JP6400918B2 - Hydrogen dissolved water production apparatus and pure water production system - Google Patents

Hydrogen dissolved water production apparatus and pure water production system Download PDF

Info

Publication number
JP6400918B2
JP6400918B2 JP2014028156A JP2014028156A JP6400918B2 JP 6400918 B2 JP6400918 B2 JP 6400918B2 JP 2014028156 A JP2014028156 A JP 2014028156A JP 2014028156 A JP2014028156 A JP 2014028156A JP 6400918 B2 JP6400918 B2 JP 6400918B2
Authority
JP
Japan
Prior art keywords
hydrogen
water
dissolved
cathode chamber
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014028156A
Other languages
Japanese (ja)
Other versions
JP2015150529A (en
Inventor
仁 高田
仁 高田
菅原 広
広 菅原
山中 弘次
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2014028156A priority Critical patent/JP6400918B2/en
Publication of JP2015150529A publication Critical patent/JP2015150529A/en
Application granted granted Critical
Publication of JP6400918B2 publication Critical patent/JP6400918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、純水あるいは超純水に水素を溶解させて水素溶解水を製造する装置と、このような水素溶解水を触媒層に給送して通過させることによって純水あるいは超純水中の酸化性物質を除去する純水製造システムに関する。   The present invention relates to an apparatus for producing hydrogen-dissolved water by dissolving hydrogen in pure water or ultrapure water, and by feeding and passing such hydrogen-dissolved water to a catalyst layer, The present invention relates to a pure water production system that removes oxidizing substances.

半導体装置や液晶表示装置、医薬品などの製造では、高度に不純物が除去された超純水等の純水が使用されている。超純水は、一般に、工業用水、井水、水道水などの原水を前処理した後、逆浸透膜分離装置及びイオン交換装置などで構成された一次純水製造装置により原水を処理して一次純水を生成し、さらに、紫外線(UV)酸化装置、イオン交換装置及び限外ろ過膜分離装置などで構成された二次純水系システム(サブシステム)によって一次純水を処理することによって製造される。   In the manufacture of semiconductor devices, liquid crystal display devices, pharmaceuticals, and the like, pure water such as ultrapure water from which impurities are highly removed is used. Ultrapure water is generally prepared by pre-treating raw water such as industrial water, well water, tap water, etc., and then treating the raw water with a primary pure water production device composed of a reverse osmosis membrane separation device and an ion exchange device. It is produced by producing pure water and further treating the primary pure water by a secondary pure water system (subsystem) composed of an ultraviolet (UV) oxidizer, an ion exchanger, an ultrafiltration membrane separator, and the like. The

超純水は、不純物の定量も困難であるほどの純度を有するが、全く不純物を有していないわけではない。また、超純水を使用する工程がごく微量の特定の不純物によって大きな影響を受けることがあることも知られている。   Ultrapure water has such a purity that it is difficult to quantify impurities, but it is not without impurities at all. It is also known that a process using ultrapure water may be greatly affected by a very small amount of specific impurities.

例えば、超純水を半導体装置の製造工程に利用する場合、超純水中に含まれる溶存酸素によって、シリコン(Si)ウエハの表面に自然酸化膜が形成される。ウエハ表面に形成された自然酸化膜は、低温でのエピタキシャルSi薄膜の成長を妨げたり、ゲート酸化膜の膜厚及び膜質の精密制御の妨げとなったり、コンタクトホールでのコンタクト抵抗の増加の原因となったりする。したがって、ウエハ表面への自然酸化膜の形成は極力抑制される必要があるが、そのためには、超純水中の溶存酸素量を抑制する必要がある。従来より、超純水中の溶存酸素量を抑制する種々の方法が提案されている。例えば特許文献1には、サブシステム(二次純水系システム)において、イオン交換装置の後段に膜式脱気装置を配置することにより、溶存酸素量を低減した超純水をユースポイントに供給することが開示されている。また特許文献1の[従来の技術]の欄には、一次純水系システム内に脱気装置を設けて溶存酸素を低減することも記載されている。   For example, when ultrapure water is used in a semiconductor device manufacturing process, a natural oxide film is formed on the surface of a silicon (Si) wafer by dissolved oxygen contained in the ultrapure water. The natural oxide film formed on the wafer surface hinders the growth of epitaxial Si thin films at low temperatures, hinders precise control of the gate oxide film thickness and film quality, and increases the contact resistance in contact holes. It becomes. Therefore, the formation of a natural oxide film on the wafer surface needs to be suppressed as much as possible. For this purpose, it is necessary to suppress the amount of dissolved oxygen in the ultrapure water. Conventionally, various methods for suppressing the amount of dissolved oxygen in ultrapure water have been proposed. For example, in Patent Document 1, in a sub-system (secondary pure water system), ultrapure water with a reduced amount of dissolved oxygen is supplied to a use point by disposing a membrane-type deaerator after the ion exchange device. It is disclosed. Further, in the [Prior Art] column of Patent Document 1, it is also described that a degassing device is provided in the primary pure water system to reduce dissolved oxygen.

自然酸化膜の形成を抑制するために、半導体装置製造用の超純水を製造する装置において一次純水系システム内に脱気装置を設けて溶存酸素を低減する場合、この脱気装置により、サブシステム入口における被処理水(すなわち一次純水)中の溶存酸素濃度は、通常、100μg/L以下にまで低減される。さらに、一次純水中の溶存酸素濃度が10μg/L以下となるように管理されている場合もある。   In order to suppress the formation of a natural oxide film, when a device for manufacturing ultrapure water for manufacturing semiconductor devices is provided with a degassing device in the primary pure water system to reduce dissolved oxygen, this degassing device The dissolved oxygen concentration in the water to be treated (that is, primary pure water) at the system inlet is usually reduced to 100 μg / L or less. Furthermore, it may be managed so that the dissolved oxygen concentration in the primary pure water is 10 μg / L or less.

一次純水系システムの後段には一般にサブシステムが設置されるが、純水中の有機物(TOC(total organic carbon)成分)を分解するためにサブシステム内には紫外線酸化装置が設けられる。紫外線酸化装置は、純水に紫外線を照射したときに発生するヒドロキシラジカル(・OH)によりTOC成分を分解するものである。余剰に生成したヒドロキシラジカル同士が結合すると過酸化水素(H22)が生成するから、紫外線酸化装置の出口水には過酸化水素が含まれることになる。 A sub-system is generally installed at the subsequent stage of the primary pure water system, but an ultraviolet oxidizer is provided in the sub-system in order to decompose organic matter (TOC (total organic carbon) component) in pure water. The ultraviolet oxidizer decomposes the TOC component with hydroxy radicals (.OH) generated when ultraviolet light is irradiated to pure water. When excessively generated hydroxy radicals are combined with each other, hydrogen peroxide (H 2 O 2 ) is generated, so that hydrogen peroxide is contained in the outlet water of the ultraviolet oxidation apparatus.

過酸化水素は、溶存酸素と同様に酸化性物質であり、超純水中から除去されることが望ましい。過酸化水素は、貴金属を担持した触媒や活性炭などによって容易に除去することができる。しかしながら、下記式に示すような過酸化水素の分解反応によって酸素が生成し、溶存酸素濃度が上昇するという問題点がある。   Hydrogen peroxide is an oxidizing substance like dissolved oxygen, and is desirably removed from ultrapure water. Hydrogen peroxide can be easily removed by a catalyst or activated carbon supporting a noble metal. However, there is a problem that oxygen is generated by the decomposition reaction of hydrogen peroxide as shown in the following formula, and the dissolved oxygen concentration increases.

2H22 → 2H2O + O2
ところで、一次純水に含まれていたりサブシステム内で発生したりする溶存酸素は、系内に水素を添加し、下記式に示すように触媒上で水素と反応させて水とすることにより、除去することができる。
2H 2 O 2 → 2H 2 O + O 2
By the way, dissolved oxygen contained in the primary pure water or generated in the subsystem is added to the system and hydrogen is reacted with hydrogen on the catalyst as shown in the following formula to form water. Can be removed.

2H2 +O2 → 2H2
上記反応を高速で進行させるために適した触媒として、特許文献2には、モノリス状有機多孔質アニオン(陰イオン)交換体に白金族金属を担持したものが提案されている。
2H 2 + O 2 → 2H 2 O
As a catalyst suitable for allowing the above reaction to proceed at a high speed, Patent Document 2 proposes a monolithic organic porous anion (anion) exchanger carrying a platinum group metal.

