion of the present invention, for example, water; alcohols such as ethanol and methanol can be used.

本発明の微粒子分散液は、例えば市販のシリカ分散液に水等の分散溶媒を加えて所定の濃度にすることにより調製できる。また、ゼオライトの反応終了液をそのまま本発明の微粒子分散液として用いることもできる。   The fine particle dispersion of the present invention can be prepared, for example, by adding a dispersion solvent such as water to a commercially available silica dispersion to obtain a predetermined concentration. Moreover, the reaction completion liquid of zeolite can also be used as it is as the fine particle dispersion of the present invention.

本発明の濃縮方法では、本発明の微粒子分散液を圧力0.03〜1.0MPaで限外ろ過膜に供給し、好ましくは本発明の微粒子分散液を圧力0.03〜0.2MPaで限外ろ過膜に供給する。微粒子分散液の供給圧力を1.0MPa超にした場合であっても、透過液量を増やすことはできない。
微粒子分散液の供給圧力は、図1に示すシステムの場合、例えば輸送ポンプ20及び/又はバルブ60で調整することができる。
In the concentration method of the present invention, the fine particle dispersion of the present invention is supplied to the ultrafiltration membrane at a pressure of 0.03 to 1.0 MPa, and preferably the fine particle dispersion of the present invention is limited to a pressure of 0.03 to 0.2 MPa. Supply to the outer membrane. Even when the supply pressure of the fine particle dispersion exceeds 1.0 MPa, the amount of permeate cannot be increased.
In the case of the system shown in FIG. 1, the supply pressure of the fine particle dispersion can be adjusted by, for example, the transport pump 20 and / or the valve 60.

本発明の濃縮方法で用いる限外ろ過膜の孔径は、1〜100nmである。限外ろ過膜の孔径は、処理する微粒子分散液に含まれる微粒子の粒子径に依存する。通常、粒子には粒径分布があるので、限外ろ過膜の孔径は、微粒子の平均粒径より小さく設定する。
限外ろ過膜の孔径が1nm未満の場合、透過液流量が少なくなって処理時間が長くなるおそれがある。一方、限外ろ過膜の孔径が100nm超の場合、微粒子が通過してしまうおそれがある。
The pore size of the ultrafiltration membrane used in the concentration method of the present invention is 1 to 100 nm. The pore size of the ultrafiltration membrane depends on the particle size of the fine particles contained in the fine particle dispersion to be treated. Usually, since the particles have a particle size distribution, the pore size of the ultrafiltration membrane is set smaller than the average particle size of the fine particles.
When the pore size of the ultrafiltration membrane is less than 1 nm, the permeate flow rate may decrease and the processing time may be prolonged. On the other hand, when the pore size of the ultrafiltration membrane is more than 100 nm, fine particles may pass through.

本発明の濃縮方法では、固定限外ろ過膜又は円盤状回転ろ過膜を用いる。
本発明の濃縮方法で用いる限外ろ過膜は、例えば平膜又は環状膜を用いることができ、これら膜はモジュール形式でもよい。ろ過膜の膜面積は、微粒子分散液の処理量によって調整でき、限外ろ過膜が大面積を要する場合は、環状膜のモジュール形式が好ましい。
例えばゼオライト合成は高アルカリ性で行う場合が多いので、限外ろ過膜は耐アルカリ性であることが望ましい。
In the concentration method of the present invention, a fixed ultrafiltration membrane or a disk-like rotary filtration membrane is used.
As the ultrafiltration membrane used in the concentration method of the present invention, for example, a flat membrane or an annular membrane can be used, and these membranes may be a module type. The membrane area of the filtration membrane can be adjusted by the throughput of the fine particle dispersion, and when the ultrafiltration membrane requires a large area, an annular membrane module type is preferable.
For example, since zeolite synthesis is often carried out with high alkalinity, it is desirable that the ultrafiltration membrane be alkali resistant.

