JP2001017866A - Preparation of boron adsorbing resin - Google Patents

Preparation of boron adsorbing resin

Info

Publication number
JP2001017866A
JP2001017866A JP11193755A JP19375599A JP2001017866A JP 2001017866 A JP2001017866 A JP 2001017866A JP 11193755 A JP11193755 A JP 11193755A JP 19375599 A JP19375599 A JP 19375599A JP 2001017866 A JP2001017866 A JP 2001017866A
Authority
JP
Japan
Prior art keywords
boron
water
selective adsorption
adsorption resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11193755A
Other languages
Japanese (ja)
Inventor
Kashu Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11193755A priority Critical patent/JP2001017866A/en
Publication of JP2001017866A publication Critical patent/JP2001017866A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the elution of total org. carbon(TOC) from a boron-selective adsorbing resin by bringing the boron selective adsorbing resin into contact with a heated alkali metal hydroxide aq. soln. SOLUTION: A boron-selective adsorbing resin is brought into contact with a heated alkali metal hydroxide aq. soln. At this time, as the boron selective adsorbing resin, one having a polyhydric alcohol group is used. As polyhydric alcohol, one having a glucamine structure is used. The temp. of the alkali metal hydroxide aq. soln. is set to 50 deg.C or higher. As the alkali metal hydroxide aq. soln., a sodium hydroxide aq. soln. is used. By this constitution, the elution of org. carbon from the boron-selective adsorbing resin can be effectively prevented by a simple treatment and the boron-selective adsorbing resin can be effectively used as a means for removing boron from ultrapure water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素選択吸着樹
脂の調整方法に関する。さらに詳しくは、本発明は、ホ
ウ素選択吸着樹脂からの有機体炭素(TOC)の溶出を
効果的に防止することができるホウ素選択吸着樹脂の調
整方法に関する。
[0001] The present invention relates to a method for preparing a boron selective adsorption resin. More specifically, the present invention relates to a method for preparing a boron selective adsorption resin that can effectively prevent the elution of organic carbon (TOC) from the boron selective adsorption resin.

【0002】[0002]

