JP2010017633A - Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component - Google Patents

Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component Download PDF

Info

Publication number
JP2010017633A
JP2010017633A JP2008179184A JP2008179184A JP2010017633A JP 2010017633 A JP2010017633 A JP 2010017633A JP 2008179184 A JP2008179184 A JP 2008179184A JP 2008179184 A JP2008179184 A JP 2008179184A JP 2010017633 A JP2010017633 A JP 2010017633A
Authority
JP
Japan
Prior art keywords
hydrogen
water
dissolved
treated
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179184A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
広 菅原
Michio Yoshizawa
道雄 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008179184A priority Critical patent/JP2010017633A/en
Publication of JP2010017633A publication Critical patent/JP2010017633A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen-dissolved water, from which hydrogen peroxide and oxygen have been removed, without degassing. <P>SOLUTION: The method for producing hydrogen-dissolved water includes the catalytic reaction process for removing hydrogen peroxide and oxygen from water to be treated containing hydrogen peroxide and oxygen by using a reaction producing water from hydrogen peroxide and a reaction producing water from oxygen and hydrogen in presence of a platinum group metal catalyst. The method further includes the hydrogenation process for adding hydrogen, consumed in the catalytic reaction process, beforehand to the water to be treated without degassing the water to be treated. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置に関する。   The present invention relates to an apparatus for producing hydrogen-dissolved water, a production method using the same, and a cleaning apparatus for an electronic component or an electronic component production instrument.

LSI等の電子部品の製造工程では、微細構造を有する被処理体を処理する工程が繰り返される。そして、ウエハや基板等の処理体表面に付着している微粒子、有機物、金属、自然酸化膜等の除去を目的とした洗浄を行い、高度な清浄度を達成、維持することは製品の品質保持や歩留まり向上にとって重要である。この洗浄は、例えば、硫酸・過酸化水素水混合溶液、フッ酸溶液等の洗浄液を用いて行われ、該洗浄後に超純水を用いたすすぎが行われる。このすすぎ等の洗浄に供給される超純水や薬液には高い純度が要求される。また、近年では、半導体デバイスの微細化、材料の多様化、プロセスの複雑化により、洗浄回数が多くなっている。   In the manufacturing process of an electronic component such as an LSI, a process of processing an object to be processed having a fine structure is repeated. And cleaning for the purpose of removing fine particles, organic matter, metal, natural oxide film, etc. adhering to the surface of the processing object such as wafers and substrates, and achieving and maintaining a high degree of cleanliness will maintain product quality. And is important for yield improvement. This cleaning is performed using, for example, a cleaning solution such as a sulfuric acid / hydrogen peroxide solution mixed solution or a hydrofluoric acid solution, and rinsing with ultrapure water is performed after the cleaning. High purity is required for ultrapure water and chemicals supplied for cleaning such as rinsing. In recent years, the number of cleanings has increased due to miniaturization of semiconductor devices, diversification of materials, and complexity of processes.

一般的に、超純水の製造には、前処理システム、一次純水システム、二次純水システム(サブシステム)で構成される超純水製造装置が用いられている。超純水製造装置における各システムの役割は次の通りである。前処理システムは、例えば凝集沈殿や砂ろ過により、原水中に含まれる懸濁物質やコロイド物質の除去を行う工程である。一次純水システムは、例えばイオン交換樹脂や逆浸透(RO)膜等を使用して、前記前処理システムで懸濁物質等が除去された原水のイオン成分や有機成分の除去を行い、一次純水を得る工程である。サブシステムは、例えば紫外線酸化装置、カートリッジポリッシャー(CP)、限外ろ過装置等を使用して、一次純水システムで得られた一次純水の純度をさらに高めて、超純水を製造する工程である。このようにして得られた超純水を用いたすすぎでは、超純水中の溶存酸素によりウエハ表面に薄い酸化膜が形成されるという問題点がある。この点を解決するため、脱ガスをして溶存酸素を除去した超純水に、水素ガスを溶解した水素溶解水を用いて、すすぎ等の洗浄を行う方法が提案されている(例えば、特許文献1)。水中の溶存酸素の除去方法としては、水素を水に添加して、パラジウム(Pd)触媒の存在下で反応させる方法(例えば、特許文献2、3)や、水素等の還元剤を添加することなしに、Pd触媒存在下で反応させる方法が開示されている(例えば、特許文献4)。   In general, for the production of ultrapure water, an ultrapure water production apparatus including a pretreatment system, a primary pure water system, and a secondary pure water system (subsystem) is used. The role of each system in the ultrapure water production system is as follows. The pretreatment system is a process for removing suspended substances and colloidal substances contained in raw water by, for example, coagulation sedimentation or sand filtration. The primary pure water system uses, for example, an ion exchange resin or a reverse osmosis (RO) membrane to remove the ionic components and organic components of the raw water from which suspended substances have been removed by the pretreatment system. This is a process for obtaining water. The subsystem is a process for producing ultrapure water by further increasing the purity of the primary pure water obtained by the primary pure water system using, for example, an ultraviolet oxidizer, a cartridge polisher (CP), an ultrafiltration device or the like. It is. The rinsing using the ultrapure water obtained in this way has a problem that a thin oxide film is formed on the wafer surface due to dissolved oxygen in the ultrapure water. In order to solve this point, there has been proposed a method of cleaning, such as rinsing, using hydrogen-dissolved water in which hydrogen gas is dissolved in ultrapure water from which dissolved oxygen has been removed by degassing (for example, patents). Reference 1). Methods for removing dissolved oxygen in water include adding hydrogen to water and reacting in the presence of a palladium (Pd) catalyst (for example, Patent Documents 2 and 3), or adding a reducing agent such as hydrogen. And a method of reacting in the presence of a Pd catalyst is disclosed (for example, Patent Document 4).

超純水は、設定値以下の全有機炭素(TOC)濃度を達成するため、紫外線酸化装置により波長185nm付近の紫外線を照射して、水中の有機物を分解・除去する工程が設けられている。この紫外線照射では、水分子も酸化され、酸化性物質である過酸化水素が生成される。即ち、水素溶解水は、超純水に由来する過酸化水素を含有することになる。このような水素溶解水を洗浄水として使用すると、洗浄対象物の酸化を生じる場合がある。   In order to achieve a total organic carbon (TOC) concentration of ultrapure water below a set value, a step of decomposing and removing organic substances in water by irradiating ultraviolet rays having a wavelength of around 185 nm by an ultraviolet oxidation device is provided. In this ultraviolet irradiation, water molecules are also oxidized, and hydrogen peroxide which is an oxidizing substance is generated. That is, the hydrogen-dissolved water contains hydrogen peroxide derived from ultrapure water. When such hydrogen-dissolved water is used as washing water, the object to be washed may be oxidized.

水中の過酸化水素を取り除く方法として、Pd触媒を用い、水中の過酸化水素を除去する方法が知られている。例えば、Pd触媒を陰イオン交換樹脂に担持させて用いる方法(例えば、特許文献5)や、Pd等の白金族の金属ナノコロイド粒子を担体に担持させて用いる方法(例えば、特許文献6)が開示されている。また、溶存過酸化水素と酸素とが除去された水素溶解水の製造方法として、超純水を脱ガスして酸素を含むガス成分を取り除いた後に、水素を溶解し、さらにPd触媒装置で処理して過酸化水素を分解し、不純物除去装置で処理して水素溶解水を製造する方法が開示されている(例えば、特許文献7)。
特許第3296405号公報 特開平5−269306号公報 特許第3224037号公報 特許第2988290号公報 特開昭62−35838号公報 特開2007−185587号公報 特許第4109455号公報
As a method for removing hydrogen peroxide in water, a method for removing hydrogen peroxide in water using a Pd catalyst is known. For example, a method of using a Pd catalyst supported on an anion exchange resin (for example, Patent Document 5) or a method of using platinum group metal nanocolloid particles such as Pd supported on a carrier (for example, Patent Document 6). It is disclosed. Also, as a method for producing hydrogen-dissolved water from which dissolved hydrogen peroxide and oxygen are removed, after degassing ultrapure water and removing gas components containing oxygen, hydrogen is dissolved and further treated with a Pd catalyst device. Then, hydrogen peroxide is decomposed and treated with an impurity removing device to produce hydrogen-dissolved water (for example, Patent Document 7).
Japanese Patent No. 3296405 JP-A-5-269306 Japanese Patent No. 3224037 Japanese Patent No. 2988290 JP-A-62-35838 JP 2007-185587 A Japanese Patent No. 4109455

しかしながら、特許文献7の発明では、酸素を含むガス成分を脱ガス装置で除去し、水素溶解を行っているため、水素溶解水の製造装置が大型化し、設備投資及びランニングコストの増大が問題となる。
そこで本発明は、脱ガスを行わずに、過酸化水素と酸素とが除去された水素溶解水の製造方法及びその装置を目的とする。
However, in the invention of Patent Document 7, since the gas component containing oxygen is removed by the degassing device and hydrogen is dissolved, the hydrogen-dissolved water production apparatus is enlarged, and the equipment investment and the running cost are increased. Become.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and an apparatus for producing hydrogen-dissolved water from which hydrogen peroxide and oxygen are removed without degassing.

