JP7157142B2 - Anion exchange resin and water treatment method using the same - Google Patents

Anion exchange resin and water treatment method using the same Download PDF

Info

Publication number
JP7157142B2
JP7157142B2 JP2020509878A JP2020509878A JP7157142B2 JP 7157142 B2 JP7157142 B2 JP 7157142B2 JP 2020509878 A JP2020509878 A JP 2020509878A JP 2020509878 A JP2020509878 A JP 2020509878A JP 7157142 B2 JP7157142 B2 JP 7157142B2
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
resin
basic anion
type cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020509878A
Other languages
Japanese (ja)
Other versions
JPWO2019188309A1 (en
Inventor
幸男 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Publication of JPWO2019188309A1 publication Critical patent/JPWO2019188309A1/en
Application granted granted Critical
Publication of JP7157142B2 publication Critical patent/JP7157142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Description

本発明は、陰イオン交換樹脂及びこれを用いた水処理方法に関する。 The present invention relates to an anion exchange resin and a water treatment method using the same.

従来、半導体製造工程で使用する超純水は、超純水製造システムを用いて製造されている。超純水製造システムは、例えば、原水中の懸濁物質を除去して前処理水を得る前処理部、前処理水中の全有機炭素(TOC)成分やイオン成分を、逆浸透膜装置やイオン交換装置を用いて除去して一次純水を製造する一次純水製造部及び一次純水中の極微量の不純物を除去して超純水を製造する二次純水製造部を有している。原水としては、市水、井水、地下水、工業用水等の他、超純水の使用場所(ユースポイント:POU)で回収された使用済みの超純水(以下、「回収水」と称する。)が用いられる。 Conventionally, ultrapure water used in semiconductor manufacturing processes is produced using an ultrapure water production system. The ultrapure water production system includes, for example, a pretreatment unit that removes suspended solids in the raw water to obtain pretreated water, a total organic carbon (TOC) component and ion components in the pretreated water, a reverse osmosis membrane device and an ion It has a primary pure water production section that produces primary pure water by removing it using an exchange device and a secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water. . Raw water includes city water, well water, groundwater, industrial water, etc., as well as used ultrapure water collected at points of use (POU) (hereinafter referred to as "collected water"). ) is used.

このような超純水製造システムでは、一般的に、原水中のイオン成分を除去するために陰イオン交換樹脂や陽イオン交換樹脂が使用される。例えば、イオン交換樹脂を使用した装置として、大規模な超純水製造システムにおいては、陽イオン交換樹脂と陰イオン交換樹脂を別の塔に充填した複床式の装置が使用されることがある。この複床式の装置としては、陽イオン交換樹脂を充填したカチオン塔と、陰イオン交換樹脂を充填したアニオン塔を直列に接続し、これらの間(カチオン塔の後)に脱炭酸塔を設けた2床3塔式の装置が一般的である。 Such an ultrapure water production system generally uses an anion exchange resin or a cation exchange resin to remove ion components in the raw water. For example, as a device using ion exchange resin, in a large-scale ultrapure water production system, a multi-bed device in which cation exchange resin and anion exchange resin are packed in separate towers may be used. . In this double-bed device, a cation tower filled with a cation exchange resin and an anion tower filled with an anion exchange resin are connected in series, and a decarboxylation tower is provided between them (after the cation tower). A two-bed, three-tower system is generally used.

また、イオン交換樹脂を使用した装置においては、塩基性陰イオン交換樹脂に特定の機能を有する官能基や金属を導入して、一次純水中の微量不純物を除去する方法も知られている(例えば、特許文献1、2参照。)。 In addition, in a device using an ion exchange resin, a method is also known in which a functional group or metal having a specific function is introduced into the basic anion exchange resin to remove trace impurities in the primary pure water ( For example, see Patent Documents 1 and 2).

ここで、イオン交換樹脂の中でも、塩基性陰イオン交換樹脂は、そのイオン交換基としてアミンを有する。そのため、塩基性陰イオン交換樹脂から、トリメチルアミン(以下、TMAともいう。)、ジメチルアミン、モノメチルアミン等のアミン類が微量漏出する。これらのアミン類は腐敗魚臭と表現される臭気を発生する。特にTMAはごく微量であっても、相当程度の臭気を発生する。 Here, among ion exchange resins, basic anion exchange resins have amines as their ion exchange groups. Therefore, a small amount of amines such as trimethylamine (hereinafter also referred to as TMA), dimethylamine, and monomethylamine leak out from the basic anion exchange resin. These amines generate an odor described as putrid fish odor. In particular, even a very small amount of TMA generates a considerable odor.

上記のような超純水製造システムでは、規模にもよるが、1つの樹脂塔あたり約100Lのイオン交換樹脂が使用され、このような樹脂塔が1つのイオン交換樹脂装置あたり数十塔配置される。 In the ultrapure water production system as described above, depending on the scale, about 100 L of ion exchange resin is used per resin tower, and several tens of such resin towers are arranged per ion exchange resin apparatus. be.

そのため、非再生型のイオン交換樹脂装置などで、樹脂塔内部の塩基性陰イオン交換樹脂を交換する際には、TMAの臭気が周囲に立ち込めるため、その対策が求められていた。特に、大規模の超純水製造システムでは、一度に交換される樹脂量も多く、臭気も相当程度に増大するという問題がある。さらに、超純水が供給される半導体製造工場などの超純水の使用場所(POU : Point of Use)に臭気が達し、工場の作業者に不快感を与えるなどの問題もある。 Therefore, when the basic anion-exchange resin inside the resin tower is replaced in a non-regenerative ion-exchange resin unit or the like, the odor of TMA pervades the surroundings. In particular, in a large-scale ultrapure water production system, there is a problem that a large amount of resin is exchanged at one time, and the odor increases considerably. Furthermore, there is also the problem that the odor reaches a place of use (POU: Point of Use) of ultrapure water such as a semiconductor manufacturing factory to which ultrapure water is supplied, causing discomfort to factory workers.