【従来の技術】半導体用シリコン基板の洗浄などに用い
られる超純水にホウ素が含まれていると、基板表面にホ
ウ素が付着して、製造される半導体デバイスの特性が損
なわれる。このために、超純水からホウ素を除去するこ
とは極めて重要であり、逆浸透膜を用いるホウ素の除去
方法や、ホウ素選択吸着樹脂を用いるホウ素の除去方法
などが検討されている。ホウ酸イオンは、複数のヒドロ
キシル基を有する多価アルコール、糖類、セルロースな
どと選択的に結合して、ホウ酸錯体を形成する。糖類の
一種であるマンニトールを用い、ホウ酸イオンとの錯体
形成反応を利用したホウ素の定量法があり、デキストラ
ンゲルを母材とした多糖高分子が、ホウ素を吸着するこ
とも知られている。多価アルコールを導入したホウ素選
択吸着樹脂として、例えば、グルカミン構造を結合した
スチレンとジビニルベンゼンの共重合体が市販されてい
る。このようなホウ素選択吸着樹脂を用いて超純水を処
理すると、ホウ素選択吸着樹脂から有機体炭素が溶出す
る。半導体用シリコン基板の洗浄などに用いられる超純
水は、ホウ素濃度が10ng/リットル以下、比抵抗1
8MΩ・cm以上の水質が求められる。微量ホウ素除去用
のホウ素選択吸着樹脂を一次純水装置又はサブシステム
に組み込むことにより、ホウ素濃度を低減することはで
きるが、有機体炭素が1μg/リットル以上溶出して超
純水の比抵抗が低下する。一次純水装置又はサブシステ
ムに組み込まれたホウ素選択吸着樹脂から溶出した有機
体炭素は、後置のサブシステムでは除去されないため
に、末端の超純水の比抵抗が低下するという問題があ
る。特開平8−238478号公報には、超純水製造装
置に組み込まれて使用されるホウ素選択性イオン交換樹
脂からのTOC溶出量を低減させる方法として、弱塩基
性交換基であるグルカミン交換基を遊離塩基形に調整
し、強塩基性交換基を塩形に調整して用いる方法が提案
されている。しかし、この方法では、ホウ素選択吸着樹
脂を水酸化ナトリウム水溶液と接触させたのち、炭酸水
素ナトリウム水溶液などと接触させる必要があり、ホウ
素選択吸着樹脂の調整を2段階で行うために処理が複雑
となり、廃液の発生量も多くなるという問題がある。こ
のために、より簡単な処理によってホウ素選択吸着樹脂
からの有機体炭素の溶出量を低減することができる調整
方法が求められていた。
2. Description of the Related Art If boron is contained in ultrapure water used for cleaning a silicon substrate for semiconductors, the boron adheres to the surface of the substrate, thereby impairing the characteristics of a manufactured semiconductor device. For this reason, it is extremely important to remove boron from ultrapure water, and a method for removing boron using a reverse osmosis membrane, a method for removing boron using a boron selective adsorption resin, and the like have been studied. The borate ion selectively binds to a polyhydric alcohol having a plurality of hydroxyl groups, saccharides, cellulose and the like to form a borate complex. There is a method for quantifying boron using a complex formation reaction with borate ion using mannitol, which is a kind of saccharide, and it is also known that a polysaccharide polymer based on dextran gel adsorbs boron. As a boron selective adsorption resin into which a polyhydric alcohol has been introduced, for example, a copolymer of styrene and divinylbenzene having a glucamine structure bonded thereto is commercially available. When ultrapure water is treated using such a boron selective adsorption resin, organic carbon is eluted from the boron selective adsorption resin. Ultrapure water used for cleaning a silicon substrate for semiconductors has a boron concentration of 10 ng / liter or less and a specific resistance of 1
Water quality of 8 MΩ · cm or more is required. The boron concentration can be reduced by incorporating a boron selective adsorption resin for removing trace amounts of boron into the primary water purification device or subsystem, but the organic carbon is eluted at 1 μg / liter or more and the specific resistance of ultrapure water is reduced. descend. Since the organic carbon eluted from the boron selective adsorption resin incorporated in the primary water purification device or the subsystem is not removed by the subsequent subsystem, there is a problem that the specific resistance of the terminal ultrapure water is reduced. JP-A-8-238478 discloses a glucamine exchange group, which is a weakly basic exchange group, as a method for reducing the amount of TOC eluted from a boron-selective ion exchange resin used by being incorporated in an ultrapure water production apparatus. A method has been proposed in which the compound is adjusted to a free base form and the strongly basic exchange group is adjusted to a salt form and used. However, in this method, it is necessary to bring the boron selective adsorption resin into contact with an aqueous solution of sodium hydroxide and then with an aqueous solution of sodium hydrogen carbonate, and the treatment is complicated because the adjustment of the boron selective adsorption resin is performed in two stages. In addition, there is a problem that the amount of waste liquid generated increases. For this reason, an adjustment method capable of reducing the amount of organic carbon eluted from the boron selective adsorption resin by a simpler treatment has been required.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ホウ素選択
吸着樹脂からの有機体炭素(TOC)の溶出を効果的に
防止することができるホウ素選択吸着樹脂の調整方法を
提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing a boron selective adsorption resin which can effectively prevent the elution of organic carbon (TOC) from the boron selective adsorption resin. It was done.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、ホウ素選択吸着樹
脂を、加温したアルカリ金属水酸化物水溶液と接触させ
ることにより、ホウ素選択吸着樹脂からの有機体炭素の
溶出を効果的に防止し得ることを見いだし、この知見に
基づいて本発明を完成するに至った。すなわち、本発明
は、(1)ホウ素選択吸着樹脂を、加温したアルカリ金
属水酸化物水溶液と接触させることを特徴とするホウ素
選択吸着樹脂の調整方法、を提供するものである。さら
に、本発明の好ましい態様として、(2)ホウ素選択吸
着樹脂が、多価アルコール基を有する第(1)項記載のホ
ウ素選択吸着樹脂の調整方法、(3)多価アルコール基
が、グルカミン構造を有する第(2)項記載のホウ素選択
吸着樹脂の調整方法、(4)アルカリ金属水酸化物水溶
液の温度が、50℃以上である第(1)項記載のホウ素選
択吸着樹脂の調整方法、及び、(5)アルカリ金属水酸
化物水溶液が、水酸化ナトリウム水溶液である第(1)項
記載のホウ素選択吸着樹脂の調整方法、を挙げることが
できる。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a boron selective adsorption resin is brought into contact with a heated alkali metal hydroxide aqueous solution to obtain a boron selective adsorption resin. It has been found that elution of organic carbon from the selective adsorption resin can be effectively prevented, and the present invention has been completed based on this finding. That is, the present invention provides (1) a method for preparing a boron selective adsorption resin, which comprises contacting the boron selective adsorption resin with a heated aqueous alkali metal hydroxide solution. Further, as a preferred embodiment of the present invention, (2) the method for preparing a boron selective adsorption resin according to the above (1), wherein the boron selective adsorption resin has a polyhydric alcohol group, and (3) the polyhydric alcohol group has a glucamine structure (2) the method for adjusting a boron selective adsorption resin according to the item (2), (4) the method for adjusting a boron selective adsorption resin according to the item (1), wherein the temperature of the aqueous alkali metal hydroxide solution is 50 ° C. or more; And (5) the method for adjusting a boron selective adsorption resin according to the above (1), wherein the aqueous alkali metal hydroxide solution is an aqueous sodium hydroxide solution.

【0005】[0005]