本発明の水素溶解水の製造方法は、白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、過酸化水素と酸素とを含む被処理水から過酸化水素及び酸素を除去する触媒反応工程を有する水素溶解水の製造方法において、前記被処理水を脱ガスすることなしに、前記触媒反応工程で消費する水素を予め被処理水に添加しておく水素添加工程を有することを特徴とする。前記水素添加工程及び前記触媒反応工程の後に、水素溶解水の溶存水素濃度を測定し、その測定値をフィードバックして前記水素添加工程で添加する水素量を制御することが好ましく、前記触媒反応工程の後に、さらに水素を被処理水に添加する二次水素添加工程を有してもよく、前記水素添加工程では、前記二次水素添加工程で得られた水素溶解水を被処理水に添加してもよい。前記水素添加工程は、大気圧より高い圧力条件下で被処理水へ水素を添加してもよく、前記二次水素添加工程は、大気圧より高い圧力条件下で被処理水へ水素を添加してもよい。   The method for producing hydrogen-dissolved water of the present invention uses a reaction for producing water from hydrogen peroxide and a reaction for producing water from oxygen and hydrogen in the presence of a platinum group metal catalyst to produce hydrogen peroxide and oxygen. In the method for producing hydrogen-dissolved water having a catalytic reaction step of removing hydrogen peroxide and oxygen from the water to be treated, the hydrogen consumed in the catalytic reaction step is pretreated without degassing the water to be treated. It has the hydrogenation process added to water, It is characterized by the above-mentioned. It is preferable to measure the dissolved hydrogen concentration of hydrogen-dissolved water after the hydrogenation step and the catalyst reaction step, and to control the amount of hydrogen added in the hydrogenation step by feeding back the measured value. After that, a secondary hydrogen addition step of adding hydrogen to the water to be treated may be further included. In the hydrogen addition step, the hydrogen-dissolved water obtained in the secondary hydrogen addition step is added to the water to be treated. May be. In the hydrogenation step, hydrogen may be added to the water to be treated under a pressure condition higher than atmospheric pressure, and in the secondary hydrogenation step, hydrogen is added to the water to be treated under pressure condition higher than the atmospheric pressure. May be.

本発明の水素溶解水の製造装置は、過酸化水素と酸素とを含む被処理水を脱ガスすることなしに、該被処理水に水素を添加する水素添加手段と、白金族金属触媒が充填された反応層を有し、前記水素添加手段で水素が添加された被処理水を該反応層に通水し、前記白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、被処理水から過酸化水素及び酸素を除去する触媒反応手段と、を有することを特徴とする。   The apparatus for producing hydrogen-dissolved water of the present invention is filled with a hydrogen addition means for adding hydrogen to the water to be treated without degassing the water to be treated containing hydrogen peroxide and oxygen, and a platinum group metal catalyst. A reaction layer having water formed therein, water to be treated to which hydrogen has been added by the hydrogenation means, and a reaction for generating water from hydrogen peroxide in the presence of the platinum group metal catalyst and oxygen And catalytic reaction means for removing hydrogen peroxide and oxygen from the water to be treated using a reaction for generating water from hydrogen.

本発明の電子部品又は電子部品の製造器具(以下、電子部品等ということがある)用の洗浄装置は、過酸化水素と酸素とを含む被処理水を脱ガスすることなしに、該被処理水に水素を添加する水素添加手段と、白金族金属触媒が充填された反応層を有し、前記水素添加手段で水素が添加された被処理水を該反応層に通水し、前記白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、被処理水から過酸化水素及び酸素を除去する触媒反応手段と、前記触媒反応手段で、過酸化水素及び酸素が除去された水素溶解水で電子部品又は電子部品の製造器具を洗浄する洗浄手段と、を有することを特徴とする。   The cleaning device for an electronic component or an electronic component manufacturing apparatus (hereinafter also referred to as an electronic component or the like) according to the present invention can perform the treatment without degassing the treatment water containing hydrogen peroxide and oxygen. A hydrogen addition means for adding hydrogen to the water, and a reaction layer filled with a platinum group metal catalyst, water to be treated to which hydrogen has been added by the hydrogen addition means is passed through the reaction layer, and the platinum group Catalytic reaction means for removing hydrogen peroxide and oxygen from water to be treated using a reaction for generating water from hydrogen peroxide and a reaction for generating water from oxygen and hydrogen in the presence of a metal catalyst, and the catalytic reaction And means for cleaning the electronic component or the electronic component manufacturing apparatus with hydrogen-dissolved water from which hydrogen peroxide and oxygen have been removed.

本発明の水素溶解水の製造方法及び装置によれば、脱ガスを行わずに、過酸化水素と酸素とが除去された水素溶解水を得ることができる。   According to the method and apparatus for producing hydrogen-dissolved water of the present invention, hydrogen-dissolved water from which hydrogen peroxide and oxygen have been removed can be obtained without degassing.

以下、本発明について実施形態を挙げて説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is given and explained about the present invention, the present invention is not limited to this.

(第一の実施形態)
本発明の第一の実施形態について、図1を用いて説明する。図1は、本発明の第一の実施形態にかかる電子部品等の洗浄装置(以下、単に洗浄装置という)8の模式図である。図1に示すとおり、洗浄装置8は、超純水製造装置12と、水素溶解水の製造装置(以下、単に製造装置という)10と、製造装置10の二次側に接続された洗浄手段40とを有する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of a cleaning device (hereinafter simply referred to as a cleaning device) 8 for electronic components and the like according to the first embodiment of the present invention. As shown in FIG. 1, the cleaning device 8 includes an ultrapure water manufacturing device 12, a hydrogen-dissolved water manufacturing device (hereinafter simply referred to as a manufacturing device) 10, and a cleaning means 40 connected to the secondary side of the manufacturing device 10. And have.

超純水製造装置12は、既存の装置を用いることができ、例えば前処理システムと一次純水システムとサブシステムとで構成されたものが挙げられる。前処理システムは、例えば、凝集沈殿、砂ろ過、活性炭ろ過、またはこれらの組み合わせを挙げることができる。一次純水システムは、例えば、RO膜、2床3塔イオン交換器、混床式イオン交換器、精密フィルタ等を組み合わせたものを挙げることができる。サブシステムは、例えば、紫外線酸化装置、カートリッジポリッシャー(CP)、限外ろ過装置等を組み合わせたものを挙げることができる。   As the ultrapure water production apparatus 12, an existing apparatus can be used. For example, an apparatus composed of a pretreatment system, a primary pure water system, and a subsystem can be used. The pretreatment system can include, for example, coagulation sedimentation, sand filtration, activated carbon filtration, or a combination thereof. Examples of the primary pure water system may include a combination of an RO membrane, a two-bed / three-column ion exchanger, a mixed bed ion exchanger, a precision filter, and the like. Examples of the subsystem include a combination of an ultraviolet oxidation device, a cartridge polisher (CP), and an ultrafiltration device.