ここで、塩基性陰イオン交換樹脂の処理水の臭気対策として、強塩基性アニオン交換樹脂をH形のカチオン交換樹脂と混合状態で加熱処理し、その後カチオン交換樹脂を分離して、溶出物を低減化した強塩基性陰イオン交換樹脂を用いた方法が知られている(例えば、特許文献3参照。)。また、食品製造業で使用される回収処理水を含む用水処理水の臭気を除去する方法として、アニオン交換樹脂から漏出する臭気を有する水を塩形カチオン交換樹脂に通水させる方法も知られている(例えば、特許文献4参照。)。 Here, as a countermeasure against the odor of the treated water of the basic anion exchange resin, the strongly basic anion exchange resin is heat-treated in a mixed state with the H-type cation exchange resin, and then the cation exchange resin is separated and the effluent is collected. A method using a reduced strongly basic anion exchange resin is known (see, for example, Patent Document 3). Further, as a method for removing the odor of treated water containing recovered treated water used in the food manufacturing industry, a method of passing odor-bearing water leaking from an anion exchange resin through a salt-form cation exchange resin is also known. (See Patent Document 4, for example).

しかしながら、特許文献3の方法は、混合、加熱、分離という工程を経るために、イオン交換樹脂の製造時のプロセスが増えるため、コストアップや納期が長くなる問題があり、通常は行われていない。また、特許文献4に記載の方法では、水中の臭気が低減できるものの、強塩基性陰イオン交換樹脂の入れ替えの際の臭気対策としては十分な効果が得られないという問題があった。 However, the method of Patent Document 3 involves steps of mixing, heating, and separation, which increases the number of processes during the production of the ion-exchange resin, resulting in increased costs and longer delivery times. . In addition, although the method described in Patent Document 4 can reduce the odor in water, there is a problem that a sufficient effect as a countermeasure against odor when replacing the strongly basic anion exchange resin cannot be obtained.

特開昭61-174987号公報JP-A-61-174987 特公昭62-35838号公報Japanese Patent Publication No. 62-35838 特開2007-75720号公報JP 2007-75720 A 特開2015-24379号公報JP 2015-24379 A

本発明は上記した課題を解決するためになされたものであって、超純水製造システムなどで好適に使用される、臭気を低減した陰イオン交換樹脂及びこれを用いた水処理方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides an odor-reduced anion exchange resin suitable for use in ultrapure water production systems and the like, and a water treatment method using the same. for the purpose.

本発明の臭気を抑えた陰イオン交換樹脂は、塩基性陰イオン交換樹脂と、前記塩基性陰イオン交換樹脂100質量部に対して0.01質量部以上5質量部未満のH型強酸性陽イオン交換樹脂とを混合してなることを特徴とする。 The odor-suppressing anion exchange resin of the present invention comprises a basic anion exchange resin and 0.01 parts by mass or more and less than 5 parts by mass of an H-type strongly acidic cation with respect to 100 parts by mass of the basic anion exchange resin. It is characterized by being mixed with an ion exchange resin.

本発明の陰イオン交換樹脂は、前記塩基性陰イオン交換樹脂と前記H型強酸性陽イオン交換樹脂は逆洗分離されないことが好ましい。 In the anion exchange resin of the present invention, the basic anion exchange resin and the H-type strongly acidic cation exchange resin are preferably not separated by backwashing.

本発明の陰イオン交換樹脂は、前記塩基性陰イオン交換樹脂にパラジウムが担持されたパラジウム担持樹脂を含むことが好ましい。 The anion exchange resin of the present invention preferably contains a palladium-supported resin in which palladium is supported on the basic anion exchange resin.

本発明の陰イオン交換樹脂において、前記塩基性陰イオン交換樹脂に、亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂を含むことが好ましい。 In the anion exchange resin of the present invention, the basic anion exchange resin preferably contains a reducing resin having a sulfite group and/or a hydrogen sulfite group.

本発明の水処理方法は、陰イオン交換樹脂に被処理水を通水する水処理方法であって、前記陰イオン交換樹脂は、塩基性陰イオン交換樹脂と、前記塩基性陰イオン交換樹脂100質量部に対して0.01質量部以上5質量部未満のH型強酸性陽イオン交換樹脂とを混合してなる臭気を抑えた陰イオン交換樹脂であることを特徴とする。 The water treatment method of the present invention is a water treatment method in which water to be treated is passed through an anion exchange resin. It is characterized by being an odor-suppressing anion exchange resin obtained by mixing 0.01 parts by mass or more and less than 5 parts by mass of an H-type strongly acidic cation exchange resin with respect to parts by mass.

本発明によれば、超純水製造システムなどに好適な、臭気を低減した陰イオン交換樹脂及びこれを用いた水処理方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an odor-reduced anion exchange resin suitable for an ultrapure water production system and a water treatment method using the same.

第1の実施形態に係る超純水製造システムを概略的に表すブロック図である。1 is a block diagram schematically showing an ultrapure water production system according to a first embodiment; FIG. 図1に示す超純水製造システムの一次純水製造部の一例を概略的に表すブロック図である。2 is a block diagram schematically showing an example of a primary pure water production section of the ultrapure water production system shown in FIG. 1; FIG. 図2に示す超純水製造システムの二次純水製造部の一例を概略的に表すブロック図である。3 is a block diagram schematically showing an example of a secondary pure water production section of the ultrapure water production system shown in FIG. 2; FIG.

以下、本発明の一実施形態について詳細に説明する。
本実施形態の陰イオン交換樹脂は、塩基性陰イオン交換樹脂と、H型陽イオン交換樹脂とを混合してなり、塩基性陰イオン交換樹脂100質量部に対するH型陽イオン交換樹脂の量が0.01質量部以上5質量部未満である。H型陽イオン交換樹脂の量は、5質量部以上では、H型陽イオン交換樹脂が過剰になるので陰イオン交換機能を損ない、0.01質量部未満では十分な臭気の低減効果が得られない。本実施形態の陰イオン交換樹脂において、塩基性陰イオン交換樹脂に対するH型陽イオン交換樹脂の量は、0.1質量部以上2質量部以下がより好ましい。0.5質量部以上1.5質量部以下がさらに好ましい。
An embodiment of the present invention will be described in detail below.
The anion exchange resin of the present embodiment is a mixture of a basic anion exchange resin and an H-type cation exchange resin, and the amount of the H-type cation exchange resin with respect to 100 parts by mass of the basic anion exchange resin is It is 0.01 mass part or more and less than 5 mass parts. If the amount of the H-type cation exchange resin is 5 parts by mass or more, the amount of the H-type cation exchange resin becomes excessive, impairing the anion exchange function. do not have. In the anion exchange resin of the present embodiment, the amount of the H-type cation exchange resin to the basic anion exchange resin is more preferably 0.1 parts by mass or more and 2 parts by mass or less. 0.5 parts by mass or more and 1.5 parts by mass or less is more preferable.