【発明の実施の形態】本発明のホウ素選択吸着樹脂の調
整方法は、ホウ素選択吸着樹脂を加温したアルカリ金属
水酸化物水溶液と接触させるものである。本発明方法
は、ホウ素吸着基として多価アルコール基を有するホウ
素選択吸着樹脂に好適に適用することができる。多価ア
ルコール基を有するホウ素選択吸着樹脂には、例えば、
ホウ素吸着基がグルカミン構造を有するものや、フェノ
ール性ヒドロキシル基を有するもの(特願平10−32
3826号)があるが、本発明方法は、ホウ素吸着基が
グルカミン構造を有するホウ素選択吸着樹脂に特に好適
に適用することができる。本発明方法により調整された
ホウ素選択吸着樹脂からは、有機体炭素の溶出が少な
く、有機体炭素濃度1μg/リットル以下の超純水を安
定して得ることができるので、比抵抗18MΩ・cm以
上、ホウ素濃度10ng/リットル以下の超純水を製造
し、半導体製造用超純水、フッ素製品製造用超純水とし
て用いることができる。本発明方法に用いるアルカリ金
属水酸化物水溶液としては、例えば、水酸化リチウム水
溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶
液、水酸化ルビジウム水溶液、水酸化セシウム水溶液な
どを挙げることができる。これらの中で、水酸化ナトリ
ウム水溶液を特に好適に用いることができる。本発明方
法において、ホウ素選択吸着樹脂を加温したアルカリ金
属水酸化物水溶液と接触させる方法に特に制限はない
が、ホウ素選択吸着樹脂の再生に引き続いて加温したア
ルカリ金属水酸化物水溶液と接触させることが好まし
い。例えば、ホウ素選択吸着樹脂塔に充填され、ホウ素
を吸着して破過点に達したホウ素選択吸着樹脂を、(1)
水逆洗、(2)沈静、(3)酸を用いる再生、(4)押出及び
(5)洗浄を行って再生工程を終了したのち、(6)温水の
通水による樹脂の加温、(7)加温したアルカリ金属水酸
化物水溶液との接触、(8)温水による押出、(9)温水に
よる洗浄及び(10)常温の水の通水による樹脂の冷却を
行ってホウ素選択吸着樹脂を調整することができる。こ
れらの工程においては、超純水、超純水を用いて調製し
た酸及び超純水を用いて調製したアルカリ金属水酸化物
水溶液を用いることが好ましい。新しいホウ素選択吸着
樹脂を初めて使用する場合には、(3)酸を用いる再生、
(4)押出及び(5)洗浄の3工程は省略することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The method for preparing a boron selective adsorption resin according to the present invention comprises bringing the boron selective adsorption resin into contact with a heated aqueous alkali metal hydroxide solution. The method of the present invention can be suitably applied to a boron selective adsorption resin having a polyhydric alcohol group as the boron adsorption group. The boron selective adsorption resin having a polyhydric alcohol group, for example,
Those having a glucamine structure as a boron adsorbing group or those having a phenolic hydroxyl group (Japanese Patent Application No. 10-32)
No. 3826), but the method of the present invention can be particularly suitably applied to a boron selective adsorption resin having a boron adsorbing group having a glucamine structure. From the boron selective adsorption resin prepared by the method of the present invention, organic carbon is less eluted and ultrapure water having an organic carbon concentration of 1 μg / liter or less can be stably obtained, and the specific resistance is 18 MΩ · cm or more. And ultrapure water having a boron concentration of 10 ng / liter or less can be used as ultrapure water for semiconductor production and ultrapure water for fluorine product production. Examples of the aqueous alkali metal hydroxide solution used in the method of the present invention include a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, and a cesium hydroxide aqueous solution. Among these, an aqueous sodium hydroxide solution can be particularly preferably used. In the method of the present invention, there is no particular limitation on the method of bringing the boron selective adsorption resin into contact with the heated aqueous alkali metal hydroxide solution. However, following the regeneration of the boron selective adsorption resin, the method is brought into contact with the heated alkali metal hydroxide aqueous solution. Preferably. For example, a boron selective adsorption resin packed in a boron selective adsorption resin tower and adsorbing boron to reach a breakthrough point can be obtained by (1)
Water backwash, (2) settling, (3) regeneration with acid, (4) extrusion and
(5) After washing and completing the regeneration step, (6) heating the resin by passing hot water through, (7) contacting with the heated alkali metal hydroxide aqueous solution, (8) extrusion with hot water, (9) Washing with warm water and (10) cooling of the resin by passing water at normal temperature can adjust the boron selective adsorption resin. In these steps, it is preferable to use ultrapure water, an acid prepared using ultrapure water, and an alkali metal hydroxide aqueous solution prepared using ultrapure water. When using a new boron selective adsorption resin for the first time, (3) regeneration using acid,
The three steps of (4) extrusion and (5) washing can be omitted.

