WO2019116653A1 - Method and apparatus for removing hydrogen peroxide - Google Patents

Method and apparatus for removing hydrogen peroxide Download PDF

Info

Publication number
WO2019116653A1
WO2019116653A1 PCT/JP2018/033813 JP2018033813W WO2019116653A1 WO 2019116653 A1 WO2019116653 A1 WO 2019116653A1 JP 2018033813 W JP2018033813 W JP 2018033813W WO 2019116653 A1 WO2019116653 A1 WO 2019116653A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
water
platinum
container
based catalyst
Prior art date
Application number
PCT/JP2018/033813
Other languages
French (fr)
Japanese (ja)
Inventor
森田 博志
康晴 港
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020207010326A priority Critical patent/KR102340160B1/en
Priority to CN201880065236.XA priority patent/CN111183118B/en
Publication of WO2019116653A1 publication Critical patent/WO2019116653A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to a method and apparatus for removing hydrogen peroxide in water in a pure water production process.
  • pure water includes ultrapure water.
  • Ultra pure water for cleaning semiconductor and electronic materials is raw water (industrial water, municipal water, etc.) in the ultra pure water production facility consisting of a pretreatment unit, a primary pure water production unit, and a secondary pure water production unit (subsystem). Well water etc.) is manufactured.
  • a pretreatment device including an aggregation, pressurized floatation (precipitation), filtration (membrane filtration) device and the like, suspended substances and colloidal substances in raw water are removed.
  • pretreatment device including an aggregation, pressurized floatation (precipitation), filtration (membrane filtration) device and the like, suspended substances and colloidal substances in raw water are removed.
  • pretreatment device including an aggregation, pressurized floatation (precipitation), filtration (membrane filtration) device and the like.
  • ions and organic components in raw water are removed.
  • ions and organic components in raw water are removed.
  • the reverse osmosis membrane separation apparatus salts are removed, and ionic and colloidal TOC are removed.
  • salts are removed and TOC components adsorbed or ion exchanged by the ion exchange resin are removed.
  • the deaerator removes inorganic carbon (IC) and dissolved oxygen.
  • the primary pure water from the primary pure water production apparatus is processed in an ultraviolet (UV) irradiation apparatus, an ion exchange apparatus and an ultrafiltration (UF) membrane separation apparatus in a subsystem to produce ultrapure water.
  • UV ultraviolet
  • ion exchange apparatus an ultrafiltration (UF) membrane separation apparatus
  • the UV oxidizer the 185 nm UV irradiated from the UV lamp decomposes the TOC into an organic acid and further CO 2 .
  • the organic matter and CO 2 generated by the decomposition are removed by an ion exchange device (usually, a mixed bed ion exchange device) in the latter stage.
  • an ion exchange device usually, a mixed bed ion exchange device
  • the UF membrane separation apparatus fine particles are removed, and fragments and the like of the ion exchange resin flowing out of the ion exchange apparatus are also removed.
  • the ultrapure water thus obtained is supplied to the use point.
  • the organic substance (TOC component) in water decomposes
  • the oxidative decomposition mechanism of the TOC component in this ultraviolet oxidation apparatus oxidizes and decomposes water to generate OH radicals and oxidizes and decomposes the TOC component by this OH radical, and the ultraviolet irradiation dose sufficiently oxidizes the TOC in water It is considered to be over-irradiated so that it can be decomposed.
  • the OH radicals generated by the decomposition of water become excessive, and thus the excess OH radicals associate to generate hydrogen peroxide.
  • the generated hydrogen peroxide is decomposed when coming into contact with the anion exchange resin of the mixed bed ion exchange apparatus in the latter stage, but at that time, the ion exchange resin is deteriorated. Dissolved oxygen also increases with this decomposition. Further, the decomposition of the ion exchange resin newly generates a TOC component derived from the ion exchange resin, and the water quality of the ultrapure water obtained is lowered. Further, hydrogen peroxide remaining even after passing through the mixed bed ion exchange apparatus degrades the degassing apparatus and the UF membrane in the latter stage of the mixed bed ion exchange apparatus.
  • Patent Document 1 discloses, as a method for removing hydrogen peroxide in ultrapure water, water to be treated containing hydrogen peroxide discharged from an ultraviolet oxidation treatment apparatus of an ultrapure water production apparatus, metal nanocolloid particles of platinum group. There is described a method of decomposing hydrogen peroxide in treated water to 1 ppb or less by contacting with a hydrogen peroxide decomposition catalyst supported on an anion exchange resin carrier.
  • Patent Document 2 describes a method for producing pure water, in which water to be treated is subjected to ultraviolet oxidation treatment with an ultraviolet oxidation device to suppress deterioration of the platinum catalyst, and then hydrogen peroxide removal treatment is carried out using the platinum catalyst. It is described that the TOC of the water supply to the ultraviolet oxidation apparatus is 5 ppb or less.
  • platinum group catalysts represented by Pt are conventionally utilized in the decomposition of oxidizing substances and the like.
  • the removal of hydrogen peroxide generated as a by-product in the ultraviolet oxidation process for the purpose of decomposing a small amount of organic substance contained in water has been a problem in recent years, and Pt nanocolloid was supported.
  • a hydrogen peroxide decomposition process is performed using an ion exchange resin, a Pd-loaded resin, or the like.
  • this hydrogen peroxide decomposition treatment can reduce the concentration of hydrogen peroxide in the water to below the target concentration (for example, 1 ppb), the performance of the catalyst decreases with long-term use.
  • An object of the present invention is to provide a hydrogen peroxide removal method and apparatus capable of suppressing or recovering the performance deterioration of a platinum-based catalyst and maintaining a state with sufficient catalytic activity for a long time.
  • the performance deterioration of the platinum-based catalyst is also due to the oxidation of the catalyst surface, and by suppressing the oxidation of the catalyst surface, the performance deterioration of the platinum-based catalyst is suppressed.
  • the present invention has been made based on such findings.
  • the hydrogen peroxide removal method of the present invention is a hydrogen peroxide removal method of removing hydrogen peroxide by passing hydrogen peroxide-containing water through a hydrogen peroxide removal device having a platinum-based catalyst loading vessel installed in parallel, Hydrogen peroxide removal performance recovery operation of stopping the water supply of hydrogen peroxide-containing water to a part of the platinum-based catalyst filled container and storing the platinum-based catalyst filled in the container in ultrapure water for a predetermined period It is characterized by doing.
  • the hydrogen peroxide removal performance recovery operation replaces the water in the container in which the water flow is stopped with ultrapure water, and the platinum-based catalyst is predetermined in the ultrapure water in the container. It is an operation to save for a period.
  • the platinum-based catalyst in the container is removed from the container in which the water flow is stopped, and the removed platinum-based catalyst is stored in ultrapure water for a predetermined period After that, it is an operation to refill the container.
  • a non-oxidizing gas such as nitrogen gas is supplied to the ultrapure water.
  • the ultrapure water is ultrapure water in which hydrogen is dissolved.
  • the hydrogen peroxide removing device is installed in an ultrapure water producing device, and increases the amount of water flowing to the platinum-based catalyst filled container other than the part during the predetermined time.
  • the hydrogen peroxide removing device of the present invention comprises a platinum-based catalyst filled container installed in parallel, hydrogen peroxide containing water passing means for passing hydrogen peroxide containing water to each container, and non-oxidizing property for each container.
  • the catalyst itself has the function of reducing the barrier to any chemical reaction without any change and promoting the progress. Prolonged exposure to oxidizing conditions can result in oxidation of the surface of the catalyst, which can lead to reduced performance of the catalyst.
  • the platinum-based catalyst becomes an irreversible oxide when the oxidation proceeds strongly, but in the reversible surface oxidation stage, the performance is restored by releasing from the continuous oxidation state.
  • the present inventors have found that the platinum-based catalyst is released from the continuous oxidation state and the performance of the catalyst is recovered by stopping the water flow and immersing and storing the platinum-based catalyst in ultrapure water.
  • the hydrogen peroxide decomposition performance can be recovered in a shorter period of time by bubbling N 2 gas into ultrapure water or passing ultrapure water having hydrogen dissolved therein during this water stopping period.
  • the deterioration of the catalyst is caused not only by the surface oxidation of the platinum group catalyst but also by contamination with impurities such as organic substances contained in the water to be treated.
  • the carrier for example, ion exchange resin
  • oxidation is the main cause of performance deterioration, and the present invention is particularly effective.
  • the lifetime of the platinum-based catalyst can be extended without replacing the platinum-based catalyst with a new one.
  • a plurality of platinum-based catalyst filled containers are installed in parallel, and while performance recovery processing is applied to some of the containers, water flow switching operation to another container is repeatedly repeated in order to set the water flow rate to another container.
  • the hydrogen peroxide decomposition treatment can be performed for a long time while maintaining the desired treated water quality and amount of water.
  • the hydrogen peroxide removal method and apparatus of the present invention are suitable for use in the ultrapure water production process.
  • the ultrapure water production process as described above, primary pure water from the primary pure water production apparatus is processed by the subsystem to produce ultrapure water.
  • primary pure water is treated by an ultraviolet oxidizer, hydrogen peroxide is removed by a hydrogen peroxide remover having a platinum-based catalyst, and then a non-regenerating ion exchange unit, a membrane deaerator, a UF membrane unit Water flow