固定限外ろ過膜を用いて本発明の濃縮方法を実施する場合、本発明の微粒子分散液を膜面積当り流量20〜200L/min/mで固定限外ろ過膜に供給する。
流量が20L/min/m未満の場合、流れによる粒子の剥ぎ取り効果が得られないおそれがある。一方、流量が200L/min/m超の場合、圧力が上昇して輸送ポンプの負荷が大きくなるおそれがある。
When the concentration method of the present invention is carried out using a fixed ultrafiltration membrane, the fine particle dispersion of the present invention is supplied to the fixed ultrafiltration membrane at a flow rate of 20 to 200 L / min / m 2 per membrane area.
When the flow rate is less than 20 L / min / m 2 , the particle peeling effect due to the flow may not be obtained. On the other hand, when the flow rate exceeds 200 L / min / m 2 , the pressure increases and the load on the transport pump may increase.

円盤状回転ろ過膜を用いて本発明の濃縮方法を実施する場合、円盤状回転ろ過膜を外径基準の周速で1.5〜12m/sとし、好ましくは5〜10m/sとして、本発明の微粒子分散液を円盤回転ろ過膜に供給する。
周速が1.5m/s未満の場合、回転による粒子の剥ぎ取り効果が得られないおそれがある。一方、周速が12m/s超の場合、キャビテーション、軸振動、及び膜の耐久性低下が問題となるおそれがある。
When the concentration method of the present invention is carried out using a disk-shaped rotary filtration membrane, the disk-shaped rotary filtration membrane is set to 1.5 to 12 m / s, preferably 5 to 10 m / s at a peripheral speed based on the outer diameter. The fine particle dispersion of the invention is fed to a disc rotating filtration membrane.
When the peripheral speed is less than 1.5 m / s, there is a possibility that the effect of removing particles by rotation cannot be obtained. On the other hand, when the peripheral speed is more than 12 m / s, there is a possibility that cavitation, shaft vibration, and deterioration of the durability of the film may become problems.

固定限外ろ過膜が、流体の流れで微粒子を剥ぎ取るのに対し、円盤状回転ろ過膜は、膜自身を回転させて微粒子を剥ぎ取る。
上記円盤状回転ろ過膜の具体例としては、寿工業株式会社製のR−ファインが挙げられる。
The fixed ultrafiltration membrane peels off the fine particles by the flow of the fluid, whereas the disc-shaped rotary filtration membrane rotates the membrane itself to peel off the fine particles.
Specific examples of the disk-shaped rotary filtration membrane include R-Fine manufactured by Kotobuki Industries Co., Ltd.

本発明の濃縮方法において、例えば図1に示すシステムの排出路、循環路及び膜分離モジュールは、圧力に耐えられ、微粒子分散液に不純物が混入することがなければ特に限定されない。上記排出路、循環路及び膜分離モジュールは、通常、ステンレス製又は樹脂製である。   In the concentration method of the present invention, for example, the discharge path, the circulation path, and the membrane separation module of the system shown in FIG. 1 are not particularly limited as long as they can withstand pressure and impurities are not mixed into the fine particle dispersion. The discharge path, the circulation path, and the membrane separation module are usually made of stainless steel or resin.

実施例1
図2に示す微粒子分散液の濃縮システムを用いて、微粒子分散液の濃縮を行った。
具体的には、微粒子分散液を、分散液供給槽10から輸送ポンプ20により膜分離モジュール30に供給した。膜分離モジュール30において微粒子分散液は濾過され、濾液を排出路40から排出し、微粒子分散液の濃縮液を、バルブ60及び流量メーター70を通過させ、循環路50から分散液供給槽10に戻した。
尚、分散液供給槽10はスターラー80で攪拌しながら、サーモスタット90で温度管理した。また、濃縮液の透過流量を流量メーター70で測定し、濃縮液の膜分離モジュール30における膜分離の圧力を、ゲージ100で測定した。
Example 1
The fine particle dispersion was concentrated using the fine particle dispersion concentration system shown in FIG.
Specifically, the fine particle dispersion was supplied from the dispersion supply tank 10 to the membrane separation module 30 by the transport pump 20. The fine particle dispersion is filtered in the membrane separation module 30, the filtrate is discharged from the discharge path 40, the concentrated liquid of the fine particle dispersion is passed through the valve 60 and the flow meter 70, and returned from the circulation path 50 to the dispersion supply tank 10. It was.
The dispersion supply tank 10 was temperature-controlled with a thermostat 90 while stirring with a stirrer 80. Further, the permeate flow rate of the concentrate was measured with a flow meter 70, and the membrane separation pressure in the membrane separation module 30 of the concentrate was measured with a gauge 100.