ところで、溶存酸素を低減するために超純水に添加される水素の供給源としては、気体の水素を加圧して充填した水素ボンベや、電解法を利用した水素製造装置(例えば特許文献3参照)などがある。ところが近年、安全管理上の観点から、場所によっては水素ボンベの設置ができなかったり、水素ガスの使用が禁止されていたりする場合がある。特にクリーンルームや地下室などの閉鎖空間においては、水素ボンベの持ち込みなどが禁止される傾向にある。水素ボンベを設置できない場所への水素の供給方法として、水素ボンベ等の水素供給場所を隔離して設け、水素供給場所から水素の使用場所に対して水素配管を介して水素を供給することも考えられるが、水素配管が長くなりがちであって、配管の損傷等による水素ガス漏れが起こる可能性が高くなるおそれがある。   By the way, as a supply source of hydrogen added to ultrapure water in order to reduce dissolved oxygen, a hydrogen cylinder filled with gaseous hydrogen under pressure, or a hydrogen production apparatus using an electrolysis method (see, for example, Patent Document 3) )and so on. However, in recent years, from the viewpoint of safety management, hydrogen cylinders may not be installed depending on the location, or the use of hydrogen gas may be prohibited. In particular, in a closed space such as a clean room or a basement, the introduction of hydrogen cylinders tends to be prohibited. As a method of supplying hydrogen to places where hydrogen cylinders cannot be installed, it is also possible to install hydrogen supply places such as hydrogen cylinders separately and supply hydrogen from the hydrogen supply place to the place where hydrogen is used via hydrogen piping. However, the hydrogen piping tends to be long, and there is a possibility that the possibility of hydrogen gas leakage due to damage to the piping is increased.

水素ボンベ等を設置できない場合の代替手段として、電解法を利用して水素を発生させ、この水素を水に溶解させて水素溶解水を得ることも考えられる。しかしながら水素溶解水を得るためには、中空糸膜などのガス溶解膜を用いて気液混合を行う水素ガス溶解部を設ける必要がある。この場合、水素濃度を高めるためには、ヘンリーの法則に従い、気相部の水素圧を高くする手法をとることになるが、上述した水素ボンベの場合と同様の理由により、高圧の水素ガス溶解部が存在することによって水素発生用の電解装置そのものの設置ができなくなることもある。   As an alternative means when a hydrogen cylinder or the like cannot be installed, it is conceivable that hydrogen is generated using an electrolysis method, and this hydrogen is dissolved in water to obtain hydrogen-dissolved water. However, in order to obtain hydrogen-dissolved water, it is necessary to provide a hydrogen gas-dissolving part that performs gas-liquid mixing using a gas-dissolving membrane such as a hollow fiber membrane. In this case, in order to increase the hydrogen concentration, a method of increasing the hydrogen pressure in the gas phase part in accordance with Henry's law is used. However, for the same reason as in the case of the hydrogen cylinder described above, high-pressure hydrogen gas dissolution is performed. The presence of the part may make it impossible to install the electrolysis apparatus for generating hydrogen itself.

特開平9−29251号公報JP-A-9-29251 特開2010−240642号公報JP 2010-240642 A 特開2003−245669号公報JP 2003-245669 A

上述したように、純水や超純水中の酸化性物質の除去のためには水素の添加が有効であるが、純水や超純水に水素を直接添加する場合であれ、水素溶解水を添加する場合であれ、いずれかの段階で気体状態の水素を使用する必要があった。気体状態の水素は爆発の恐れがあり、取扱い場所などに関して強い制限があるので、その結果として、純水や超純水中に水素を添加できない場合が生じる。   As described above, the addition of hydrogen is effective for removing oxidizing substances in pure water or ultrapure water. However, even if hydrogen is added directly to pure water or ultrapure water, It was necessary to use hydrogen in the gaseous state at any stage even when adding. Since hydrogen in a gaseous state has a risk of explosion and there are strong restrictions on the place of handling, hydrogen may not be added to pure water or ultrapure water as a result.

本発明の目的は、爆発の危険性がある気体水素を一切発生させることなく水素溶解水を製造することができる水素溶解水製造装置を提供することにある。   An object of the present invention is to provide a hydrogen-dissolved water production apparatus capable of producing hydrogen-dissolved water without generating any gaseous hydrogen that has a risk of explosion.

本発明の別の目的は、爆発の危険性がある気体水素を一切発生させることなく被処理水から水素溶解水を生成し、触媒の存在下で水素溶解水内の水素と反応させることによって過酸化水素、溶存酸素等の酸化性物質を除去する純水製造システムを提供することにある。   Another object of the present invention is to generate hydrogen-dissolved water from the water to be treated without generating any gaseous hydrogen that has a risk of explosion, and react with hydrogen in the hydrogen-dissolved water in the presence of a catalyst. An object of the present invention is to provide a pure water production system that removes oxidizing substances such as hydrogen oxide and dissolved oxygen.

本発明の水素溶解水製造装置は、陽極を備えて純水または超純水が通水される陽極室と陰極を備えた陰極室と陽極室と陰極室との間に設けられたカチオン交換膜とを有する電解セルと、陽極と陰極との間に直流電圧を印加する電圧印加手段と、を有し、直流電圧によって陽極室内で水素イオンを発生させ、カチオン交換膜を介して陰極室に水素イオンを導いて電子と再結合させて水素分子を生成し、陰極室内に通水された純水または超純水に水素分子を溶解させて水素溶解水を得る水素溶解水製造装置であって、水素ガスの気泡が実質的に残存しないように水素溶解水を生成する水素溶解手段を有する。   The apparatus for producing hydrogen-dissolved water of the present invention comprises an anode chamber provided with an anode and through which pure water or ultrapure water is passed, a cathode chamber provided with a cathode, and a cation exchange membrane provided between the anode chamber and the cathode chamber And a voltage applying means for applying a DC voltage between the anode and the cathode, generating hydrogen ions in the anode chamber by the DC voltage, and supplying hydrogen to the cathode chamber through the cation exchange membrane. A hydrogen-dissolved water production apparatus for obtaining hydrogen-dissolved water by introducing ions and recombining with electrons to generate hydrogen molecules, and dissolving hydrogen molecules in pure water or ultrapure water passed through the cathode chamber, Hydrogen dissolving means for generating hydrogen-dissolved water so that hydrogen gas bubbles do not substantially remain is provided.

本発明の純水製造システムは、被処理水に対して紫外線を照射する紫外線照射手段と、紫外線照射手段で処理された水が陰極室に供給される本発明の水素溶解水製造装置と、水素溶解水製造装置の陰極室から流出する水を白金族金属担持触媒と接触させて水中の酸化性物質を除去する溶存酸素除去手段と、を有する。この純水製造システムでは、紫外線照射手段で処理された水を2つに分岐した一方の水が水素溶解水製造装置の陰極室に供給され、水素溶解水製造装置の陰極室から流出する水と2つに分岐した他方の水とを溶存酸素除去手段において混合し、混合された水の中の酸化性物質を除去するようにしてもよい。   The pure water production system of the present invention comprises an ultraviolet irradiation means for irradiating the water to be treated with ultraviolet light, a hydrogen-dissolved water production apparatus of the present invention in which water treated by the ultraviolet irradiation means is supplied to the cathode chamber, And dissolved oxygen removing means for removing water from the cathode chamber of the dissolved water production apparatus and contacting the platinum group metal-supported catalyst to remove oxidizing substances in the water. In this pure water production system, one of the water branched into two treated with the ultraviolet irradiation means is supplied to the cathode chamber of the hydrogen-dissolved water production apparatus, and the water flowing out from the cathode chamber of the hydrogen-dissolved water production apparatus The other water branched into two may be mixed in the dissolved oxygen removing means, and the oxidizing substance in the mixed water may be removed.

水素の超純水への飽和溶解度は、大気圧下で20℃において1.6mg/Lである。半導体基板の洗浄に用いられるような高濃度の水素を含有したいわゆる機能水のような水素溶解水を必要とする用途ではなく、純水や超純水中に微量に含まれている酸化性物質の除去のための用途では、例えば、超純水中の溶存酸素量に対して水を生成するのに必要な化学量論量よりわずかに過剰な水素を含む程度の水素溶解水が得られればよい。一般的な純水やサブシステム内を循環する超純水(紫外線酸化処理によって生成した過酸化水素に起因する酸素を含んでいる)の溶存酸素量は100μg/L程度である。酸素濃度が100μg/Lであるとすれば、これに化学量論的に対応する溶存水素量は12.5μg/Lであって、20℃における大気圧下での水素の飽和溶解度の百分の1以下となる。   The saturation solubility of hydrogen in ultrapure water is 1.6 mg / L at 20 ° C. under atmospheric pressure. Oxidizing substances contained in trace amounts in pure water or ultrapure water, not in applications requiring hydrogen-dissolved water such as so-called functional water containing high-concentration hydrogen used for cleaning semiconductor substrates For example, if hydrogen-dissolved water having a slight excess of hydrogen than the stoichiometric amount necessary to produce water relative to the amount of dissolved oxygen in ultrapure water is obtained, Good. The amount of dissolved oxygen of general pure water and ultrapure water circulating in the subsystem (including oxygen caused by hydrogen peroxide generated by ultraviolet oxidation treatment) is about 100 μg / L. If the oxygen concentration is 100 μg / L, the stoichiometrically corresponding dissolved hydrogen amount is 12.5 μg / L, which is a percentage of the saturation solubility of hydrogen at 20 ° C. under atmospheric pressure. 1 or less.