  • the ultraviolet oxidation treatment in the ultraviolet oxidation apparatus oxidizes and decomposes the TOC component to form an organic acid and carbonic acid, as well as hydrogen peroxide.
  • the effluent water from the ultraviolet oxidation apparatus is passed through the hydrogen peroxide removing apparatus to remove hydrogen peroxide.
  • a container filled with a platinum-based catalyst is employed as this hydrogen peroxide removal device.
  • the platinum-based catalyst is preferably a platinum-based metal colloidal particle, particularly a nanocolloidal particle supported on a carrier.
  • platinum-based metals ruthenium, rhodium, palladium, osmium, iridium and platinum can be mentioned. These platinum group metals can be used alone or in combination of two or more, or as an alloy of two or more, or the purity of a naturally produced mixture. It can also be used without separating the product into single components. Among these, platinum, palladium, platinum / palladium alloy alone or a mixture of two or more of them can be particularly preferably used because they have strong catalytic activity.
  • the metal salt reduction reaction method can be suitably used because it is easy to produce and metal nanocolloid particles of stable quality can be obtained.
  • the average particle size of the platinum-based metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. This particle size is a value obtained from electron microscope imaging.
  • Examples of the support on which the platinum-based metal nanocolloid particles are supported include magnesia, titania, alumina, silica-alumina, zirconia, activated carbon, zeolite, diatomaceous earth, ion exchange resin, and the like.
  • anion exchange resins can be particularly preferably used. Since the platinum-based metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported by the anion exchange resin and hardly peel off. Platinum-based metal nanocolloidal particles supported on an anion exchange resin show strong catalytic activity for hydrogen peroxide decomposition and removal.
  • the exchange group of the anion exchange resin is preferably in the OH form.
  • the OH type anion exchange resin makes the resin surface alkaline and promotes the decomposition of hydrogen peroxide.
  • the amount of platinum-based metal nanocolloid particles supported on the anion exchange resin is preferably 0.01 to 0.2% by weight, and more preferably 0.04 to 0.1% by weight.
  • Hydrogen peroxide in water is decomposed by the reaction of 2H 2 O 2 ⁇ 2H 2 O + O 2 by bringing hydrogen peroxide-containing water into contact with a hydrogen peroxide decomposition catalyst in which platinum-based metal nanocolloid particles are supported on a carrier. Be done.
  • the water flow rate of the hydrogen peroxide-containing water to the platinum-based catalyst filled container is preferably a space velocity SV of 100 to 2,000 h ⁇ 1 , and more preferably 300 to 1,500 h ⁇ 1 . Since the platinum-based catalyst has a very high decomposition rate of hydrogen peroxide, hydrogen peroxide is sufficiently decomposed even if SV is 100 h ⁇ 1 or more. However, if the SV is more than 2,000 h -1 , the pressure loss of water passing through may be excessive, and the decomposition and removal of hydrogen peroxide may be insufficient.
  • FIG. 1 a plurality of (five in the drawing) columns 21 to 25 packed with a platinum-based catalyst are arranged in parallel.
  • the hydrogen peroxide-containing water such as the UV irradiation device outflow water is passed from the piping 1 to the columns 21 to 25 through the valves 11 to 15. Effluent water from the columns 21-25 is taken out via the valves 31-35 and the collecting pipe 2.
  • Treatment is performed in the same manner as parallel water flow through five columns 21-25.
  • water flow to one column (column 21 in FIG. 1 (b)) as shown in FIG. 1 (b) and valves 11 and 31 are closed.
  • the parallel operation is performed by temporarily stopping the flow rate of the remaining four columns 22 to 25 by 25% each to secure the treated water amount.
  • the following hydrogen peroxide removal performance recovery operation is performed for the column 21 whose water flow has been stopped.
  • the water in the column 21 is replaced with ultrapure water, and the platinum catalyst in the column 21 is immersed and stored in the ultrapure water for a predetermined period in the column 21.
  • the platinum-based catalyst in the column 21 is once taken out, immersed in ultrapure water in another container and stored for a predetermined period, and then the column 21 is refilled.
  • a non-oxidizing gas such as N 2 gas is supplied to the ultrapure water used for the immersion treatment of the platinum-based catalyst.
  • ultrapure water in which hydrogen is dissolved is used as ultrapure water used for the immersion treatment of the platinum-based catalyst.
  • the operations (1) to (4) may be performed in combination of two or more.
  • the ultrapure water used for the immersion treatment of the platinum-based catalyst does not contain hydrogen peroxide and preferably has a hydrogen peroxide concentration of 2 ⁇ g / L, particularly less than 1 ⁇ g / L.
  • the platinum-based catalyst in ultrapure water for a predetermined period of 1 day or more, particularly about 2 to 2 weeks.
  • an operation in which the atmosphere in the column 21 is replaced with a nonoxidizing gas such as N 2 gas, or hydrogen dissolved water is passed The operation may be performed.
  • valves 41-45 are installed instead of valves 11-15
  • three-way valves 51-55 are installed instead of valves 31-35
  • ultra pure water, N 2 gas or hydrogen is installed in each column 21-25.
  • a hydrogen peroxide removing device is shown which can supply dissolved water by switching the three-way valves 31 to 35, 51 to 55.
  • the pipes 61 to 65 branched from the pipe 60 are connected to the third ports of the three-way valves 41 to 45.
  • the third ports of the three-way valves 51 to 55 are connected to the discharge pipe 70 via branch pipes 71 to 75.
  • Ultra pure water, N 2 gas or hydrogen-dissolved water is supplied from the pipe 60 to any of the columns 21 to 25, and the outflow gas or outflow water is discharged from the pipe 70.
  • Fig. 1 and 2 five columns are installed in parallel, but six columns are installed in parallel, one of them is paused sequentially (performance recovery operation), and water is constantly supplied to five columns. You may drive it.
  • one container is stopped when a predetermined time (a predetermined hydrogen peroxide load) has passed, and one container which has not been used at the same time is started to flow water, so that each container has 5/6 of the total time It is a so-called merry-go-round operation in which intermittent operation for stopping water flow and 1/6 is sequentially performed, and operation with a margin can be performed.
  • a predetermined time a predetermined hydrogen peroxide load
  • the above embodiment is an example of the present invention, and the present invention may be an embodiment other than the above.
  • the number of columns is not limited to five.
  • the ultrapure water production system 81 is composed of three stages of a pretreatment system 82, a primary pure water production system 83, and a secondary pure water production system (subsystem) 84.
  • the pretreatment device 82 of the ultrapure water production device 81 the raw water W is filtered, coagulated and precipitated, and pretreatment with a precision filtration membrane is performed.
  • the primary pure water production system 83 includes a tank 85 for pretreatment water W1, a reverse osmosis (RO) membrane system 86, an ultraviolet (UV) oxidizer 87, and a regenerative ion exchange system (mixed bed type or four bed five towers) And the like) and a membrane degassing device 89.
  • RO reverse osmosis
  • UV ultraviolet
  • regenerative ion exchange system mixed bed type or four bed five towers
  • the subsystem 84 includes a sub tank 91 for storing the primary pure water W2 manufactured by the primary pure water producing apparatus 83 and an ultraviolet oxidizer for processing the primary pure water W2 supplied from the sub tank 91 via a pump (not shown). 92, a platinum group metal catalyst resin tower 93, a membrane degassing device 94, a non-regenerating type mixed bed ion exchange device 95, and an ultrafiltration (UF) membrane 96 as a membrane filtration device There is. The fine particles are removed by the ultrafiltration (UF) membrane 96 to make ultrapure water W 3, which is supplied to the use point 97, and unused ultrapure water is returned to the sub tank 91.
  • UF ultrafiltration
  • Anion supporting platinum nanocolloidal particles having an average particle diameter of 3.5 nm on a strongly basic gel type anion exchange resin at a loading amount of 0.07% by weight, and supporting platinum group metal nanoparticles as a platinum group metal catalyst resin Exchange resin was prepared.
  • a platinum group metal catalyst resin tower 93 is configured using the above-described platinum group metal catalyst resin to produce ultrapure water W3.
  • the hydrogen peroxide concentration (initial) of the inlet water and the outlet water of the metal catalyst resin tower 93 was measured. The results are shown in Table 1. Further, the hydrogen peroxide concentration (final stage) of the outlet water of the platinum group metal catalyst resin tower 93 after the operation of the ultrapure water production apparatus 81 was continued for a long period of time was measured. The results are shown in Table 1.
  • sodium sulfate anhydrous
  • phenolphthalein 8 mg of copper sulfate (anhydrous)
  • 48 mg of sodium hydroxide 48 mg
  • the reagents were prepared. 0.5 g of the reagent was added to 10 mL of test water, dissolved, and allowed to stand at room temperature for 10 minutes, then the absorbance at 552 nm was measured, and the hydrogen peroxide concentration was calculated based on the measured value.
  • Reference Example 2 In Reference Example 1, the used resin of the platinum group metal catalyst resin tower 93 after being operated for a long time is taken out and packed in a column for test to obtain a platinum group metal catalyst resin tower for test. Further, for comparison, a new resin was similarly packed in a test column to make a platinum group metal catalyst resin tower.
  • Reference Example 3 In Reference Example 1, the spent resin of the platinum group metal catalyst resin tower 93 after being operated for a long time was packed in a column for test to obtain a platinum group metal catalyst resin tower for test. Further, for comparison, a new resin was similarly packed in a test column to make a platinum group metal catalyst resin tower.
  • Example 1 After the test in Reference Example 3, the resin of each test column is taken out, stored in ultra pure water (less than 1 ⁇ g / L hydrogen peroxide) for 2 weeks, and then refilled to obtain ultra pure water (1 ⁇ g hydrogen peroxide / L) The hydrogen peroxide concentration of the outlet water when passing through the inlet water to which 30 ⁇ g / L of hydrogen peroxide was added was measured. The results are shown in Table 4.

