JP2011147894A - Seawater desalination apparatus - Google Patents

Seawater desalination apparatus Download PDF

Info

Publication number
JP2011147894A
JP2011147894A JP2010011930A JP2010011930A JP2011147894A JP 2011147894 A JP2011147894 A JP 2011147894A JP 2010011930 A JP2010011930 A JP 2010011930A JP 2010011930 A JP2010011930 A JP 2010011930A JP 2011147894 A JP2011147894 A JP 2011147894A
Authority
JP
Japan
Prior art keywords
water temperature
boron concentration
seawater
water
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010011930A
Other languages
Japanese (ja)
Inventor
Koji Kageyama
晃治 陰山
Hiroto Yokoi
浩人 横井
Naoki Hara
直樹 原
Misaki Sumikura
みさき 隅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010011930A priority Critical patent/JP2011147894A/en
Publication of JP2011147894A publication Critical patent/JP2011147894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seawater desalination apparatus capable of economically obtaining treated water having boron concentration not more than a reference value by adequately regulating the water temperature. <P>SOLUTION: The seawater desalination apparatus carrying out a filtration treatment using a reverse osmosis membrane includes a water temperature regulator 12 disposed on the upper stream side of the reverse osmosis membrane for changing the seawater temperature, a boron concentration measuring means 20 for measuring the boron concentration of the treated water after the filtration, and a controller 24 for operating the water temperature regulator by determining the operation amount thereof on the basis of the boron concentration of the treated water and the target boron concentration given in advance. Alternatively, the seawater desalination apparatus includes a treated water boron concentration forecasting means 40 for calculating the anticipated boron concentration of the treated water after the filtration from the boron concentration of the seawater, and a controller for operating the water temperature regulator by determining the operation amount thereof on the basis of the anticipated boron concentration of the treated water and the target boron concentration given in advance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、海水から淡水を得るための逆浸透膜を用いた海水淡水化装置、特に、海水の淡水化の結果として得られた処理水中のホウ素の濃度が基準値を満足する海水淡水化装置に関する。   The present invention relates to a seawater desalination apparatus using a reverse osmosis membrane for obtaining fresh water from seawater, in particular, a seawater desalination apparatus in which the concentration of boron in treated water obtained as a result of seawater desalination satisfies a reference value. About.

近年、逆浸透膜によるろ過処理を用いた海水淡水化装置が増加する傾向にある。逆浸透膜は、セルロースやポリアミド等の素材で造られており、この膜に海水の浸透圧の二倍以上の圧力を加えることで塩分の透過を抑制した淡水を得ることができる。この圧力は50MPaから場合によっては80MPaにも達し、そのために高圧ポンプの動力コストが高くなる。   In recent years, seawater desalination apparatuses using a filtration process using a reverse osmosis membrane tend to increase. The reverse osmosis membrane is made of a material such as cellulose or polyamide, and fresh water with suppressed permeation of salt can be obtained by applying a pressure of at least twice the osmotic pressure of seawater to the membrane. This pressure reaches from 50 MPa to 80 MPa in some cases, which increases the power cost of the high-pressure pump.

また、海水に含まれるホウ素濃度は4.5〜5mg/Lであるのに対し、WHOの飲料水の水質基準値は0.5mg/Lであるので、必要なホウ素の阻止率は約90%となる。しかし、一般的な逆浸透膜モジュール1本のホウ素の阻止率は50〜70%であり、高圧逆浸透膜と低圧逆浸透膜の二段階処理が必要となって、イニシャルコストやランニングコストが増大する。ランニングコストをできるだけ低減するため、一段階処理の水と二段階処理の水を製造する二系統を設けて、処理水のホウ素濃度が基準値よりわずかに低くなるよう、一段階処理の水と二段階処理の水をブレンドすることが実施されているが、かかる方法の実施可能な範囲は限られる。   Moreover, since the boron concentration contained in seawater is 4.5 to 5 mg / L, the water quality standard value of WHO drinking water is 0.5 mg / L, so the necessary boron rejection is about 90%. However, the blocking rate of boron in one general reverse osmosis membrane module is 50 to 70%, which requires two-step treatment of high pressure reverse osmosis membrane and low pressure reverse osmosis membrane, increasing initial cost and running cost To do. In order to reduce running costs as much as possible, there are two systems for producing one-stage treated water and two-stage treated water, and two-stage treated water and two-stage treated water are used so that the boron concentration in the treated water is slightly lower than the reference value. Although blending staged water has been practiced, the feasible scope of such a method is limited.

高圧ポンプの動力コストを低減するため、例えば特許文献1は、廃棄物焼却により発生した熱を熱源として海水を加温し、これを海水淡水化装置に供給して淡水を得る逆浸透膜海水淡水化装置を開示する。ここでは、水の粘性抵抗が温度により変化するため、供給海水の温度を1℃上昇させるごとに真水の量が3%増大するので、高回収率での運転や逆浸透膜モジュールの本数を減少、更に新たに燃料を消費することなく経済的に高効率運転が可能となると記載されている。   In order to reduce the power cost of a high-pressure pump, for example, Patent Document 1 discloses a reverse osmosis membrane seawater freshwater that heats seawater using heat generated by waste incineration as a heat source and supplies the seawater to a seawater desalination apparatus to obtain freshwater. An apparatus is disclosed. Here, since the viscosity resistance of water changes with temperature, the amount of fresh water increases by 3% each time the temperature of the supplied seawater is increased by 1 ° C, so the operation with a high recovery rate and the number of reverse osmosis membrane modules are reduced. Further, it is described that highly efficient operation can be achieved economically without newly consuming fuel.

特許文献2は、逆浸透膜を利用したろ過装置と、原水の温度を調整する温度調整部と、ろ過装置で得られた処理水の濃度を測定する測定部と、測定された濃度に基づいて温度調整部を制御する制御部と、を備えた脱塩処理を開示する。しかし、ここでは、測定部は、処理水の塩濃度(イオン濃度)を測定する電導度計であり、ホウ素濃度に着目するものではない。   Patent Document 2 is based on a filtration device that uses a reverse osmosis membrane, a temperature adjustment unit that adjusts the temperature of raw water, a measurement unit that measures the concentration of treated water obtained by the filtration device, and a measured concentration. Disclosed is a desalting process including a control unit that controls the temperature adjustment unit. However, here, the measurement unit is a conductivity meter that measures the salt concentration (ion concentration) of the treated water, and does not focus on the boron concentration.