なお、本実施形態の陰イオン交換樹脂は、厳密には、陰イオン交換樹脂と陽イオン交換樹脂を混合した混床樹脂に該当するが、陽イオン交換樹脂の量が陰イオン交換樹脂に比べて微量であり、陰イオン交換樹脂としての使用が好適であることから、「陰イオン交換樹脂」と称する。 Strictly speaking, the anion exchange resin of the present embodiment corresponds to a mixed bed resin in which an anion exchange resin and a cation exchange resin are mixed. Since the amount is very small and it is suitable for use as an anion exchange resin, it is called an "anion exchange resin".

塩基性陰イオン交換樹脂は、その使用により、トリメチルアミン(TMA)、ジメチルアミン、モノメチルアミン等のアミン類による臭気を発生するものである。塩基性陰イオン交換樹脂としては、公知の塩基性陰イオン交換樹脂が特に限定されずに用いることができ、1級アミン、2級アミン又は3級アミンを交換基として有する弱塩基性陰イオン交換樹脂と、4級アンモニウム基を交換基として有する強塩基性陰イオン交換樹脂が挙げられる。4級アンモニウム基としては、例えば、トリメチルアンモニウム基や、ジメチルエタノールアンモニウム基等が挙げられる。また、これらの塩基性陰イオン交換樹脂は、一般に、架橋ポリスチレン(スチレン・ジビニルベンゼン共重合体)又はポリアクリル酸エステルを樹脂骨格として有する。これらの中でも、臭気を発しやすい強塩基性陰イオン交換樹脂を使用した場合に多大な効果が得られる。 Basic anion exchange resins generate odors due to amines such as trimethylamine (TMA), dimethylamine, and monomethylamine when used. As the basic anion exchange resin, a known basic anion exchange resin can be used without particular limitation, and a weakly basic anion exchange resin having a primary amine, secondary amine or tertiary amine as an exchange group Resins and strongly basic anion exchange resins having quaternary ammonium groups as exchange groups can be mentioned. Examples of quaternary ammonium groups include trimethylammonium groups and dimethylethanolammonium groups. Moreover, these basic anion exchange resins generally have crosslinked polystyrene (styrene-divinylbenzene copolymer) or polyacrylic acid ester as a resin skeleton. Among these, a great effect can be obtained when a strongly basic anion exchange resin, which tends to emit an odor, is used.

塩基性陰イオン交換樹脂の比重は、通常1.0~1.1g/cmであり、交換容量は好ましくは0.7~1.5meq/mL、より好ましくは1~1.5meq/mLである。このような塩基性陰イオン交換樹脂の市販品としては、ダウケミカル社製のDUOLITE AGP、三菱化学社製のSAT20L等が挙げられる。The basic anion exchange resin usually has a specific gravity of 1.0 to 1.1 g/cm 3 and an exchange capacity of preferably 0.7 to 1.5 meq/mL, more preferably 1 to 1.5 meq/mL. be. Commercially available products of such a basic anion exchange resin include DUOLITE AGP manufactured by Dow Chemical Company, SAT20L manufactured by Mitsubishi Chemical Corporation, and the like.

塩基性陰イオン交換樹脂は、塩型であってもOH型であってもよい。塩型の塩基性陰イオン交換樹脂からOH型を得る方法としては、塩型の塩基性陰イオン交換樹脂に、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ性水溶液を通流させて再生する方法がある。塩基性陰イオン交換樹脂は、臭気を発しやすいOH型であると、多大な臭気抑制の効果が得られる。塩基性陰イオン交換樹脂は、OH型である場合、OH型転換率としては、99.95%以上が好ましい。 The basic anion exchange resin may be in salt form or OH form. As a method of obtaining OH form from a salt-type basic anion exchange resin, a method of regenerating by passing an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution through a salt-type basic anion exchange resin. There is If the basic anion exchange resin is of the OH type, which tends to emit an odor, a great odor suppressing effect can be obtained. When the basic anion exchange resin is OH type, the OH type conversion rate is preferably 99.95% or more.

本実施形態で使用される塩基性陰イオン交換樹脂としては、塩基性陰イオン交換樹脂、好ましくは強塩基性陰イオン交換樹脂にパラジウム(Pd)を担持させたパラジウム担持樹脂や白金(Pt)を担持した白金担持樹脂を用いてもよい。パラジウム担持樹脂は、塩基性陰イオン交換樹脂に、塩化パラジウムの酸性溶液を通水して得られる。パラジウム担持樹脂におけるパラジウムの担持量は、0.1g-Pd/L~2g-Pd/Lであると、臭気抑制に多大な効果を発揮する。 As the basic anion exchange resin used in the present embodiment, a basic anion exchange resin, preferably a palladium-supported resin in which palladium (Pd) is supported on a strongly basic anion exchange resin, or platinum (Pt) is used. A supported platinum-supporting resin may also be used. A palladium-supported resin is obtained by passing an acidic solution of palladium chloride through a basic anion exchange resin. When the amount of palladium supported on the palladium-supporting resin is in the range of 0.1 g-Pd/L to 2 g-Pd/L, it exhibits a great effect in suppressing odor.

本実施形態で使用される塩基性陰イオン交換樹脂としては、塩基性陰イオン交換樹脂に亜硫酸基(-SO)又は亜硫酸水素基(-SOH)を有する還元性樹脂を用いてもよい。還元性樹脂は、塩基性陰イオン交換樹脂に、亜硫酸水素ナトリウムや亜硫酸ナトリウムの水溶液を濃度1~5N程度で通液して、亜硫酸基又は亜硫酸水素基をイオン交換することで得られる。還元性樹脂に使用される塩基性陰イオン交換樹脂は、強塩基性陰イオン交換樹脂であることが好ましい。また、還元性樹脂は、亜硫酸基と亜硫酸水素基の両方を有していてもよい。還元性樹脂における亜硫酸基と亜硫酸水素基の量は、合計で、0.7mol/L~1.5mol/Lであると、臭気抑制に多大な効果を発揮する。また、上記のようにして得られた還元性樹脂と陽イオン交換樹脂は、上記処理前の陰イオン交換樹脂と陽イオン交換樹脂に比べ、逆洗分離しにくくなるので、輸送中、もしくは使用中に分離することがほとんどない。したがって、安定して臭気が抑えられるともに、使用時の性能も安定する。As the basic anion exchange resin used in the present embodiment, a reducing resin having a sulfite group (—SO 3 ) or a hydrogen sulfite group (—SO 3 H) may be used as the basic anion exchange resin. . The reducing resin can be obtained by passing an aqueous solution of sodium bisulfite or sodium sulfite at a concentration of about 1 to 5N through a basic anion exchange resin to ion-exchange sulfite groups or bisulfite groups. The basic anion exchange resin used for the reducing resin is preferably a strongly basic anion exchange resin. Also, the reducing resin may have both a sulfite group and a hydrogen sulfite group. When the total amount of the sulfite group and the hydrogen sulfite group in the reducing resin is 0.7 mol/L to 1.5 mol/L, it exhibits a great effect in suppressing odor. In addition, since the reducing resin and the cation exchange resin obtained as described above are more difficult to separate by backwashing than the anion exchange resin and the cation exchange resin before the above treatment, rarely separated into Therefore, the odor is stably suppressed, and the performance during use is also stable.