Abstract

A method and an apparatus both for decomposing and removing hydrogen peroxide by flowing water containing hydrogen peroxide through columns 21 to 25 each filled with a platinum-based catalyst, wherein the hydrogen peroxide removal performance can be recovered by halting the flowing of the water through one or some of the columns at a predetermined point of time and storing the platinum-based catalyst in the columns in ultra-pure water. It is possible to flow a nitrogen gas or hydrogen-dissolved water through the columns through which the flowing of the water is halted at the predetermined point of time, and it is also possible to increase the volume of the water to be flowed through the other columns.

Description

過酸化水素除去方法及び装置Method and apparatus for hydrogen peroxide removal
 本発明は、純水製造工程において水中の過酸化水素を除去するための方法及び装置に関する。本発明において、純水は超純水を包含する。 The present invention relates to a method and apparatus for removing hydrogen peroxide in water in a pure water production process. In the present invention, pure water includes ultrapure water.
 半導体・電子材料洗浄用の超純水は、前処理装置、一次純水製造装置、二次純水製造装置(サブシステム)から構成される超純水製造設備で原水(工業用水、市水、井水等)を処理することにより製造される。 Ultra pure water for cleaning semiconductor and electronic materials is raw water (industrial water, municipal water, etc.) in the ultra pure water production facility consisting of a pretreatment unit, a primary pure water production unit, and a secondary pure water production unit (subsystem). Well water etc.) is manufactured.
 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理装置では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 In a pretreatment device including an aggregation, pressurized floatation (precipitation), filtration (membrane filtration) device and the like, suspended substances and colloidal substances in raw water are removed. In addition, in this process, removal of high molecular weight organic substances, hydrophobic organic substances and the like is also possible.
 逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水製造装置では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。 In a primary pure water production apparatus equipped with a reverse osmosis membrane separation device, a degassing device, and an ion exchange device (mixed bed type or 4 bed 5 tower type, etc.), ions and organic components in raw water are removed. In the reverse osmosis membrane separation apparatus, salts are removed, and ionic and colloidal TOC are removed. In the ion exchange apparatus, salts are removed and TOC components adsorbed or ion exchanged by the ion exchange resin are removed. The deaerator removes inorganic carbon (IC) and dissolved oxygen.
 一次純水製造装置からの一次純水は、サブシステムにおいて、紫外線(UV)照射装置、イオン交換装置及び限外濾過(UF)膜分離装置で処理されて、超純水が製造される。UV酸化装置では、UVランプより照射される185nmのUVによりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置(通常は混床式イオン交換装置)で除去される。UF膜分離装置では微粒子が除去され、イオン交換装置から流出するイオン交換樹脂の破片等も除去される。このようにして得られた超純水がユースポイントに供給される。 The primary pure water from the primary pure water production apparatus is processed in an ultraviolet (UV) irradiation apparatus, an ion exchange apparatus and an ultrafiltration (UF) membrane separation apparatus in a subsystem to produce ultrapure water. In the UV oxidizer, the 185 nm UV irradiated from the UV lamp decomposes the TOC into an organic acid and further CO 2 . The organic matter and CO 2 generated by the decomposition are removed by an ion exchange device (usually, a mixed bed ion exchange device) in the latter stage. In the UF membrane separation apparatus, fine particles are removed, and fragments and the like of the ion exchange resin flowing out of the ion exchange apparatus are also removed. The ultrapure water thus obtained is supplied to the use point.
 紫外線酸化装置での紫外線照射による酸化処理により、水中の有機物(TOC成分)が分解して有機酸及び炭酸が生じる。この紫外線酸化装置におけるTOC成分の酸化分解機構は、水を酸化分解してOHラジカルを生成させ、このOHラジカルによりTOC成分を酸化分解するものであり、紫外線照射量は水中のTOCを十分に酸化分解できるような過剰照射とされている。 The organic substance (TOC component) in water decomposes | disassembles and the organic acid and carbonic acid are produced | generated by the oxidation process by the ultraviolet irradiation in a ultraviolet-ray oxidation apparatus. The oxidative decomposition mechanism of the TOC component in this ultraviolet oxidation apparatus oxidizes and decomposes water to generate OH radicals and oxidizes and decomposes the TOC component by this OH radical, and the ultraviolet irradiation dose sufficiently oxidizes the TOC in water It is considered to be over-irradiated so that it can be decomposed.
 このように紫外線照射量が多い場合、水の分解で生成したOHラジカルが過剰となるため、余剰のOHラジカルが会合することにより過酸化水素が生成する。生成した過酸化水素は、後段の混床式イオン交換装置のアニオン交換樹脂と接触すると分解されるが、その際、イオン交換樹脂を劣化させる。この分解にともない、溶存酸素も増加する。また、イオン交換樹脂の分解で新たにイオン交換樹脂由来のTOC成分が生成し、得られる超純水の水質が低下する。また、混床式イオン交換装置に通水後もなお残留する過酸化水素は、混床式イオン交換装置の後段の脱気装置やUF膜を劣化させる。 As described above, when the ultraviolet irradiation amount is large, the OH radicals generated by the decomposition of water become excessive, and thus the excess OH radicals associate to generate hydrogen peroxide. The generated hydrogen peroxide is decomposed when coming into contact with the anion exchange resin of the mixed bed ion exchange apparatus in the latter stage, but at that time, the ion exchange resin is deteriorated. Dissolved oxygen also increases with this decomposition. Further, the decomposition of the ion exchange resin newly generates a TOC component derived from the ion exchange resin, and the water quality of the ultrapure water obtained is lowered. Further, hydrogen peroxide remaining even after passing through the mixed bed ion exchange apparatus degrades the degassing apparatus and the UF membrane in the latter stage of the mixed bed ion exchange apparatus.
 特許文献1には、超純水中の過酸化水素除去方法として、超純水製造装置の紫外線酸化処理装置から排出される過酸化水素を含む被処理水を、白金族の金属ナノコロイド粒子をアニオン交換樹脂担体に担持させた過酸化水素分解触媒と接触させて、被処理水中の過酸化水素を1ppb以下にまで分解する方法が記載されている。 Patent Document 1 discloses, as a method for removing hydrogen peroxide in ultrapure water, water to be treated containing hydrogen peroxide discharged from an ultraviolet oxidation treatment apparatus of an ultrapure water production apparatus, metal nanocolloid particles of platinum group. There is described a method of decomposing hydrogen peroxide in treated water to 1 ppb or less by contacting with a hydrogen peroxide decomposition catalyst supported on an anion exchange resin carrier.
 特許文献2には、白金系触媒の劣化抑制のために、被処理水を紫外線酸化装置で紫外線酸化処理した後、白金系触媒を用いて過酸化水素除去処理する純水の製造方法において、該紫外線酸化装置への給水のTOCを5ppb以下とすることが記載されている。 Patent Document 2 describes a method for producing pure water, in which water to be treated is subjected to ultraviolet oxidation treatment with an ultraviolet oxidation device to suppress deterioration of the platinum catalyst, and then hydrogen peroxide removal treatment is carried out using the platinum catalyst. It is described that the TOC of the water supply to the ultraviolet oxidation apparatus is 5 ppb or less.
特開2007-185587号公報JP 2007-185587 A 特開2015-93226号公報JP, 2015-93226, A
 上述の通り、Ptに代表される白金族触媒は、酸化性物質の分解などで従来から活用されている。超純水製造システムにおいては、水中に微量含まれる有機物の分解を目的とした紫外線酸化工程で副生成物として生じる過酸化水素の除去が近年の課題となっており、Ptナノコロイドを担持させたイオン交換樹脂やPd担持樹脂などによる過酸化水素分解処理が行われている。 As described above, platinum group catalysts represented by Pt are conventionally utilized in the decomposition of oxidizing substances and the like. In the ultrapure water production system, the removal of hydrogen peroxide generated as a by-product in the ultraviolet oxidation process for the purpose of decomposing a small amount of organic substance contained in water has been a problem in recent years, and Pt nanocolloid was supported. A hydrogen peroxide decomposition process is performed using an ion exchange resin, a Pd-loaded resin, or the like.
 この過酸化水素分解処理により、目標濃度(例えば1ppb)を下回るまで被処理水中の過酸化水素濃度を低減させることができるが、長期間の使用に伴い触媒の性能が低下していく。 Although this hydrogen peroxide decomposition treatment can reduce the concentration of hydrogen peroxide in the water to below the target concentration (for example, 1 ppb), the performance of the catalyst decreases with long-term use.
 本発明は、白金系触媒の性能低下を抑制し、あるいは回復させ、十分な触媒活性のある状態を長く保つことができる過酸化水素除去方法及び装置を提供することを目的とする。 An object of the present invention is to provide a hydrogen peroxide removal method and apparatus capable of suppressing or recovering the performance deterioration of a platinum-based catalyst and maintaining a state with sufficient catalytic activity for a long time.
 一般に、白金系触媒装置に流入する被処理水中の有機物濃度を低下させることにより、白金系触媒の性能低下は抑制される。本発明者はさらに性能低下を抑制すべく鋭意研究を重ねた。その結果、白金系触媒の性能低下は、触媒表面の酸化も一因であり、この触媒表面の酸化を抑制することにより、白金系触媒の性能低下が抑制されることを見出した。 In general, lowering the organic substance concentration in the water to be treated flowing into the platinum-based catalyst device suppresses the performance deterioration of the platinum-based catalyst. The present inventors have intensively studied to further suppress the performance deterioration. As a result, it has been found that the performance deterioration of the platinum-based catalyst is also due to the oxidation of the catalyst surface, and by suppressing the oxidation of the catalyst surface, the performance deterioration of the platinum-based catalyst is suppressed.
 本発明は、かかる知見に基づいてなされたものである。 The present invention has been made based on such findings.
 本発明の過酸化水素除去方法は、並列設置された白金系触媒充填容器を有する過酸化水素除去装置に過酸化水素含有水を通水して過酸化水素を除去する過酸化水素除去方法において、一部の該白金系触媒充填容器への過酸化水素含有水の通水を停止して、該容器に充填された白金系触媒を超純水中で所定期間保管する過酸化水素除去性能回復操作を行うことを特徴とする。 The hydrogen peroxide removal method of the present invention is a hydrogen peroxide removal method of removing hydrogen peroxide by passing hydrogen peroxide-containing water through a hydrogen peroxide removal device having a platinum-based catalyst loading vessel installed in parallel, Hydrogen peroxide removal performance recovery operation of stopping the water supply of hydrogen peroxide-containing water to a part of the platinum-based catalyst filled container and storing the platinum-based catalyst filled in the container in ultrapure water for a predetermined period It is characterized by doing.