微粒子に平均粒径が11nmであるコロイダルシリカ(触媒化成工業株式会社製,SI−30)を用い、分散溶媒には水を用いて、濃度が1.2体積%である微粒子分散液を調製した。
膜分離モジュール30は、薄膜流式平膜テストセルC10−T(日東電工株式会社製)であり、膜分離モジュール30のろ過膜に、分画分子量が50,000(膜孔径が約5nm)の限外ろ過膜(日東電工株式会社製、NTU−3150)を用い、上記微粒子分散液を流量140L/min/m及び圧力0.12MPaで限外ろ過膜に供給し、透過流量を測定した。結果を表1に示す。
Colloidal silica having an average particle diameter of 11 nm (SI-30, manufactured by Catalyst Chemical Industry Co., Ltd.) was used as the fine particles, and water was used as the dispersion solvent to prepare a fine particle dispersion having a concentration of 1.2% by volume. .
The membrane separation module 30 is a thin film flow type flat membrane test cell C10-T (manufactured by Nitto Denko Corporation), and has a molecular weight cut-off of 50,000 (membrane pore diameter is about 5 nm) on the filtration membrane of the membrane separation module 30. Using an ultrafiltration membrane (NTU-3150, manufactured by Nitto Denko Corporation), the fine particle dispersion was supplied to the ultrafiltration membrane at a flow rate of 140 L / min / m 2 and a pressure of 0.12 MPa, and the permeation flow rate was measured. The results are shown in Table 1.

実施例2
微粒子分散液の微粒子に平均粒径が47nmであるコロイダルシリカ(触媒化成工業製,SI−45P)を用いた他は実施例1と同様にして微粒子分散液の濃縮を行い、透過流量を測定した。結果を表1に示す。
Example 2
The fine particle dispersion was concentrated and the permeate flow rate was measured in the same manner as in Example 1 except that colloidal silica having an average particle size of 47 nm (SI-45P, manufactured by Catalyst Chemical Industry) was used for the fine particles of the fine particle dispersion. . The results are shown in Table 1.

実施例3
微粒子分散液の微粒子に平均粒径が80nmであるコロイダルシリカ(触媒化成工業製,SI−80P)を用いた他は実施例1と同様にして微粒子分散液の濃縮を行い、透過流量を測定した。結果を表1に示す。
Example 3
The fine particle dispersion was concentrated and the permeation flow rate was measured in the same manner as in Example 1 except that colloidal silica (manufactured by Catalyst Kasei Kogyo, SI-80P) having an average particle diameter of 80 nm was used for the fine particles of the fine particle dispersion. . The results are shown in Table 1.

Figure 2010253442
尚、実施例1の透過流量1.7×10−5/m/sは、換算すると1.0L/min/mであり、実施例2の透過流量7.5×10−6/m/sは、換算すると0.45L/min/mであり、実施例3の透過流量6.0×10−6/m/sは、換算すると0.36L/min/mである。
Figure 2010253442
Note that the flux 1.7 × 10 -5 m 3 / m 2 / s Example 1, when converted was 1.0 L / min / m 2, permeation of Example 2 flow rate 7.5 × 10 -6 m 3 / m 2 / s is converted to 0.45 L / min / m 2 , and the permeation flow rate of Example 3 is 6.0 × 10 −6 m 3 / m 2 / s is converted to 0.36 L / s. min / m 2 .