【0006】本発明方法においては、再生又は調整に先
立ってホウ素選択吸着樹脂塔の(1)水逆洗を行うことが
好ましい。水逆洗は、常温の超純水を用い、LV5〜1
5m/hで、15〜60分行うことが好ましい。水逆洗
を終了したのち、いったん通水を停止し、5分程度樹脂
を(2)沈静させることが好ましい。水逆洗と沈静を行う
ことにより、樹脂層を膨張させてほぐし、樹脂を均一に
分配してチャネリングを防ぎ、再生と調整の効率を高め
ることができる。(3)再生剤として用いる酸に特に制限
はなく、例えば、塩酸、硫酸などを用いることができ
る。酸の濃度に特に制限はないが、3〜10重量%の水
溶液であることが好ましい。再生レベルに特に制限はな
いが、通常は樹脂1リットル当たり150〜250gで
あることが好ましく、180〜220gであることがよ
り好ましい。再生剤水溶液の通液量は、樹脂容量の2〜
6倍であることが好ましく、3〜5倍であることがより
好ましい。再生剤水溶液の通液速度は、SV3〜7h -1
であることが好ましく、SV4〜6h-1であることがよ
り好ましい。(4)再生後の押出は、超純水を用いてSV
5h-1程度で60分程度行うことが好ましい。(5)押出
後の洗浄は、超純水を用いてSV10h-1程度で60分
程度行うことが好ましい。本発明方法においては、再生
工程に続いて(6)温水の通水による樹脂の加温、(7)加
温したアルカリ金属水酸化物水溶液との接触、(8)温水
による押出及び(9)温水による洗浄を行う。これらの工
程に使用する温水及びアルカリ金属水酸化物水溶液の温
度は、50℃以上であることが好ましく、70℃以上で
あることがより好ましい。各工程に使用する温水及びア
ルカリ金属水酸化物水溶液の温度は、ほぼ等しいことが
好ましい。(6)温水の通水による樹脂の加温は、温水を
SV5h-1程度で30分程度通水することにより行うこ
とができる。あらかじめ樹脂を温水と接触させて昇温す
ることにより、加温したアルカリ金属水酸化物水溶液の
温度が低下することなく、通液の最初の段階から調整効
果を得ることができる。
[0006] In the method of the present invention, prior to reproduction or adjustment.
It is possible to stand and perform (1) water backwash of the boron selective adsorption resin tower.
preferable. Water backwashing uses ultrapure water at room temperature,
It is preferable to carry out at 5 m / h for 15 to 60 minutes. Backwash
After finishing the process, stop the water flow and let the resin flow for about 5 minutes.
(2) is preferably calmed down. Perform water backwash and calm down
By doing so, the resin layer is expanded and loosened, and the resin is evenly distributed.
Distribute to prevent channeling and increase playback and adjustment efficiency
Can be (3) Especially restricted to acids used as regenerants
No, for example, hydrochloric acid, sulfuric acid, etc. can be used
You. The concentration of the acid is not particularly limited, but 3 to 10% by weight of water
It is preferably a solution. There are no special restrictions on the playback level
However, usually 150-250 g per liter of resin
It is preferable that the weight is 180 to 220 g.
Is more preferable. The flow rate of the regenerant aqueous solution is 2 to 2 times the resin capacity.
It is preferably 6 times, more preferably 3 to 5 times.
preferable. The flow rate of the regenerant aqueous solution is SV3 to 7h -1
And SV 4 to 6 h-1It may be
Is more preferable. (4) Extrusion after regeneration is performed by using
5h-1It is preferable to carry out for about 60 minutes. (5) Extrusion
Subsequent washing is performed using ultrapure water for SV10h.-1About 60 minutes
It is preferable to perform it to the extent. In the method of the present invention,
Subsequent to the process, (6) heating the resin by passing hot water, (7) heating
Contact with warm alkali metal hydroxide aqueous solution, (8) warm water
And washing with hot water (9). These engineering
Of hot water and aqueous solution of alkali metal hydroxide
The temperature is preferably 50 ° C or higher, and 70 ° C or higher.
More preferably, there is. Hot water and water used for each process
The temperature of the aqueous solution of alkali metal hydroxide should be approximately equal.
preferable. (6) Heating resin by passing hot water
SV5h-1By passing water for about 30 minutes.
Can be. Preheat the resin by contacting it with warm water
By heating, the heated alkali metal hydroxide aqueous solution
Adjustable from the beginning of the flow without reducing the temperature
Fruit can be obtained.