 本発明の一態様では、前記過酸化水素除去性能回復操作は、前記通水を停止した容器内の水を超純水に置換し、該容器内の超純水中で前記白金系触媒を所定期間保管する操作である。 In one aspect of the present invention, the hydrogen peroxide removal performance recovery operation replaces the water in the container in which the water flow is stopped with ultrapure water, and the platinum-based catalyst is predetermined in the ultrapure water in the container. It is an operation to save for a period.
 本発明の一態様では、前記過酸化水素除去性能回復操作は、前記通水を停止した容器から該容器内の白金系触媒を取り出し、取り出した白金系触媒を超純水中で所定期間保管した後、該容器に再充填する操作である。 In one aspect of the present invention, in the hydrogen peroxide removal performance recovery operation, the platinum-based catalyst in the container is removed from the container in which the water flow is stopped, and the removed platinum-based catalyst is stored in ultrapure water for a predetermined period After that, it is an operation to refill the container.
 本発明の一態様では、前記超純水に窒素ガスなどの非酸化性ガスを供給する。 In one aspect of the present invention, a non-oxidizing gas such as nitrogen gas is supplied to the ultrapure water.
 本発明の一態様では、前記超純水は水素を溶解させた超純水である。 In one aspect of the present invention, the ultrapure water is ultrapure water in which hydrogen is dissolved.
 本発明の一態様では、前記過酸化水素除去装置は超純水製造装置に設置されており、前記所定時間に、前記一部以外の白金系触媒充填容器への通水量を増加させる。 In one aspect of the present invention, the hydrogen peroxide removing device is installed in an ultrapure water producing device, and increases the amount of water flowing to the platinum-based catalyst filled container other than the part during the predetermined time.
 本発明の過酸化水素除去装置は、並列設置された白金系触媒充填容器と、各容器に過酸化水素含有水を通水する過酸化水素含有水通水手段と、各容器に、非酸化性ガス又は水素溶解水を供給する供給手段と、各容器への過酸化水素含有水通水と非酸化性ガス又は水素溶解水供給とを切り替える切替手段とを備える。 The hydrogen peroxide removing device of the present invention comprises a platinum-based catalyst filled container installed in parallel, hydrogen peroxide containing water passing means for passing hydrogen peroxide containing water to each container, and non-oxidizing property for each container. A supply means for supplying gas or hydrogen-dissolved water, and a switching means for switching between hydrogen peroxide-containing water passage to each container and non-oxidative gas or hydrogen-dissolved water supply.
 触媒は、それ自身は変化することなく何らかの化学的反応の障壁を低くして進行を促す機能を有する。長期にわたり酸化条件下に曝されることにより、触媒の表面が酸化し、それにより触媒の性能低下が起こりうる。 The catalyst itself has the function of reducing the barrier to any chemical reaction without any change and promoting the progress. Prolonged exposure to oxidizing conditions can result in oxidation of the surface of the catalyst, which can lead to reduced performance of the catalyst.
 白金系触媒は、強く酸化が進むと不可逆的な酸化物となるが、可逆的表面酸化の段階では、継続的な酸化状態から開放することで元に戻り性能が回復する。本発者らは、通水を停止して白金系触媒を超純水中に浸漬して保管することによって白金系触媒を継続的な酸化状態から開放し、触媒の性能を回復させることを見出した。この通水停止期間中に超純水にNガスを通気したり、水素を溶解させた超純水を通水することにより、過酸化水素分解性能をさらに短期間に回復することができる。 The platinum-based catalyst becomes an irreversible oxide when the oxidation proceeds strongly, but in the reversible surface oxidation stage, the performance is restored by releasing from the continuous oxidation state. The present inventors have found that the platinum-based catalyst is released from the continuous oxidation state and the performance of the catalyst is recovered by stopping the water flow and immersing and storing the platinum-based catalyst in ultrapure water. The The hydrogen peroxide decomposition performance can be recovered in a shorter period of time by bubbling N 2 gas into ultrapure water or passing ultrapure water having hydrogen dissolved therein during this water stopping period.
 触媒の劣化の原因は、白金族触媒自身の表面酸化による変質以外に、被処理水中に含まれる有機物等の不純物による汚染もある。また、基材である担体(例えばイオン交換樹脂)自身の劣化もある。このため、被処理水中の不純物が少なく、かつ過酸化水素濃度が比較的高い場合には、酸化が性能低下の主原因になるので、特に本発明が有効となる。 The deterioration of the catalyst is caused not only by the surface oxidation of the platinum group catalyst but also by contamination with impurities such as organic substances contained in the water to be treated. In addition, there is also deterioration of the carrier (for example, ion exchange resin) itself which is a base material. For this reason, in the case where the amount of impurities in the water to be treated is small and the hydrogen peroxide concentration is relatively high, oxidation is the main cause of performance deterioration, and the present invention is particularly effective.
 本発明によると、白金系触媒を新品に交換することなく白金系触媒の有効期間を延長することができる。 According to the present invention, the lifetime of the platinum-based catalyst can be extended without replacing the platinum-based catalyst with a new one.
 白金系触媒充填容器を複数個並列設置し、性能回復処理を一部の容器に施している間、他の容器への通水流量を高めに設定することを順に繰り返していく通水切替操作により、所望の処理水質と水量を維持しながら長期にわたって過酸化水素分解処理を行うことができる。 A plurality of platinum-based catalyst filled containers are installed in parallel, and while performance recovery processing is applied to some of the containers, water flow switching operation to another container is repeatedly repeated in order to set the water flow rate to another container. The hydrogen peroxide decomposition treatment can be performed for a long time while maintaining the desired treated water quality and amount of water.
本発明方法の説明図である。It is explanatory drawing of this invention method. 本発明装置の一例の説明図である。It is explanatory drawing of an example of this invention apparatus. 超純水製造装置のシステム図である。It is a system diagram of an ultrapure water production system.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の過酸化水素除去方法及び装置は、超純水製造工程で用いるのに好適である。超純水製造工程では、前述の通り、一次純水製造装置からの一次純水がサブシステムで処理されて超純水が製造される。サブシステムでは、一次純水を紫外線酸化装置で処理した後、白金系触媒を有する過酸化水素除去装置で過酸化水素除去処理し、次いで非再生イオン交換装置、膜式脱気装置、UF膜装置に通水する。 The hydrogen peroxide removal method and apparatus of the present invention are suitable for use in the ultrapure water production process. In the ultrapure water production process, as described above, primary pure water from the primary pure water production apparatus is processed by the subsystem to produce ultrapure water. In the subsystem, primary pure water is treated by an ultraviolet oxidizer, hydrogen peroxide is removed by a hydrogen peroxide remover having a platinum-based catalyst, and then a non-regenerating ion exchange unit, a membrane deaerator, a UF membrane unit Water flow
 紫外線酸化装置での紫外線酸化処理によりTOC成分は酸化分解され、有機酸及び炭酸が生成すると共に、過酸化水素が生じる。本発明では、紫外線酸化装置からの流出水を過酸化水素除去装置に通水して過酸化水素を除去する。この過酸化水素除去装置としては、容器に白金系触媒を充填したものを採用する。白金系触媒としては、白金系金属のコロイド粒子、特にナノコロイド粒子を担体に担持させたものが好ましい。 The ultraviolet oxidation treatment in the ultraviolet oxidation apparatus oxidizes and decomposes the TOC component to form an organic acid and carbonic acid, as well as hydrogen peroxide. In the present invention, the effluent water from the ultraviolet oxidation apparatus is passed through the hydrogen peroxide removing apparatus to remove hydrogen peroxide. As this hydrogen peroxide removal device, a container filled with a platinum-based catalyst is employed. The platinum-based catalyst is preferably a platinum-based metal colloidal particle, particularly a nanocolloidal particle supported on a carrier.
 白金系金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。こられの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。 As platinum-based metals, ruthenium, rhodium, palladium, osmium, iridium and platinum can be mentioned. These platinum group metals can be used alone or in combination of two or more, or as an alloy of two or more, or the purity of a naturally produced mixture. It can also be used without separating the product into single components. Among these, platinum, palladium, platinum / palladium alloy alone or a mixture of two or more of them can be particularly preferably used because they have strong catalytic activity.
 白金系金属のナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。 There is no restriction | limiting in particular in the method to manufacture the nanocolloid particle | grains of a platinum-type metal, For example, a metal salt reduction reaction method, a combustion method, etc. can be mentioned. Among them, the metal salt reduction reaction method can be suitably used because it is easy to produce and metal nanocolloid particles of stable quality can be obtained.
 白金系金属のナノコロイド粒子の平均粒子径は好ましくは1~50nmであり、より好ましくは1.2~20nmであり、さらに好ましくは1.4~5nmである。この粒径は電子顕微鏡撮像から得た値である。 The average particle size of the platinum-based metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. This particle size is a value obtained from electron microscope imaging.
 白金系金属ナノコロイド粒子を担持させる担体としては、例えば、マグネシア、チタニア、アルミナ、シリカ-アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金系金属ナノコロイド粒子は、電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくいものとなる。アニオン交換樹脂に担持された白金系金属ナノコロイド粒子は、過酸化水素の分解除去に対して強い触媒活性を示す。アニオン交換樹脂の交換基は、OH形であることが好ましい。OH形アニオン交換樹脂は、樹脂表面がアルカリ性となり、過酸化水素の分解を促進する。 Examples of the support on which the platinum-based metal nanocolloid particles are supported include magnesia, titania, alumina, silica-alumina, zirconia, activated carbon, zeolite, diatomaceous earth, ion exchange resin, and the like. Among these, anion exchange resins can be particularly preferably used. Since the platinum-based metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported by the anion exchange resin and hardly peel off. Platinum-based metal nanocolloidal particles supported on an anion exchange resin show strong catalytic activity for hydrogen peroxide decomposition and removal. The exchange group of the anion exchange resin is preferably in the OH form. The OH type anion exchange resin makes the resin surface alkaline and promotes the decomposition of hydrogen peroxide.
 アニオン交換樹脂への白金系金属ナノコロイド粒子の担持量は、0.01~0.2重量%であることが好ましく、0.04~0.1重量%であることがより好ましい。 The amount of platinum-based metal nanocolloid particles supported on the anion exchange resin is preferably 0.01 to 0.2% by weight, and more preferably 0.04 to 0.1% by weight.