製造装置10は、水素溶解部14と触媒反応手段16と水素供給部18と溶存水素濃度計20と制御手段22とで構成されている。水素溶解部14は、超純水製造装置12の二次側に接続され、水素溶解部14の二次側には、触媒反応手段16が接続されている。触媒反応手段16の二次側は、配管42により洗浄手段40と接続されている。水素溶解部14には、水素供給部18が接続され、水素溶解部14と水素供給部18とで、水素添加手段が構成されている。配管42には分岐配管21が設けられ、分岐配管21は溶存水素濃度計20と接続され、該溶存水素濃度計20は、制御手段22を介して水素供給部18と接続されている。そして、製造装置10は、脱ガス手段を有していない。   The production apparatus 10 includes a hydrogen dissolving unit 14, a catalyst reaction unit 16, a hydrogen supply unit 18, a dissolved hydrogen concentration meter 20, and a control unit 22. The hydrogen dissolving part 14 is connected to the secondary side of the ultrapure water production apparatus 12, and the catalyst reaction means 16 is connected to the secondary side of the hydrogen dissolving part 14. The secondary side of the catalyst reaction means 16 is connected to the cleaning means 40 by a pipe 42. A hydrogen supply unit 18 is connected to the hydrogen dissolving unit 14, and the hydrogen dissolving unit 14 and the hydrogen supply unit 18 constitute a hydrogen addition unit. A branch pipe 21 is provided in the pipe 42, the branch pipe 21 is connected to the dissolved hydrogen concentration meter 20, and the dissolved hydrogen concentration meter 20 is connected to the hydrogen supply unit 18 via the control means 22. And the manufacturing apparatus 10 does not have a degassing means.

脱ガス手段とは、被処理水中の酸素、窒素等のガス成分を積極的に除去する手段であり、例えば、ガス透過膜を介して真空脱ガスを行うものを挙げることができる。   The degassing means is means for positively removing gas components such as oxygen and nitrogen in the water to be treated, and examples thereof include one that performs vacuum degassing through a gas permeable membrane.

水素溶解部14は、超純水製造装置12から供給された被処理水(超純水)に水素を溶解して添加するものである。水素溶解部14は被処理水を任意の溶存水素濃度にできるものを選択することができ、例えば、ガス透過膜を介して水中に水素ガスを溶解させる膜溶解装置、水中に水素ガスをバブリングさせて溶解させる装置、水中にエジェクターを介して水素ガスを溶解させる装置、ポンプの上流側に水素ガスを供給し、ポンプ内の攪拌により溶解させる装置等が挙げられる。中でも膜溶解装置が好適に用いられ、膜溶解装置としては、中空糸膜のガス透過膜を用いたものが好ましく、特に該中空糸膜を多数設置しモジュール化したものが好ましい。このような膜溶解装置により、効率的に水素を被処理水に溶解できるためである。   The hydrogen dissolving unit 14 is for dissolving and adding hydrogen to the water to be treated (ultra pure water) supplied from the ultra pure water production apparatus 12. The hydrogen dissolving part 14 can select what can make the water to be treated have an arbitrary dissolved hydrogen concentration, for example, a membrane dissolving apparatus for dissolving hydrogen gas in water through a gas permeable membrane, bubbling hydrogen gas in water And a device for dissolving hydrogen gas in water through an ejector, a device for supplying hydrogen gas to the upstream side of the pump, and dissolving by stirring in the pump. Among these, a membrane dissolving apparatus is preferably used. As the membrane dissolving apparatus, a device using a gas permeable membrane of a hollow fiber membrane is preferable, and a device in which a number of the hollow fiber membranes are installed and modularized is particularly preferable. This is because such a membrane dissolving apparatus can efficiently dissolve hydrogen into the water to be treated.

水素供給部18は、水素溶解部14に水素を供給できるものであれば良く、例えば、水の電解装置、水素ガスボンベ等が挙げられる。水の電解装置を用いる場合、該電解装置には超純水が供給され、超純水は電極装置内で電気分解され、電解装置の陰極室で高純度の水素ガスを発生することができる。   The hydrogen supply unit 18 may be any unit that can supply hydrogen to the hydrogen dissolving unit 14, and examples thereof include a water electrolysis device and a hydrogen gas cylinder. When a water electrolyzer is used, ultrapure water is supplied to the electrolyzer, and the ultrapure water is electrolyzed in the electrode device, and high purity hydrogen gas can be generated in the cathode chamber of the electrolyzer.

触媒反応手段16は、白金族金属触媒が充填された反応層を有するものである。反応層に充填する白金族金属触媒の形状は特に限定されず、例えば、粉末状、粒状、ペレット状等の形状を挙げることができる。   The catalytic reaction means 16 has a reaction layer filled with a platinum group metal catalyst. The shape of the platinum group metal catalyst filled in the reaction layer is not particularly limited, and examples thereof include powder shapes, granular shapes, and pellet shapes.

白金族金属触媒としては公知の技術を利用できる。例えば、パラジウム(Pd)、白金等の金属等をイオン交換樹脂やアルミナ、活性炭、ゼオライト等の担体に担持させたものを使用することができる。中でも金属Pdを担体に担持した触媒を用いることが好ましい。担体としては、アニオン交換樹脂を用いることが好ましい。   A known technique can be used as the platinum group metal catalyst. For example, a material in which a metal such as palladium (Pd) or platinum is supported on a carrier such as an ion exchange resin, alumina, activated carbon, or zeolite can be used. Among these, it is preferable to use a catalyst having metal Pd supported on a carrier. As the carrier, an anion exchange resin is preferably used.

溶存水素濃度計20は、触媒反応手段16の二次側で、水中の溶存水素濃度を測定できるものであれば良く、経時的に溶存水素の濃度を測定し、測定値を記録・表示できるものが好ましい。   The dissolved hydrogen concentration meter 20 only needs to be able to measure the dissolved hydrogen concentration in water on the secondary side of the catalyst reaction means 16, and can measure the dissolved hydrogen concentration over time, and record and display the measured value. Is preferred.

制御手段22は、溶存水素濃度計20で測定した溶存水素濃度の値を受けて、水素供給部18から水素溶解部14への水素供給量や濃度を調節できるものである。例えば、所望する水素溶解水の溶存水素濃度を予め設定し、溶存水素濃度計20から溶存水素濃度の測定値を電気信号として制御手段22にフィードバックし、溶存水素濃度の設定値と測定値との差に応じて、水素ボンベのバルブの開度調節をしたり、電解装置の電圧を調節したりするものが挙げられる。また、例えば、溶存水素濃度計20で測定した値を基に、人手で水素ボンベのバルブの開度を調節したり、電解装置の電圧を調節するものであってもよい。   The control means 22 can adjust the hydrogen supply amount and concentration from the hydrogen supply unit 18 to the hydrogen dissolution unit 14 in response to the value of the dissolved hydrogen concentration measured by the dissolved hydrogen concentration meter 20. For example, a desired dissolved hydrogen concentration of hydrogen-dissolved water is set in advance, and a measured value of the dissolved hydrogen concentration is fed back from the dissolved hydrogen concentration meter 20 to the control means 22 as an electrical signal, and the set value and measured value of the dissolved hydrogen concentration are Depending on the difference, one that adjusts the opening of the valve of the hydrogen cylinder or the voltage of the electrolyzer can be mentioned. Further, for example, based on the value measured by the dissolved hydrogen concentration meter 20, the opening of the valve of the hydrogen cylinder may be adjusted manually, or the voltage of the electrolyzer may be adjusted.

洗浄手段40は、被洗浄物である電子部品等の洗浄、すすぎ(以下、総じて洗浄ということがある)をするものである。洗浄手段40の洗浄方式は被洗浄物の種類や洗浄の目的に応じて選択することができ、例えば、製造装置10で製造された水素溶解水を用いた洗浄液またはすすぎ液(以下、総じて洗浄液という)に被洗浄物を浸漬して洗浄するバッチ洗浄や、前記洗浄液を循環させながら被洗浄物と接触させて洗浄する循環洗浄、前記洗浄液を洗浄槽の底部側に供給し、オーバーフローさせながら洗浄するフロー洗浄、被洗浄物に前記洗浄液をシャワー状に吹きかけて洗浄する方法、高速回転させた被洗浄物に前記洗浄液を吹きかけて洗浄する方法等が挙げられる。
ここで、電子部品とは、例えば、シリコン基板、半導体ウエハ等の半導体基板、液晶用ガラス基板等の基板材料、メモリ素子、CPU、センサー素子、太陽電池、銅や銀からなる電気接点等の電子部品の完成品やその半製品を意味し、電子部品の製造器具とは、石英反応管、洗浄槽、基板キャリヤ等を意味する。
The cleaning means 40 is for cleaning and rinsing (hereinafter sometimes referred to as “cleaning” as a whole) of electronic parts and the like to be cleaned. The cleaning method of the cleaning means 40 can be selected according to the type of object to be cleaned and the purpose of cleaning. For example, a cleaning liquid or a rinsing liquid using hydrogen-dissolved water manufactured by the manufacturing apparatus 10 (hereinafter generally referred to as a cleaning liquid). ) Washing by immersing the object to be cleaned in batch cleaning, circulating cleaning in contact with the object to be cleaned while circulating the cleaning liquid, supplying the cleaning liquid to the bottom of the cleaning tank, and cleaning while overflowing Examples include flow cleaning, a method of cleaning the object to be cleaned by spraying the cleaning liquid in a shower, a method of cleaning the object to be cleaned rotated at high speed and the like.
Here, the electronic component is, for example, a semiconductor substrate such as a silicon substrate or a semiconductor wafer, a substrate material such as a glass substrate for liquid crystal, a memory element, a CPU, a sensor element, a solar cell, or an electronic contact such as an electrical contact made of copper or silver. It means a finished product of a part or a semi-finished product thereof, and the electronic device manufacturing equipment means a quartz reaction tube, a cleaning tank, a substrate carrier, and the like.