実施例4
ZEOLITES, 14, 557-567(1994)に開示の方法を基に、10%NaOH水溶液(和光純薬製)40g、精製水(和光純薬製)2188g、TPAOH(テトラプロピルアンモニウムヒドロキシド、SACHEM製)2000g及びTEOS(テトラエトキシシラン、信越化学製)2553gを10L攪拌槽に投入し、密閉下で攪拌しながら25℃24時間及び100℃で48時間それぞれ反応させ、平均粒径が100nmのゼオライト微粒子を含む濃度が10体積%であるゼオライト微粒子分散液(ゼオライト反応液)を調製した。
尚、得られたゼオライト微粒子分散液の組成(モル比)は以下の通りであった。
TPAOH/SiO2/H2O/EtOH=8/25/338/100
Example 4
Based on the method disclosed in ZEOLITES, 14, 557-567 (1994), 40 g of 10% NaOH aqueous solution (manufactured by Wako Pure Chemical Industries), 2188 g of purified water (manufactured by Wako Pure Chemical Industries), TPAOH (tetrapropyl ammonium hydroxide, manufactured by SACHEM) ) 2000 g and TEOS (tetraethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 2553 g were put into a 10 L stirring tank and reacted with stirring at 25 ° C. for 24 hours and 100 ° C. for 48 hours, respectively, and zeolite fine particles having an average particle size of 100 nm A zeolite fine particle dispersion (zeolite reaction liquid) having a concentration of 10 vol% was prepared.
The composition (molar ratio) of the obtained zeolite fine particle dispersion was as follows.
TPAOH / SiO2 / H2O / EtOH = 8/25/338/100

上記で調製した微粒子分散液を使用した他は実施例1と同様にして、微粒子分散液の濃縮を行い、透過流量を測定した。結果を表2に示す。   The fine particle dispersion was concentrated and the permeate flow rate was measured in the same manner as in Example 1 except that the fine particle dispersion prepared above was used. The results are shown in Table 2.

実施例5
微粒子分散液の濃度を5体積%とした他は実施例4と同様にして、微粒子分散液の濃縮を行い、透過流量を測定した。結果を表2に示す。
Example 5
The fine particle dispersion was concentrated and the permeate flow rate was measured in the same manner as in Example 4 except that the concentration of the fine particle dispersion was changed to 5% by volume. The results are shown in Table 2.

実施例6
微粒子分散液の濃度を2.5体積%とした他は実施例4と同様にして、微粒子分散液の濃縮を行い、透過流量を測定した。結果を表2に示す。
Example 6
The fine particle dispersion was concentrated and the permeate flow rate was measured in the same manner as in Example 4 except that the concentration of the fine particle dispersion was 2.5% by volume. The results are shown in Table 2.

Figure 2010253442
尚、実施例4の透過流量1.2×10−6/m/sは、換算すると0.072L/min/mであり、実施例5の透過流量2.8×10−6/m/sは、換算すると0.17L/min/mであり、実施例6の透過流量5.0×10−6/m/sは、換算すると0.30L/min/mである。
Figure 2010253442
Note that the flux 1.2 × 10 -6 m 3 / m 2 / s Example 4, when converted was 0.072L / min / m 2, permeation of Example 5 flow 2.8 × 10 -6 m 3 / m 2 / s is 0.17 L / min / m 2 in terms of conversion, and the permeation flow rate of 5.0 × 10 −6 m 3 / m 2 / s in Example 6 is 0.30 L / in in terms of conversion. min / m 2 .

実施例7
図3に示す微粒子分散液の濃縮システムを用いて、微粒子分散液の濃縮を行った。
具体的には、微粒子分散液を、分散液供給槽10から輸送ポンプ20により膜分離モジュール30に供給した。円盤状回転ろ過膜を含む膜分離モジュール30において微粒子分散液は濾過され、濃縮液及び濾液をそれぞれ分離した。分離した濃縮液及び濾液はそれぞれ、バルブ60を制御して一部は分散液供給槽10に戻し、残りは排出した。
Example 7
The fine particle dispersion was concentrated using the fine particle dispersion concentration system shown in FIG.
Specifically, the fine particle dispersion was supplied from the dispersion supply tank 10 to the membrane separation module 30 by the transport pump 20. The fine particle dispersion was filtered in a membrane separation module 30 including a disk-shaped rotary filtration membrane, and the concentrated solution and the filtrate were separated from each other. The separated concentrated solution and filtrate were each controlled by the valve 60 and partly returned to the dispersion supply tank 10 and the rest was discharged.

膜分離モジュール30は、R−ファイン(寿工業株式会社製)であり、膜分離モジュール30のろ過膜に、孔径7nmのセラミック膜を用いて、このセラミック膜を740rpm(周速:5.9m/s)で回転させながら、実施例4で調製した平均粒径が10nmで濃度が10体積%であるゼオライト微粒子分散液を圧力0.1MPaで供給し、透過流量を測定した。結果を表3に示す。   The membrane separation module 30 is R-Fine (manufactured by Kotobuki Kogyo Co., Ltd.). A ceramic membrane having a pore diameter of 7 nm is used as the filtration membrane of the membrane separation module 30, and this ceramic membrane is 740 rpm (peripheral speed: 5.9 m / min). While rotating at s), the zeolite fine particle dispersion having an average particle diameter of 10 nm and a concentration of 10% by volume prepared in Example 4 was supplied at a pressure of 0.1 MPa, and the permeation flow rate was measured. The results are shown in Table 3.