本発明は、このような低濃度の水素を含む水素溶解水を生成するものであって、電解セルを用いて水素分子を生成するとともに、実質的に水素ガスの気泡が残存しないように水素溶解水を製造する水素溶解手段を使用する。これにより本発明では、ガス溶解膜を有する水素ガス溶解部を設ける必要がなくなるので、装置もコンパクトにでき、なおかつ装置内部で水素ガスが発生する心配もない。なお本発明の水素溶解水製造装置では電解セルの陽極室において酸素が生成するが、この酸素は、その生成量がきわめて少量である上に、水に溶存した状態した外部に排出できる。したがってこの水素溶解水製造装置では、水素と酸素とが混合して爆発する恐れはない。   The present invention generates such hydrogen-dissolved water containing low-concentration hydrogen, generates hydrogen molecules using an electrolytic cell, and dissolves hydrogen so that hydrogen gas bubbles do not substantially remain. Use hydrogen dissolving means to produce water. Accordingly, in the present invention, it is not necessary to provide a hydrogen gas dissolving part having a gas dissolving film, so that the apparatus can be made compact and there is no fear that hydrogen gas is generated inside the apparatus. In the hydrogen-dissolved water producing apparatus of the present invention, oxygen is generated in the anode chamber of the electrolysis cell, but this oxygen is generated in a very small amount and can be discharged to the outside dissolved in water. Therefore, in this hydrogen-dissolved water producing apparatus, there is no fear that hydrogen and oxygen are mixed and explode.

このように本発明によれば、水素ガスを発生させることなく、また水素ガスを取り扱うことなく水素溶解水を生成できるので、外部からの長い水素配管などを設定することなく、クリーンルーム内などの水素ガスの取り扱いが制限された場所においても水素溶解水を得ることができるようになる。またこのようにして水素溶解水を生成することにより、溶存酸素や過酸化水素などの酸化性物質の濃度が極めて低い純水や超純水を容易に得ることができるようになる。   As described above, according to the present invention, hydrogen-dissolved water can be generated without generating hydrogen gas and without handling hydrogen gas. Therefore, hydrogen in a clean room or the like can be formed without setting a long external hydrogen pipe. Hydrogen-dissolved water can be obtained even in places where gas handling is restricted. Further, by generating hydrogen-dissolved water in this way, it is possible to easily obtain pure water or ultrapure water having a very low concentration of oxidizing substances such as dissolved oxygen and hydrogen peroxide.

水素溶解装置に用いられるSPE(固体高分子電解質)電解セルの概念構成を示す図である。It is a figure which shows the conceptual structure of the SPE (solid polymer electrolyte) electrolysis cell used for a hydrogen dissolution apparatus. 本発明の実施の一形態の水素溶解水製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the hydrogen dissolved water manufacturing apparatus of one Embodiment of this invention. 水素溶解水製造装置の構成の別の例を示す図である。It is a figure which shows another example of a structure of a hydrogen dissolved water manufacturing apparatus. 水素溶解水製造装置の構成のさらに別の例を示す図である。It is a figure which shows another example of a structure of a hydrogen dissolved water manufacturing apparatus. (a)は本発明の実施の一形態の純水製造システムの構成を示す図であり、(b)は別の実施形態の純水製造システムの構成を示す図である。(A) is a figure which shows the structure of the pure water manufacturing system of one Embodiment of this invention, (b) is a figure which shows the structure of the pure water manufacturing system of another embodiment. 実施例1での装置構成を示す図である。It is a figure which shows the apparatus structure in Example 1. FIG. 実施例1での水素溶解水の水素濃度と検出された微粒子数との関係を示すグラフである。3 is a graph showing the relationship between the hydrogen concentration of hydrogen-dissolved water and the number of detected fine particles in Example 1. 比較例1での装置構成を示す図である。It is a figure which shows the apparatus structure in the comparative example 1. FIG. (a),(b)は、それぞれ、精密ろ過(MF)膜モジュールを設けた場合と設けない場合とについての、比較例1での水素溶解水の水素濃度と検出された微粒子数との関係を示すグラフである。(A), (b) is the relationship between the hydrogen concentration of the hydrogen-dissolved water in Comparative Example 1 and the number of detected fine particles when the microfiltration (MF) membrane module is provided and when not provided, respectively. It is a graph which shows.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。   Next, a preferred embodiment of the present invention will be described with reference to the drawings.

水素ボンベを設置できない場合に水素を発生するための手法として、電解法が用いられることがある。一般的な電解法は、水の電気分解によるので、電解質を添加して電気抵抗率を低くした水が用いられるが、電気抵抗の高い純水や超純水を効率よく電解するための電解法として、固体高分子電解質(Solid Polymer Electrolyte)を用いた水電解法(SPE電解法)がある。SPE電解法は、数V程度の低電圧で水の電解が可能であり、簡便な水素ガス生成法として用いられる。そこで本発明の実施の一形態の水素溶解水製造装置では、SPE電解法を用いて水素を発生させるものとする。   An electrolytic method is sometimes used as a method for generating hydrogen when a hydrogen cylinder cannot be installed. Since general electrolysis is based on electrolysis of water, water with an electrolyte added to lower the electrical resistivity is used, but an electrolysis method for efficiently electrolyzing pure or ultrapure water with high electrical resistance. There is a water electrolysis method (SPE electrolysis method) using a solid polymer electrolyte (Solid Polymer Electrolyte). The SPE electrolysis method is capable of electrolyzing water at a low voltage of about several volts, and is used as a simple hydrogen gas generation method. Therefore, in the hydrogen-dissolved water producing apparatus according to one embodiment of the present invention, hydrogen is generated using the SPE electrolysis method.

図1は、本実施形態の水素溶解水製造装置で用いられる電解セルであるSPE電解セル10の構成を示している。SPE電解セル10は、陽極11を備えた陽極室12と、陰極13を備えた陰極室14と、陽極室12と陰極室14との間に設けられた固体高分子電解質膜であるカチオン交換膜15と、を備えている。カチオン交換膜15としては、例えば、デュポン社製の「ナフィオン」などが用いられる。電解電圧の低減や電解効率の向上のために、カチオン交換膜15の両面に白金(Pt)などからなる触媒電極を接合させ、一方を陽極11とし、他方を陰極13としている。陽極11及び陰極13は、そのカチオン交換膜15との界面まで純水が到達できるように、例えば網状の形状とされている。さらに本実施形態の水素溶解水製造装置には直流電源16が設けられており、直流電源16の正側出力端子及び負側出力端子に対し、それぞれ、陽極11及び陰極13が電気的に接続している。陽極室12及び陰極室14は、いずれも、外部から純水が供給されるようになっている。   FIG. 1 shows a configuration of an SPE electrolysis cell 10 that is an electrolysis cell used in the hydrogen-dissolved water production apparatus of the present embodiment. The SPE electrolysis cell 10 includes an anode chamber 12 having an anode 11, a cathode chamber 14 having a cathode 13, and a cation exchange membrane that is a solid polymer electrolyte membrane provided between the anode chamber 12 and the cathode chamber 14. 15. As the cation exchange membrane 15, for example, “Nafion” manufactured by DuPont is used. In order to reduce the electrolysis voltage and improve the electrolysis efficiency, a catalyst electrode made of platinum (Pt) or the like is bonded to both surfaces of the cation exchange membrane 15, and one is an anode 11 and the other is a cathode 13. The anode 11 and the cathode 13 have, for example, a net shape so that pure water can reach the interface with the cation exchange membrane 15. Furthermore, the hydrogen dissolved water production apparatus of this embodiment is provided with a DC power supply 16, and the anode 11 and the cathode 13 are electrically connected to the positive output terminal and the negative output terminal of the DC power supply 16, respectively. ing. Both the anode chamber 12 and the cathode chamber 14 are supplied with pure water from the outside.