特許文献3は、中空糸膜からなる膜前処理装置、第1のpH調整装置、脱炭酸ガス塔、第2のpH調整装置、第1の逆浸透膜装置、第2の逆浸透膜装置、平板式熱交換器、混床式イオン交換装置から成る超純水製造装置を開示する。そして、ここでは、被処理水の水温を20℃以下に制御することが記載されているが、混床式イオン交換装置に通水される被処理水が対象であって、混床式イオン交換装置の利用を必須とする発明である。   Patent Document 3 discloses a membrane pretreatment device comprising a hollow fiber membrane, a first pH adjusting device, a decarbonation gas tower, a second pH adjusting device, a first reverse osmosis membrane device, a second reverse osmosis membrane device, Disclosed is an ultrapure water production apparatus comprising a flat plate heat exchanger and a mixed bed ion exchange apparatus. And here, it is described that the temperature of the water to be treated is controlled to 20 ° C. or less, but the water to be treated that is passed through the mixed bed ion exchange device is the target, and the mixed bed ion exchange It is an invention that requires the use of a device.

特許文献4は、逆浸透膜(半透膜)を用いて、海水中に含有されたホウ素を除去する淡水製造装置を開示する。しかし、ここでは、原水(海水)に前処理を施すフィルターなどの前処理と、前処理水を処理する第一の半透膜ユニットと、一次透過水を一旦貯留する中間水タンクと、中間水タンクに貯留されていた一次透過水を処理する第二の半透膜ユニットと、第一の半透膜ユニットの前段に設けられた高圧ポンプと、第二の半透膜ユニットの前段に設けられた昇圧ポンプとに加えて、更に高圧ポンプの前段に設けられた第一のアルカリ添加手段と、中間水タンク内の一次透過水のpHを高くする第二のアルカリ添加手段、二次透過水のpHを下げる酸添加手段と、を備えた淡水製造装置であり、要するに、pHによってホウ素等の成分の除去率が変化することを利用して、pHの制御を行って淡水を効率的に製造するものである。   Patent Document 4 discloses a fresh water producing apparatus that removes boron contained in seawater using a reverse osmosis membrane (semi-permeable membrane). However, here, pretreatment such as a filter for pretreatment of raw water (seawater), a first semipermeable membrane unit for treating pretreatment water, an intermediate water tank for temporarily storing primary permeate, and intermediate water A second semipermeable membrane unit for treating the primary permeated water stored in the tank, a high-pressure pump provided in the previous stage of the first semipermeable membrane unit, and provided in the previous stage of the second semipermeable membrane unit. In addition to the booster pump, the first alkali addition means provided in the previous stage of the high pressure pump, the second alkali addition means for increasing the pH of the primary permeate in the intermediate water tank, and the secondary permeate a fresh water producing apparatus comprising an acid addition means for lowering the pH. In short, by utilizing the fact that the removal rate of components such as boron varies depending on the pH, the fresh water is efficiently produced by controlling the pH. Is.

特開平9−085059号公報Japanese Patent Laid-Open No. 9-085059 特開2005−144301号公報JP-A-2005-144301 特開2005−177564号公報JP 2005-177564 A 特開2006−187719号公報JP 2006-187719 A

特許文献1の技術は、水温が高くなると逆浸透膜のホウ素阻止率が低下するので、すべての水を二段階処理することが必要となって、高圧ポンプの動力コストの低減以上に、低圧逆浸透膜での運転コストが増大すること、更に、二段階処理をしてもホウ素濃度がなお基準値を上回る可能性がある。   In the technique of Patent Document 1, since the boron rejection rate of the reverse osmosis membrane decreases as the water temperature increases, it is necessary to treat all the water in two stages. The operating cost of the osmotic membrane is increased, and further, the boron concentration may still exceed the reference value even after the two-stage treatment.

また、特許文献2から4の技術は、装置が複雑になったり、ランニングコストが高くなったりするなどの経済性の改善が要望されている。   In addition, the techniques of Patent Documents 2 to 4 are required to improve economic efficiency such as a complicated apparatus and a high running cost.

本発明の目的は、上述した従来技術の課題を解決し、水温を適正に調整することで基準値を超えないホウ素濃度の処理水を経済的に得られる海水淡水化装置を提供することにある。   The objective of this invention is providing the seawater desalination apparatus which solves the subject of the prior art mentioned above, and can obtain the treated water of the boron concentration which does not exceed a reference value economically by adjusting water temperature appropriately. .

上記の目的を達成するため、本発明の海水淡水化装置は、逆浸透膜によるろ過処理を用いた海水淡水化装置において、逆浸透膜の上流側に配置されて海水の水温を変化させる水温調整装置と、前記ろ過処理後の処理水のホウ素濃度を計測するホウ素濃度計測手段と、前記処理水のホウ素濃度情報及び予め与えられた目標ホウ素濃度情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を備えたことを特徴とする。   In order to achieve the above object, the seawater desalination apparatus of the present invention is a seawater desalination apparatus using a filtration process using a reverse osmosis membrane, and is arranged on the upstream side of the reverse osmosis membrane to adjust the water temperature of the seawater. The operation amount of the water temperature adjusting device is determined based on the apparatus, the boron concentration measuring means for measuring the boron concentration of the treated water after the filtration treatment, the boron concentration information of the treated water and the target boron concentration information given in advance And a control device which operates.

また、本発明の海水淡水化装置は、逆浸透膜によるろ過処理を用いた海水淡水化装置において、逆浸透膜の上流側に配置されて海水の水温を変化させる水温調整装置と、海水のホウ素濃度を計測するホウ素濃度計測手段と、前記海水のホウ素濃度から前記ろ過処理後の処理水のホウ素濃度予測情報を演算する処理水ホウ素濃度予測手段と、前記処理水のホウ素濃度予測情報及び予め与えられた目標ホウ素濃度情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を備えたことを特徴とするものである。   Further, the seawater desalination apparatus of the present invention is a seawater desalination apparatus using filtration treatment with a reverse osmosis membrane, a water temperature adjusting device arranged upstream of the reverse osmosis membrane to change the temperature of seawater, and boron of seawater Boron concentration measuring means for measuring the concentration, treated water boron concentration predicting means for calculating the boron concentration prediction information of the treated water after the filtration treatment from the boron concentration of the seawater, boron concentration prediction information of the treated water, and given in advance And a control device that operates by determining the operation amount of the water temperature adjusting device based on the obtained target boron concentration information.

本発明によると、海水淡水化装置の処理水に含まれるホウ素濃度を基準値以下に抑制できるため、飲用しても問題のない水を供給できると共に高い安全性を確保することができる。さらに、水質基準値を満足した上で運転コストを最小化することができるので、経済的にも有利である。   According to the present invention, since the boron concentration contained in the treated water of the seawater desalination apparatus can be suppressed to a reference value or less, it is possible to supply water having no problem even if it is drunk and to ensure high safety. Furthermore, since the operation cost can be minimized while satisfying the water quality standard value, it is economically advantageous.