H型陽イオン交換樹脂は、交換基がH型に再生された陽イオン交換樹脂であり、例えば、スルホン酸基(-SOH)を交換基として有する強酸性陽イオン交換樹脂、又はカルボン酸基(-COOH)を交換基として有する弱酸性陽イオン交換樹脂が挙げられる。陽イオン交換樹脂は、一般に、架橋ポリスチレン(スチレン・ジビニルベンゼン共重合体)を樹脂骨格として有する。The H-type cation exchange resin is a cation exchange resin in which the exchange group is regenerated to H - type. A weakly acidic cation exchange resin having a group (--COOH) as an exchange group can be mentioned. Cation exchange resins generally have crosslinked polystyrene (styrene-divinylbenzene copolymer) as a resin skeleton.

H型陽イオン交換樹脂の比重は、通常1.2~1.3g/cmであり、交換容量は好ましくは1.5~2.5meq/mL、より好ましくは2~2.5meq/mLである。H型陽イオン交換樹脂は、塩型の陽イオン交換樹脂に塩酸などの酸性水溶液を通液して再生することで得られる。H型陽イオン交換樹脂のH型転換率としては、99.95%以上が好ましい。H型陽イオン交換樹脂は強酸性陽イオン交換樹脂であることが好ましい。強酸性陽イオン交換樹脂の市販品としては、ダウケミカル社製のDUOLITE CGP、三菱化学社製のSKT-20L等が挙げられる。The H-type cation exchange resin usually has a specific gravity of 1.2 to 1.3 g/cm 3 and an exchange capacity of preferably 1.5 to 2.5 meq/mL, more preferably 2 to 2.5 meq/mL. be. The H-type cation exchange resin is obtained by passing an acidic aqueous solution such as hydrochloric acid through a salt-type cation exchange resin to regenerate it. The H-type conversion rate of the H-type cation exchange resin is preferably 99.95% or more. Preferably, the H-type cation exchange resin is a strongly acidic cation exchange resin. Commercially available strongly acidic cation exchange resins include DUOLITE CGP manufactured by Dow Chemical Company, SKT-20L manufactured by Mitsubishi Chemical Corporation, and the like.

本実施形態の陰イオン交換樹脂は、上記した割合で塩基性陰イオン交換樹脂とH型陽イオン交換樹脂を混合してなり、混合状態でH型陽イオン交換樹脂を分離することなく水処理等に適用されることが好ましい。そのため、塩基性陰イオン交換樹脂とH型陽イオン交換樹脂は逆洗分離されにくい組み合わせが好ましい。この逆洗分離条件は、例えば、上昇流でLV=10~20[m/hr]である。また、逆洗分離されにくい組み合わせとしては、上記以外にも、同一の条件で測定した塩基性陰イオン交換樹脂とH型陽イオン交換樹脂の沈降速度の分布が類似しており、沈降速度の分布中に互いに共通する速度領域を含むものであることが好ましい。ここでの沈降速度は、実測した値でもよく、あるいはアレンの式等により理論上求められる値であってもよい。 The anion exchange resin of the present embodiment is obtained by mixing the basic anion exchange resin and the H-type cation exchange resin in the above ratio, and in the mixed state, water treatment etc. can be performed without separating the H-type cation exchange resin. is preferably applied to Therefore, a combination of the basic anion exchange resin and the H-type cation exchange resin that is difficult to be separated by backwashing is preferable. The conditions for this backwash separation are, for example, upward flow and LV=10 to 20 [m/hr]. In addition to the above, as a combination that is difficult to separate by backwashing, the sedimentation velocity distribution of the basic anion exchange resin and the H-type cation exchange resin measured under the same conditions is similar, and the sedimentation velocity distribution It is preferable that the velocity regions that are common to each other are included therein. The sedimentation velocity here may be an actually measured value or a theoretically determined value according to Allen's formula or the like.

本実施形態の陰イオン交換樹脂は、上記した割合で塩基性陰イオン交換樹脂とH型陽イオン交換樹脂を混合して製造される。混合方法としては、樹脂塔内に塩基性陰イオン交換樹脂とH型陽イオン交換樹脂を上記の割合で収容し、塔内で樹脂の水抜きを行ったのち、樹脂塔の下部から窒素ガスを注入して混合する方法や、撹拌モーターなどにより機械的に撹拌して混合する方法などが挙げられる。 The anion exchange resin of the present embodiment is produced by mixing the basic anion exchange resin and the H-type cation exchange resin in the proportions described above. As a mixing method, the basic anion exchange resin and the H-type cation exchange resin are accommodated in the resin tower at the above ratio, the resin is drained in the tower, and then nitrogen gas is supplied from the bottom of the resin tower. Examples include a method of pouring and mixing, and a method of mechanically stirring and mixing with a stirring motor or the like.

本実施形態の陰イオン交換樹脂を用いた水処理方法は、上記実施形態の陰イオン交換樹脂に被処理水を通水させる方法である。このような水処理としては、純水ないし超純水の製造が好適である。 The water treatment method using the anion exchange resin of the present embodiment is a method of passing water to be treated through the anion exchange resin of the above embodiment. Production of pure water or ultrapure water is suitable for such water treatment.