実施例8
微粒子分散液の濃度を5体積%とした他は実施例7と同様にして、微粒子分散液の濃縮を行い、透過流量を測定した。結果を表3に示す。
Example 8
The fine particle dispersion was concentrated and the permeate flow rate was measured in the same manner as in Example 7 except that the concentration of the fine particle dispersion was changed to 5% by volume. The results are shown in Table 3.

Figure 2010253442
尚、実施例7の透過流量3.1×10−6/m/sは、換算すると0.19L/min/mであり、実施例8の透過流量5.3×10−6/m/sは、換算すると0.32L/min/mである。
Figure 2010253442
Note that the flux 3.1 × 10 -6 m 3 / m 2 / s Example 7, when converted is 0.19L / min / m 2, permeation of Example 8 flow 5.3 × 10 -6 When converted, m 3 / m 2 / s is 0.32 L / min / m 2 .

本発明の濃縮方法で濃縮した微粒子分散液は、電子材料、触媒、熱線遮蔽、コーティング剤等の広い分野に用いることができる。   The fine particle dispersion concentrated by the concentration method of the present invention can be used in a wide range of fields such as electronic materials, catalysts, heat ray shielding, and coating agents.

10 分散液供給槽
20 輸送ポンプ
30 膜分離モジュール
40 排出路
50 循環路
60 バルブ
70 流量メーター
80 スターラー
90 サーモスタット
100 ゲージ
10 Dispersion Supply Tank 20 Transport Pump 30 Membrane Separation Module 40 Discharge Channel 50 Circulation Channel 60 Valve 70 Flow Meter 80 Stirrer 90 Thermostat 100 Gauge

Claims (3)

平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む流量が20〜200L/min/mである微粒子分散液を、圧力0.03〜1.0MPaで1〜100nmの孔径を有する固定限外ろ過膜に供給する微粒子分散液の濃縮方法。 A fine particle dispersion having a flow rate of 20 to 200 L / min / m 2 containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm is applied at a pressure of 0.03 to 1.0 MPa. A method for concentrating a fine particle dispersion supplied to a fixed ultrafiltration membrane having a pore diameter of ˜100 nm. 平均粒子径が1〜1000nmであるゼオライト粒子又はシリカ粒子を0.01〜30体積%含む微粒子分散液を、圧力0.03〜1.0MPaで周速が1.5〜12m/sである1〜100nmの孔径を有する円盤状回転限外ろ過膜に供給する微粒子分散液の濃縮方法。   A fine particle dispersion containing 0.01 to 30% by volume of zeolite particles or silica particles having an average particle diameter of 1 to 1000 nm is a pressure of 0.03 to 1.0 MPa and a peripheral speed of 1.5 to 12 m / s. A method for concentrating a fine particle dispersion to be supplied to a disk-shaped rotary ultrafiltration membrane having a pore diameter of ˜100 nm. 前記ゼオライト粒子がMFI型ゼオライト粒子である請求項1又は2に記載の微粒子分散液の濃縮方法。   The method for concentrating a fine particle dispersion according to claim 1 or 2, wherein the zeolite particles are MFI type zeolite particles.
JP2009109575A 2009-04-28 2009-04-28 Method of concentrating particulate dispersion Pending JP2010253442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109575A JP2010253442A (en) 2009-04-28 2009-04-28 Method of concentrating particulate dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109575A JP2010253442A (en) 2009-04-28 2009-04-28 Method of concentrating particulate dispersion

Publications (1)

Publication Number Publication Date
JP2010253442A true JP2010253442A (en) 2010-11-11

Family

ID=43315000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109575A Pending JP2010253442A (en) 2009-04-28 2009-04-28 Method of concentrating particulate dispersion

Country Status (1)