本実施形態の水素溶解水の製造方法について説明する。第一の実施形態における水素溶解水の製造方法は、超純水製造装置12から供給される超純水(被処理水)を脱ガスすることなしに、水素を添加(水素添加工程)した後、白金族金属触媒の存在下で、過酸化水素と酸素を除去(触媒反応工程)するものである。なお「脱ガスすることなしに」とは、被処理水から、酸素等のガス成分を積極的に除去する処理を行わないことを意味する。   A method for producing hydrogen-dissolved water according to this embodiment will be described. In the method for producing hydrogen-dissolved water in the first embodiment, hydrogen is added (hydrogen addition step) without degassing the ultrapure water (treated water) supplied from the ultrapure water production apparatus 12. In the presence of a platinum group metal catalyst, hydrogen peroxide and oxygen are removed (catalytic reaction step). Note that “without degassing” means that a treatment for positively removing a gas component such as oxygen from the water to be treated is not performed.

まず、原水Aを超純水製造装置12に供給し、超純水を製造する。水素供給部18から任意の量の水素ガスを水素溶解部14に供給する。超純水製造装置12で製造した超純水を脱ガスせずに水素溶解部14に供給し、目的とする水素溶解水の溶存水素濃度に加え、触媒反応手段16で消費される水素量を被処理水に溶解する(水素添加工程)。任意の溶存水素濃度となった被処理水を触媒反応手段16に供給し、触媒反応手段16の反応層に通水する。反応層では、被処理水が、該反応層に充填された白金族金属触媒に接触しながら流通する。この間、被処理水中の過酸化水素は、白金族金属触媒の存在下で、下記(1)〜(2)式に表される反応、あるいは、下記(3)式に表される反応を生じ水を生成する。   First, raw water A is supplied to the ultrapure water production apparatus 12 to produce ultrapure water. An arbitrary amount of hydrogen gas is supplied from the hydrogen supply unit 18 to the hydrogen dissolving unit 14. The ultrapure water produced by the ultrapure water production apparatus 12 is supplied to the hydrogen dissolving part 14 without degassing, and in addition to the dissolved hydrogen concentration of the target hydrogen dissolved water, the amount of hydrogen consumed by the catalytic reaction means 16 is determined. Dissolve in the water to be treated (hydrogenation step). Water to be treated having an arbitrary dissolved hydrogen concentration is supplied to the catalyst reaction means 16 and passed through the reaction layer of the catalyst reaction means 16. In the reaction layer, the water to be treated flows while being in contact with the platinum group metal catalyst filled in the reaction layer. During this time, the hydrogen peroxide in the water to be treated causes water to react in the presence of the platinum group metal catalyst, as shown in the following formulas (1) to (2), or in the following formula (3). Is generated.

2H→2HO+O ・・・(1)
+2H→2HO ・・・(2)
2H 2 O 2 → 2H 2 O + O 2 ··· (1)
O 2 + 2H 2 → 2H 2 O (2)

+H→2HO ・・・(3) H 2 O 2 + H 2 → 2H 2 O (3)

一方で、被処理水中の酸素と水素は、白金族金属触媒の存在下で、下記(4)式に表される反応を生じ、水を生成する(以上、触媒反応工程)。   On the other hand, oxygen and hydrogen in the water to be treated cause a reaction represented by the following formula (4) in the presence of a platinum group metal catalyst to produce water (the catalytic reaction step).

2H+O→2HO ・・・(4) 2H 2 + O 2 → 2H 2 O (4)

こうして、過酸化水素と酸素とが除去された水素溶解水は、触媒反応手段16から洗浄手段40に供給される。溶存水素濃度計20では、触媒反応手段16から洗浄手段40に供給される水素溶解水の一部を分岐配管21に引き込み、溶存水素濃度を測定する。測定された溶存水素濃度の測定値は、制御手段22に送られる。制御手段22では、予め設定された水素溶解水の溶存水素濃度の目標値と、溶存水素濃度計20で得られた溶存水素濃度の測定値との濃度差に基づき、水素供給部18から水素溶解部14への水素ガスの供給量を制御する。このように、触媒反応手段16から洗浄手段40に供給される水素溶解水の溶存水素濃度を任意の範囲に調整する。そして、水素溶解水は、洗浄手段40で電子部品等の洗浄液として用いられる。   Thus, the hydrogen-dissolved water from which hydrogen peroxide and oxygen are removed is supplied from the catalyst reaction means 16 to the cleaning means 40. In the dissolved hydrogen concentration meter 20, part of the hydrogen dissolved water supplied from the catalyst reaction means 16 to the cleaning means 40 is drawn into the branch pipe 21 and the dissolved hydrogen concentration is measured. The measured value of the dissolved hydrogen concentration is sent to the control means 22. In the control means 22, hydrogen dissolution from the hydrogen supply unit 18 is performed based on a concentration difference between a preset target value of the dissolved hydrogen concentration of the hydrogen-dissolved water and a measured value of the dissolved hydrogen concentration obtained by the dissolved hydrogen concentration meter 20. The supply amount of hydrogen gas to the unit 14 is controlled. Thus, the dissolved hydrogen concentration of the hydrogen-dissolved water supplied from the catalyst reaction means 16 to the cleaning means 40 is adjusted to an arbitrary range. The hydrogen-dissolved water is used as a cleaning liquid for electronic parts and the like by the cleaning means 40.

原水Aは特に限定されず、工業用水、上水、井水、河川水、湖沼水等を用いることができる。   The raw water A is not particularly limited, and industrial water, clean water, well water, river water, lake water, and the like can be used.

被処理水は、過酸化水素と酸素とを含むものである。
被処理水として、超純水製造装置12で得られる超純水は、微粒子、コロイド物質、有機物、金属イオン、陰イオン等の不純物を可及的に除去されたものである。超純水の水質は、例えば、抵抗率:18MΩ・cm以上、TOC:10μg−C/L以下、微粒子(粒径0.05μm以上のもの)数:10個/mL以下、生菌数:10個/L以下、シリカ:1μg−SiO/L以下、ナトリウム:0.01μg−Na/L以下、鉄:0.01μg−Fe/L以下、銅:0.01μg−Cu/L以下、塩化物イオン:0.01μg−Cl/L以下、水素イオン濃度:pH7、酸化還元電位:+50mV(対NHE)とすることが好ましい。ここで、不純物を全く含んでいない水の場合、25℃における抵抗率の理論値は18.2MΩ・cmとなる。超純水の水質は、抵抗率が18.2MΩ・cmに近づき、かつ高ければ高いほど水質としては清浄であると評価できる。
The water to be treated contains hydrogen peroxide and oxygen.
As the water to be treated, the ultrapure water obtained by the ultrapure water production apparatus 12 is obtained by removing impurities such as fine particles, colloidal substances, organic substances, metal ions and anions as much as possible. The quality of the ultrapure water is, for example, resistivity: 18 MΩ · cm or more, TOC: 10 μg-C / L or less, number of fine particles (particle size of 0.05 μm or more): 10 / mL or less, viable count: 10 Pieces / L or less, silica: 1 μg-SiO / L or less, sodium: 0.01 μg-Na / L or less, iron: 0.01 μg-Fe / L or less, copper: 0.01 μg-Cu / L or less, chloride ion : 0.01 μg-Cl / L or less, hydrogen ion concentration: pH 7, and oxidation-reduction potential: +50 mV (vs NHE) are preferable. Here, in the case of water containing no impurities at all, the theoretical value of resistivity at 25 ° C. is 18.2 MΩ · cm. The water quality of ultrapure water approaches 18.2 MΩ · cm, and the higher the water quality, the better the water quality.