本実施形態の陰イオン交換樹脂を用いた純水製造システムとしては、例えば、前処理部及び一次純水製造部を有する純水製造システムが挙げられる。また、この純水製造システムは、該純水製造システムの一次純水製造部の下流に二次純水製造部を有する超純水製造システムであってもよい。 A pure water production system using the anion exchange resin of the present embodiment includes, for example, a pure water production system having a pretreatment section and a primary pure water production section. Further, this pure water production system may be an ultrapure water production system having a secondary pure water production section downstream of the primary pure water production section of the pure water production system.

図1は、本実施形態の超純水製造システム10を概略的に表すブロック図である。本実施形態の超純水製造システム10は、前処理部11、一次純水製造部12、タンク13及び二次純水製造部14を有している。 FIG. 1 is a block diagram schematically showing an ultrapure water production system 10 of this embodiment. The ultrapure water production system 10 of this embodiment has a pretreatment section 11 , a primary pure water production section 12 , a tank 13 and a secondary pure water production section 14 .

本実施形態の超純水製造システム10で使用される原水としては、市水、井水、工業用水等を使用することができる。 City water, well water, industrial water, or the like can be used as the raw water used in the ultrapure water production system 10 of the present embodiment.

超純水製造システム10において、前処理部11は、原水の水質などによって適宜構成され、原水の懸濁物質を除去して前処理水を生成する。前処理部11は、例えば、砂ろ過装置、精密ろ過装置等を適宜選択して構成され、さらに必要に応じて被処理水の温度調節を行う熱交換器等を備えて構成される。 In the ultrapure water production system 10, the pretreatment unit 11 is appropriately configured according to the quality of the raw water and the like, and removes suspended solids from the raw water to generate pretreated water. The pretreatment unit 11 is configured by appropriately selecting, for example, a sand filter device, a microfiltration device, or the like, and further includes a heat exchanger or the like for adjusting the temperature of the water to be treated as necessary.

一次純水製造部12は、前処理水中のイオン成分及び非イオン成分、溶存ガスを除去して一次純水を製造し、この一次純水をタンク13に供給する。上記実施形態の陰イオン交換樹脂を用いた一次純水製造部12としては、例えば、図2に示すように、逆浸透膜装置(RO)121、二床三塔型装置(2B3T:陽イオン交換樹脂塔122a、脱炭酸等122b及び陰イオン交換樹脂塔122cを直列に有する装置)122、逆浸透膜装置(RO)123、紫外線酸化装置(TOC-UV)124、混床式イオン交換装置(MB)125、脱気装置(DG:膜脱気装置又は真空脱気装置)126を順に有する構成が挙げられる。上記構成において、実施形態の陰イオン交換樹脂は、例えば二床三塔型装置の陰イオン交換樹脂塔に収容される。 The primary pure water production unit 12 removes ionic components, non-ionic components, and dissolved gas from the pretreated water to produce primary pure water, and supplies this primary pure water to the tank 13 . As the primary pure water production unit 12 using the anion exchange resin of the above embodiment, for example, as shown in FIG. A device having a resin tower 122a, a decarboxylation etc. 122b and an anion exchange resin tower 122c in series) 122, a reverse osmosis membrane device (RO) 123, an ultraviolet oxidation device (TOC-UV) 124, a mixed bed ion exchange device (MB ) 125 and a deaerator (DG: membrane deaerator or vacuum deaerator) 126 in this order. In the above configuration, the anion exchange resin of the embodiment is accommodated, for example, in an anion exchange resin tower of a two-bed, three-tower type apparatus.

一次純水は、例えば、全有機炭素(TOC)濃度が5μgC/L以下、抵抗率が17MΩ・cm以上である。 The primary pure water has, for example, a total organic carbon (TOC) concentration of 5 μgC/L or less and a resistivity of 17 MΩ·cm or more.

タンク13は、一次純水を貯留して、その必要量を二次純水製造部14に供給する。 The tank 13 stores primary pure water and supplies the required amount to the secondary pure water producing section 14 .

二次純水製造部14は、一次純水中の微量不純物を除去して超純水を製造する。二次純水製造部14は、図3に示すように、タンク13の下流に、熱交換器(HEX)141、紫外線酸化装置(TOC-UV)142、過酸化水素除去装置(H除去装置)143、脱気膜装置(MDG)144、非再生型混床式イオン交換樹脂装置(Polisher)145及び限外ろ過装置(UF)146を備えて構成される。なお、二次純水製造部14は、上記装置を必ずしも備える必要はなく、上記装置を必要に応じて組み合わせて構成すればよい。The secondary pure water production unit 14 removes trace impurities from the primary pure water to produce ultrapure water. As shown in FIG. 3, the secondary pure water production unit 14 includes a heat exchanger (HEX) 141, an ultraviolet oxidation device (TOC-UV) 142, a hydrogen peroxide removal device (H 2 O 2 removal device) 143 , degassing membrane device (MDG) 144 , non-regenerating mixed bed ion exchange resin device (Polisher) 145 and ultrafiltration device (UF) 146 . It should be noted that the secondary pure water production unit 14 does not necessarily have to include the above devices, and may be configured by combining the above devices as necessary.

上記構成において、熱交換器141は、必要に応じてタンク13から供給された一次純水の温度調節を行う。紫外線酸化装置142は、一次純水に紫外線を照射して、水中の微量有機物を分解除去する。紫外線酸化装置142は、例えば、紫外線ランプを有し、波長185nm付近の紫外線を発生する。紫外線酸化装置142は、さらに波長254nm付近の紫外線を発生してもよい。 In the above configuration, the heat exchanger 141 adjusts the temperature of the primary pure water supplied from the tank 13 as required. The ultraviolet oxidation device 142 irradiates the primary pure water with ultraviolet rays to decompose and remove trace organic substances in the water. The ultraviolet oxidation device 142 has, for example, an ultraviolet lamp and generates ultraviolet rays with a wavelength of around 185 nm. The UV oxidizer 142 may also generate UV light with a wavelength of around 254 nm.