【0007】以下、アルカリ金属水酸化物水溶液として
水酸化ナトリウム水溶液を用いる場合について説明す
る。本発明方法において、(7)水酸化ナトリウム水溶液
の濃度に特に制限はないが、3〜10重量%であること
が好ましい。再生レベルに特に制限はないが、通常は樹
脂1リットル当たり150〜250gであることが好ま
しく、180〜220gであることがより好ましい。水
酸化ナトリウム水溶液の通液量は、樹脂容量の3〜7倍
であることが好ましく、4〜6倍であることがより好ま
しい。水酸化ナトリウム水溶液の通液速度は、SV3〜
7h-1であることが好ましく、SV4〜6h-1であるこ
とがより好ましい。(8)再生後の押出は、加温した超純
水を用いてSV5h-1程度で60分程度行うことが好ま
しい。(9)押出後の洗浄は、加温した超純水を用いてS
V5h-1程度で240分程度行うことが好ましい。加温
した水酸化ナトリウム水溶液との接触と、温水による押
出と洗浄を終了したのち、最後に(10)常温の超純水を
通水して、樹脂の温度を常温まで下げることが好まし
い。常温の超純水の通水条件に特に制限はないが、通常
は、SV10h-1程度で60分程度通水することによ
り、樹脂を常温まで冷却することができる。上記の(1)
〜(10)の工程の処理により再生と調整を行ったホウ素
選択吸着樹脂を用いて超純水を処理すると、処理水中へ
の有機体炭素の溶出量が1μg/リットル以下となるの
で、比抵抗18MΩ・cm以上を維持することができ、ま
た、処理水のホウ素濃度も10ng/リットル以下とな
る。本発明方法によれば、ホウ素選択吸着樹脂と接触さ
せるアルカリ金属水酸化物水溶液を加温するという簡単
な操作によって樹脂を調整し、比抵抗値が大きく、ホウ
素濃度の低い良好な水質の超純水を製造し、半導体製造
工程、フッ素製品製造工程などにおいて好適に用いるこ
とができる。
Hereinafter, a case where an aqueous solution of sodium hydroxide is used as an aqueous solution of an alkali metal hydroxide will be described. In the method of the present invention, (7) the concentration of the aqueous sodium hydroxide solution is not particularly limited, but is preferably 3 to 10% by weight. The regeneration level is not particularly limited, but is usually preferably from 150 to 250 g, more preferably from 180 to 220 g per liter of the resin. The flow rate of the aqueous sodium hydroxide solution is preferably 3 to 7 times, more preferably 4 to 6 times the resin capacity. The flow rate of the aqueous sodium hydroxide solution is from SV3 to
It is preferably 7h -1, and more preferably SV4~6h -1. (8) Extrusion after regeneration is preferably carried out using heated ultrapure water at an SV of about 5 h -1 for about 60 minutes. (9) Washing after extrusion is performed using heated ultrapure water.
It is preferable to carry out at about V5h -1 for about 240 minutes. After finishing the contact with the heated aqueous sodium hydroxide solution, the extrusion and the washing with warm water, it is preferable to finally pass (10) ultrapure water at room temperature to lower the temperature of the resin to room temperature. There are no particular restrictions on the conditions for passing ultrapure water at room temperature, but usually, the resin can be cooled to room temperature by passing water at an SV of about 10 h -1 for about 60 minutes. The above (1)
When ultrapure water is treated with the boron selective adsorption resin that has been regenerated and adjusted by the treatments of steps (10) to (10), the amount of organic carbon eluted into the treated water becomes 1 μg / liter or less, and the specific resistance is reduced. 18 MΩ · cm or more can be maintained, and the boron concentration of the treated water becomes 10 ng / liter or less. According to the method of the present invention, the resin is adjusted by a simple operation of heating the aqueous alkali metal hydroxide solution to be brought into contact with the boron selective adsorption resin, the specific resistance value is high, and the boron concentration is low, and the water quality is extremely pure. Water is produced and can be suitably used in a semiconductor production process, a fluorine product production process and the like.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例及び比較例におい
て、有機体炭素濃度は、TOC計[アナテル社]を用い
て測定した。 実施例1 新しく使用を開始するホウ素選択吸着樹脂[三菱化学
(株)、ダイヤイオンCRBO2]の調整を行った。ホウ
素選択吸着樹脂0.2リットルを充填したカラムに、次
の順序で通液して調整した。 (1)常温の超純水を、上向流、LV=10m・h-1で3
0分間通水して逆洗し、(2)5分間沈静した。次に、
(3)80℃の超純水を、下向流、SV=5h-1で30分
間通水して樹脂を昇温したのち、(4)80℃の2重量%
水酸化ナトリウム水溶液を、下向流、SV=5h-1で1
20分間通液してホウ素選択吸着樹脂の調整を行った。
次いで、(5)80℃の超純水を、下向流、SV=5h-1
で60分間通水して押出を行い、さらに(6)80℃の超
純水を、下向流、SV=5h-1で240分間通水して洗
浄したのち、(7)常温の超純水を、下向流、SV=10
-1で60分間通水してホウ素選択吸着樹脂を冷却し
た。続いて、有機体炭素濃度0.5〜1μg/リットル
の超純水を、下向流、SV=45h-1で通水し、カラム
から流出する処理水の有機体炭素濃度を経時的に測定し
た。処理水の有機体炭素濃度は、1時間後9.9μg/
リットル、2時間後4.8μg/リットル、4時間後2.
2μg/リットル、6時間後1.6μg/リットル、8
時間後1.4μg/リットル、10時間後1.2μg/リ
ットル、12時間後1.2μg/リットル、14時間後
1.0μg/リットルであった。 実施例2 実施例1で調整したホウ素選択吸着樹脂がホウ素を吸着
して破過点に達したとき、次の順序で通液して再生と調
整を行った。 (1)常温の超純水を、上向流、LV=10m・h-1で3
0分間通水して逆洗し、(2)5分間沈静した。次に、
(3)常温の5重量%塩酸を、下向流、SV=5h -1で5
0分間通液してホウ素を脱着し、(4)常温の超純水を、
下向流、SV=5h-1で60分間通水して押出を行い、
(5)常温の超純水を、下向流、SV=10h-1で60分
間通水して洗浄した。次いで、(6)80℃の超純水を、
下向流、SV=5h-1で30分間通水して樹脂を昇温し
たのち、(7)80℃の2重量%水酸化ナトリウム水溶液
を、下向流、SV=5h-1で120分間通液してホウ素
選択吸着樹脂の調整を行った。さらに、(8)80℃の超
純水を、下向流、SV=5h -1で60分間通水して押出
を行い、(9)80℃の超純水を、下向流、SV=5h -1
で240分間通水して洗浄したのち、(10)常温の超純
水を、下向流、SV=10h-1で60分間通水してホウ
素選択吸着樹脂を冷却した。続いて、有機体炭素濃度
0.5〜1μg/リットルの超純水を、下向流、SV=
45h-1で通水し、カラムから流出する処理水の有機体
炭素濃度を経時的に測定した。処理水の有機体炭素濃度
は、1時間後10.1μg/リットル、2時間後4.6μ
g/リットル、4時間後2.1μg/リットル、6時間
後1.6μg/リットル、8時間後1.3μg/リット
ル、10時間後1.1μg/リットル、12時間後1.0
μg/リットル、14時間後0.9μg/リットルであ
った。さらに、このカラムにホウ素含有試験水を、下向
流、SV=45h-1で通水して、ホウ素除去試験を行っ
た。試験水は、超純水にホウ酸を添加して、ホウ素濃度
5μg/リットル及び10μg/リットルとしたものを
用いた。ホウ素濃度5μg/リットルの試験水を通水し
たとき、カラムから流出する処理水のホウ素濃度は10
ng/リットル以下であった。ホウ素濃度10μg/リ
ットルの試験水を通水したときも、処理水のホウ素濃度
は10ng/リットル以下であった。 比較例1 ホウ素選択吸着樹脂を常温の水酸化ナトリウム水溶液と
接触させることにより調整した以外は、実施例2と同じ
操作を繰り返した。実施例2で調整したホウ素選択吸着
樹脂を引き続いて超純水の処理に用い、樹脂がホウ素を
吸着して破過点に達したとき、次の順序で通液して再生
と調整を行った。 (1)常温の超純水を、上向流、LV=10m・h-1で3
0分間通水して逆洗し、(2)5分間沈静した。次に、
(3)常温の5重量%塩酸を、下向流、SV=5h -1で5
0分間通液してホウ素を脱着し、(4)常温の超純水を、
下向流、SV=5h-1で60分間通水して押出を行い、
(5)常温の超純水を、下向流、SV=10h-1で60分
間通水して洗浄した。次いで、(6)常温の超純水を、下
向流、SV=5h-1で30分間通水したのち、(7)常温
の2重量%水酸化ナトリウム水溶液を、下向流、SV=
5h-1で120分間通液してホウ素選択吸着樹脂の調整
を行った。さらに、(8)常温の超純水を、下向流、SV
=5h-1で60分間通水して押出を行い、(9)常温の超
純水を、下向流、SV=5h-1で240分間通水して洗
浄したのち、(10)常温の超純水を、下向流、SV=1
0h-1で60分間通水した。続いて、有機体炭素濃度
0.5〜1μg/リットルの超純水を、下向流、SV=
45h-1で通水し、カラムから流出する処理水の有機体
炭素濃度を経時的に測定した。処理水の有機体炭素濃度
は、1時間後260μg/リットル、2時間後75μg
/リットル、4時間後41μg/リットル、6時間後3
5μg/リットル、8時間後29μg/リットル、10
時間後27μg/リットル、12時間後25μg/リッ
トル、14時間後25μg/リットルであった。実施例
1〜2及び比較例1の処理水の有機体炭素濃度を第1表
に、実施例2の試験水と処理水のホウ素濃度を第2表に
示す。
The present invention will be described in more detail with reference to the following examples.
The present invention is not limited to these examples.
It is not specified. In Examples and Comparative Examples,
The organic carbon concentration was measured using a TOC meter [Anatel].
Measured. Example 1 Boron selective adsorption resin newly used [Mitsubishi Chemical
Co., Ltd., Diaion CRBO2] was adjusted. Hou
The column packed with 0.2 liter
And adjusted by passing through in the order of. (1) Ultra-pure water at normal temperature, upward flow, LV = 10 m · h-13
It was backwashed by passing water for 0 minutes, and (2) it was settled for 5 minutes. next,
(3) Ultrapure water at 80 ° C., downward flow, SV = 5h-1In 30 minutes
(4) 2% by weight at 80 ° C
Sodium hydroxide aqueous solution, downward flow, SV = 5h-1At 1
The solution was passed for 20 minutes to adjust the boron selective adsorption resin.
Next, (5) ultrapure water at 80 ° C. was flowed downward, SV = 5 h-1
And extruded by passing water for 60 minutes.