本発明の実施例1の海水淡水化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the seawater desalination apparatus of Example 1 of this invention. 一般的な高圧逆浸透膜についての水温とホウ素阻止率の関係を示す模式図である。It is a schematic diagram which shows the relationship between the water temperature about a general high-pressure reverse osmosis membrane, and a boron rejection. 本発明の実施例2の海水淡水化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the seawater desalination apparatus of Example 2 of this invention. 本発明の実施例3の海水淡水化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the seawater desalination apparatus of Example 3 of this invention. 本発明の実施例4の海水淡水化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the seawater desalination apparatus of Example 4 of this invention. 本発明の実施例5の海水淡水化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the seawater desalination apparatus of Example 5 of this invention.

以下、本発明の実施形態である実施例について説明する。なお、各実施例を示す各図をとおして、同一の符号は、各装置中の基本的に同一又は等価な機能を有する構成ブロックを示している。   Examples of embodiments of the present invention will be described below. In addition, the same code | symbol has shown the structural block which has the fundamentally same or equivalent function in each apparatus through each figure which shows each Example.

[実施例1]
図1は、本発明の実施例1の海水淡水化装置の構成をブロック線図で示す。海水10は水温調整装置12で水温を調整され、水温調整海水14となる。図1には示していないが、逆浸透膜ろ過処理16の前段に前処理が備えられる場合には、水温調整装置12は前処理の前段であっても、後段であってもよい。この前処理が、例えばUF膜ろ過であり、海水10を加温する場合には、そのUF膜ろ過用のポンプ動力を低減するために、水温調整装置12をUF膜ろ過の前段に設けることが好ましい。
[Example 1]
FIG. 1: shows the structure of the seawater desalination apparatus of Example 1 of this invention with a block diagram. The water temperature of the seawater 10 is adjusted by a water temperature adjusting device 12 to become water temperature adjusted seawater 14. Although not shown in FIG. 1, when the pretreatment is provided in the previous stage of the reverse osmosis membrane filtration process 16, the water temperature adjusting device 12 may be in the former stage or the latter stage of the pretreatment. When this pretreatment is, for example, UF membrane filtration and the seawater 10 is heated, a water temperature adjusting device 12 may be provided at the front stage of the UF membrane filtration in order to reduce pump power for the UF membrane filtration. preferable.

水温調整海水14は、逆浸透膜ろ過処理16によって脱塩処理されて処理水18となる。処理水18に含まれるホウ素濃度は、処理水ホウ素濃度計測手段20によって計測され、処理水ホウ素濃度計測値22として出力される。処理水ホウ素濃度計測値22は、目標ホウ素濃度情報36と共に制御装置24に与えられる。制御装置24は、目標ホウ素濃度情報36と処理水ホウ素濃度計測値22に基づいて、水温調整装置運転信号26を水温調整装置12へ出力する。   The water temperature-adjusted seawater 14 is desalted by reverse osmosis membrane filtration 16 to become treated water 18. The boron concentration contained in the treated water 18 is measured by the treated water boron concentration measuring means 20 and output as a treated water boron concentration measured value 22. The treated water boron concentration measurement value 22 is given to the control device 24 together with the target boron concentration information 36. The control device 24 outputs a water temperature adjusting device operation signal 26 to the water temperature adjusting device 12 based on the target boron concentration information 36 and the treated water boron concentration measured value 22.

水温調整装置12は、水温調整装置運転信号26に従って海水10の水温調整量を変化させる。ここで、水温調整装置は、加温機能と冷却機能のいずれかのみを有していてもよいが、双方を有していてもよい。水温調整のためには、発電設備が併設される場合には、その排熱や蒸気を用いてもよい。また、太陽熱など自然エネルギーを加温あるいは冷却に用いてもよい。   The water temperature adjustment device 12 changes the water temperature adjustment amount of the seawater 10 according to the water temperature adjustment device operation signal 26. Here, the water temperature adjusting device may have only one of the heating function and the cooling function, but may have both. In order to adjust the water temperature, when a power generation facility is additionally provided, the exhaust heat or steam may be used. Natural energy such as solar heat may be used for heating or cooling.

また、海水の水温は水深によって異なるため、逆浸透膜ろ過する海水よりも水面付近の海水を用いて加温したり、より深層の水を用いて冷却したりするようにしてもよい。また、これら異なる水温の海水を用いる場合、混合するようにしてもよいが、水面付近の海水は有機物や油濁により汚染されている可能性があり、逆に海洋深層水の場合には膜面に付着するスケールの成分の一つであるシリカ成分が多い可能性があるので、これらの混合を避けて、逆浸透膜ろ過する海水と熱交換器で間接的に熱交換することが好ましい。   Moreover, since the water temperature of seawater changes with water depths, you may make it heat using the seawater near the water surface rather than the seawater which carries out reverse osmosis membrane filtration, or you may make it cool using deeper water. In addition, when using seawater with different water temperatures, they may be mixed, but seawater near the water surface may be contaminated by organic matter or oil spills. Since there is a possibility that there are many silica components that are one of the components of the scale adhering to the water, it is preferable to avoid these mixing and indirectly exchange heat with seawater to be subjected to reverse osmosis membrane filtration with a heat exchanger.

また、海洋深層水を処理する海水淡水化装置Aと一般的な水深(10-20m程度)から取水した海水を処理する海水淡水化装置Bの両者がある場合には、海洋深層水の淡水化処理後の濃縮水の冷熱を有効利用して、海水淡水化装置Bで取水した海水の水温を調整するようにしてもよい。逆浸透膜ろ過処理16は、高圧逆浸透膜のみを用いた系統の処理でも、高圧逆浸透膜の後段に低圧逆浸透膜を備えた系統の処理でも、これらの系統の双方備えた処理でもよい。   In addition, if there is both a seawater desalination device A that treats deep seawater and a seawater desalination device B that treats seawater taken from a general water depth (about 10-20m), the seawater desalination device The temperature of the seawater taken by the seawater desalination apparatus B may be adjusted by effectively using the cold heat of the concentrated water after treatment. The reverse osmosis membrane filtration treatment 16 may be a treatment using only a high-pressure reverse osmosis membrane, a treatment comprising a low-pressure reverse osmosis membrane downstream of the high-pressure reverse osmosis membrane, or treatment comprising both of these systems. .