過酸化水素除去装置143は、水中の過酸化水素を分解除去する装置であり、例えば、パラジウム(Pd)担持樹脂によって過酸化水素を分解除去するパラジウム担持樹脂装置や、塩基性陰イオン交換樹脂に亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂を充填した還元性樹脂装置等である。本構成の二次純水製造部14において、上記実施形態の陰イオン交換樹脂は、パラジウム担持樹脂装置で使用されるパラジウム担持樹脂の材料か、還元性樹脂装置で使用される還元性樹脂の材料であることが好ましい。これらは、前処理部11や一次純水製造部12に比べて、半導体製造工場など超純水の使用場所の近くに配置されるため、樹脂交換時の臭気抑制に多大な効果を発揮する。 The hydrogen peroxide removal device 143 is a device that decomposes and removes hydrogen peroxide in water. A reducing resin device or the like filled with a reducing resin having a sulfite group and/or a hydrogen sulfite group. In the secondary pure water production unit 14 of this configuration, the anion exchange resin of the above embodiment is the material of the palladium-carrying resin used in the palladium-carrying resin device or the material of the reducing resin used in the reducing resin device. is preferably Compared to the pretreatment section 11 and the primary pure water production section 12, these are arranged closer to the place where ultrapure water is used, such as a semiconductor manufacturing factory, so they are very effective in suppressing odors during resin replacement.

脱気膜装置144は、気体透過性の膜の二次側を減圧して、一次側を通流する水中の溶存ガスのみを二次側に透過させて除去する装置である。脱気膜装置144として具体的には、3M社製のX50、X40、DIC社製のSeparelなどの市販品を用いることができる。脱気膜装置144は、過酸化水素除去装置6の処理水中の溶存酸素を除去して、例えば、溶存酸素濃度(DO)が1μg/L以下の処理水を生成する。 The degassing membrane device 144 is a device that decompresses the secondary side of a gas-permeable membrane and allows only dissolved gases in water flowing through the primary side to permeate to the secondary side for removal. Specifically, commercial products such as X50 and X40 manufactured by 3M and Separel manufactured by DIC can be used as the degassing membrane device 144 . The degassing membrane device 144 removes dissolved oxygen in the treated water of the hydrogen peroxide removing device 6 to generate treated water having a dissolved oxygen concentration (DO) of 1 μg/L or less, for example.

非再生型混床式イオン交換樹脂装置145は、陽イオン交換樹脂と陰イオン交換樹脂が混合された混床式イオン交換樹脂を有し、脱気膜装置の処理水中の微量の陽イオン成分及び陰イオン成分を吸着除去する。なお、非再生型混床式イオン交換樹脂装置145においても、樹脂の劣化に応じて交換が行われるが、非再生型混床式イオン交換樹脂装置145では、陽イオン交換樹脂が陰イオン交換樹脂とほぼ同量で混合されるため、臭気発生の問題が生じにくい。そのため、非再生型混床式イオン交換樹脂装置145における陰イオン交換樹脂は、上記本実施形態の陰イオン交換樹脂を使用しなくても構わない。 The non-regenerating mixed bed ion exchange resin device 145 has a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed, and a trace amount of cation components in the treated water of the degassing membrane device and Absorbs and removes anions. In the non-regenerating mixed-bed ion exchange resin device 145, replacement is also performed according to the deterioration of the resin. Since it is mixed in approximately the same amount as the Therefore, the anion exchange resin in the non-regenerating mixed bed ion exchange resin apparatus 145 may not use the anion exchange resin of the present embodiment.

非再生型混床式イオン交換樹脂装置145の有する、陽イオン交換樹脂として、強酸性陽イオン交換樹脂や弱酸性陽イオン交換樹脂が、陰イオン交換樹脂として、強塩基性陰イオン交換樹脂や弱塩基性陰イオン交換樹脂が挙げられる。混床式イオン交換樹脂の市販品としては、例えば、野村マイクロ・サイエンス社製、N-Lite MBSP、MBGPなどが挙げられる。 The non-regenerating mixed-bed ion-exchange resin device 145 has a strongly acidic cation-exchange resin and a weakly acidic cation-exchange resin as the cation-exchange resin, and an anion-exchange resin as a strongly basic anion-exchange resin and a weakly acidic cation-exchange resin. Basic anion exchange resins can be mentioned. Examples of commercially available mixed-bed ion exchange resins include N-Lite MBSP and MBGP manufactured by Nomura Micro Science.

限外ろ過膜装置146は、例えば、粒子径50nm以上、好ましくは20nm以上、より好ましくは10nm以上の微粒子を除去して超純水を製造する。超純水の水質としては、例えば、粒子径50nm以上の微粒子数が50pcs./L以下、全有機炭素(TOC)濃度が1μgC/L以下、抵抗率が18MΩ・cm以上である。 The ultrafiltration membrane device 146 removes fine particles having a particle size of 50 nm or more, preferably 20 nm or more, more preferably 10 nm or more, for example, to produce ultrapure water. As for the water quality of ultrapure water, for example, the number of fine particles having a particle diameter of 50 nm or more is 50 pcs. /L or less, a total organic carbon (TOC) concentration of 1 μgC/L or less, and a resistivity of 18 MΩ·cm or more.

上記で説明した実施形態の陰イオン交換樹脂によれば、塩基性陰イオン交換樹脂の、トリメチルアミン(TMA)、ジメチルアミン、モノメチルアミン等のアミン類による臭気を著しく抑制することができる。そのため、純水の製造や超純水の製造などの水処理に好適であり、例えば、超純水製造システムにおいて使用した場合に、樹脂交換時の臭気を著しく低減することができる。 According to the anion exchange resin of the embodiment described above, it is possible to remarkably suppress the odor caused by amines such as trimethylamine (TMA), dimethylamine, and monomethylamine of the basic anion exchange resin. Therefore, it is suitable for water treatment such as production of pure water and production of ultrapure water. For example, when used in an ultrapure water production system, odors during resin exchange can be significantly reduced.

次に、実施例について説明する。本発明は以下の実施例に限定されない。 Next, examples will be described. The invention is not limited to the following examples.