前記超純水中の溶存酸素濃度は、水素溶解装置14の入口で、10ppb以上であると本発明における効果が発揮されやすく、50ppb以上であるとより発揮されやすく、100ppb以上であると、本発明の効果が特に顕著に表れる。例えば、脱ガス装置を用いて超純水中の酸素を除去しようとすると、超純水中の溶存酸素濃度が高いほど、脱ガス装置の規模とランニングコストとが増大するためである。
前記超純水中の過酸化水素濃度は、水素溶解装置14の入口で、5ppb以上であると本発明における効果が発揮されやすく、10ppb以上であると、本発明の効果が特に顕著に表れる。
When the dissolved oxygen concentration in the ultrapure water is 10 ppb or more at the inlet of the hydrogen dissolving device 14, the effect of the present invention is easily exerted, and when it is 50 ppb or more, it is more easily exhibited. The effects of the invention are particularly prominent. For example, if oxygen in ultrapure water is to be removed using a degassing device, the scale and running cost of the degassing device increase as the dissolved oxygen concentration in the ultrapure water increases.
When the hydrogen peroxide concentration in the ultrapure water is 5 ppb or more at the inlet of the hydrogen dissolving device 14, the effect of the present invention is easily exhibited, and when it is 10 ppb or more, the effect of the present invention is particularly noticeable.

製造装置10から洗浄手段40に供給される水素溶解水の溶存水素濃度は、水素溶解水の用途に応じて決定することができ、例えば、1013hPaにおいて、50ppb以上とすることが好ましく、800〜1600ppbとすることが好ましい。溶存水素濃度が50ppb以上であると、水素溶解水の酸化還元電位が十分な還元電位となり、水素溶解水を洗浄液に用いた際に被洗浄物の表面の微粒子除去を効率的に行えるためである。   The dissolved hydrogen concentration of the hydrogen-dissolved water supplied from the production apparatus 10 to the cleaning means 40 can be determined according to the use of the hydrogen-dissolved water, and is preferably 50 ppb or more at 1013 hPa, for example, 800 to 1600 ppb It is preferable that This is because when the dissolved hydrogen concentration is 50 ppb or more, the redox potential of the hydrogen-dissolved water becomes a sufficient reduction potential, and when the hydrogen-dissolved water is used as a cleaning liquid, fine particles on the surface of the object to be cleaned can be efficiently removed. .

水素溶解部14は、目的とする水素溶解水の溶存水素濃度に加え、触媒反応手段16で消費される水素量を被処理水に溶解するものである。水素溶解部14における、被処理水への水素ガスの溶解量は、触媒反応手段16から洗浄手段40に供給する水素溶解水に求める溶存水素濃度と、触媒反応手段16で消費される水素量とに応じて決定することができる。例えば、前記水素溶解水の溶存水素濃度を50ppbとする場合には、50ppbに相当する水素量に加え、触媒反応手段16で消費される水素量を加えた溶存水素濃度に調整する。   The hydrogen dissolving part 14 dissolves the amount of hydrogen consumed by the catalytic reaction means 16 in the water to be treated in addition to the dissolved hydrogen concentration of the target hydrogen dissolving water. The amount of hydrogen gas dissolved in the water to be treated in the hydrogen dissolving section 14 is determined by the dissolved hydrogen concentration required for the hydrogen dissolved water supplied from the catalyst reaction means 16 to the washing means 40 and the amount of hydrogen consumed by the catalyst reaction means 16. Can be determined according to For example, when the dissolved hydrogen concentration of the hydrogen-dissolved water is 50 ppb, the dissolved hydrogen concentration is adjusted by adding the amount of hydrogen consumed by the catalytic reaction means 16 in addition to the amount of hydrogen corresponding to 50 ppb.

水素添加工程は、脱ガスを行わずに水素溶解を行うため、被処理水中の溶存ガス濃度が高く、大気圧以下では所望する溶存水素濃度に達しない場合もある。例えば、一次純水を貯留するタンクには、大気中の酸素の溶解を防止するため、窒素ガスでパージされている。このため、得られる超純水には高濃度の窒素が溶存する場合がある。従って、水素添加工程は、被処理水の溶存ガス濃度と、目的とする溶存水素濃度とを勘案して、水素溶解圧力(水素ガス圧力)を決定することができ、例えば、大気圧よりも高い圧力で行うことで、溶存水素濃度を高めることができる。   Since the hydrogen addition step dissolves hydrogen without degassing, the dissolved gas concentration in the water to be treated is high, and the desired dissolved hydrogen concentration may not be reached below atmospheric pressure. For example, a tank that stores primary pure water is purged with nitrogen gas to prevent dissolution of oxygen in the atmosphere. For this reason, high concentration of nitrogen may be dissolved in the obtained ultrapure water. Therefore, the hydrogen addition step can determine the hydrogen dissolution pressure (hydrogen gas pressure) in consideration of the dissolved gas concentration of the water to be treated and the target dissolved hydrogen concentration, for example, higher than atmospheric pressure. By carrying out under pressure, the dissolved hydrogen concentration can be increased.

触媒反応手段16では、触媒反応工程が行われる。触媒反応手段16の反応層での被処理水の滞留時間は、触媒の種類、担持量等の触媒条件、被処理水中の溶存酸素濃度及び過酸化水素濃度、水素溶解水の水質を勘案して決定することができる。また、触媒反応工程における被処理水の温度は特に限定されないが、10〜50℃の範囲で決定することが好ましい。上記温度範囲内であれば、効率的に触媒反応を行うことができるためである。なお、アニオン交換樹脂を単体として用いる場合には、アニオン交換樹脂の耐熱性の観点から、60℃以下とする。   In the catalytic reaction means 16, a catalytic reaction step is performed. The residence time of the water to be treated in the reaction layer of the catalyst reaction means 16 takes into consideration the catalyst conditions such as the type of catalyst, the amount of the catalyst supported, the dissolved oxygen concentration and hydrogen peroxide concentration in the water to be treated, and the quality of the hydrogen-dissolved water. Can be determined. Moreover, although the temperature of the to-be-processed water in a catalyst reaction process is not specifically limited, It is preferable to determine in the range of 10-50 degreeC. This is because the catalytic reaction can be performed efficiently within the above temperature range. In addition, when using an anion exchange resin as a single-piece | unit, it is set to 60 degrees C or less from a heat resistant viewpoint of an anion exchange resin.

洗浄手段40に供給された水素溶解水は、そのまま電子部品等の洗浄やすすぎに用いてもよいし、pH調整が行われた後に洗浄やすすぎに用いてもよい。pH調整は、各種酸やアルカリを添加して調整することができ、添加する酸としては、例えば、塩酸、硫酸、硝酸、リン酸、フッ酸等が挙げられ、アルカリとしてはアンモニア水、水酸化ナトリウム、水酸化カリウム、TMAH(水酸化テトラメチルアンモニウム)、コリン等が挙げられる。これらは、洗浄の目的と被洗浄物の種類とを勘案して選択することができる。   The hydrogen-dissolved water supplied to the cleaning means 40 may be used as it is for cleaning or rinsing electronic parts or the like, or may be used for cleaning or rinsing after pH adjustment. The pH can be adjusted by adding various acids and alkalis. Examples of the acid to be added include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and hydrofluoric acid. Examples of the alkali include aqueous ammonia and hydroxylation. Sodium, potassium hydroxide, TMAH (tetramethylammonium hydroxide), choline, etc. are mentioned. These can be selected in consideration of the purpose of cleaning and the type of object to be cleaned.