Pure water, downward flow, SV = 5h-1Wash with water for 240 minutes
After purification, (7) Ultra-pure water at room temperature, downward flow, SV = 10
h-1Water for 60 minutes to cool the boron selective adsorption resin
Was. Subsequently, the organic carbon concentration is 0.5 to 1 μg / liter.
Of ultrapure water, downward flow, SV = 45h-1Water through the column
The concentration of organic carbon in the treated water flowing out of the
Was. The organic carbon concentration of the treated water is 9.9 μg / hour after 1 hour.
Liter, 4.8 μg / liter after 2 hours, 2.
2 μg / liter, after 6 hours 1.6 μg / liter, 8
1.4 μg / l after 10 hours, 1.2 μg / l after 10 hours
Turtle, 1.2 μg / l after 12 hours, 14 hours
It was 1.0 μg / liter. Example 2 The boron selective adsorption resin prepared in Example 1 adsorbs boron.
When the breakthrough point is reached, the liquid is passed in the following order to regenerate and adjust.
Was adjusted. (1) Ultra-pure water at normal temperature, upward flow, LV = 10 m · h-13
It was backwashed by passing water for 0 minutes, and (2) was settled for 5 minutes. next,
(3) 5% by weight hydrochloric acid at room temperature, downward flow, SV = 5h -1At 5
Pass the solution for 0 minutes to desorb boron, and (4) ultrapure water at room temperature
Downflow, SV = 5h-1Water for 60 minutes to extrude,
(5) Ultra-pure water at room temperature, downward flow, SV = 10h-1In 60 minutes
Water was passed for washing. Next, (6) ultrapure water at 80 ° C.
Downflow, SV = 5h-1Water for 30 minutes to heat the resin
(7) 2% by weight aqueous sodium hydroxide solution at 80 ° C
With downward flow, SV = 5h-1Pass through for 120 minutes with boron
Adjustment of the selective adsorption resin was performed. Further, (8) exceeding 80 ° C.
Pure water, downward flow, SV = 5h -1Extrude by passing water for 60 minutes
(9) Ultrapure water at 80 ° C. was flowed downward, SV = 5 h -1
After washing with water for 240 minutes in (10) Ultra pure at room temperature
Water is flowed downward, SV = 10h-1Water for 60 minutes
The elementally selective adsorption resin was cooled. Next, the organic carbon concentration
0.5 to 1 μg / liter of ultrapure water, downward flow, SV =
45h-1Of treated water flowing through the column and flowing out of the column
The carbon concentration was measured over time. Organic carbon concentration of treated water
Is 10.1 μg / liter after 1 hour and 4.6 μ after 2 hours
g / liter, after 4 hours 2.1 μg / liter, 6 hours
1.6 μg / liter after 8 hours, 1.3 μg / lit after 8 hours
1.0 μg / liter after 10 hours, 1.0 after 12 hours
μg / liter and 0.9 μg / liter after 14 hours.
Was. In addition, a boron-containing test water is
Flow, SV = 45h-1To conduct a boron removal test
Was. The test water was prepared by adding boric acid to ultrapure water and
5 μg / liter and 10 μg / liter
Using. Pass test water with a boron concentration of 5 μg / liter
When the concentration of boron in the treated water flowing out of the column is 10
ng / liter or less. Boron concentration 10μg / liter
Even when the test water of the turtle is passed, the boron concentration of the treated water
Was 10 ng / liter or less. Comparative Example 1 A boron selective adsorption resin was mixed with an aqueous solution of sodium hydroxide at room temperature.
Same as Example 2 except that it was adjusted by contact
The operation was repeated. Selective boron adsorption prepared in Example 2
The resin is subsequently used for ultrapure water treatment,
When the breakthrough point is reached by adsorption, liquid is passed in the following order to regenerate
And made adjustments. (1) Ultra-pure water at normal temperature, upward flow, LV = 10 m · h-13
It was backwashed by passing water for 0 minutes, and (2) it was settled for 5 minutes. next,
(3) 5% by weight hydrochloric acid at room temperature, downward flow, SV = 5h -1At 5
Pass the solution for 0 minutes to desorb boron, and (4) ultrapure water at room temperature
Downflow, SV = 5h-1Water for 60 minutes to extrude,
(5) Ultra-pure water at room temperature, downward flow, SV = 10h-1In 60 minutes
Water was passed for washing. Next, (6) ultra-pure water at room temperature
Countercurrent, SV = 5h-1Water for 30 minutes at (7) room temperature
Of a 2% by weight aqueous sodium hydroxide solution in a downward flow, SV =
5h-1Of boron selective adsorption resin by passing the solution for 120 minutes
Was done. (8) Ultra-pure water at room temperature is supplied
= 5h-1And extruded by passing water for 60 minutes.
Pure water, downward flow, SV = 5h-1Wash with water for 240 minutes
After purification, (10) Ultra-pure water at room temperature, downward flow, SV = 1
0h-1For 60 minutes. Next, the organic carbon concentration
0.5 to 1 μg / liter of ultrapure water, downward flow, SV =
45h-1Of treated water flowing through the column and flowing out of the column
The carbon concentration was measured over time. Organic carbon concentration of treated water
Is 260 μg / liter after 1 hour and 75 μg after 2 hours
/ Liter, 41 μg / liter after 4 hours, 3 after 6 hours
5 μg / liter, after 8 hours 29 μg / liter, 10
27 μg / liter after 12 hours, 25 μg / liter after 12 hours
Torr, 25 μg / liter after 14 hours. Example
Table 1 shows the concentration of organic carbon in the treated water of Examples 1 and 2 and Comparative Example 1.
Table 2 shows the boron concentrations of the test water and the treated water in Example 2.
Show.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】第1表に見られるように、本発明方法によ
り調整して新しく使用を開始する実施例1のホウ素選択
吸着樹脂も、再生後に本発明方法により調整した実施例
2のホウ素選択吸着樹脂も、通水開始14時間後に処理
水中の有機体炭素濃度は1μg/リットルまで低下して
いる。これに対して、ホウ素選択吸着樹脂を常温の水酸
化ナトリウム水溶液と接触させて調整した比較例2にお
いては、通水開始14時間後にも25μg/リットルの
有機体炭素が溶出している。また、第2表に見られるよ
うに、本発明方法により調整した実施例2のホウ素選択
吸着樹脂は、十分なホウ素吸着除去能力を有している。
As can be seen from Table 1, the boron selective adsorption resin of Example 1 which is adjusted by the method of the present invention and newly used is also the boron selective adsorption resin of Example 2 which is adjusted by the method of the present invention after regeneration. Also, 14 hours after the start of water passage, the concentration of organic carbon in the treated water has dropped to 1 μg / liter. On the other hand, in Comparative Example 2 in which the boron selective adsorption resin was adjusted by bringing it into contact with an aqueous solution of sodium hydroxide at normal temperature, 25 μg / L of organic carbon was eluted even 14 hours after the start of water passage. Further, as shown in Table 2, the boron selective adsorption resin of Example 2 prepared by the method of the present invention has a sufficient boron adsorption removal ability.