図1に示すSPE電解セル10において、直流電源16により陽極11と陰極13との間に直流電圧を印加しながら陽極室12に純水(H2O)を通水すると、陽極11において下記式に示す反応が起こる。 In the SPE electrolysis cell 10 shown in FIG. 1, when pure water (H 2 O) is passed through the anode chamber 12 while applying a DC voltage between the anode 11 and the cathode 13 by the DC power source 16, The reaction shown in FIG.

2H2O → O2 + 4H+ + 4e-
生成した酸素(O2)は未反応の純水とともに陽極室12の外部に排出される。また、ここで生成した水素イオン(H+)は、カチオン交換膜15内を移動して陰極13に向かい、下記式に示すように陰極13において電子を受け取り、水素分子が生成する。
2H 2 O → O 2 + 4H + + 4e
The produced oxygen (O 2 ) is discharged out of the anode chamber 12 together with unreacted pure water. Further, the hydrogen ions (H + ) generated here move through the cation exchange membrane 15 toward the cathode 13, receive electrons at the cathode 13 as shown in the following formula, and generate hydrogen molecules.

4H+ +4e- → 2H2
本実施形態は、SPE電解セル10の陰極13の表面に生じた水素を、その気泡を形成させる前に大量の水で瞬時に溶解させることで、気体状態の水素を発生させることなく水素ガスの気泡が実質的に存在しないようにして、極めて安全に水素溶解水を得ようとするものである。陽極11及び陰極13での電極反応を検討すると、陰極13で発生する水素は、陰極室14に供給された純水の電気分解によるものではなく、陽極室12に供給された純水に由来するものである。したがって、陽極室12に少量の純水を供給しつつ陽極11と陰極13との間に直流電圧を印加し、さらに、純水または超純水を陰極室14に供給することで、陰極室14に供給された純水または超純水に水素が溶解することとなり、陰極室14からは水素溶解水が排出される。
4H + + 4e - → 2H 2
In the present embodiment, hydrogen generated on the surface of the cathode 13 of the SPE electrolysis cell 10 is instantaneously dissolved with a large amount of water before the bubbles are formed, so that hydrogen gas is not generated without generating gaseous hydrogen. It is intended to obtain hydrogen-dissolved water very safely in the absence of bubbles. Considering the electrode reaction at the anode 11 and the cathode 13, the hydrogen generated at the cathode 13 is not derived from the electrolysis of pure water supplied to the cathode chamber 14, but is derived from pure water supplied to the anode chamber 12. Is. Accordingly, a DC voltage is applied between the anode 11 and the cathode 13 while supplying a small amount of pure water to the anode chamber 12, and further pure water or ultrapure water is supplied to the cathode chamber 14, whereby the cathode chamber 14 Hydrogen is dissolved in pure water or ultrapure water supplied to the cathode chamber 14, and hydrogen-dissolved water is discharged from the cathode chamber 14.

上述したように純水に対する水素の飽和溶解度は大気圧下で20℃において1.6mg/Lであるが、この値は平衡状態での溶解度であり、水素溶解水を生成する際に溶液平衡に達するまでの時間においては、飽和溶解度未満の水素量であっても水素ガスの気泡が存在する場合があり得る。そこで本実施形態では、後述するように、水素ガスの気泡が水素溶解水中に実質的に残存しないように、水素溶解水を生成する水素溶解手段を設けるようにする。   As described above, the saturation solubility of hydrogen in pure water is 1.6 mg / L at 20 ° C. under atmospheric pressure, but this value is the solubility in an equilibrium state, and the solution equilibrium is reached when hydrogen-dissolved water is generated. In the time to reach, hydrogen gas bubbles may exist even if the amount of hydrogen is less than the saturation solubility. Therefore, in this embodiment, as will be described later, hydrogen dissolving means for generating hydrogen dissolved water is provided so that hydrogen gas bubbles do not substantially remain in the hydrogen dissolved water.

このSPE電解セル10において陽極室12に供給される純水は、比抵抗が5MΩ/cm以上のものであることが好ましく、特に、10MΩ/cm以上であることが好ましい。超純水のようなきわめて高純度の水は、純度の低い水に比べて、物質を溶解する能力に優れており、水素も溶解しやすいと考えられる。加えて水素イオン(H+)がカチオン交換膜15を移動する際に微量の水が陽極11から陰極13へ向かうため、陰極室14で生成する水素溶解水の純度の低下を抑えるため、陰極室14に供給される水のみならず陽極室12に供給される水も、比抵抗がより高い純水であることが好ましい。 The pure water supplied to the anode chamber 12 in the SPE electrolysis cell 10 preferably has a specific resistance of 5 MΩ / cm or more, particularly preferably 10 MΩ / cm or more. Extremely high-purity water such as ultrapure water is superior in ability to dissolve substances compared to low-purity water, and hydrogen is considered to be easily dissolved. In addition, since a small amount of water travels from the anode 11 to the cathode 13 when hydrogen ions (H + ) move through the cation exchange membrane 15, a decrease in the purity of the hydrogen-dissolved water produced in the cathode chamber 14 is suppressed. It is preferable that not only the water supplied to 14 but also the water supplied to the anode chamber 12 is pure water having a higher specific resistance.

陰極室14から得られる水素溶解水における溶存水素濃度を調整するためには、水量や直流電源15から供給される電流あるいは電圧を調整すればよいが、純水または超純水の流量を変えずに電流あるいは電圧を調節する方法が、流量調整に伴う圧力変動などによる影響を避けることができるので、好ましい。また電流あるいは電圧は流量に比べて短時間で精密な制御を行うことが可能であるため、この点でも、安定した溶存水素濃度の制御を行うために電流を調節することが好ましい。電流あるいは電圧を調節する場合、例えば電流値を大きくしすぎると、陰極13の表面において水素が過飽和状態となり、気泡が発生しやすくなる。また必要以上の電流は、過剰の水素の発生をもたらして水質低下とともにコストの増加を招くため、電流を適切に制御することで水素の発生量を制御することが好ましい。このように、水素溶解水における所定の溶存水素濃度を達成するための水素発生量の調節は、SPE電解セル10への印加電圧または電流を調整・制御することで行うことができる。その際の電流または電圧の制御方法は、特に限定されるものではないが、溶存水素濃度は、陰極室14への流量と水素発生量との関係で決まり、水素発生量はファラデーの法則によって電流量で決まるため、陰極室14の出口に溶存水素計を設置し溶存水素濃度を測定し、フィードバック制御を行うことができる。   In order to adjust the dissolved hydrogen concentration in the hydrogen-dissolved water obtained from the cathode chamber 14, the amount of water and the current or voltage supplied from the DC power source 15 may be adjusted, but the flow rate of pure water or ultrapure water is not changed. The method of adjusting the current or voltage is preferable because it can avoid the influence of the pressure fluctuation associated with the flow rate adjustment. In addition, since the current or voltage can be precisely controlled in a shorter time than the flow rate, it is preferable to adjust the current in order to control the dissolved hydrogen concentration stably. When adjusting the current or voltage, for example, if the current value is too large, hydrogen is supersaturated on the surface of the cathode 13 and bubbles are likely to be generated. Moreover, since an excessive current causes generation of excess hydrogen and causes an increase in cost as well as a decrease in water quality, it is preferable to control the amount of hydrogen generation by appropriately controlling the current. Thus, the adjustment of the hydrogen generation amount for achieving a predetermined dissolved hydrogen concentration in the hydrogen-dissolved water can be performed by adjusting and controlling the voltage or current applied to the SPE electrolysis cell 10. The current or voltage control method at that time is not particularly limited, but the dissolved hydrogen concentration is determined by the relationship between the flow rate to the cathode chamber 14 and the hydrogen generation amount, and the hydrogen generation amount is determined by Faraday's law. Since it is determined by the amount, it is possible to perform a feedback control by installing a dissolved hydrogen meter at the outlet of the cathode chamber 14 to measure the dissolved hydrogen concentration.

純水または超純水に含まれる溶存酸素量の低減などを目的として水素溶解水を生成する場合には、溶存酸素との水素溶解水内の溶存水素とを反応させて水とすることにより溶存酸素を除去するための触媒層の出口に溶存酸素計を設置し、溶存酸素の値をモニターしながら水素発生量を調整することもできる。   When hydrogen-dissolved water is generated for the purpose of reducing the amount of dissolved oxygen contained in pure water or ultrapure water, it is dissolved by reacting dissolved oxygen in the hydrogen-dissolved water with dissolved oxygen to form water. A dissolved oxygen meter can be installed at the outlet of the catalyst layer for removing oxygen, and the amount of hydrogen generation can be adjusted while monitoring the value of dissolved oxygen.