(実施例1)
内容量2Lのポリエチレン製の容器に、ダウケミカル社製の強塩基性陰イオン交換樹脂:DUOLITE AGPを亜硫酸でイオン交換して得た還元性樹脂の500gとH型陽イオン交換樹脂(ダウケミカル製、DUOLITE CGP)の5gを収容し、上部開口にビニールを被せ、ふたをして密閉した。これを30日間保管後、ふたを外し、ガス検知管(ガステック社ガス検知管、アミン類(型番:180または180L))をビニールに刺して、ビーカー内部の気体中のアミン類濃度を測定した。得られた測定値をトリメチルアミン濃度として換算した。結果を表1に示す。
なお、実施例1の樹脂を500g使用して、逆洗分離試験を行ったところ、H型陽イオン交換樹脂の大部分は還元性樹脂と混合のままで分離しなかった。(逆洗展開率10%、逆洗時間10分)
(Example 1)
In a container made of polyethylene with an internal capacity of 2 L, 500 g of a reducing resin obtained by ion-exchanging DUOLITE AGP, a strongly basic anion exchange resin manufactured by Dow Chemical Co., with sulfurous acid, and an H-type cation exchange resin (manufactured by Dow Chemical Co., Ltd. , DUOLITE CGP) was accommodated, and the upper opening was covered with vinyl and sealed with a lid. After storing this for 30 days, the lid was removed and a gas detection tube (Gastec gas detection tube, amines (model number: 180 or 180L)) was pierced into the vinyl to measure the concentration of amines in the gas inside the beaker. . The obtained measured value was converted into the trimethylamine concentration. Table 1 shows the results.
When a backwashing separation test was conducted using 500 g of the resin of Example 1, most of the H-type cation exchange resin remained mixed with the reducing resin and was not separated. (Backwash development rate 10%, backwash time 10 minutes)

(実施例2)
内容量2Lのポリエチレン製の容器に、ダウケミカル社製の強塩基性陰イオン交換樹脂:DUOLITE AGPの500gとH型陽イオン交換樹脂(ダウケミカル製、DUOLITE CGP)の5gを収容したほかは、実施例1と同様の試験を行った。
なお、実施例2の樹脂を500g使用して、逆洗分離試験を行ったところ、分離した。(逆洗展開率10%、逆洗時間10分)
(Example 2)
In a container made of polyethylene with an internal capacity of 2 L, 500 g of DUOLITE AGP, a strongly basic anion exchange resin manufactured by Dow Chemical Co., and 5 g of H-type cation exchange resin (DUOLITE CGP, manufactured by Dow Chemical) were accommodated. A test similar to that of Example 1 was performed.
When a backwash separation test was conducted using 500 g of the resin of Example 2, separation occurred. (Backwash development rate 10%, backwash time 10 minutes)

(実施例3)
内容量2Lのポリエチレン製の容器に、ランクセス社製の塩基性陰イオン交換樹脂にパラジウムを担持した触媒樹脂:レバチット K7333の500gとH型陽イオン交換樹脂(ダウケミカル製、DUOLITE CGP)の5gを収容したほかは、実施例1と同様の試験を行った。
なお、実施例3の樹脂を500g使用して、逆洗分離試験を行ったところ、H型陽イオン交換樹脂の大部分は触媒樹脂と混合のままで分離しなかった。(逆洗展開率10%、逆洗時間10分)
(Example 3)
500 g of Lewatit K7333, a catalyst resin in which palladium is supported on a basic anion exchange resin manufactured by LANXESS, and 5 g of an H-type cation exchange resin (DUOLITE CGP, manufactured by Dow Chemical) are placed in a polyethylene container having an internal volume of 2 L. The same test as in Example 1 was performed, except that it was accommodated.
When 500 g of the resin of Example 3 was used to conduct a backwashing separation test, most of the H-type cation exchange resin remained mixed with the catalyst resin and was not separated. (Backwash development rate 10%, backwash time 10 minutes)

(比較例1)
ポリエチレン製の容器に、強塩基性陰イオン交換樹脂(ダウケミカル社製のDUOLITE AGP)のみを500g収容したほかは、実施例1と同様の試験を行った。
(Comparative example 1)
The same test as in Example 1 was performed, except that 500 g of a strongly basic anion exchange resin (DUOLITE AGP manufactured by Dow Chemical Co.) was placed in a polyethylene container.

(比較例2)
ポリエチレン製の容器に、実施例1と同様の還元性樹脂のみを500g収容したほかは、実施例1と同様の試験を行った。
(Comparative example 2)
The same test as in Example 1 was carried out, except that 500 g of the same reducing resin as in Example 1 was placed in a polyethylene container.

(比較例3)
ポリエチレン製の容器に、実施例1と同様の還元性樹脂の500gとNa型陽イオン交換樹脂(ダウケミカル製、DUOLITE CGPをNa型にイオン交換したもの)の5gを収容したほかは、実施例1と同様の試験を行った。各比較例の結果を実施例とあわせて表1に示す。
なお、比較例3の樹脂を500g使用して、逆洗分離試験を行ったところ、きれいに2層に分離した。(逆洗展開率10%、逆洗時間10分)
(Comparative Example 3)
In a polyethylene container, 500 g of the same reducing resin as in Example 1 and 5 g of Na-type cation exchange resin (manufactured by Dow Chemical, DUOLITE CGP ion-exchanged to Na-type) were accommodated. The same test as in 1 was performed. The results of each comparative example are shown in Table 1 together with those of the examples.
When a backwash separation test was conducted using 500 g of the resin of Comparative Example 3, the resin was separated into two layers cleanly. (Backwash development rate 10%, backwash time 10 minutes)

Figure 0007157142000001
Figure 0007157142000001

表1より、塩基性陰イオン交換樹脂(還元性樹脂)100質量部に対して1質量部のH型の陽イオン交換樹脂を混合した実施例1では、H型陽イオン交換樹脂を混合しない比較例1、2や、塩型陽イオン交換樹脂を混合した比較例3に比べて、TMAに代表されるアミン類の臭気の発生を効果的に抑制できることがわかる。 From Table 1, in Example 1 in which 1 part by mass of H-type cation exchange resin was mixed with 100 parts by mass of basic anion exchange resin (reducing resin), comparison was made without mixing H-type cation exchange resin. Compared with Examples 1 and 2 and Comparative Example 3 in which a salt-type cation exchange resin was mixed, it can be seen that the generation of odors of amines represented by TMA can be effectively suppressed.