【0012】[0012]

【発明の効果】本発明のホウ素選択吸着樹脂の調整方法
によれば、アルカリ金属水酸化物水溶液を加温して樹脂
と接触させるという簡単な処理により、樹脂からの有機
体炭素の溶出を効果的に防止し、ホウ素選択吸着樹脂を
超純水からホウ素を除去する手段として有効に使用する
ことができる。
According to the method for preparing a boron selective adsorption resin of the present invention, the elution of organic carbon from the resin can be effectively performed by a simple treatment of heating the aqueous alkali metal hydroxide solution and bringing it into contact with the resin. And the boron selective adsorption resin can be effectively used as a means for removing boron from ultrapure water.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ホウ素選択吸着樹脂を、加温したアルカリ
金属水酸化物水溶液と接触させることを特徴とするホウ
素選択吸着樹脂の調整方法。
1. A method for preparing a boron selective adsorption resin, comprising contacting the boron selective adsorption resin with a heated aqueous alkali metal hydroxide solution.
JP11193755A 1999-07-07 1999-07-07 Preparation of boron adsorbing resin Pending JP2001017866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11193755A JP2001017866A (en) 1999-07-07 1999-07-07 Preparation of boron adsorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11193755A JP2001017866A (en) 1999-07-07 1999-07-07 Preparation of boron adsorbing resin