Country Link
JP (1) JP2010253442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066495A (en) * 2013-09-30 2015-04-13 三菱化工機株式会社 Filtration method using disc rotary membrane filtration apparatus
JP2016204168A (en) * 2015-04-15 2016-12-08 信越化学工業株式会社 Method for producing inorganic oxide fine particle-dispersed liquid
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170423A (en) * 1991-12-24 1993-07-09 Ngk Insulators Ltd Method for concentrating colloidal silica
JPH0648719A (en) * 1992-05-15 1994-02-22 Bayer Ag Method for production and concentration of silica sol
JPH11121408A (en) * 1997-10-15 1999-04-30 Kurita Water Ind Ltd Device for recovering abrasive slurry
JP2003245527A (en) * 2001-12-18 2003-09-02 Shinko Pantec Co Ltd Rotary membrane separator and operation method therefor
JP2006502069A (en) * 2002-07-17 2006-01-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing a solid containing zeolite
JP2006061911A (en) * 2001-02-07 2006-03-09 Kobelco Eco-Solutions Co Ltd Rotary membrane separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170423A (en) * 1991-12-24 1993-07-09 Ngk Insulators Ltd Method for concentrating colloidal silica
JPH0648719A (en) * 1992-05-15 1994-02-22 Bayer Ag Method for production and concentration of silica sol
JPH11121408A (en) * 1997-10-15 1999-04-30 Kurita Water Ind Ltd Device for recovering abrasive slurry
JP2006061911A (en) * 2001-02-07 2006-03-09 Kobelco Eco-Solutions Co Ltd Rotary membrane separator
JP2003245527A (en) * 2001-12-18 2003-09-02 Shinko Pantec Co Ltd Rotary membrane separator and operation method therefor
JP2006502069A (en) * 2002-07-17 2006-01-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing a solid containing zeolite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066495A (en) * 2013-09-30 2015-04-13 三菱化工機株式会社 Filtration method using disc rotary membrane filtration apparatus
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board
JP2016204168A (en) * 2015-04-15 2016-12-08 信越化学工業株式会社 Method for producing inorganic oxide fine particle-dispersed liquid

Similar Documents

Publication Publication Date Title
Madaeni et al. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles
Shamsuddin et al. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow
Moghadam et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV‐coupled ultrafiltration
US8623210B2 (en) Pore diffusion type flat membrane separating apparatus
Omidvar et al. Preparation of hydrophilic nanofiltration membranes for removal of pharmaceuticals from water
Amini et al. Preparation and performance evaluation of high-density polyethylene/silica nanocomposite membranes in membrane bioreactor system
US9555374B2 (en) Method for conditioning catalysts by means of membrane filtration
JP5802989B2 (en) System and method for treating a fluid mixture comprising an aqueous phase and an organic phase
TW200846290A (en) Method for the treatment with reverse osmosis membrane
JP6303910B2 (en) Hollow fiber membrane for ultrafiltration
WO2017164361A1 (en) Ultrapure water manufacturing system
Huang et al. Novel N-doped graphene enhanced ultrafiltration nano-porous polyvinylidene fluoride membrane with high permeability and stability for water treatment
Choo et al. Understanding membrane fouling in terms of surface free energy changes
CN110694492A (en) Mixed matrix polyamide membrane of ZIF type metal organic framework and preparation method thereof
JP7358675B2 (en) Method for separating and purifying fluids containing valuables
JP2010253442A (en) Method of concentrating particulate dispersion
Bouzerar et al. Concentration of mineral suspensions and industrial effluents using a rotating disk dynamic filtration module
Hu et al. Combined TiO2 membrane filtration and ozonation for efficient water treatment to enhance the reuse of wastewater
Buonomenna et al. Polymeric membranes modified via plasma for nanofiltration of aqueous solution containing organic compounds
Xue et al. Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU)
von Bomhard et al. Modular manufacturing platform for continuous synthesis and analysis of versatile nanomaterials
Loddo et al. Photocatalytic membrane reactors: case studies and perspectives
CN216687774U (en) Integrated circuit trade grinding waste water retrieval and utilization and silica flour recovery processing system
Maknakorn et al. Coagulation and adsorption as pretreatments of thin-film composite–forward osmosis (TFC-FO) for ink printing wastewater treatment
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211