以下、上記の構成による装置の作用を説明する。海水のホウ素濃度が5mg/Lである場合に、WHOの飲料水の水質基準値0.5mg/Lを満足するためには、90%以上のホウ素阻止率が必要である。現在、水温25℃でホウ素阻止率が90%を超えるホウ素高阻止型の逆浸透膜が存在している。この阻止率が90%より低下すると水質基準をオーバーし、逆に90%より向上すると水質基準を過達することになる。   The operation of the device having the above configuration will be described below. When the boron concentration in seawater is 5 mg / L, a boron rejection rate of 90% or more is required to satisfy the water quality standard value of 0.5 mg / L for WHO drinking water. Currently, there exists a reverse osmosis membrane of high boron rejection type with a boron rejection rate exceeding 90% at a water temperature of 25 ° C. If this rejection rate falls below 90%, the water quality standard will be exceeded, and conversely if it exceeds 90%, the water quality standard will be exceeded.

図2は、一般的な高圧逆浸透膜についての水温とホウ素阻止率の関係を示す。図2に示されているとおり、水温が高くなるにしたがってホウ素阻止率は低下し、水温が低くなるにしたがってホウ素阻止率は向上する。この関係は、一般的な高圧逆浸透膜のみでなく、ホウ素高阻止型の逆浸透膜でも同様と考えられる。   FIG. 2 shows the relationship between water temperature and boron rejection for a general high-pressure reverse osmosis membrane. As shown in FIG. 2, the boron rejection rate decreases as the water temperature increases, and the boron rejection rate increases as the water temperature decreases. This relationship is considered to be the same not only in a general high-pressure reverse osmosis membrane but also in a boron high-blocking reverse osmosis membrane.

例えば、水温25℃のときの阻止率が90%の膜の場合、水温が35℃となると阻止率が低下して80%程度となる可能性があり、その場合には処理水のホウ素濃度が1mg/Lに達してWHOの基準を大きく超過することになる。逆に水温が15℃まで低下すると阻止率が向上し、阻止率が100%近くなると見込まれる。実際に海水は夏季と冬季で水温が変動するため、得られる処理水質も変動することになる。   For example, in the case of a membrane with a rejection rate of 90% at a water temperature of 25 ° C, the rejection rate may decrease to about 80% when the water temperature reaches 35 ° C. It reaches 1mg / L and greatly exceeds the WHO standard. Conversely, when the water temperature drops to 15 ° C, the rejection rate is improved, and the rejection rate is expected to approach 100%. Actually, since the temperature of seawater fluctuates in summer and winter, the quality of treated water obtained also fluctuates.

本発明では、この処理水質の変動を小さくすることが可能である。すなわち、処理水のホウ素濃度を計測し、その計測値が基準値を超過又は自主基準値を超過した場合には、水温調整装置で水温を低下させてホウ素の除去率を向上させる。水温の低下量は、スケール成分が析出しない範囲で設定することが望ましい。逆に、処理水のホウ素濃度が基準値又は自主基準値を大幅に下回る場合には、排熱等を利用して水温調整装置で水温を上昇させ、逆浸透膜ろ過処理16で用いられる高圧ろ過ポンプ動力の動力を低減させる。水温の上昇量は、膜の素材にダメージを与えない範囲内であって、スケール成分が析出しない範囲内で設定することが望ましい。海水は水温の変動によりホウ素濃度も変動するが、上記のフィードバック制御を用いて外乱に対応できる安定した水温調整制御を実現することができる。   In the present invention, it is possible to reduce the fluctuation of the treated water quality. That is, the boron concentration of treated water is measured, and when the measured value exceeds the reference value or exceeds the voluntary reference value, the water temperature is lowered by the water temperature adjusting device to improve the boron removal rate. It is desirable to set the amount of decrease in the water temperature within a range where the scale component does not precipitate. Conversely, when the boron concentration of the treated water is significantly lower than the standard value or voluntary standard value, the water temperature is raised with a water temperature adjustment device using exhaust heat, etc., and the high pressure filtration used in the reverse osmosis membrane filtration treatment 16 Reduce the power of the pump power. The amount of increase in the water temperature is preferably set within a range that does not damage the material of the film and that does not cause the scale component to precipitate. In seawater, the boron concentration also fluctuates due to fluctuations in water temperature, but stable water temperature adjustment control that can cope with disturbances can be realized using the feedback control described above.

実施例1によれば、処理水に含まれるホウ素濃度が水質基準値又は自主基準値を超過しない運転を実現することができる。また、処理水に含まれるホウ素濃度が水質基準値又は自主基準値を超過しないようにしつつ逆浸透膜ろ過処理16で用いられる高圧ろ過ポンプの動力を低減する運転を実現することができる。その結果、安全な処理水を供給できるとともに、運転コストの低減や環境負荷の低減が可能となる。   According to the first embodiment, it is possible to realize an operation in which the concentration of boron contained in the treated water does not exceed the water quality standard value or the voluntary standard value. Moreover, the operation | movement which reduces the motive power of the high pressure filtration pump used by the reverse osmosis membrane filtration process 16 can be implement | achieved, making the boron density | concentration contained in a treated water not exceed water quality reference value or a voluntary reference value. As a result, it is possible to supply safe treated water, and it is possible to reduce operating costs and environmental loads.

[実施例2]
図3は、本発明の実施例2の海水淡水化装置の構成をブロック線図で示す。海水10に含まれるホウ素濃度は、海水ホウ素濃度計測手段38によって計測され、そこから海水ホウ素濃度計測値44として出力される。そして海水10は、水温調整装置12で水温を調整されて水温調整海水14となる。水温調整海水14は、逆浸透膜ろ過処理16によって脱塩処理されて処理水18となる。なお、海水ホウ素濃度計測手段38は、水温調整装置12より後段であって、逆浸透膜ろ過処理16の前段に設置してもよい。
[Example 2]
FIG. 3 is a block diagram showing the configuration of the seawater desalination apparatus according to the second embodiment of the present invention. The boron concentration contained in the seawater 10 is measured by the seawater boron concentration measuring means 38, and is output as a seawater boron concentration measurement value 44 therefrom. Then, the seawater 10 is adjusted to a water temperature by a water temperature adjusting device 12 to become a water temperature adjusted seawater 14. The water temperature-adjusted seawater 14 is desalted by reverse osmosis membrane filtration 16 to become treated water 18. The seawater boron concentration measuring means 38 may be installed after the water temperature adjusting device 12 and before the reverse osmosis membrane filtration process 16.

海水ホウ素濃度計測値44は、処理水ホウ素濃度予測手段40へ与えられる。処理水ホウ素濃度予測手段40では、過去の実績データ又は物理モデルに基づいて、逆浸透膜ろ過処理16で処理された処理水中のホウ素濃度を予測演算する。この演算の出力である処理水ホウ素濃度予測値情報42は、目標ホウ素濃度情報36と共に制御装置24に与えられる。   The seawater boron concentration measurement value 44 is given to the treated water boron concentration prediction means 40. The treated water boron concentration predicting means 40 predicts and calculates the boron concentration in the treated water treated in the reverse osmosis membrane filtration treatment 16 based on past performance data or a physical model. The treated water boron concentration predicted value information 42, which is the output of this calculation, is given to the control device 24 together with the target boron concentration information 36.