10…超純水製造システム、11…前処理部、12…一次純水製造部、13…タンク、14…二次純水製造部 10... Ultrapure water production system, 11... Pretreatment unit, 12... Primary pure water production unit, 13... Tank, 14... Secondary pure water production unit

Claims (4)

水処理に用いられる陰イオン交換樹脂であって、
塩基性陰イオン交換樹脂と、前記塩基性陰イオン交換樹脂100質量部に対して0.01質量部以上5質量部未満のH型陽イオン交換樹脂とを混合してなり、
LV10~20[m/hr]で逆洗を行ったとき、前記塩基性陰イオン交換樹脂と前記H型陽イオン交換樹脂の少なくとも一部は混合したままであることを特徴とする臭気を抑えた陰イオン交換樹脂。
An anion exchange resin used in water treatment,
A mixture of a basic anion exchange resin and an H-type cation exchange resin of 0.01 parts by mass or more and less than 5 parts by mass with respect to 100 parts by mass of the basic anion exchange resin,
When backwashing is performed at LV 10 to 20 [m / hr], at least part of the basic anion exchange resin and the H-type cation exchange resin remain mixed to suppress the odor. Anion exchange resin.
前記塩基性陰イオン交換樹脂は、パラジウムが担持されたパラジウム担持樹脂であり、
前記H型陽イオン交換樹脂は、スルホン酸基をイオン交換基として有するH型陽イオン交換樹脂であることを特徴とする請求項1に記載の陰イオン交換樹脂。
The basic anion exchange resin is a palladium-supported resin on which palladium is supported,
2. The anion exchange resin according to claim 1, wherein the H-type cation exchange resin is an H-type cation exchange resin having sulfonic acid groups as ion exchange groups .
前記塩基性陰イオン交換樹脂は、亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂であり、
前記H型陽イオン交換樹脂は、スルホン酸基をイオン交換基として有するH型陽イオン交換樹脂であることを特徴とする請求項1に記載の陰イオン交換樹脂。
The basic anion exchange resin is a reducing resin having a sulfite group and/or a hydrogen sulfite group ,
2. The anion exchange resin according to claim 1, wherein the H-type cation exchange resin is an H-type cation exchange resin having sulfonic acid groups as ion exchange groups .
陰イオン交換樹脂に被処理水を通水する水処理方法であって、
前記陰イオン交換樹脂は、塩基性陰イオン交換樹脂と、前記塩基性陰イオン交換樹脂100質量部に対して0.01質量部以上5質量部未満のH型陽イオン交換樹脂とを混合してなり、LV10~20[m/hr]で逆洗を行ったとき、前記塩基性陰イオン交換樹脂と前記H型陽イオン交換樹脂の少なくとも一部が混合したままである、臭気を抑えた陰イオン交換樹脂であることを特徴とする水処理方法。
A water treatment method in which water to be treated is passed through an anion exchange resin,
The anion exchange resin is a mixture of a basic anion exchange resin and an H-type cation exchange resin of 0.01 parts by mass or more and less than 5 parts by mass with respect to 100 parts by mass of the basic anion exchange resin. and at least a part of the basic anion exchange resin and the H-type cation exchange resin remains mixed when backwashing is performed at LV 10 to 20 [m / hr], and an odor-suppressed anion A water treatment method characterized in that it is an exchange resin.
JP2020509878A 2018-03-27 2019-03-13 Anion exchange resin and water treatment method using the same Active JP7157142B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018060595 2018-03-27
JP2018060595 2018-03-27
PCT/JP2019/010374 WO2019188309A1 (en) 2018-03-27 2019-03-13 Anion exchange resin and water treatment method using same

Publications (2)

Publication Number Publication Date
JPWO2019188309A1 JPWO2019188309A1 (en) 2021-03-11
JP7157142B2 true JP7157142B2 (en) 2022-10-19

Family

ID=68061395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509878A Active JP7157142B2 (en) 2018-03-27 2019-03-13 Anion exchange resin and water treatment method using the same

Country Status (4)

Country Link
JP (1) JP7157142B2 (en)
KR (1) KR102489442B1 (en)
TW (1) TW201941830A (en)
WO (1) WO2019188309A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357399B1 (en) * 2020-12-22 2022-02-09 경민워터컴(주) A composition for mixed ion exchange polymers and bad odor removal method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179252A (en) 1999-12-22 2001-07-03 Japan Organo Co Ltd Method and apparatus for making pure water reduced in content of oxidizing substance
JP2007075720A (en) 2005-09-14 2007-03-29 Ebara Corp Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
JP2008056921A (en) 2006-09-01 2008-03-13 Rohm & Haas Co Method for removing odor of ion-exchange resin, and composition therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245668B2 (en) * 1971-11-11 1977-11-17
JPS60257840A (en) * 1984-06-04 1985-12-19 Kurita Water Ind Ltd Ion exchange apparatus
JPS61174987A (en) 1985-01-29 1986-08-06 Mitsubishi Heavy Ind Ltd Method for purifying demineralized water
JPS6235838A (en) 1985-08-09 1987-02-16 豊田合成株式会社 Skin for fabrication and manufacture thereof
JPH08276180A (en) * 1995-04-06 1996-10-22 Ngk Insulators Ltd Method for deodorizing and purifying ion exchange pure water
JP6177039B2 (en) 2013-07-26 2017-08-09 水ing株式会社 Method and apparatus for removing odor derived from anion exchange resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179252A (en) 1999-12-22 2001-07-03 Japan Organo Co Ltd Method and apparatus for making pure water reduced in content of oxidizing substance
JP2007075720A (en) 2005-09-14 2007-03-29 Ebara Corp Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
JP2008056921A (en) 2006-09-01 2008-03-13 Rohm & Haas Co Method for removing odor of ion-exchange resin, and composition therefor

Also Published As

Publication number Publication date
KR20200136890A (en) 2020-12-08
KR102489442B1 (en) 2023-01-17
WO2019188309A1 (en) 2019-10-03
JPWO2019188309A1 (en) 2021-03-11
TW201941830A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
KR101314441B1 (en) Process and apparatus for removing hydrogen peroxide
KR101525635B1 (en) Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
US20160159671A1 (en) Method and apparatus for treating water containing boron
JP6634918B2 (en) Ultrapure water production system
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
CN105517957A (en) Method and apparatus for manufacturing pure water
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP7157142B2 (en) Anion exchange resin and water treatment method using the same
JP6533359B2 (en) Ultra pure water production method
JP2016155052A (en) Device for removing fine particle in water, and system for producing and supplying ultrapure water
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2002210494A (en) Device for manufacturing extrapure water
JP7197325B2 (en) Pure water production device and pure water production method
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP6863849B2 (en) How to remove musty odor substances and water treatment equipment that can remove musty odor substances
JP7478617B2 (en) Pure water production apparatus, ultrapure water production apparatus, and pure water production method and ultrapure water production method
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP2016150275A (en) Method and device for producing purified water
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus
WO2023037811A1 (en) Method for producing resin, method for producing ultrapure water, and device for producing ultrapure water
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method
JP7012196B1 (en) Water treatment equipment, ultrapure water production equipment, water treatment method and regenerative ion exchange tower
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7157142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150