上述のように、触媒反応工程で消費される水素を予め被処理水に添加することで、被処理水を脱ガスすることなく、純水製造工程の紫外線照射で生じて溶存する過酸化水素と溶存する酸素とを被処理水から除去し、かつ、所望の溶存水素濃度の水素溶解水を得ることができる。この結果、水素溶解水の製造装置には、脱ガス手段が不要となり、製造装置のコンパクト化と、設備投資及びランニングコストの低減とを図ることができる。加えて、触媒反応工程の後に水素溶解水の溶存水素濃度を測定して、水素添加工程での溶存水素濃度を制御することで、適切な溶存水素濃度の水素溶解水を洗浄手段に供給することができる。さらに、水素添加工程を、大気圧を超える圧力下で行うことで、被処理水中の溶存ガス濃度が高い場合であっても、水素溶解水を所望する溶存水素濃度に調整できる。   As described above, by adding hydrogen consumed in the catalytic reaction process to the water to be treated in advance, hydrogen peroxide generated and dissolved by ultraviolet irradiation in the pure water production process without degassing the water to be treated and It is possible to remove dissolved oxygen from the water to be treated and to obtain hydrogen-dissolved water having a desired dissolved hydrogen concentration. As a result, the apparatus for producing hydrogen-dissolved water does not require a degassing means, and the production apparatus can be made compact and the equipment investment and running cost can be reduced. In addition, by measuring the dissolved hydrogen concentration in the hydrogen-dissolved water after the catalytic reaction step and controlling the dissolved hydrogen concentration in the hydrogen addition step, the hydrogen-dissolved water having an appropriate dissolved hydrogen concentration is supplied to the cleaning means. Can do. Furthermore, by performing the hydrogenation step under a pressure exceeding atmospheric pressure, the hydrogen-dissolved water can be adjusted to a desired dissolved hydrogen concentration even when the dissolved gas concentration in the water to be treated is high.

(第二の実施形態)
本発明の第二の実施形態について、図2を用いて説明する。図2は、本発明の第二の実施形態にかかる洗浄装置50の模式図である。図2に示すとおり、洗浄装置50は、超純水製造装置12と、製造装置60と、製造装置60の二次側に接続された洗浄手段40とを有する。
(Second embodiment)
A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic view of a cleaning device 50 according to the second embodiment of the present invention. As shown in FIG. 2, the cleaning apparatus 50 includes an ultrapure water manufacturing apparatus 12, a manufacturing apparatus 60, and a cleaning unit 40 connected to the secondary side of the manufacturing apparatus 60.

製造装置60は、水素溶解部14と触媒反応手段16と水素供給部18と溶存水素濃度計20と制御手段22と分岐配管30とポンプ32とで構成されている。触媒反応手段16は、超純水製造装置12の二次側に接続され、触媒反応手段16の二次側には、水素溶解部14が接続されている。水素溶解部14の二次側は、配管44により洗浄手段40と接続されている。水素溶解部14には、水素供給部18が接続され、水素溶解部14と水素供給部18とで第二の水素添加手段が構成されている。配管44には分岐配管21が設けられ、分岐配管21は溶存水素濃度計20と接続されている。該溶存水素濃度計20は、制御手段22を介して水素供給部18と接続されている。また、配管44には、ポンプ32を備える分岐配管30が設けられ、分岐配管30は触媒反応手段16の一次側に接続されている。そして、製造装置60は、脱ガス手段を有していない。   The production apparatus 60 includes a hydrogen dissolving unit 14, a catalyst reaction unit 16, a hydrogen supply unit 18, a dissolved hydrogen concentration meter 20, a control unit 22, a branch pipe 30, and a pump 32. The catalytic reaction means 16 is connected to the secondary side of the ultrapure water production apparatus 12, and the hydrogen dissolving part 14 is connected to the secondary side of the catalytic reaction means 16. The secondary side of the hydrogen dissolving part 14 is connected to the cleaning means 40 by a pipe 44. A hydrogen supply unit 18 is connected to the hydrogen dissolving unit 14, and the hydrogen dissolving unit 14 and the hydrogen supply unit 18 constitute a second hydrogen addition unit. A branch pipe 21 is provided in the pipe 44, and the branch pipe 21 is connected to the dissolved hydrogen concentration meter 20. The dissolved hydrogen concentration meter 20 is connected to the hydrogen supply unit 18 via the control means 22. The pipe 44 is provided with a branch pipe 30 including a pump 32, and the branch pipe 30 is connected to the primary side of the catalyst reaction means 16. And the manufacturing apparatus 60 does not have a degassing means.

分岐配管30とポンプ32とは、水素溶解部14で得られた水素溶解水を触媒反応手段16の一次側に供給し、触媒反応処理で消費される水素を予め添加する第一の水素添加手段を構成している。   The branch pipe 30 and the pump 32 supply the hydrogen-dissolved water obtained in the hydrogen-dissolving unit 14 to the primary side of the catalytic reaction means 16 and first add hydrogen consumed in the catalytic reaction process in advance. Is configured.

本実施形態の水素溶解水の製造方法について説明する。第二の実施形態の水素溶解水の製造方法は、超純水製造装置12で得られた超純水(被処理水)に、分岐配管30により、被処理水に水素が溶解した水素溶解水を添加(水素添加工程)した後に、触媒反応手段16で、白金族金属触媒の存在下で過酸化水素と酸素を除去(触媒反応工程)し、その後、水素溶解部14で、さらに水素を溶解(二次水素添加工程)するものである。   A method for producing hydrogen-dissolved water according to this embodiment will be described. In the method for producing hydrogen-dissolved water according to the second embodiment, hydrogen-dissolved water in which hydrogen is dissolved in the treated water by the branch pipe 30 in the ultrapure water (treated water) obtained by the ultrapure water production apparatus 12. After the addition of hydrogen (hydrogen addition step), the catalyst reaction means 16 removes hydrogen peroxide and oxygen in the presence of the platinum group metal catalyst (catalysis reaction step), and then the hydrogen dissolution unit 14 further dissolves hydrogen. (Secondary hydrogenation step).

前記超純水中の溶存酸素濃度は、触媒反応手段16の入口で、10ppb以上であると本発明における効果が発揮されやすく、50ppb以上であるとより発揮されやすく、100ppb以上であると、本発明の効果が特に顕著に表れる。例えば、脱ガス装置を用いて超純水中の酸素を除去しようとすると、超純水中の溶存酸素濃度が高いほど、脱ガス装置の規模とランニングコストとが増大するためである。
前記超純水中の過酸化水素濃度は、触媒反応手段16の入口で、5ppb以上であると本発明における効果が発揮されやすく、10ppb以上であると、本発明の効果が特に顕著に表れる。
When the dissolved oxygen concentration in the ultrapure water is 10 ppb or more at the inlet of the catalytic reaction means 16, the effect of the present invention is easily exhibited, and when it is 50 ppb or more, it is more easily exhibited. The effects of the invention are particularly prominent. For example, if oxygen in ultrapure water is to be removed using a degassing device, the scale and running cost of the degassing device increase as the dissolved oxygen concentration in the ultrapure water increases.
When the concentration of hydrogen peroxide in the ultrapure water is 5 ppb or more at the inlet of the catalyst reaction means 16, the effect of the present invention is easily exhibited, and when it is 10 ppb or more, the effect of the present invention is particularly remarkable.

水素添加工程は、水素溶解水を被処理水に添加し、触媒反応工程で消費される水素を被処理水に添加する工程である。水素添加工程における、被処理水への水素溶解水の添加量は、水素溶解水の溶存水素濃度と、被処理水の過酸化水素、酸素の濃度に応じて決定することができる。具体的には、触媒反応工程で被処理水中の過酸化水素及び酸素を除去する際に消費される水素量よりも、過剰の水素量となるような溶存水素濃度とする。   The hydrogen addition step is a step of adding hydrogen-dissolved water to the water to be treated and adding hydrogen consumed in the catalytic reaction step to the water to be treated. The amount of hydrogen-dissolved water added to the water to be treated in the hydrogenation step can be determined according to the dissolved hydrogen concentration of the hydrogen-dissolved water and the concentrations of hydrogen peroxide and oxygen in the water to be treated. Specifically, the dissolved hydrogen concentration is set to an amount of hydrogen that is in excess of the amount of hydrogen consumed when removing hydrogen peroxide and oxygen in the water to be treated in the catalytic reaction step.