制御装置24は、目標ホウ素濃度情報36と処理水ホウ素濃度予測値情報42に基づいて、水温調整装置運転信号26を水温調整装置12へ出力する。   The control device 24 outputs a water temperature adjusting device operation signal 26 to the water temperature adjusting device 12 based on the target boron concentration information 36 and the treated water boron concentration predicted value information 42.

水温調整装置12は、水温調整装置運転信号26に従って海水10の水温調整量を変化させる。ここで、水温調整装置12は、加温機能と冷却機能の一方のみを有するものでもよいが、双方を有するものでもよい。逆浸透膜ろ過処理16は、高圧逆浸透膜のみを用いた系統の処理でも、高圧逆浸透膜の後段に低圧逆浸透膜を備えた系統の処理でも、これらの系統の双方を備えた処理でもよい。   The water temperature adjustment device 12 changes the water temperature adjustment amount of the seawater 10 according to the water temperature adjustment device operation signal 26. Here, the water temperature adjusting device 12 may have only one of the heating function and the cooling function, or may have both. The reverse osmosis membrane filtration process 16 can be a system using only a high-pressure reverse osmosis membrane, a system including a low-pressure reverse osmosis membrane after the high-pressure reverse osmosis membrane, or a process including both of these systems. Good.

実施例2によれば、実施例1と同様に、処理水のホウ素濃度が水質基準値又は自主基準値又は目標ホウ素濃度を超過しないで、かつ大幅に下回らないように水温調整装置12を制御することにより、一層安全かつ低コストに淡水を得ることができる。実施例1がフィードバック制御であるのに対し、実施例2では、フィードフォワード的に水温調整装置12を制御することが特徴であり、そのため、実施例2では、特に海水10に含まれるホウ素濃度の急変に対し、その影響を極力抑制するように迅速に対応できる利点がある。   According to the second embodiment, as in the first embodiment, the water temperature adjusting device 12 is controlled so that the boron concentration of the treated water does not exceed the water quality reference value, the voluntary reference value, or the target boron concentration and does not greatly decrease. As a result, fresh water can be obtained more safely and at low cost. While the first embodiment is feedback control, the second embodiment is characterized in that the water temperature adjusting device 12 is controlled in a feed-forward manner. Therefore, in the second embodiment, the concentration of boron contained in the seawater 10 is particularly high. There is an advantage that a rapid change can be dealt with quickly so as to suppress the influence as much as possible.

なお、上記の水温調整のフィードフォワード的制御は、フィードバック制御と組み合わせるようにしてもよい。   Note that the feedforward control of the water temperature adjustment described above may be combined with feedback control.

[実施例3]
図4は、本発明の実施例3による海水淡水化装置の構成をブロック線図で示す。海水10は水温調整装置12で水温を調整され、水温調整海水14となる。水温調整海水14は、逆浸透膜ろ過処理16によって脱塩処理されて処理水18となる。処理水18に含まれるホウ素濃度は、処理水ホウ素濃度計測手段20によって計測され、処理水ホウ素濃度計測値22として出力される。
[Example 3]
FIG. 4 is a block diagram showing the configuration of the seawater desalination apparatus according to Embodiment 3 of the present invention. The water temperature of the seawater 10 is adjusted by a water temperature adjusting device 12 to become water temperature adjusted seawater 14. The water temperature-adjusted seawater 14 is desalted by reverse osmosis membrane filtration 16 to become treated water 18. The boron concentration contained in the treated water 18 is measured by the treated water boron concentration measuring means 20 and output as a treated water boron concentration measured value 22.

ろ過ポンプ動力コスト演算手段28は、水温や運転履歴によって決定されるろ過ポンプの動力コストを計算する。このろ過ポンプ動力コスト演算手段28の入力としては、逆浸透膜ろ過処理16における水温の情報が常にオンラインで与えられることが好ましい。また、運転履歴によって変化する膜差圧の情報としては実績データ又は物理モデルのいずれを用いてもよい。   The filtration pump power cost calculating means 28 calculates the power cost of the filtration pump determined by the water temperature and the operation history. As an input to the filtration pump power cost calculating means 28, it is preferable that information on the water temperature in the reverse osmosis membrane filtration process 16 is always given online. Moreover, as the information of the film differential pressure that changes depending on the operation history, either actual data or a physical model may be used.

ろ過ポンプ動力コスト情報30は、処理水ホウ素濃度計測値22、目標ホウ素濃度情報36と共に制御装置24に与えられる。制御装置24は、目標ホウ素濃度情報36、処理水ホウ素濃度計測値22及びろ過ポンプ動力コスト情報30に基づいて、水温調整装置運転信号26を水温調整装置12へ出力する。   The filtration pump power cost information 30 is given to the control device 24 together with the treated water boron concentration measurement value 22 and the target boron concentration information 36. The control device 24 outputs a water temperature adjustment device operation signal 26 to the water temperature adjustment device 12 based on the target boron concentration information 36, the treated water boron concentration measurement value 22, and the filtration pump power cost information 30.

水温調整装置12は、水温調整装置運転信号26に従って海水10の水温調整量を変化させる。ここで、水温調整装置は、加温機能と冷却機能の一方のみを有するものでもよいが、双方を有するものでもよい。逆浸透膜ろ過処理16は、高圧逆浸透膜のみを用いた系統の処理でも、高圧逆浸透膜の後段に低圧逆浸透膜を備えた系統の処理でも、これらの系統の双方を備えた処理でもよい。   The water temperature adjustment device 12 changes the water temperature adjustment amount of the seawater 10 according to the water temperature adjustment device operation signal 26. Here, the water temperature adjusting device may have only one of the heating function and the cooling function, or may have both. The reverse osmosis membrane filtration process 16 can be a system using only a high-pressure reverse osmosis membrane, a system including a low-pressure reverse osmosis membrane after the high-pressure reverse osmosis membrane, or a process including both of these systems. Good.

実施例3によれば、実施例1と同様に、制御装置24が水温調整装置運転信号26を出力するが、その値の決定の根拠として、ろ過ポンプの動力コストも加味されることが実施例3の特徴である。ホウ素が水質基準値又は自主基準値を達成できていない場合には、コストに関係なく、海水10の水温を低下させてホウ素の阻止率を上昇することが必要であるが、達成できている場合には、運転コストを最小化するため水温を上昇させることが有効な対処となる。   According to the third embodiment, as in the first embodiment, the control device 24 outputs the water temperature adjusting device operation signal 26. However, as a basis for determining the value, the power cost of the filtration pump is also taken into account. This is the third feature. If boron does not meet the water quality standard value or voluntary standard value, it is necessary to lower the water temperature of seawater 10 and increase the boron rejection rate regardless of the cost, but if it is achieved In order to minimize the operation cost, it is effective to raise the water temperature.