 白金系金属ナノコロイド粒子を担体に担持させた過酸化水素分解触媒に対し過酸化水素含有水を接触させることにより、水中の過酸化水素は、2H→2HO+Oの反応により分解される。 Hydrogen peroxide in water is decomposed by the reaction of 2H 2 O 2 → 2H 2 O + O 2 by bringing hydrogen peroxide-containing water into contact with a hydrogen peroxide decomposition catalyst in which platinum-based metal nanocolloid particles are supported on a carrier. Be done.
 過酸化水素含有水の白金系触媒充填容器への通水速度は、空間速度SV100~2,000h-1であることが好ましく、300~1,500h-1であることがより好ましい。白金系触媒は、過酸化水素の分解速度が非常に速いので、SVが100h-1以上であっても過酸化水素が十分に分解される。ただし、SVが2,000h-1を超えると、通水の圧力損失が過大になるとともに、過酸化水素の分解除去が不十分となるおそれがある。 The water flow rate of the hydrogen peroxide-containing water to the platinum-based catalyst filled container is preferably a space velocity SV of 100 to 2,000 h −1 , and more preferably 300 to 1,500 h −1 . Since the platinum-based catalyst has a very high decomposition rate of hydrogen peroxide, hydrogen peroxide is sufficiently decomposed even if SV is 100 h −1 or more. However, if the SV is more than 2,000 h -1 , the pressure loss of water passing through may be excessive, and the decomposition and removal of hydrogen peroxide may be insufficient.
 図1及び図2を参照して本発明の過酸化水素除去方法及び装置の具体例について説明する。 A specific example of the hydrogen peroxide removal method and apparatus of the present invention will be described with reference to FIGS. 1 and 2.
 図1では、白金系触媒が充填されたカラム21~25が複数本(図示では5本)並列に設置されている。上記紫外線照射装置流出水などの過酸化水素含有水が配管1から弁11~15を介してカラム21~25に通水される。カラム21~25からの流出水は、弁31~35及び集合配管2を介して取り出される。 In FIG. 1, a plurality of (five in the drawing) columns 21 to 25 packed with a platinum-based catalyst are arranged in parallel. The hydrogen peroxide-containing water such as the UV irradiation device outflow water is passed from the piping 1 to the columns 21 to 25 through the valves 11 to 15. Effluent water from the columns 21-25 is taken out via the valves 31-35 and the collecting pipe 2.
 5本のカラム21~25に並列通水する要領で処理を行う。処理水劣化の兆候が認められた時点で、図1(b)のように1本のカラム(図1(b)ではカラム21)への通水を、弁11,31を閉とすることにより停止させ、一時的に残りの4本のカラム22~25の通水量をそれぞれ25%増加させて処理水量を確保する並列運転とする。 Treatment is performed in the same manner as parallel water flow through five columns 21-25. When signs of deterioration of treated water are recognized, water flow to one column (column 21 in FIG. 1 (b)) as shown in FIG. 1 (b), and valves 11 and 31 are closed. The parallel operation is performed by temporarily stopping the flow rate of the remaining four columns 22 to 25 by 25% each to secure the treated water amount.
 通水を停止したカラム21について、次のような過酸化水素除去性能回復操作を行う。
(1) カラム21内の水を超純水に置換し、カラム21内の白金系触媒を、カラム21内にて超純水中に所定期間浸漬保管する。
(2) カラム21内の白金系触媒を一旦抜き出し、別の容器内で超純水中に浸漬して所定期間保管した後、カラム21に再充填する。
(3) 上記(1)又は(2)の操作において、白金系触媒の浸漬処理に用いる超純水にNガス等の非酸化性ガスを供給する。
(4) 上記(1)又は(2)の操作において、白金系触媒の浸漬処理に用いる超純水として、水素を溶解させた超純水を用いる。
 上記(1)~(4)の操作は、2以上を組み合わせて行ってもよい。
The following hydrogen peroxide removal performance recovery operation is performed for the column 21 whose water flow has been stopped.
(1) The water in the column 21 is replaced with ultrapure water, and the platinum catalyst in the column 21 is immersed and stored in the ultrapure water for a predetermined period in the column 21.
(2) The platinum-based catalyst in the column 21 is once taken out, immersed in ultrapure water in another container and stored for a predetermined period, and then the column 21 is refilled.
(3) In the above operation (1) or (2), a non-oxidizing gas such as N 2 gas is supplied to the ultrapure water used for the immersion treatment of the platinum-based catalyst.
(4) In the above operation (1) or (2), ultrapure water in which hydrogen is dissolved is used as ultrapure water used for the immersion treatment of the platinum-based catalyst.
The operations (1) to (4) may be performed in combination of two or more.
 白金系触媒の浸漬処理に用いる超純水は、過酸化水素を含まず、過酸化水素濃度が2μg/L、特に1μg/L未満のものが好ましい。 The ultrapure water used for the immersion treatment of the platinum-based catalyst does not contain hydrogen peroxide and preferably has a hydrogen peroxide concentration of 2 μg / L, particularly less than 1 μg / L.
 本発明において、白金系触媒を超純水中に保管する所定期間は、1日以上、特に2~2週間程度とすることが好ましい。 In the present invention, it is preferable to set the platinum-based catalyst in ultrapure water for a predetermined period of 1 day or more, particularly about 2 to 2 weeks.
 なお、本発明においては、上記(1)~(4)の操作に加えて、カラム21内の雰囲気をNガス等の非酸化性ガスで置換する操作、或いは、水素溶解水を通水する操作を行ってもよい。 In the present invention, in addition to the above operations (1) to (4), an operation in which the atmosphere in the column 21 is replaced with a nonoxidizing gas such as N 2 gas, or hydrogen dissolved water is passed The operation may be performed.
 上記の過酸化水素除去性能回復操作を行った後は、好ましくはこのカラム21に試験的に通水し、処理水質が良好であることを確認した後、弁11,31を開としてカラム21への通水を再開する。その後、他のカラム22~25についても同様の性能回復操作を順次に行い、性能を良好な状態に戻す。 After performing the above-mentioned hydrogen peroxide removal performance recovery operation, preferably water is passed through the column 21 experimentally and after confirming that the treated water quality is good, the valves 11 and 31 are opened and the column 21 is opened. Resume water flow. Thereafter, the same performance recovery operation is sequentially performed on the other columns 22 to 25 to restore the performance to a good state.
 5本のカラム21~25すべてについての回復処理が済んだ後は、もとの標準流量による5本並列通水に戻す。 After all five columns 21 to 25 have been recovered, they are returned to the five parallel water flows at the original standard flow rate.
 図2は弁11~15の代わりに三方弁41~45を設置し、弁31~35の代わりに三方弁51~55を設置し、各カラム21~25に超純水、Nガス又は水素溶解水を三方弁31~35、51~55の切替操作により供給可能とした過酸化水素除去装置を示している。 In FIG. 2, three-way valves 41-45 are installed instead of valves 11-15, three-way valves 51-55 are installed instead of valves 31-35, and ultra pure water, N 2 gas or hydrogen is installed in each column 21-25. A hydrogen peroxide removing device is shown which can supply dissolved water by switching the three-way valves 31 to 35, 51 to 55.
 三方弁41~45の第3ポートには、配管60から分岐した配管61~65が接続されている。三方弁51~55の第3ポートは、分岐配管71~75を介して排出用配管70に接続されている。配管60から超純水、Nガス又は水素溶解水をカラム21~25のいずれかに供給し、その流出ガス又は流出水を配管70から排出する。 The pipes 61 to 65 branched from the pipe 60 are connected to the third ports of the three-way valves 41 to 45. The third ports of the three-way valves 51 to 55 are connected to the discharge pipe 70 via branch pipes 71 to 75. Ultra pure water, N 2 gas or hydrogen-dissolved water is supplied from the pipe 60 to any of the columns 21 to 25, and the outflow gas or outflow water is discharged from the pipe 70.
 なお、図1,2のように並列に5本のカラム21~25を備えた過酸化水素除去装置の各カラム21~25に均等に標準的なSVが400/hで通水する場合、1本が回復処理に入り4本並列通水(例えば図1(b))になると、各カラムのSVは500/hに増大する。これは処理水質維持の面で望ましいことではない。しかしながら、白金系樹脂の過酸化水素分解寿命(回復処理を施さない場合)が数年であるのに対し、回復処理は1本当り長くて1週間程度であるので、各カラムに25%増の負担が掛るのは長くて4週間程度である。この間、次々に性能回復したカラムへの通水が再開されるので、過酸化水素除去装置全体として処理水量(SV500/h)を維持することは難しくない。 As shown in FIGS. 1 and 2, if a standard SV of 400 / h passes water evenly through the columns 21 to 25 of the hydrogen peroxide removing apparatus provided with five columns 21 to 25 in parallel, 1 When the book enters the recovery process and four parallel water flows (for example, FIG. 1 (b)), the SV of each column increases to 500 / h. This is not desirable in terms of maintaining treated water quality. However, while the hydrogen peroxide decomposition life of platinum-based resin (without recovery treatment) is several years, the recovery treatment is about 1 week long per bottle, so an increase of 25% for each column It takes about four weeks for a long time. During this time, water flow to the columns whose performance has been restored one after another is resumed, so it is not difficult to maintain the treated water volume (SV 500 / h) as the whole hydrogen peroxide removing device.
 図1,2では5本のカラムを並列設置しているが、6本のカラムを並列設置し、そのうちの1本を順次に休止(性能回復操作)し、常時5本のカラムに通水する運転としてもよい。 In Fig. 1 and 2, five columns are installed in parallel, but six columns are installed in parallel, one of them is paused sequentially (performance recovery operation), and water is constantly supplied to five columns. You may drive it.
 この場合は、所定時間(所定の過酸化水素負荷)が過ぎたところで1本を停止、同時に使用していなかった1本を通水開始させる要領で、各容器とも全体の5/6の時間は通水、1/6の時間は停止させる間欠運転を順繰りに回すいわゆるメリーゴーランド式の運用となり、余裕をもった運転ができる。 In this case, one container is stopped when a predetermined time (a predetermined hydrogen peroxide load) has passed, and one container which has not been used at the same time is started to flow water, so that each container has 5/6 of the total time It is a so-called merry-go-round operation in which intermittent operation for stopping water flow and 1/6 is sequentially performed, and operation with a margin can be performed.
 本発明者の実験結果によると、次のことが認められた。
(1) 白金系触媒充填容器への被処理水の通水を所定時間停止させた後に通水を再開させたところ、過酸化水素分解性能の回復が認められた。停止時間を長くするほど、その回復度合いは高くなった。
(2) 白金系触媒充填容器への被処理水の通水停止中にNガス通気により該容器内からOを排除する操作を加えたところ、(1)よりさらに短時間で過酸化水素分解性能が回復することが認められた。
(3) 白金系触媒充填容器への被処理水の通水停止中に該容器内の水を超純水に置換し、容器内の白金系触媒を超純水中に浸漬保管する操作を行ったところ、(1),(2)よりさらに短時間で過酸化水素分解性能が回復することが認められた。
(4) 白金系触媒充填容器への被処理水の通水停止中に一旦白金系触媒を容器から抜出し、所定時間別の容器内で超純水中に浸漬保管した後に再充填して通水再開したところ、上記(1)~(3)よりさらに短時間で過酸化水素分解性能が回復することが認められた。
(5) 白金系触媒充填容器への被処理水の通水を停止した後、水素溶解超純水を通水したところ、上記(1)~(4)よりさらに短時間で過酸化水素分解性能が回復することが認められた。
According to the experimental results of the inventor, the following was recognized.
(1) When the water flow was resumed after stopping the water flow to the platinum-based catalyst filled container for a predetermined time, recovery of hydrogen peroxide decomposition performance was observed. The longer the outage, the higher the recovery.
(2) While stopping the flow of water to be treated into the platinum-based catalyst-filled container, an operation of removing O 2 from the inside of the container by N 2 gas ventilating was added, hydrogen peroxide in a shorter time than in (1) It was found that the degradation performance was restored.
(3) While stopping the flow of water to be treated into the platinum-based catalyst filled container, the water in the container is replaced with ultrapure water, and the platinum-based catalyst in the container is immersed and stored in the ultrapure water As a result, it was found that the hydrogen peroxide decomposition performance was recovered in a shorter time than in (1) and (2).