触媒反応工程では、水素添加工程で添加された水素溶解水に由来する水素と、過酸化水素又は酸素とを反応させて水を生成させる。かかる反応により過酸化水素と酸素が除去されると共に、水素添加工程で添加された水素が消費される。   In the catalytic reaction step, water derived from the hydrogen-dissolved water added in the hydrogen addition step is reacted with hydrogen peroxide or oxygen to generate water. By this reaction, hydrogen peroxide and oxygen are removed, and hydrogen added in the hydrogenation step is consumed.

二次水素添加工程は、触媒反応工程で水素が消費された被処理水に、水素を溶解して任意の溶存水素濃度の水素溶解水を得る工程である。二次水素添加工程における、被処理水への水素ガスの溶解量は、触媒反応手段16で残存する水素濃度と、所望する水素溶解水の溶存水素濃度とを勘案して決定することができる。また、二次水素添加工程は、水素ガス圧力を大気圧よりも高い圧力で行うことで、溶存水素濃度を高めることができる。   The secondary hydrogenation step is a step of obtaining hydrogen-dissolved water having an arbitrary dissolved hydrogen concentration by dissolving hydrogen in the water to be treated in which hydrogen has been consumed in the catalytic reaction step. The amount of hydrogen gas dissolved in the water to be treated in the secondary hydrogenation step can be determined in consideration of the hydrogen concentration remaining in the catalyst reaction means 16 and the desired dissolved hydrogen concentration of the hydrogen-dissolved water. In the secondary hydrogen addition step, the dissolved hydrogen concentration can be increased by performing the hydrogen gas pressure at a pressure higher than atmospheric pressure.

上述のように、触媒反応工程の後に二次水素添加工程を行うことで、得られる水素溶解水の溶存水素濃度をより正確に調整することができる。   As described above, the concentration of dissolved hydrogen in the resulting hydrogen-dissolved water can be more accurately adjusted by performing the secondary hydrogenation step after the catalytic reaction step.

本発明は、上述の実施形態に限定されるものではない。
第二の実施形態では、配管30とポンプ32とで第一の水素添加手段を構成しているが、触媒反応手段16の一次側に新たに水素溶解部を設け、被処理水に水素を添加してもよい。
The present invention is not limited to the embodiment described above.
In the second embodiment, the pipe 30 and the pump 32 constitute the first hydrogen addition means. However, a hydrogen dissolving part is newly provided on the primary side of the catalyst reaction means 16 to add hydrogen to the water to be treated. May be.

第一及び第二の実施形態では、水素溶解装置に、ユースポイントとして洗浄手段が接続されているが、水素溶解水のユースポイントはこれに限られず、例えば、飲料製造用の抽出水、希釈水、あるいは、ボイラー水や各種装置の冷却水として用いることができる。   In the first and second embodiments, a cleaning means is connected as a use point to the hydrogen dissolving apparatus, but the use point of the hydrogen dissolved water is not limited to this, for example, extracted water for beverage production, diluted water Alternatively, it can be used as boiler water or cooling water for various devices.

第一の実施形態では触媒反応手段の二次側、第二の実施形態では水素溶解部の二次側に、不純物除去手段を設けてもよい。不純物除去手段では、白金族金属触媒の担体の劣化により発生する微粒子や、アミン類等を取り除き、超純水に求められる純度を確実に維持することができる。不純物除去手段としては、例えば、イオン成分除去のためのイオン交換装置、微粒子除去のための限外ろ過装置、RO膜装置等の膜処理装置が挙げられる。また、不純物除去手段としては、イオン吸着膜装置を用いることもできる。イオン吸着膜装置は、膜自体がイオン交換機能を有するため、不純物としてのイオン成分と微粒子とを同時に除去することができる。   Impurity removing means may be provided on the secondary side of the catalytic reaction means in the first embodiment, and on the secondary side of the hydrogen dissolving part in the second embodiment. The impurity removing means can remove fine particles generated due to deterioration of the support of the platinum group metal catalyst, amines, etc., and can reliably maintain the purity required for ultrapure water. Examples of the impurity removing means include an ion exchange device for removing ion components, an ultrafiltration device for removing fine particles, and a membrane treatment device such as an RO membrane device. Further, an ion adsorption film device can be used as the impurity removing means. Since the membrane itself has an ion exchange function, the ion adsorption membrane device can simultaneously remove the ion component and the fine particles as impurities.

本発明の第一の実施形態にかかる電子部品又は電子部品の製造器具用の洗浄装置を示す模式図である。It is a schematic diagram which shows the washing | cleaning apparatus for the electronic components concerning 1st embodiment of this invention, or the manufacture instrument of an electronic component. 本発明の第二の実施形態にかかる電子部品又は電子部品の製造器具用の洗浄装置を示す模式図である。It is a schematic diagram which shows the washing | cleaning apparatus for the electronic components concerning 2nd embodiment of this invention, or the manufacture tool of an electronic component.

符号の説明Explanation of symbols

8、50 電子部品又は電子部品の製造器具用の洗浄装置
10、60 水素溶解水の製造装置
12 超純水製造装置
14 水素溶解部
16 触媒反応手段
18 水素供給部
20 溶存水素濃度計
22 制御手段
30 分岐配管
32 ポンプ
40 洗浄手段
8, 50 Cleaning device for electronic component or electronic component manufacturing instrument 10, 60 Hydrogen dissolved water manufacturing device 12 Ultrapure water manufacturing device 14 Hydrogen dissolving unit 16 Catalytic reaction means 18 Hydrogen supply unit 20 Dissolved hydrogen concentration meter 22 Control unit 30 Branch piping 32 Pump 40 Cleaning means

Claims (8)

白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、過酸化水素と酸素とを含む被処理水から過酸化水素及び酸素を除去する触媒反応工程を有する水素溶解水の製造方法において、
前記被処理水を脱ガスすることなしに、前記触媒反応工程で消費する水素を予め被処理水に添加しておく水素添加工程を有する、水素溶解水の製造方法。
Hydrogen peroxide and oxygen are produced from water to be treated containing hydrogen peroxide and oxygen by using the reaction of generating water from hydrogen peroxide and the reaction of generating water from oxygen and hydrogen in the presence of a platinum group metal catalyst. In the method for producing hydrogen-dissolved water having a catalytic reaction step to be removed,
A method for producing hydrogen-dissolved water, comprising: a hydrogen addition step in which hydrogen consumed in the catalytic reaction step is added in advance to the water to be treated without degassing the water to be treated.
前記水素添加工程及び前記触媒反応工程の後に、水素溶解水の溶存水素濃度を測定し、その測定値をフィードバックして前記水素添加工程で添加する水素量を制御することを特徴とする、請求項1に記載の水素溶解水の製造方法。   The dissolved hydrogen concentration of hydrogen-dissolved water is measured after the hydrogenation step and the catalytic reaction step, and the amount of hydrogen added in the hydrogenation step is controlled by feeding back the measured value. 2. The method for producing hydrogen-dissolved water according to 1. 前記触媒反応工程の後に、さらに水素を被処理水に添加する二次水素添加工程を有することを特徴とする、請求項1又は2に記載の水素溶解水の製造方法。   The method for producing hydrogen-dissolved water according to claim 1 or 2, further comprising a secondary hydrogen addition step of adding hydrogen to the water to be treated after the catalytic reaction step. 前記水素添加工程では、前記二次水素添加工程で得られた水素溶解水を被処理水に添加することを特徴とする、請求項3に記載の水素溶解水の製造方法。   The method for producing hydrogen-dissolved water according to claim 3, wherein in the hydrogenation step, the hydrogen-dissolved water obtained in the secondary hydrogenation step is added to the water to be treated. 前記水素添加工程は、大気圧より高い圧力条件下で被処理水へ水素を添加することを特徴とする、請求項1〜3のいずれか1項に記載の水素溶解水の製造方法。   The method for producing hydrogen-dissolved water according to any one of claims 1 to 3, wherein in the hydrogen addition step, hydrogen is added to the water to be treated under a pressure condition higher than atmospheric pressure. 前記二次水素添加工程は、大気圧より高い圧力条件下で被処理水へ水素を添加することを特徴とする、請求項3又は4に記載の水素溶解水の製造方法。   The method for producing hydrogen-dissolved water according to claim 3 or 4, wherein in the secondary hydrogen addition step, hydrogen is added to the water to be treated under a pressure condition higher than atmospheric pressure. 過酸化水素と酸素とを含む被処理水を脱ガスすることなしに、該被処理水に水素を添加する水素添加手段と、
白金族金属触媒が充填された反応層を有し、前記水素添加手段で水素が添加された被処理水を該反応層に通水し、前記白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、被処理水から過酸化水素及び酸素を除去する触媒反応手段と、
を有する水素溶解水の製造装置。
Hydrogen addition means for adding hydrogen to the water to be treated without degassing the water to be treated containing hydrogen peroxide and oxygen;
A reaction layer filled with a platinum group metal catalyst, water to be treated to which hydrogen has been added by the hydrogenation means is passed through the reaction layer, and water from hydrogen peroxide in the presence of the platinum group metal catalyst. Catalytic reaction means for removing hydrogen peroxide and oxygen from water to be treated using a reaction for generating water and a reaction for generating water from oxygen and hydrogen;
An apparatus for producing hydrogen-dissolved water.
過酸化水素と酸素とを含む被処理水を脱ガスすることなしに、該被処理水に水素を添加する水素添加手段と、
白金族金属触媒が充填された反応層を有し、前記水素添加手段で水素が添加された被処理水を該反応層に通水し、前記白金族金属触媒の存在下で過酸化水素から水を生成する反応及び酸素と水素から水を生成する反応を利用して、被処理水から過酸化水素及び酸素を除去する触媒反応手段と、
前記触媒反応手段で、過酸化水素及び酸素が除去された水素溶解水で電子部品又は電子部品の製造器具を洗浄する洗浄手段と、
を有する電子部品又は電子部品の製造器具用の洗浄装置。
Hydrogen addition means for adding hydrogen to the water to be treated without degassing the water to be treated containing hydrogen peroxide and oxygen;
A reaction layer filled with a platinum group metal catalyst, water to be treated to which hydrogen has been added by the hydrogenation means is passed through the reaction layer, and water from hydrogen peroxide in the presence of the platinum group metal catalyst. Catalytic reaction means for removing hydrogen peroxide and oxygen from water to be treated using a reaction for generating water and a reaction for generating water from oxygen and hydrogen;
In the catalytic reaction means, cleaning means for cleaning the electronic component or the electronic device manufacturing apparatus with hydrogen-dissolved water from which hydrogen peroxide and oxygen have been removed,
A cleaning device for electronic parts or electronic parts manufacturing instruments having
JP2008179184A 2008-07-09 2008-07-09 Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component Pending JP2010017633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179184A JP2010017633A (en) 2008-07-09 2008-07-09 Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179184A JP2010017633A (en) 2008-07-09 2008-07-09 Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component