本実施形態の水素溶解水製造装置において、水素ガスの気泡が実質的に残存しないように水素溶解水を生成するためには、生成される水素溶解水における溶存水素濃度は低い方が好ましい。溶存水素濃度の範囲は、例えば、1ppb以上500ppb以下である。   In the hydrogen-dissolved water production apparatus of this embodiment, in order to generate hydrogen-dissolved water so that hydrogen gas bubbles do not substantially remain, it is preferable that the dissolved hydrogen concentration in the generated hydrogen-dissolved water is low. The range of the dissolved hydrogen concentration is, for example, 1 ppb or more and 500 ppb or less.

本発明において、水素ガスの気泡が実質的に残存しないとは、水素溶解水中に含まれる水素ガスの気泡の数が、純水中の直径が0.1μm以上であるポリスチレンラテックス(PSL)粒子に換算して100個/mL以下、であることを意味する。気泡の数は、パーティクルカウンタを用いて光学的に検出することができる。ここでは気泡の検出対象が水であるので、水用のパーティクルカウンタを用いるのが一般的である。水用のパーティクルカウンタは、校正物質としてPSL粒子を使用し、水中のPSL粒子サイズによってしきい値が決められており、しきい値を超えた粒子(信号)をカウントして数値を出す。本発明の場合、純水中の直径が0.1μm以上であるPSL粒子に換算して気泡数が100個/mL以下であれば、問題となる気泡は実質的に存在しないと言える。   In the present invention, the fact that hydrogen gas bubbles do not substantially remain means that the number of hydrogen gas bubbles contained in hydrogen-dissolved water is equal to that of polystyrene latex (PSL) particles having a diameter of 0.1 μm or more in pure water. It means that it is 100 / mL or less in terms of conversion. The number of bubbles can be detected optically using a particle counter. Here, since the detection target of bubbles is water, it is common to use a water particle counter. The particle counter for water uses PSL particles as a calibration substance, and the threshold value is determined by the size of PSL particles in water. The particle (signal) exceeding the threshold value is counted and a numerical value is output. In the case of the present invention, if the number of bubbles is 100 / mL or less in terms of PSL particles having a diameter of 0.1 μm or more in pure water, it can be said that there are substantially no problematic bubbles.

触媒を用いて水素と酸素とを反応させることにより被処理水中の溶存酸素を除去する溶存酸素除去装置の水素源として本実施形態の水素溶解水製造装置を用いる場合、化学量論的に必要な溶存水素濃度を有する水素溶解水を製造すればよい。特に、被処理水が比較的溶存酸素濃度が低い純水や超純水である場合には、被処理水に合わせ、溶存水素濃度を例えば100ppb、50ppbあるいは10ppbなどに調整すればよい。このように特に低濃度の溶存水素量とする場合には、濃度調整のために、水素溶解水生成の原料となる水(純水または超純水など)の供給ラインを2つに分岐し、その一方に水素溶解水製造装置を配置した上で、分岐した2つのラインからの水を合流させ混合して用いることもできる。この場合、水素溶解水製造装置が設けられた方のラインでは圧力低下が生ずるので、昇圧ポンプを設けてこの圧力低下分を補うこともできる。   When the hydrogen-dissolved water producing apparatus of this embodiment is used as a hydrogen source of a dissolved oxygen removing apparatus that removes dissolved oxygen in treated water by reacting hydrogen and oxygen using a catalyst, it is stoichiometrically necessary. A hydrogen-dissolved water having a dissolved hydrogen concentration may be produced. In particular, when the water to be treated is pure water or ultrapure water having a relatively low dissolved oxygen concentration, the dissolved hydrogen concentration may be adjusted to, for example, 100 ppb, 50 ppb, or 10 ppb according to the water to be treated. In this way, when the amount of dissolved hydrogen is particularly low, the supply line for water (pure water or ultrapure water, etc.) used as a raw material for generating hydrogen-dissolved water is branched into two to adjust the concentration. On the other hand, a hydrogen-dissolved water production apparatus is arranged, and water from two branched lines can be merged and mixed for use. In this case, since the pressure drop occurs in the line where the hydrogen-dissolved water production apparatus is provided, a booster pump can be provided to compensate for this pressure drop.

気泡が実質的に存在しないようにしつつ水素の溶解効率を上げるために、水圧は高い方が好ましい。SPE電解セル10の入口側ないしは出口側に水素溶解手段としての昇圧ポンプを設け、圧力を上げることで、水素ガスの溶解度を上げることができる。水素溶解水の圧力が0.1MPa以上であることが望ましい。ただし水圧が高すぎるとSPE電解セルからの水漏れやセル破壊の原因となるため、水圧を0.7MPa以下とすることが好ましい。   A higher water pressure is preferred in order to increase the dissolution efficiency of hydrogen while substantially eliminating bubbles. The solubility of hydrogen gas can be increased by providing a booster pump as a hydrogen dissolving means on the inlet side or the outlet side of the SPE electrolysis cell 10 and increasing the pressure. It is desirable that the pressure of hydrogen-dissolved water is 0.1 MPa or more. However, if the water pressure is too high, it may cause water leakage from the SPE electrolysis cell or cell destruction, so the water pressure is preferably 0.7 MPa or less.

また、溶存酸素除去装置や超純水製造システムにおいて水素源として水素溶解水を使用する処理を実行する場合には、有圧の状態でその処理を実行する。このとき、水素溶解水の圧力を0.1MPa以上とすることが好ましい。圧力の上限は、溶存酸素除去装置や超純水製造システムの耐圧に依存するが、一般的な超純水製造システムに本実施形態の水素溶解水製造装置を適用する場合、水素溶解水の圧力は、例えば、0.7MPa以下、0.5MPa以下あるいは0.3MPa以下とする。   Moreover, when performing the process which uses hydrogen dissolved water as a hydrogen source in a dissolved oxygen removal apparatus or an ultrapure water manufacturing system, the process is performed in a pressure state. At this time, the pressure of hydrogen-dissolved water is preferably 0.1 MPa or more. The upper limit of the pressure depends on the pressure resistance of the dissolved oxygen removing device and the ultrapure water production system, but when the hydrogen dissolved water production device of this embodiment is applied to a general ultrapure water production system, the pressure of the hydrogen dissolved water is Is, for example, 0.7 MPa or less, 0.5 MPa or less, or 0.3 MPa or less.

水圧を上げることの他にも、水素溶解水を精密ろ過膜(MF)に通水することで水素の溶解効率を上げ、水素ガスの気泡を除去することができる。図2は、水素溶解手段としての精密ろ過膜モジュール21を備えた水素溶解水製造装置を示している。この水素溶解水製造装置でのSPE電解セル10は図1に示したものと同じであるが、図2では、説明を簡単にするために、直流電源16などは記載されていない。精密ろ過膜を備える精密ろ過膜モジュール21は、SPE電解セル10の陰極室14の出口に接続しており、精密ろ過膜モジュール21の二次側出口から、供給水として、水素溶解水を外部に供給することができる。   In addition to increasing the water pressure, hydrogen dissolution water can be passed through a microfiltration membrane (MF) to increase hydrogen dissolution efficiency and remove hydrogen gas bubbles. FIG. 2 shows a hydrogen-dissolved water producing apparatus provided with a microfiltration membrane module 21 as a hydrogen dissolving means. The SPE electrolysis cell 10 in this hydrogen-dissolved water production apparatus is the same as that shown in FIG. 1, but FIG. 2 does not show the DC power supply 16 or the like for the sake of simplicity. The microfiltration membrane module 21 including the microfiltration membrane is connected to the outlet of the cathode chamber 14 of the SPE electrolysis cell 10, and hydrogen-dissolved water is supplied to the outside as supply water from the secondary side outlet of the microfiltration membrane module 21. Can be supplied.

精密ろ過膜に通水することで、水素溶解水中に水素ガスの気泡が存在する状態であっても、精密ろ過膜の微細孔を通過する時に気泡と水との接触効率が向上する(すなわち、気液混合が効率的に行われる)ので、精密ろ過膜の二次側では、広範囲の条件下で、水素ガスの気泡が実質的に存在しなくなる。また、精密ろ過膜が本来有するパーティクル(微粒子)除去効果によって、水素溶解水の生成、溶存酸素除去の除去、超純水の製造などの処理における、コンタミネーションの低減やパーティクルの低減を行うことができる。   By passing water through the microfiltration membrane, even when hydrogen gas bubbles exist in the hydrogen-dissolved water, the contact efficiency between the bubbles and water is improved when passing through the micropores of the microfiltration membrane (that is, Gas-liquid mixing is performed efficiently), and hydrogen gas bubbles are substantially absent on a secondary side of the microfiltration membrane under a wide range of conditions. In addition, due to the particle removal effect inherent to microfiltration membranes, it is possible to reduce contamination and reduce particles in processes such as hydrogen-dissolved water generation, removal of dissolved oxygen removal, and ultrapure water production. it can.