[実施例4]
図5は、本発明の実施例4による海水淡水化装置の構成をブロック線図で示す。実施例4は、実施例2で示したフィードフォワード制御の例に、実施例3で示したろ過ポンプ動力コスト演算手段28を組み込んだ例となっている。
[Example 4]
FIG. 5 is a block diagram showing the configuration of a seawater desalination apparatus according to Embodiment 4 of the present invention. The fourth embodiment is an example in which the filtration pump power cost calculating means 28 shown in the third embodiment is incorporated into the feedforward control example shown in the second embodiment.

[実施例5]
図6は、本発明の実施例5による海水淡水化装置の構成をブロック線図で示す。海水10は、水温調整装置12で水温を調整され、水温調整海水14となる。水温調整海水14は、逆浸透膜ろ過処理16によって脱塩処理されて処理水18となる。処理水18に含まれるホウ素濃度は、処理水ホウ素濃度計測手段20によって計測され、処理水ホウ素濃度計測値22として出力される。
[Example 5]
FIG. 6: shows the structure of the seawater desalination apparatus by Example 5 of this invention with a block diagram. The water temperature of the seawater 10 is adjusted by a water temperature adjusting device 12 to become water temperature adjusted seawater 14. The water temperature-adjusted seawater 14 is desalted by reverse osmosis membrane filtration 16 to become treated water 18. The boron concentration contained in the treated water 18 is measured by the treated water boron concentration measuring means 20 and output as a treated water boron concentration measured value 22.

ろ過ポンプ動力コスト演算手段28は、水温や運転履歴によって決定されるろ過ポンプの動力コストを計算する。ろ過ポンプ動力コスト演算手段28の入力としては、逆浸透膜ろ過処理16における水温の情報が常にオンラインで与えられることが好ましい。また、運転履歴によって変化する膜差圧の情報としては、実績データ又は物理モデルのいずれを用いてもよい。   The filtration pump power cost calculating means 28 calculates the power cost of the filtration pump determined by the water temperature and the operation history. As an input to the filtration pump power cost calculation means 28, it is preferable that information on the water temperature in the reverse osmosis membrane filtration process 16 is always given online. Moreover, as the information of the film differential pressure that changes depending on the operation history, either actual data or a physical model may be used.

水温調整装置運転コスト演算手段32は、調整量によって決定される水温調整装置の運転コストを計算する。この出力である水温調整装置運転コスト情報34は、ろ過ポンプ動力コスト情報30、処理水ホウ素濃度計測値22及び目標ホウ素濃度情報36と共に制御装置24に与えられる。   The water temperature adjusting device operating cost calculating means 32 calculates the operating cost of the water temperature adjusting device determined by the adjustment amount. The output water temperature adjusting device operating cost information 34 is output to the control device 24 together with the filtration pump power cost information 30, the treated water boron concentration measurement value 22, and the target boron concentration information 36.

制御装置24は、目標ホウ素濃度情報36、処理水ホウ素濃度計測値22及びろ過ポンプ動力コスト情報30に基づいて、水温調整装置運転信号26を水温調整装置12へ出力する。水温調整装置12は、水温調整装置運転信号26に従って海水10の水温調整量を変化させる。ここで、水温調整装置は、加温機能と冷却機能の一方のみを有するものでもよいが、双方を有するものでもよい。逆浸透膜ろ過処理16は、高圧逆浸透膜のみを用いた系統の処理でも、高圧逆浸透膜の後段に低圧逆浸透膜を備えた系統の処理でも、これらの系統の双方を備えた処理でもよい。   The control device 24 outputs a water temperature adjustment device operation signal 26 to the water temperature adjustment device 12 based on the target boron concentration information 36, the treated water boron concentration measurement value 22, and the filtration pump power cost information 30. The water temperature adjustment device 12 changes the water temperature adjustment amount of the seawater 10 according to the water temperature adjustment device operation signal 26. Here, the water temperature adjusting device may have only one of the heating function and the cooling function, or may have both. The reverse osmosis membrane filtration process 16 can be a system using only a high-pressure reverse osmosis membrane, a system including a low-pressure reverse osmosis membrane after the high-pressure reverse osmosis membrane, or a process including both of these systems. Good.

実施例5によれば、制御装置24は水温調整装置運転信号26を出力するが、その値の決定の根拠として、ろ過ポンプの動力コストと水温調整装置の運転コストのトレードオフを考慮する。ホウ素が水質基準値又は自主基準値を達成できていない場合には、コストに関係なく海水10の水温を低下させてホウ素の阻止率を上昇することが必要である。例えば、処理水のホウ素濃度が予め与えられた目標ホウ素濃度以下となる条件を満たしつつ、ろ過ポンプ動力コストと水温調整装置の運転コストの和を最小化する水温調整装置の運転量を決定して運転する制御方法が好ましい。   According to the fifth embodiment, the control device 24 outputs the water temperature adjusting device operation signal 26, but considers the trade-off between the power cost of the filtration pump and the operation cost of the water temperature adjusting device as the basis for determining the value. When boron cannot achieve the water quality standard value or the voluntary standard value, it is necessary to decrease the water temperature of the seawater 10 and increase the boron rejection rate regardless of the cost. For example, the operation amount of the water temperature adjustment device that minimizes the sum of the filtration pump power cost and the operation cost of the water temperature adjustment device while satisfying the condition that the boron concentration of the treated water is equal to or less than the target boron concentration given in advance is determined. A control method of driving is preferred.

水温調整装置12の熱源が圧力を有する排熱であってコストがかからない場合には、運転コストを最小化するため水温を上昇させることが有効である。しかし、水温調整装置12の加熱や冷却のためにヒータ、吸収式冷凍機、ポンプ、ブロワ等のコストを要する装置を用いる場合には、水温の変化量を小さくしたり、変化させないようにしたりするのがよい場合があり得る。実施例5の形態をとることにより、全体としてのコストの最小化を図り、一層効率的な運転が可能となる。   When the heat source of the water temperature adjusting device 12 is exhaust heat having pressure and it does not cost, it is effective to raise the water temperature in order to minimize the operation cost. However, when using devices that require cost such as heaters, absorption chillers, pumps, blowers, etc. for heating and cooling the water temperature adjusting device 12, the amount of change in the water temperature is reduced or not changed. It can be good. By taking the form of the fifth embodiment, the cost as a whole can be minimized and more efficient operation can be achieved.