(4) The platinum-based catalyst is once withdrawn from the container during stopping of water flow to the platinum-based catalyst-filled container, immersed and stored in ultrapure water in another container for a predetermined time, and then refilled. After resuming, it was found that the hydrogen peroxide decomposition performance was recovered in a still shorter time than the above (1) to (3).
(5) After stopping the flow of water to be treated into the platinum-based catalyst filled container, when hydrogen-dissolved ultrapure water is passed, hydrogen peroxide decomposition performance is achieved in a shorter time than the above (1) to (4). Was found to recover.
 上記実施の形態は本発明の一例であり、本発明は上記以外の実施の形態とされてもよい。例えばカラムは5本に限定されない。 The above embodiment is an example of the present invention, and the present invention may be an embodiment other than the above. For example, the number of columns is not limited to five.
[参考例1]
 超純水製造装置として、図3に示すものを用意した。この超純水製造装置81は、前処理装置82、一次純水製造装置83、及び二次純水製造装置(サブシステム)84の3段の装置で構成されている。この超純水製造装置81の前処理装置82では、原水Wの濾過、凝集沈殿、精密濾過膜による前処理が施される。
[Reference Example 1]
What was shown in FIG. 3 was prepared as an ultrapure water manufacturing apparatus. The ultrapure water production system 81 is composed of three stages of a pretreatment system 82, a primary pure water production system 83, and a secondary pure water production system (subsystem) 84. In the pretreatment device 82 of the ultrapure water production device 81, the raw water W is filtered, coagulated and precipitated, and pretreatment with a precision filtration membrane is performed.
 一次純水製造装置83は、前処理水W1のタンク85と、逆浸透(RO)膜装置86と、紫外線(UV)酸化装置87と、再生型イオン交換装置(混床式又は4床5塔式など)88と、膜式脱気装置89とを有する。 The primary pure water production system 83 includes a tank 85 for pretreatment water W1, a reverse osmosis (RO) membrane system 86, an ultraviolet (UV) oxidizer 87, and a regenerative ion exchange system (mixed bed type or four bed five towers) And the like) and a membrane degassing device 89.
 サブシステム84は、一次純水製造装置83で製造された一次純水W2を貯留するサブタンク91と、このサブタンク91から図示しないポンプを介して送給される一次純水W2を処理する紫外線酸化装置92と、白金族金属触媒樹脂塔93と、膜式脱気装置94と、非再生型混床式イオン交換装置95と、膜濾過装置としての限外濾過(UF)膜96とにより構成されている。限外濾過(UF)膜96で微粒子を除去して超純水W3とし、これをユースポイント97に供給し、未使用の超純水をサブタンク91に還流させる。 The subsystem 84 includes a sub tank 91 for storing the primary pure water W2 manufactured by the primary pure water producing apparatus 83 and an ultraviolet oxidizer for processing the primary pure water W2 supplied from the sub tank 91 via a pump (not shown). 92, a platinum group metal catalyst resin tower 93, a membrane degassing device 94, a non-regenerating type mixed bed ion exchange device 95, and an ultrafiltration (UF) membrane 96 as a membrane filtration device There is. The fine particles are removed by the ultrafiltration (UF) membrane 96 to make ultrapure water W 3, which is supplied to the use point 97, and unused ultrapure water is returned to the sub tank 91.
 平均粒子径3.5nmの白金ナノコロイド粒子を、0.07重量%の担持量で強塩基性ゲル型アニオン交換樹脂に担持させ、白金族金属触媒樹脂として白金族の金属ナノ粒子を担持したアニオン交換樹脂を調製した。 Anion supporting platinum nanocolloidal particles having an average particle diameter of 3.5 nm on a strongly basic gel type anion exchange resin at a loading amount of 0.07% by weight, and supporting platinum group metal nanoparticles as a platinum group metal catalyst resin Exchange resin was prepared.
 図3に示す装置構成の超純水製造装置81において、上述した白金族金属触媒樹脂を用いて白金族金属触媒樹脂塔93を構成して超純水W3を製造し、サブシステム84の白金族金属触媒樹脂塔93の入口水及び出口水の過酸化水素濃度(初期)を測定した。結果を表1に示す。また、この超純水製造装置81の運転を長期間継続した後の白金族金属触媒樹脂塔93の出口水の過酸化水素濃度(末期)を測定した。結果を表1にあわせて示す。 In the ultrapure water production system 81 of the apparatus configuration shown in FIG. 3, a platinum group metal catalyst resin tower 93 is configured using the above-described platinum group metal catalyst resin to produce ultrapure water W3. The hydrogen peroxide concentration (initial) of the inlet water and the outlet water of the metal catalyst resin tower 93 was measured. The results are shown in Table 1. Further, the hydrogen peroxide concentration (final stage) of the outlet water of the platinum group metal catalyst resin tower 93 after the operation of the ultrapure water production apparatus 81 was continued for a long period of time was measured. The results are shown in Table 1.
 なお、過酸化水素濃度を測定するために、フェノールフタレイン4.8mg、硫酸銅(無水)8mg及び水酸化ナトリウム48mgに硫酸ナトリウム(無水)を添加して10gとし、微量過酸化水素濃度定量用試薬を調製した。試験水10mLに該試薬0.5gを添加、溶解し、室温で10分間静置した後、552nmにおける吸光度を測定し、この測定値に基づき過酸化水素濃度を算定した。 In addition, in order to measure hydrogen peroxide concentration, sodium sulfate (anhydrous) is added to 4.8 mg of phenolphthalein, 8 mg of copper sulfate (anhydrous) and 48 mg of sodium hydroxide to make 10 g, and for determination of trace hydrogen peroxide concentration The reagents were prepared. 0.5 g of the reagent was added to 10 mL of test water, dissolved, and allowed to stand at room temperature for 10 minutes, then the absorbance at 552 nm was measured, and the hydrogen peroxide concentration was calculated based on the measured value.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかな通り、長期間運転後の超純水W3の過酸化水素濃度の上昇が顕著である。 As apparent from Table 1, the increase in the hydrogen peroxide concentration of the ultrapure water W3 after a long period of operation is remarkable.
[参考例2]
 参考例1において、長期間運転後の白金族金属触媒樹脂塔93の使用済樹脂を取り出し、試験用のカラムに充填し、試験用の白金族金属触媒樹脂塔とした。また、比較のために新品の樹脂を同様に試験用のカラムに充填し、白金族金属触媒樹脂塔とした。
[Reference Example 2]
In Reference Example 1, the used resin of the platinum group metal catalyst resin tower 93 after being operated for a long time is taken out and packed in a column for test to obtain a platinum group metal catalyst resin tower for test. Further, for comparison, a new resin was similarly packed in a test column to make a platinum group metal catalyst resin tower.
 超純水(過酸化水素1μg/L未満)に過酸化水素をそれぞれ300μg/L又は1000μg/L添加して試験用入口水を調製し、この試験用入口水を上述した各試験用カラムに通水速度(SV)300hr-1で下向流通水した後の出口水の過酸化水素濃度を測定した。結果を表2に示した。 300 μg / L or 1000 μg / L of hydrogen peroxide is added to ultrapure water (less than 1 μg / L of hydrogen peroxide) to prepare a test inlet water, and the test inlet water is passed through each test column described above. The hydrogen peroxide concentration of the outlet water after downward flow of water at a water velocity (SV) of 300 hr -1 was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなとおり、長期間運転後の白金族金属触媒樹脂塔93の使用済樹脂の方が新品よりも出口水過酸化水素の濃度が高かった。これにより、過酸化水素分解能が低下していることがわかる。 As apparent from Table 2, the spent resin of the platinum group metal catalyst resin tower 93 after the long-term operation had a higher concentration of the outlet water hydrogen peroxide than the new resin. From this, it can be seen that the hydrogen peroxide resolution is lowered.
[参考例3]
 参考例1において、長期間運転後の白金族金属触媒樹脂塔93の使用済樹脂を試験用のカラムに充填し、試験用の白金族金属触媒樹脂塔とした。また、比較のために新品の樹脂を同様に試験用のカラムに充填し、白金族金属触媒樹脂塔とした。
[Reference Example 3]
In Reference Example 1, the spent resin of the platinum group metal catalyst resin tower 93 after being operated for a long time was packed in a column for test to obtain a platinum group metal catalyst resin tower for test. Further, for comparison, a new resin was similarly packed in a test column to make a platinum group metal catalyst resin tower.
 超純水(過酸化水素1μg/L未満)に過酸化水素を30μg/L添加して入口水を調製し、この入口水を上述した各試験用カラムに通水速度(SV)400hr-1で下向流通水した後の出口水の過酸化水素濃度を測定した(No.1)。結果を表3に示す。 30 μg / L of hydrogen peroxide is added to ultrapure water (less than 1 μg / L of hydrogen peroxide) to prepare inlet water, and this inlet water is passed through each of the test columns described above at a water flow rate (SV) of 400 hr -1 . The hydrogen peroxide concentration of the outlet water after downward flow of water was measured (No. 1). The results are shown in Table 3.
 また、負荷試験として超純水(過酸化水素1μg/L未満)に過酸化水素を400μg/L添加して試験用入口水を調製し、この試験用入口水を上述した各試験用カラムに通水速度(SV)6400hr-1で22時間下向流通水した後運転を停止した。次いで、超純水(過酸化水素1μg/L未満)に過酸化水素を30μg/L添加した入口水を各試験用カラムに通水し、5分後(No.2)、60分後(No.3)の出口水の過酸化水素濃度を測定した。結果を表3に示す。 In addition, as a load test, 400 μg / L of hydrogen peroxide is added to ultrapure water (less than 1 μg / L of hydrogen peroxide) to prepare a test inlet water, and the test inlet water is passed through each test column described above. Water flow (SV): 6400 hr.sup.- 1 After 22 hours of downward flow of water, the operation was stopped. Then, pass inlet water containing 30 μg / L of hydrogen peroxide to ultrapure water (less than 1 μg / L of hydrogen peroxide) through each test column, and after 5 minutes (No. 2), 60 minutes (No) The hydrogen peroxide concentration of the outlet water of .3) was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例1]
 参考例3における試験後、各試験用カラムの樹脂を取り出し、超純水(過酸化水素1μg/L未満)に2週間保管した後、再度充填して、超純水(過酸化水素1μg/L未満)に過酸化水素を30μg/L添加した入口水を通水した際の出口水の過酸化水素濃度を測定した。結果を表4に示した。
Example 1
After the test in Reference Example 3, the resin of each test column is taken out, stored in ultra pure water (less than 1 μg / L hydrogen peroxide) for 2 weeks, and then refilled to obtain ultra pure water (1 μg hydrogen peroxide / L) The hydrogen peroxide concentration of the outlet water when passing through the inlet water to which 30 μg / L of hydrogen peroxide was added was measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、使用済の白金系触媒を所定期間超純水中で保管することにより、その過酸化水素除去性能を回復させることができることが分かる。 It can be seen from Table 4 that the hydrogen peroxide removal performance can be recovered by storing the used platinum-based catalyst in ultrapure water for a predetermined period.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年12月15日付で出願された日本特許出願2017-240802に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with particular embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2017-240802 filed on Dec. 15, 2017, which is incorporated by reference in its entirety.
 11~15、31~35 弁
 21~25 カラム
 41~45、51~55 三方弁
11-15, 31-35 Valve 21-25 Column 41-45, 51-55 Three-way valve