精密ろ過膜を使用した場合、精密ろ過膜モジュールにおいて精密ろ過膜の一次側(入口側)に設けられている排出口(ドレイン)から、水素ガスの気泡を含む水(ドレイン水)が排出されることがあるが、SPE電解セル、あるいは水素溶解手段である精密ろ過膜モジュールにこのドレイン水を戻し、水素を再度溶解させることができる。このとき、精密ろ過膜自体で発生する差圧によって低下した分の圧力は、昇圧ポンプで補うことができる。水素ガスの気泡を含むドレイン水は、SPE電解セル10の陰極室14の入口側あるいは出口側のいずれに戻しても構わないが、昇圧ポンプの一次側となる位置に戻すことが好ましい。   When a microfiltration membrane is used, water containing hydrogen gas bubbles (drain water) is discharged from a discharge port (drain) provided on the primary side (inlet side) of the microfiltration membrane in the microfiltration membrane module. In some cases, this drain water is returned to the SPE electrolysis cell or the microfiltration membrane module which is a hydrogen dissolving means, and hydrogen can be dissolved again. At this time, the pressure reduced by the differential pressure generated in the microfiltration membrane itself can be supplemented by a booster pump. The drain water containing hydrogen gas bubbles may be returned to either the inlet side or the outlet side of the cathode chamber 14 of the SPE electrolysis cell 10, but is preferably returned to a position on the primary side of the booster pump.

図3は、ドレイン水を戻すように構成した水素溶解水製造装置の構成の一例を示している。この水素溶解水製造装置は、図2に示す水素溶解水製造装置において、SPE電解セル10の陰極室14の入口に接続する昇圧ポンプ22を設けるとともに、精密ろ過膜モジュール21の一次側の排出口からドレイン水を昇圧ポンプ22の一次側に戻す配管23を設けたものである。また図4は、ドレイン水を戻すように構成した水素溶解水製造装置の構成の別の例を示している。図4に示す装置は、図3に示す装置において、陰極室14の入口に昇圧ポンプを設けるのではなく、陰極室14の出口に昇圧ポンプ24を設けるようにしたものである。そして、ドレイン水を陰極室14の入口に戻す配管23から分岐して、昇圧ポンプ24の一次側に接続する配管25も設けられている。   FIG. 3 shows an example of the configuration of the hydrogen-dissolved water production apparatus configured to return the drain water. This hydrogen-dissolved water production apparatus is provided with a booster pump 22 connected to the inlet of the cathode chamber 14 of the SPE electrolysis cell 10 in the hydrogen-dissolved water production apparatus shown in FIG. A pipe 23 for returning the drain water to the primary side of the booster pump 22 is provided. Moreover, FIG. 4 has shown another example of the structure of the hydrogen-dissolved water manufacturing apparatus comprised so that drain water might be returned. The apparatus shown in FIG. 4 is different from the apparatus shown in FIG. 3 in that a booster pump 24 is provided at the outlet of the cathode chamber 14 instead of providing a booster pump at the inlet of the cathode chamber 14. A pipe 25 that branches from the pipe 23 that returns the drain water to the inlet of the cathode chamber 14 and connects to the primary side of the booster pump 24 is also provided.

以上説明した本実施形態の水素溶解水製造装置は、被処理水中の溶存酸素や過酸化水素を除去して超純水等の純水を製造する際に用いることができる。溶存酸素除去の対象となる被処理水(溶存酸素を含む水)は、特に限定されるものではなく、例えば、半導体装置の表面の洗浄や半導体装置製造装置の洗浄に用いられる超純水の製造における種々の工程で生じる水が挙げられる。具体的には、溶存酸素除去の対象となる被処理水は、一次純水製造装置や二次純水系システム(サブシステム)で生じる水が挙げられる。また、除去対象となる過酸化水素は、例えば、サブシステム内部に設けられている紫外線酸化装置において発生するものである。   The hydrogen-dissolved water producing apparatus of the present embodiment described above can be used when pure water such as ultrapure water is produced by removing dissolved oxygen and hydrogen peroxide in the water to be treated. The water to be treated (water containing dissolved oxygen) to be dissolved oxygen is not particularly limited. For example, the production of ultrapure water used for cleaning the surface of a semiconductor device or cleaning a semiconductor device manufacturing apparatus. Water generated in various steps in Specifically, the water to be treated for removing dissolved oxygen includes water generated in a primary pure water production apparatus or a secondary pure water system (subsystem). Further, hydrogen peroxide to be removed is generated, for example, in an ultraviolet oxidation apparatus provided in the subsystem.

被処理水を水素溶解水製造装置のSPE電解セル10の陰極室14に通水して被処理水中に水素を溶解させ、次に、水素が溶解したこの被処理水を、溶存酸素や過酸化水素を除去する除去装置に通水することによって、溶存酸素や過酸化水素が除去された純水や超純水を得ることができる。除去装置としては、例えば、白金族金属を担持する触媒を有する触媒装置を使用することも、活性炭を充填した処理塔を用いることもできる。しかしながら、装置のフットプリントを小さくするという観点からは、白金族金属を担持する触媒を有する触媒装置であることが好ましい。そして、サブシステム内において溶存酸素と過酸化水素とを除去するために水素溶解水製造装置を用いる場合には、サブシステム内での純水の流れに沿って紫外線酸化装置の後段に水素溶解水製造装置を設け、さらに水素溶解水製造装置の直後に触媒装置を設けることが好ましい。この場合、紫外線酸化装置から排出される純水の全量が水素溶解水製造装置の陰極室に供給されるようにしてもよいし、紫外線酸化装置から排出される純水の一部のみが水素溶解水製造装置の陰極室に供給され、残りの純水が、陰極室から排出されて水素を溶解した純水と混ぜ合わせられて触媒装置において処理されるようにしてもよい。   The water to be treated is passed through the cathode chamber 14 of the SPE electrolysis cell 10 of the hydrogen-dissolved water production apparatus to dissolve hydrogen in the water to be treated, and then the water to be treated is dissolved in dissolved oxygen or peroxidized. By passing water through a removing device that removes hydrogen, pure water or ultrapure water from which dissolved oxygen and hydrogen peroxide have been removed can be obtained. As the removal device, for example, a catalyst device having a catalyst supporting a platinum group metal can be used, or a treatment tower filled with activated carbon can be used. However, from the viewpoint of reducing the footprint of the apparatus, a catalyst apparatus having a catalyst supporting a platinum group metal is preferable. When a hydrogen-dissolved water production apparatus is used to remove dissolved oxygen and hydrogen peroxide in the subsystem, the hydrogen-dissolved water is placed downstream of the ultraviolet oxidation apparatus along the flow of pure water in the subsystem. It is preferable to provide a production apparatus, and further to provide a catalyst apparatus immediately after the hydrogen-dissolved water production apparatus. In this case, the entire amount of pure water discharged from the ultraviolet oxidizer may be supplied to the cathode chamber of the hydrogen-dissolved water production apparatus, or only a part of the pure water discharged from the ultraviolet oxidizer is dissolved in hydrogen. The remaining pure water supplied to the cathode chamber of the water production device may be mixed with the pure water discharged from the cathode chamber and dissolved in hydrogen and processed in the catalyst device.