なお、以上、各実施例における「海水」とは、海から取水した水を、逆浸透膜によるろ過工程に通水するための前処理を経た海水も含めて意味している。   As mentioned above, “seawater” in each embodiment means seawater that has undergone pretreatment for passing water taken from the sea to the filtration step using a reverse osmosis membrane.

10・・・海水、12・・・水温調整装置、14・・・水温調整海水、16・・・逆浸透膜ろ過処理、18・・・処理水、20・・・処理水ホウ素濃度計測手段、22・・・処理水ホウ素濃度計測値、24・・・制御装置、26・・・水温調整装置運転信号、28・・・ろ過ポンプ動力コスト演算手段、30・・・ろ過ポンプ動力コスト情報、32・・・水温調整装置運転コスト演算手段、34・・・水温調整装置運転コスト情報、36・・・目標ホウ素濃度情報、38・・・海水ホウ素濃度計測手段、40・・・処理水ホウ素濃度予測手段、42・・・処理水ホウ素濃度予測値情報、44・・・海水ホウ素濃度計測値   10 ... seawater, 12 ... water temperature adjusting device, 14 ... water temperature adjusting seawater, 16 ... reverse osmosis membrane filtration treatment, 18 ... treated water, 20 ... treated water boron concentration measuring means, 22 ... Measured value of treated water boron concentration, 24 ... Control device, 26 ... Water temperature adjusting device operation signal, 28 ... Filter pump power cost calculation means, 30 ... Filter pump power cost information, 32・ ・ ・ Water temperature adjusting device operating cost calculation means 34… Water temperature adjusting device operating cost information 36 36 Target boron concentration information 38 38 Seawater boron concentration measuring means 40 40 Processed water boron concentration prediction Means 42 ... Processed boron concentration prediction value information 44 ... Seawater boron concentration measurement value

Claims (10)

逆浸透膜によるろ過処理を用いた海水淡水化装置において、
逆浸透膜の上流側に配置されて海水の水温を変化させる水温調整装置と、
前記ろ過処理後の処理水のホウ素濃度を計測するホウ素濃度計測手段と、
前記処理水のホウ素濃度情報及び予め与えられた目標ホウ素濃度情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を備えた前記装置。
In seawater desalination equipment using filtration by reverse osmosis membranes,
A water temperature adjustment device arranged upstream of the reverse osmosis membrane to change the temperature of the seawater;
Boron concentration measuring means for measuring the boron concentration of the treated water after the filtration treatment;
A control device configured to determine and operate an operation amount of the water temperature adjusting device based on the boron concentration information of the treated water and target boron concentration information given in advance;
請求項1に記載された海水淡水化装置において、
前記水温調整装置による水温調整後の海水の水温に基づいてろ過ポンプ動力コスト情報を演算するろ過ポンプ動力コスト演算手段と、
前記処理水のホウ素濃度情報及び予め与えられた目標ホウ素濃度情報並びに前記ろ過ポンプ動力コスト情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を更に備えた前記装置。
In the seawater desalination apparatus according to claim 1,
Filtration pump power cost calculating means for calculating filtration pump power cost information based on the water temperature of seawater after the water temperature adjustment by the water temperature adjusting device;
The apparatus further comprising: a control device that operates by determining an operation amount of the water temperature adjustment device based on the boron concentration information of the treated water, the target boron concentration information given in advance, and the filtration pump power cost information.
逆浸透膜によるろ過処理を用いた海水淡水化装置において、
逆浸透膜の上流側に配置されて海水の水温を変化させる水温調整装置と、
海水のホウ素濃度を計測するホウ素濃度計測手段と、
前記海水のホウ素濃度から前記ろ過処理後の処理水のホウ素濃度予測情報を演算する処理水ホウ素濃度予測手段と、
前記処理水のホウ素濃度予測情報及び予め与えられた目標ホウ素濃度情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を備えた前記装置。
In seawater desalination equipment using filtration by reverse osmosis membranes,
A water temperature adjustment device arranged upstream of the reverse osmosis membrane to change the temperature of the seawater;
Boron concentration measuring means for measuring boron concentration in seawater;
Treated water boron concentration prediction means for calculating the boron concentration prediction information of the treated water after the filtration treatment from the boron concentration of the seawater;
The said control apparatus provided with the control apparatus which determines and operates the operating amount of the said water temperature adjusting apparatus based on the boron concentration prediction information of the said treated water, and the target boron concentration information given beforehand.
請求項3に記載された海水淡水化装置において、
前記水温調整装置による水温調整後の海水の水温に基づいてろ過ポンプ動力コスト情報を演算するろ過ポンプ動力コスト演算手段と、
前記処理水のホウ素濃度予測情報及び予め与えられた目標ホウ素濃度情報並びに前記ろ過ポンプ動力コスト情報に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、
を更に備えた前記装置。
In the seawater desalination apparatus according to claim 3,
Filtration pump power cost calculating means for calculating filtration pump power cost information based on the water temperature of seawater after the water temperature adjustment by the water temperature adjusting device;
A control device for determining and operating the operation amount of the water temperature adjusting device based on the boron concentration prediction information of the treated water and the target boron concentration information given in advance and the filtration pump power cost information;
The apparatus further comprising:
逆浸透膜によるろ過処理を用いた海水淡水化装置において、
逆浸透膜の上流側に配置されて海水の水温を変化させる水温調整装置と、
前記ろ過処理後の処理水のホウ素濃度を計測するホウ素濃度計測手段と、
前記水温調整装置による水温調整後の海水の水温に基づいてろ過ポンプ動力コストを演算するろ過ポンプ動力コスト演算手段と、
前記水温調整装置の運転コストを演算する水温調整装置運転コスト演算手段と、
前記処理水のホウ素濃度及び予め与えられた目標ホウ素濃度情報及び前記ろ過ポンプ動力コスト及び前記水温調整装置の運転コストの値に基づいて前記水温調整装置の運転量を決定して運転する制御装置と、を備えた前記装置。
In seawater desalination equipment using filtration by reverse osmosis membranes,
A water temperature adjustment device arranged upstream of the reverse osmosis membrane to change the temperature of the seawater;
Boron concentration measuring means for measuring the boron concentration of the treated water after the filtration treatment;
Filtration pump power cost calculating means for calculating the filter pump power cost based on the water temperature of the seawater after the water temperature adjustment by the water temperature adjusting device;
A water temperature adjusting device operating cost calculating means for calculating an operating cost of the water temperature adjusting device;
A control device that operates by determining an operation amount of the water temperature adjusting device based on values of boron concentration of the treated water, preliminarily provided target boron concentration information, the filtration pump power cost, and the operating cost of the water temperature adjusting device; The apparatus comprising:
請求項5に記載された海水淡水化装置において、
前記処理水のホウ素濃度情報が予め与えられた目標ホウ素濃度情報以下となる条件を満たしつつ、前記ろ過ポンプ動力コスト情報及び前記水温調整装置の運転コスト情報の和を最小化するように前記水温調整装置の運転量を決定して運転する制御装置と、を備えた前記装置。
In the seawater desalination apparatus according to claim 5,
The water temperature adjustment so as to minimize the sum of the filtration pump power cost information and the operation cost information of the water temperature adjustment device while satisfying the condition that the boron concentration information of the treated water is equal to or less than a predetermined target boron concentration information. And a control device for determining and operating the amount of operation of the device.
請求項1から6に記載された海水淡水化装置において、
前記水温調整装置が少なくとも冷却機能を有する、前記装置。
In the seawater desalination apparatus according to claim 1,
The apparatus, wherein the water temperature adjusting device has at least a cooling function.
請求項1から7に記載された海水淡水化装置において、
前記水温調整装置の熱源として、前記ろ過処理する海水とは異なる箇所から取水した海水を用いる、前記装置。
The seawater desalination apparatus according to claim 1,
The said apparatus which uses the seawater taken from the location different from the said seawater to filter as a heat source of the said water temperature adjustment apparatus.
請求項8に記載された海水淡水化装置において、
前記異なる箇所から取水した海水が、海水深層水又はその濃縮水である、前記装置。
In the seawater desalination apparatus according to claim 8,
The said apparatus whose seawater taken in from the said different location is seawater deep water or its concentrated water.
請求項1から9に記載された海水淡水化装置において、
前記水温調整装置が少なくとも熱源を備え、該熱源として発電設備の排熱を用いる、前記装置。
The seawater desalination apparatus according to claim 1,
The apparatus, wherein the water temperature adjusting device includes at least a heat source, and uses exhaust heat of power generation equipment as the heat source.
JP2010011930A 2010-01-22 2010-01-22 Seawater desalination apparatus Pending JP2011147894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011930A JP2011147894A (en) 2010-01-22 2010-01-22 Seawater desalination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011930A JP2011147894A (en) 2010-01-22 2010-01-22 Seawater desalination apparatus