Claims (8)

  1.  並列設置された白金系触媒充填容器を有する過酸化水素除去装置に過酸化水素含有水を通水して過酸化水素を除去する過酸化水素除去方法において、
     一部の該白金系触媒充填容器への過酸化水素含有水の通水を停止して、該容器に充填された白金系触媒を超純水中で所定期間保管する過酸化水素除去性能回復操作を行うことを特徴とする過酸化水素除去方法。
    In a hydrogen peroxide removing method of removing hydrogen peroxide by passing hydrogen peroxide-containing water through a hydrogen peroxide removing device having a platinum-based catalyst charging vessel installed in parallel,
    Hydrogen peroxide removal performance recovery operation of stopping the water supply of hydrogen peroxide-containing water to a part of the platinum-based catalyst filled container and storing the platinum-based catalyst filled in the container in ultrapure water for a predetermined period A method of removing hydrogen peroxide characterized in that
  2.  請求項1において、前記過酸化水素除去性能回復操作は、前記通水を停止した容器内の水を超純水に置換し、該容器内の超純水中で前記白金系触媒を所定期間保管する操作であることを特徴とする過酸化水素除去方法。 The hydrogen peroxide removal performance recovery operation according to claim 1, wherein the water in the container in which the water flow is stopped is replaced with ultrapure water, and the platinum catalyst is stored for a predetermined period in the ultrapure water in the container. Hydrogen peroxide removing method characterized in that
  3.  請求項1において、前記過酸化水素除去性能回復操作は、前記通水を停止した容器から該容器内の白金系触媒を取り出し、取り出した白金系触媒を超純水中で所定期間保管した後、該容器に再充填する操作であることを特徴とする過酸化水素除去方法。 The hydrogen peroxide removal performance recovery operation according to claim 1, wherein the platinum-based catalyst in the container is removed from the container in which the water flow is stopped, and the removed platinum-based catalyst is stored in ultrapure water for a predetermined period. A method for removing hydrogen peroxide, comprising the step of refilling the container.
  4.  請求項1ないし3のいずれか1項において、前記超純水に非酸化性ガスを供給することを特徴とする過酸化水素除去方法。 The method for removing hydrogen peroxide according to any one of claims 1 to 3, wherein a non-oxidizing gas is supplied to the ultrapure water.
  5.  請求項4において、前記非酸化性ガスは窒素ガスであることを特徴とする過酸化水素除去方法。 The method for removing hydrogen peroxide according to claim 4, wherein the non-oxidizing gas is nitrogen gas.
  6.  請求項1~5のいずれか1項において、前記超純水は水素を溶解させた超純水であることを特徴とする過酸化水素除去方法。 The method for removing hydrogen peroxide according to any one of claims 1 to 5, wherein the ultrapure water is ultrapure water in which hydrogen is dissolved.
  7.  請求項1~6のいずれか1項において、前記過酸化水素除去装置は超純水製造装置に設置されており、前記所定時間に、前記一部以外の白金系触媒充填容器への通水量を増加させることを特徴とする過酸化水素除去方法。 The hydrogen peroxide removing device according to any one of claims 1 to 6, wherein the hydrogen peroxide removing device is installed in an ultrapure water producing device, and the amount of water passing through the platinum-based catalyst filled container other than the part is A method of hydrogen peroxide removal characterized by increasing.
  8.  並列設置された白金系触媒充填容器と、
     各容器に過酸化水素含有水を通水する過酸化水素含有水通水手段と、
     各容器に、非酸化性ガス又は水素溶解水を供給する供給手段と、
     各容器への過酸化水素含有水通水と非酸化性ガス又は水素溶解水供給とを切り替える切替手段と
    を備えたことを特徴とする過酸化水素除去装置。
    Parallel mounted platinum-based catalyst charging vessels,
    Hydrogen peroxide-containing water passing means for passing hydrogen peroxide-containing water through each container;
    Supply means for supplying non-oxidative gas or hydrogen dissolved water to each container;
    A hydrogen peroxide removing device comprising: switching means for switching between hydrogen peroxide-containing water passing water and non-oxidizing gas or hydrogen dissolving water supply to each container.
PCT/JP2018/033813 2016-12-28 2018-09-12 Method and apparatus for removing hydrogen peroxide WO2019116653A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207010326A KR102340160B1 (en) 2016-12-28 2018-09-12 Method and apparatus for removing hydrogen peroxide
CN201880065236.XA CN111183118B (en) 2016-12-28 2018-09-12 Method and device for removing hydrogen peroxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016255445 2016-12-28
JP2017-240802 2017-12-15
JP2017240802A JP6451824B2 (en) 2016-12-28 2017-12-15 Hydrogen peroxide removal method and apparatus