白金族金属を担持した触媒を有する触媒装置は、白金族金属を担持したモノリス状有機多孔質イオン交換樹脂(以下、モノリスとも呼ぶ)や、白金族金属を担持したイオン交換樹脂等が充填されていることが望ましい。ここでいう白金族金属とは、元素周期表の5〜6周期及び8〜10族に属するルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)及び白金(Pt)の総称であるが、モノリスやイオン交換樹脂に担持する白金族金属は、白金またはパラジウムであることが望ましく、特にパラジウムが好ましい。モノリスは比表面積が大きいため、紫外線酸化処理水中の過酸化水素の除去にパラジウム担持モノリスを用いることで、SV(空間速度)が2000〜20000h-1程度の高速処理が可能となり、これにより、装置規模が小さくなる等のメリットが生じる。フットプリントが大きくなり、コストが高くなるが、SVが2000h-1以下であるような処理を行うことも可能である。白金族金属を担持したモノリスには、過酸化水素の分解に優れるアニオン交換基を有し、イオン形がOH形である多孔質イオン交換樹脂を用いることが好ましい。特に強塩基性アニオン交換樹脂を用いることが好ましい。 A catalyst device having a catalyst carrying a platinum group metal is filled with a monolithic organic porous ion exchange resin carrying a platinum group metal (hereinafter also referred to as a monolith), an ion exchange resin carrying a platinum group metal, or the like. It is desirable. The platinum group metal here refers to ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir) and platinum belonging to 5 to 6 periods and 8 to 10 groups of the periodic table. Although it is a general term for (Pt), it is desirable that the platinum group metal supported on the monolith or ion exchange resin is platinum or palladium, and palladium is particularly preferable. Since the monolith has a large specific surface area, by using the palladium-supported monolith for the removal of hydrogen peroxide in the UV-oxidized water, high-speed treatment with an SV (space velocity) of about 2000 to 20000 h −1 becomes possible. Advantages such as reduction in scale occur. Although the footprint is increased and the cost is increased, it is possible to perform processing such that SV is 2000 h −1 or less. For the monolith carrying a platinum group metal, it is preferable to use a porous ion exchange resin having an anion exchange group excellent in the decomposition of hydrogen peroxide and having an ion form of OH. It is particularly preferable to use a strongly basic anion exchange resin.

図5(a)は、上述した紫外線酸化装置と水素溶解水製造装置と触媒装置とを備えて一純水から超純水を生成するサブシステムとして構成された純水製造システムの構成の一例を示している。   FIG. 5A shows an example of a configuration of a pure water production system that is configured as a subsystem that includes the ultraviolet oxidation device, the hydrogen-dissolved water production device, and the catalyst device described above and generates ultrapure water from one pure water. Show.

この純水製造システムは、供給水として一次純水を貯留する一次純水タンク1と、一次純水タンク1から純水を送出するポンプ(P)2とを備え、ポンプ2に対し、被処理水(純水)に対して紫外線を照射する紫外線照射手段である紫外線酸化装置3と、水素溶解水製造装置4と、溶存酸素除去手段である上述した触媒装置5と、非再生型混床式イオン交換装置(CP:カートリッジポリッシャー)6と、限外ろ過装置(UF)7がこの順で接続し、限外ろ過装置7からの水が超純水としてユースポイントに供給されるようになっている。限外ろ過装置7から排出されるがユースポイントには供給されなかった超純水は、一次純水タンク1に戻される。水素溶解水製造装置4としては、上述した実施形態で説明した水素溶解水製造装置が用いられ、紫外線酸化装置3から排出される純水が水素溶解水製造装置のSPE電解セル10の陰極室14に供給され、水素を溶解して陰極室14から排出される純水が触媒装置5に送られる。   This pure water production system includes a primary pure water tank 1 that stores primary pure water as supply water, and a pump (P) 2 that delivers pure water from the primary pure water tank 1. An ultraviolet oxidizer 3 that is an ultraviolet irradiating means for irradiating water (pure water) with ultraviolet rays, a hydrogen-dissolved water production apparatus 4, the above-described catalyst device 5 that is a dissolved oxygen removing means, and a non-regenerative mixed bed type An ion exchange device (CP: cartridge polisher) 6 and an ultrafiltration device (UF) 7 are connected in this order, and water from the ultrafiltration device 7 is supplied to the use point as ultrapure water. Yes. The ultrapure water that is discharged from the ultrafiltration device 7 but not supplied to the use point is returned to the primary pure water tank 1. As the hydrogen-dissolved water production apparatus 4, the hydrogen-dissolved water production apparatus described in the above-described embodiment is used, and the pure water discharged from the ultraviolet oxidation apparatus 3 is the cathode chamber 14 of the SPE electrolysis cell 10 of the hydrogen-dissolved water production apparatus. The pure water discharged from the cathode chamber 14 after dissolving hydrogen and being discharged from the cathode chamber 14 is sent to the catalyst device 5.

このようなシステムでは、一次純水タンク1に貯えられた純水が、被処理水として、ポンプ2により、まず紫外線酸化装置3に送られて紫外線を照射される。その結果、被処理水中のTOC成分が分解されるとともに過酸化水素も生成する。その後、被処理水は水素溶解水製造装置4に送られて水素を添加され、次に触媒装置5に送られる。触媒装置5では、溶存酸素が触媒の存在下で水素と反応して水となり、これにより、溶存酸素が除去されることになる。また過酸化水素もPdなどの触媒の存在下で分解して酸素(O2)と水となり、この分解生成物である酸素は触媒の存在下で水素と反応して水となるから、過酸化水素も除去されることになる。溶存酸素と過酸化水素とが除去された被処理水は非再生型混床式イオン交換装置6に送られ、紫外線酸化装置3によって生成した有機酸及び二酸化炭素(CO2)は、非再生型混床式イオン交換装置6において除去される。さらに、被処理水は、限外ろ過装置19に送られ、高度に不純物が除去された水すなわち超純水となって、ユースポイントに送られることになる。使用されなかった水は、循環されて、一次純水タンク1に戻る。 In such a system, the pure water stored in the primary pure water tank 1 is first sent to the ultraviolet oxidizer 3 by the pump 2 as treated water and irradiated with ultraviolet rays. As a result, the TOC component in the water to be treated is decomposed and hydrogen peroxide is also generated. Thereafter, the water to be treated is sent to the hydrogen-dissolved water production device 4 to which hydrogen is added, and then sent to the catalyst device 5. In the catalyst device 5, dissolved oxygen reacts with hydrogen in the presence of the catalyst to become water, whereby the dissolved oxygen is removed. Hydrogen peroxide is also decomposed in the presence of a catalyst such as Pd into oxygen (O 2 ) and water, and this decomposition product, oxygen, reacts with hydrogen in the presence of the catalyst to become water. Hydrogen will also be removed. The water to be treated from which dissolved oxygen and hydrogen peroxide have been removed is sent to the non-regenerative mixed bed ion exchanger 6 and the organic acid and carbon dioxide (CO 2 ) generated by the ultraviolet oxidizer 3 are non-regenerative. It is removed in the mixed bed type ion exchanger 6. Further, the water to be treated is sent to the ultrafiltration device 19 and becomes water from which impurities are highly removed, that is, ultrapure water, and is sent to the use point. Water that has not been used is circulated and returned to the primary pure water tank 1.

従来のサブシステム(二次純水系システム)では、溶存酸素の除去には膜脱気装置(MD)が用いられることが多く、この膜脱気装置は、非再生型混床式イオン交換装置の直前か直後に設置されることが多かった。これに対して本実施形態の純水製造システムでは、紫外線酸化装置と非再生型混床式イオン交換装置との間に、溶存酸素の除去のために、水素溶解水製造装置と触媒装置とを設けることが好ましい。   In a conventional subsystem (secondary pure water system), a membrane deaerator (MD) is often used to remove dissolved oxygen, and this membrane deaerator is a non-regenerative mixed bed ion exchanger. Often installed immediately before or after. In contrast, in the pure water production system of this embodiment, a hydrogen-dissolved water production device and a catalyst device are provided between the ultraviolet oxidation device and the non-regenerative mixed bed ion exchange device to remove dissolved oxygen. It is preferable to provide it.

図5(b)は、別の実施形態の純水製造システムを示している。図5(b)に示すシステムが図5(a)のシステムと異なっているところは、紫外線酸化装置3の出口からの配管が2つに分岐し、分岐した一方の配管を流れる水が水素溶解水製造装置4に供給され、
水素溶解水製造装置4から流出する水と2つに分岐した他方の配管からの水とが混合して触媒装置5で処理されるようになっている点である。この構成では、水素溶解水製造装置4での水素発生量と2分岐する配管での分岐比とを制御することによって、溶存水素濃度を極めて小さな値にまで正確に制御できるようになる。
FIG.5 (b) has shown the pure water manufacturing system of another embodiment. The system shown in FIG. 5 (b) is different from the system shown in FIG. 5 (a) in that the pipe from the outlet of the ultraviolet oxidizer 3 is branched into two, and the water flowing through the branched pipe is dissolved in hydrogen. Supplied to the water production apparatus 4,
The water that flows out from the hydrogen-dissolved water production apparatus 4 and the water from the other pipe branched into two are mixed and processed by the catalyst apparatus 5. In this configuration, the dissolved hydrogen concentration can be accurately controlled to an extremely small value by controlling the amount of hydrogen generated in the hydrogen-dissolved water production apparatus 4 and the branching ratio in the bifurcated pipe.