Publications (1)

Publication Number Publication Date
JP2011147894A true JP2011147894A (en) 2011-08-04

Family

ID=44535402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011930A Pending JP2011147894A (en) 2010-01-22 2010-01-22 Seawater desalination apparatus

Country Status (1)

Country Link
JP (1) JP2011147894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119051A1 (en) * 2016-01-04 2017-07-13 三菱重工業株式会社 Water treatment system and water treatment method
JP2018058018A (en) * 2016-10-04 2018-04-12 野村マイクロ・サイエンス株式会社 Regeneration method for reverse osmosis membrane
KR20200064725A (en) * 2018-11-29 2020-06-08 주식회사 필터테크 Seawater desalination equipment
CN114509549A (en) * 2022-02-07 2022-05-17 西安西热水务环保有限公司 Continuous detection system and method for boron in seawater desalination production water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239134A (en) * 2000-03-01 2001-09-04 Toray Ind Inc Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2005144301A (en) * 2003-11-13 2005-06-09 Mitsubishi Heavy Ind Ltd Desalting apparatus and desalting method
JP2005342587A (en) * 2004-06-01 2005-12-15 Toray Ind Inc Water production method and water production device
JP2006075667A (en) * 2004-09-07 2006-03-23 Toray Ind Inc Operation method of semipermeable membrane apparatus and semipermeable membrane apparatus
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239134A (en) * 2000-03-01 2001-09-04 Toray Ind Inc Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2005144301A (en) * 2003-11-13 2005-06-09 Mitsubishi Heavy Ind Ltd Desalting apparatus and desalting method
JP2005342587A (en) * 2004-06-01 2005-12-15 Toray Ind Inc Water production method and water production device
JP2006075667A (en) * 2004-09-07 2006-03-23 Toray Ind Inc Operation method of semipermeable membrane apparatus and semipermeable membrane apparatus
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119051A1 (en) * 2016-01-04 2017-07-13 三菱重工業株式会社 Water treatment system and water treatment method
JP2018058018A (en) * 2016-10-04 2018-04-12 野村マイクロ・サイエンス株式会社 Regeneration method for reverse osmosis membrane
KR20200064725A (en) * 2018-11-29 2020-06-08 주식회사 필터테크 Seawater desalination equipment
KR102175288B1 (en) * 2018-11-29 2020-11-06 주식회사 필터테크 Seawater desalination equipment
CN114509549A (en) * 2022-02-07 2022-05-17 西安西热水务环保有限公司 Continuous detection system and method for boron in seawater desalination production water
CN114509549B (en) * 2022-02-07 2024-06-11 西安西热水务环保有限公司 Continuous detection system and method for boron in seawater desalination produced water

Similar Documents

Publication Publication Date Title
González et al. Membrane distillation: Perspectives for sustainable and improved desalination
US6946081B2 (en) Desalination system
Khayet et al. Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology
JP6149993B1 (en) Ultrapure water production equipment
JP5933926B2 (en) Seawater desalination system and seawater desalination method
JP5082661B2 (en) Water treatment system
Ruiz-García et al. Performance evaluation and boron rejection in a SWRO system under variable operating conditions
Mabrouk et al. Experimental study of high-performance hybrid NF-MSF desalination pilot test unit driven by renewable energy
JP2011147894A (en) Seawater desalination apparatus
JP5953726B2 (en) Ultrapure water production method and apparatus
Ahmed et al. Design and optimization of a unique pilot scale forward osmosis integrated membrane distillation system for seawater desalination
US20180273402A1 (en) Method and system for solar driven osmotic water purification
Ncube et al. Modeling, simulation and optimization of a reverse osmosis desalination plant
JP2005144301A (en) Desalting apparatus and desalting method
Zhang et al. A systematic construction of water-electricity cogeneration and thermal membrane coupling desalination technology using the waste heat in steel industry
Sadri et al. Multi objective optimization of reverse osmosis desalination plant with exergy approach
JP6269486B2 (en) Demineralized water production method
JP2011177600A (en) Seawater desalination system
JP2013204956A (en) Operation method for pure water cooling device
JP6350718B2 (en) Ultrapure water production equipment
JP2013202610A (en) Ultrapure water production apparatus
JP6879228B2 (en) Water treatment equipment and water treatment method
JP2009183800A (en) Pure water production method and device
Mujtaba et al. Model-based techniques in desalination processes: a review
Efraty Closed circuit desalination series no-9: theoretical model assessment of the flexible BWRO-CCD technology for high recovery, low energy and reduced fouling applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108