Publications (1)

Publication Number Publication Date
JP2001017866A true JP2001017866A (en) 2001-01-23

Family

ID=16313283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11193755A Pending JP2001017866A (en) 1999-07-07 1999-07-07 Preparation of boron adsorbing resin

Country Status (1)

Country Link
JP (1) JP2001017866A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026511A (en) * 2004-07-15 2006-02-02 Oji Paper Co Ltd Method for treating boron-containing combustion ash
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
JP2019141775A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Method for removing boron and method for producing pure water or ultra pure water
KR20200070487A (en) * 2018-12-07 2020-06-18 주식회사 삼양사 Method for preparing a boron selective adsorption resin for use in the production of ultra pure water
KR20220058728A (en) * 2020-10-30 2022-05-10 주식회사 삼양사 Method for processing a boron selective adsorption resin for use in the production of ultrapure water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026511A (en) * 2004-07-15 2006-02-02 Oji Paper Co Ltd Method for treating boron-containing combustion ash
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
JP2019141775A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Method for removing boron and method for producing pure water or ultra pure water
JP7225544B2 (en) 2018-02-20 2023-02-21 栗田工業株式会社 Method for producing pure water or ultrapure water
KR20200070487A (en) * 2018-12-07 2020-06-18 주식회사 삼양사 Method for preparing a boron selective adsorption resin for use in the production of ultra pure water
KR102216878B1 (en) * 2018-12-07 2021-02-19 주식회사 삼양사 Method for preparing a boron selective adsorption resin for use in the production of ultra pure water
KR20220058728A (en) * 2020-10-30 2022-05-10 주식회사 삼양사 Method for processing a boron selective adsorption resin for use in the production of ultrapure water
KR102483372B1 (en) * 2020-10-30 2023-01-02 주식회사 삼양사 Method for processing a boron selective adsorption resin for use in the production of ultrapure water

Similar Documents

Publication Publication Date Title
JP6298275B2 (en) Water treatment especially to obtain ultrapure water
JP2001017866A (en) Preparation of boron adsorbing resin
JP2005516894A (en) Purification of organic solvents
TWI381999B (en) Silica removing device and silica removing method
TWI781227B (en) Method for removing boron, and method for producing pure water or ultrapure water
JPH07503489A (en) How to remove iodine compounds from acetic acid
CA2266453C (en) Method for manufacturing hydroxylamine
JP2004298738A (en) Boron-containing water treatment method
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2002361247A (en) Method for manufacturing pure water
JP2003230840A (en) Method for regenerating ion exchanger and regenerating agent for anion exchanger
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP3417256B2 (en) Regeneration method of anion exchange resin
JP2000301145A (en) Deionizer
JP4143707B2 (en) Method for producing high purity sodium chloride crystals
JP2001219163A (en) Treating method of boron-containing water
WO2018088015A1 (en) Regeneration method for multilayer anion exchange column
JP3963599B2 (en) Acid component removal method
JP3150836B2 (en) Regeneration method of anion exchange column in high purity water production equipment
JP2007075720A (en) Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
JP3472658B2 (en) Regeneration method of anion exchange resin
JP2023009492A (en) Adjustment method of anion exchange resin
JP5906585B2 (en) Silica removal method
JP4216985B2 (en) Starch molasses purification method
JP2023009493A (en) Method of removing boron