Publications (1)

Publication Number Publication Date
JP2010017633A true JP2010017633A (en) 2010-01-28

Family

ID=41703038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179184A Pending JP2010017633A (en) 2008-07-09 2008-07-09 Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component

Country Status (1)

Country Link
JP (1) JP2010017633A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2011245380A (en) * 2010-05-25 2011-12-08 Japan Organo Co Ltd Method and device for producing pure water
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
JP2015088740A (en) * 2013-09-25 2015-05-07 オルガノ株式会社 Method and device for processing substrate
JP2015166064A (en) * 2014-03-04 2015-09-24 オルガノ株式会社 Apparatus for manufacturing ultrapure water
CN105776490A (en) * 2016-03-15 2016-07-20 翟海峰 Preparation method of vitamin C hydrogen-enriched water and vitamin C hydrogen-enriched water prepared according to method
KR20190128161A (en) 2017-03-30 2019-11-15 쿠리타 고교 가부시키가이샤 Apparatus for producing dilute chemical liquids capable of controlling pH and redox potential
KR20200096485A (en) * 2016-12-28 2020-08-12 쿠리타 고교 가부시키가이샤 Method and apparatus for removing hydrogen peroxide
US11004674B2 (en) 2013-09-25 2021-05-11 Organo Corporation Substrate treatment method and substrate treatment equipment
KR20220019657A (en) 2019-06-12 2022-02-17 쿠리타 고교 가부시키가이샤 pH-adjusted water production device
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method
WO2024053305A1 (en) * 2022-09-06 2024-03-14 オルガノ株式会社 Ultrapure water production device and ultrapure water production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631432A (en) * 1979-08-21 1981-03-30 Ebara Infilco Co Ltd Process for dissolving gas into liquid
JPH03293092A (en) * 1990-04-10 1991-12-24 Ebara Res Co Ltd Method for removing dissolved oxygen in water
JPH10504999A (en) * 1994-09-08 1998-05-19 ゾルファイ ウムヴェルトヒエミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for removing chlorate and bromate compounds from water by catalytic reduction
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP2003205299A (en) * 2002-01-15 2003-07-22 Japan Organo Co Ltd Hydrogen dissolved water manufacturing system
JP2006116504A (en) * 2004-10-25 2006-05-11 Ted:Kk Hydrogen reduced water and method for preparing it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631432A (en) * 1979-08-21 1981-03-30 Ebara Infilco Co Ltd Process for dissolving gas into liquid
JPH03293092A (en) * 1990-04-10 1991-12-24 Ebara Res Co Ltd Method for removing dissolved oxygen in water
JPH10504999A (en) * 1994-09-08 1998-05-19 ゾルファイ ウムヴェルトヒエミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for removing chlorate and bromate compounds from water by catalytic reduction
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP2003205299A (en) * 2002-01-15 2003-07-22 Japan Organo Co Ltd Hydrogen dissolved water manufacturing system
JP2006116504A (en) * 2004-10-25 2006-05-11 Ted:Kk Hydrogen reduced water and method for preparing it

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2011245380A (en) * 2010-05-25 2011-12-08 Japan Organo Co Ltd Method and device for producing pure water
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
US11004674B2 (en) 2013-09-25 2021-05-11 Organo Corporation Substrate treatment method and substrate treatment equipment
JP2015088740A (en) * 2013-09-25 2015-05-07 オルガノ株式会社 Method and device for processing substrate
US11901174B2 (en) 2013-09-25 2024-02-13 Organo Corporation Substrate treatment method and substrate treatment equipment
JP2015166064A (en) * 2014-03-04 2015-09-24 オルガノ株式会社 Apparatus for manufacturing ultrapure water
CN105776490A (en) * 2016-03-15 2016-07-20 翟海峰 Preparation method of vitamin C hydrogen-enriched water and vitamin C hydrogen-enriched water prepared according to method
KR102340160B1 (en) 2016-12-28 2021-12-15 쿠리타 고교 가부시키가이샤 Method and apparatus for removing hydrogen peroxide
KR20200096485A (en) * 2016-12-28 2020-08-12 쿠리타 고교 가부시키가이샤 Method and apparatus for removing hydrogen peroxide
US11325851B2 (en) 2017-03-30 2022-05-10 Kurita Water Industries Ltd. Diluted chemical liquid production apparatus capable of controlling pH and oxidation-reduction potential
KR20190128161A (en) 2017-03-30 2019-11-15 쿠리타 고교 가부시키가이샤 Apparatus for producing dilute chemical liquids capable of controlling pH and redox potential
KR20220019657A (en) 2019-06-12 2022-02-17 쿠리타 고교 가부시키가이샤 pH-adjusted water production device
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method
WO2024053305A1 (en) * 2022-09-06 2024-03-14 オルガノ株式会社 Ultrapure water production device and ultrapure water production method

Similar Documents

Publication Publication Date Title
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP4109455B2 (en) Hydrogen dissolved water production equipment
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
TWI753014B (en) Manufacturing equipment for diluted chemical solution
KR102474711B1 (en) Device for producing pH/oxidation-reduction potential-adjusted water
JP4756327B2 (en) Nitrogen gas dissolved water production method
KR102503070B1 (en) Device for producing pH/oxidation-reduction potential-adjusted water
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP2018182098A (en) Cleaning water supply device
JP3639102B2 (en) Wet processing equipment
JP6670047B2 (en) Ultrapure water production equipment
WO2020250495A1 (en) Ph-adjusted water production device
JP2014140826A (en) Ultrapure water production method
JP7088266B2 (en) Equipment for producing pH / redox potential adjusted water
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method
KR20180016156A (en) Apparatus for hydrogen-dissolving water

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110203

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110831

RD04 Notification of resignation of power of attorney

Effective date: 20110926

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Effective date: 20130122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02