Publications (1)

Publication Number Publication Date
WO2019116653A1 true WO2019116653A1 (en) 2019-06-20

Family

ID=62707073

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/033060 WO2018123156A1 (en) 2016-12-28 2017-09-13 Hydrogen peroxide removal method and apparatus
PCT/JP2018/033813 WO2019116653A1 (en) 2016-12-28 2018-09-12 Method and apparatus for removing hydrogen peroxide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033060 WO2018123156A1 (en) 2016-12-28 2017-09-13 Hydrogen peroxide removal method and apparatus

Country Status (5)

Country Link
JP (1) JP6451824B2 (en)
KR (1) KR102340160B1 (en)
CN (1) CN111183118B (en)
TW (2) TW201823166A (en)
WO (2) WO2018123156A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261144A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Water treatment apparatus, ultrapure water production apparatus, and water treatment method
CA3201871A1 (en) 2020-12-10 2022-06-16 Andreas Kempter Process for the controlled decomposition of peroxo compounds
CN113019362B (en) * 2021-05-31 2021-09-07 江苏欣诺科催化剂有限公司 Metallic ruthenium supported catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227542A (en) * 1993-12-22 1995-08-29 Mitsubishi Chem Corp Ruthenium-based catalyst capable of recovering
JP2005199108A (en) * 2002-06-21 2005-07-28 Chugoku Electric Power Co Inc:The Method for regenerating denitration catalyst
JP2007160268A (en) * 2005-12-16 2007-06-28 Tokyo Electric Power Co Inc:The Regeneration method of denitration catalyst
JP2013166096A (en) * 2012-02-14 2013-08-29 Osaka Univ Glycerol hydrogenating decomposition catalyst, and method for manufacturing 1, 3-propane diol using the same
WO2014203601A1 (en) * 2013-06-18 2014-12-24 株式会社ダイセル Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol
JP2016097389A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactor storage body, reactor and water treatment device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560167Y2 (en) * 1991-05-02 1998-01-21 須賀工業株式会社 Hydrogen peroxide water decomposition equipment
CN1063354C (en) * 1993-12-22 2001-03-21 三菱化学株式会社 Ruthenium regenerating catalyst
JP2003305465A (en) * 2002-04-15 2003-10-28 Mitsubishi Electric Corp System for making pure water and method for monitoring water quality
JP5124946B2 (en) * 2006-01-12 2013-01-23 栗田工業株式会社 Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
JP5098215B2 (en) * 2006-05-01 2012-12-12 三菱瓦斯化学株式会社 Method for activating hydrogenation catalyst and method for producing hydrogen peroxide containing the same
JP2010017633A (en) * 2008-07-09 2010-01-28 Japan Organo Co Ltd Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP2013215679A (en) * 2012-04-09 2013-10-24 Nomura Micro Sci Co Ltd Ultrapure water production apparatus
JP6423211B2 (en) * 2013-09-25 2018-11-14 オルガノ株式会社 Substrate processing method and substrate processing apparatus
JP2015093226A (en) * 2013-11-11 2015-05-18 栗田工業株式会社 Method and apparatus for manufacturing pure water
JP6290654B2 (en) * 2014-03-04 2018-03-07 オルガノ株式会社 Ultrapure water production equipment
CN104785254B (en) * 2015-03-20 2017-04-12 西安凯立新材料股份有限公司 Catalyst for degrading hydrogen peroxide as well as preparation method and application of catalyst
JP6670047B2 (en) * 2015-05-22 2020-03-18 オルガノ株式会社 Ultrapure water production equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227542A (en) * 1993-12-22 1995-08-29 Mitsubishi Chem Corp Ruthenium-based catalyst capable of recovering
JP2005199108A (en) * 2002-06-21 2005-07-28 Chugoku Electric Power Co Inc:The Method for regenerating denitration catalyst
JP2007160268A (en) * 2005-12-16 2007-06-28 Tokyo Electric Power Co Inc:The Regeneration method of denitration catalyst
JP2013166096A (en) * 2012-02-14 2013-08-29 Osaka Univ Glycerol hydrogenating decomposition catalyst, and method for manufacturing 1, 3-propane diol using the same
WO2014203601A1 (en) * 2013-06-18 2014-12-24 株式会社ダイセル Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol
JP2016097389A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactor storage body, reactor and water treatment device

Also Published As

Publication number Publication date
JP6451824B2 (en) 2019-01-16
KR20200096485A (en) 2020-08-12
KR102340160B1 (en) 2021-12-15
JP2018108577A (en) 2018-07-12
TW201823166A (en) 2018-07-01
WO2018123156A1 (en) 2018-07-05
CN111183118B (en) 2021-10-22
TW201930200A (en) 2019-08-01
TWI820042B (en) 2023-11-01
CN111183118A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP5454468B2 (en) Pure water production method and pure water production apparatus
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP5499753B2 (en) Water treatment method and apparatus
WO2019116653A1 (en) Method and apparatus for removing hydrogen peroxide
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP2002210494A (en) Device for manufacturing extrapure water
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP6125244B2 (en) Ultrapure water production method
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP2000308815A (en) Producing device of ozone dissolved water
JP2006192352A (en) Ultrapure water production apparatus and ultrapure water production method
JP6848415B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment
WO2023037811A1 (en) Method for producing resin, method for producing ultrapure water, and device for producing ultrapure water
JP6728913B2 (en) Ultrapure water production method
JP2016112532A (en) Method for operating pure water production apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889804

Country of ref document: EP

Kind code of ref document: A1