次に、実施例及び比較例に基づいて、本発明をさらに詳しく説明する。   Next, the present invention will be described in more detail based on examples and comparative examples.

[実施例1]
図6に示す装置を組み立てた。この装置においてSPE電解セル10には、カチオン交換膜15としてDuPont社製のカチオン交換膜(Nafion(登録商標) N−117、膜厚183μm)を使用した。各電極は、ほぼ円形の形状を有しており、その面積は50cm2であった、
SPE電解セル10の陽極室12及び陰極室14に比抵抗が18MΩ/cmの超純水を供給できるようにした。陰極室14の出口直近からの配管をメインライン31として、このメインライン31に内径10mmのPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂)チューブを使用し、陰極室14の出口から1mとなる位置において、サンプル水を採取するための分岐配管である長さ3mのサンプリングライン32を接続した。サンプリングライン32には、内径4mmのFPAチューブを使用した。
[Example 1]
The apparatus shown in FIG. 6 was assembled. In this apparatus, a cation exchange membrane (Nafion (registered trademark) N-117, film thickness 183 μm) manufactured by DuPont was used as the cation exchange membrane 15 in the SPE electrolytic cell 10. Each electrode had a substantially circular shape, and its area was 50 cm 2 .
Ultra pure water having a specific resistance of 18 MΩ / cm can be supplied to the anode chamber 12 and the cathode chamber 14 of the SPE electrolysis cell 10. Piping from the outlet of the cathode chamber 14 is a main line 31, and a PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin) tube having an inner diameter of 10 mm is used for the main line 31. In this position, a sampling line 32 having a length of 3 m, which is a branch pipe for collecting sample water, was connected. For the sampling line 32, an FPA tube having an inner diameter of 4 mm was used.

メインライン31上であって陰極室14の出口の近傍の位置に、溶存水素計34(東亜DKK社製DH−35A)を接続した。メインライン31の途中には水素溶解手段としての精密ろ過膜モジュール(MF)33を設置した。精密ろ過膜モジュール33としては、直径0.1μm以上の粒子除去用のオルガノ株式会社製ミクロポア−010HE−P3SEを使用した。サンプリングライン32の末端には、陰極室14から流出する水素溶解水に含まれる水素ガスの気泡の数を測定するために、パーティクルカウンタ35(Anatel社製UP−100)を接続した。   A dissolved hydrogen meter 34 (DH-35A manufactured by Toa DKK) was connected to a position on the main line 31 in the vicinity of the outlet of the cathode chamber 14. In the middle of the main line 31, a microfiltration membrane module (MF) 33 as a hydrogen dissolving means was installed. As the microfiltration membrane module 33, Micropore-010HE-P3SE manufactured by Organo Corporation for removing particles having a diameter of 0.1 μm or more was used. A particle counter 35 (UP 100 manufactured by Anatel) was connected to the end of the sampling line 32 in order to measure the number of hydrogen gas bubbles contained in the hydrogen-dissolved water flowing out from the cathode chamber 14.

このような装置を用い、SPE電解セル10に直流電源装置を接続し、SPE電解セル10の陽極室12及び陰極室14に超純水を供給して超純水を電気分解し、陰極13で発生した水素を陰極室14に通水する超純水中に直接溶解させた。このとき、陽極室12には超純水を10L/hで通水しながらブローした。陰極室14から流出する水(水素溶解水)中の溶存水素濃度を溶存水素計34で確認しつつ、陰極室14への超純水の供給流量と、陽極11と陰極13の間の電圧及び電流とを調節することによって、溶存水素濃度を制御した。SPE電解セル10の出口圧力を陰極室14の出口に設けられているバルブ(不図示)の開度で制御した。   Using such an apparatus, a DC power supply is connected to the SPE electrolysis cell 10, ultrapure water is supplied to the anode chamber 12 and the cathode chamber 14 of the SPE electrolysis cell 10 to electrolyze the ultrapure water, and the cathode 13 The generated hydrogen was directly dissolved in ultrapure water that passed through the cathode chamber 14. At this time, ultrapure water was blown through the anode chamber 12 at 10 L / h. While confirming the dissolved hydrogen concentration in the water (hydrogen-dissolved water) flowing out from the cathode chamber 14 with the dissolved hydrogen meter 34, the supply flow rate of ultrapure water to the cathode chamber 14, the voltage between the anode 11 and the cathode 13, and The dissolved hydrogen concentration was controlled by adjusting the current. The outlet pressure of the SPE electrolysis cell 10 was controlled by the opening degree of a valve (not shown) provided at the outlet of the cathode chamber 14.

SPE電解セル10の出口圧力を0.12MPaとした場合と0.17MPaとした場合の各々について、溶存水素濃度を種々の値に制御したときの水素溶解水中の微粒子数(直径0.1μm以上のPSL粒子の数に換算したもの)をパーティクルカウンタ34によって測定した。この微粒子数は、水素溶解水中の水素ガスの気泡数を表している。結果を図7に示す。   When the outlet pressure of the SPE electrolysis cell 10 is 0.12 MPa and 0.17 MPa, the number of fine particles in the hydrogen-dissolved water (with a diameter of 0.1 μm or more when the dissolved hydrogen concentration is controlled to various values). Measured in terms of the number of PSL particles). This number of fine particles represents the number of bubbles of hydrogen gas in the hydrogen-dissolved water. The results are shown in FIG.

図7に示すように、圧力が0.12MPaである場合、最大で溶存水素濃度が1.4ppmに達するまで、気泡の発生は全く認められなかった。さらに圧力を0.17MPaとすることで、気泡を発生させずに2.5ppm以上まで溶存水素濃度を高めることができた。なお、圧力が0.12MPaである場合に溶存水素濃度が1.6ppm以上で急激に気泡の数が上昇しているが、これは、水素濃度が水素の飽和溶解度に達し、あるいは飽和溶解度を超過したためであると考えられる。   As shown in FIG. 7, when the pressure was 0.12 MPa, no bubbles were observed until the dissolved hydrogen concentration reached 1.4 ppm at the maximum. Furthermore, by setting the pressure to 0.17 MPa, the dissolved hydrogen concentration could be increased to 2.5 ppm or more without generating bubbles. In addition, when the pressure is 0.12 MPa, the dissolved hydrogen concentration is 1.6 ppm or more, and the number of bubbles increases rapidly. This is because the hydrogen concentration reaches the saturation solubility of hydrogen or exceeds the saturation solubility. This is probably because

[比較例1]
メインライン31上には精密ろ過膜モジュールを設置せず、その代わりにサンプリングライン32上に精密ろ過膜モジュール33を設置できるようにした図8に示す装置を組み立て、実施例1と同様の実験を行った。結果を図9に示す。このとき、精密ろ過膜モジュール33をサンプリングライン32上に設ける場合(図9(a))と設けない場合(図9(b))の両方について実験を行った。
[Comparative Example 1]
Assembling the apparatus shown in FIG. 8 so that the microfiltration membrane module 33 can be installed on the sampling line 32 instead of installing the microfiltration membrane module on the main line 31, and the same experiment as in Example 1 was performed. went. The results are shown in FIG. At this time, the experiment was performed both when the microfiltration membrane module 33 was provided on the sampling line 32 (FIG. 9A) and when it was not provided (FIG. 9B).

精密ろ過膜モジュール33を設けた場合、圧力0.05MPaであっても気泡数は100個/mL以下であったのに対し、精密ろ過膜モジュール33を設けなかった場合には、水圧が0.09MPaである場合には、水素濃度が270ppbであるときに気泡数が100個/mL以上となり、水圧を0.04MPaに下げたときには水素濃度160ppbでも気泡数が100個/mL以上となり、実質的に気泡が発生している状態となった。   When the microfiltration membrane module 33 was provided, the number of bubbles was 100 / mL or less even when the pressure was 0.05 MPa, whereas when the microfiltration membrane module 33 was not provided, the water pressure was 0. When the pressure is 09 MPa, the number of bubbles is 100 / mL or more when the hydrogen concentration is 270 ppb, and when the water pressure is lowered to 0.04 MPa, the number of bubbles is 100 / mL or more even at a hydrogen concentration of 160 ppb. Air bubbles were generated in the area.

このことは、SPE電解セル10の陰極13において水素を発生させその全量を超純水に溶解させようとした場合、溶解平衡となるまでに時間がかかるため、水素の発生量が水素の飽和溶解度を十分に下回っていても水素ガスの気泡が発生し得ること、また、飽和溶解度未満の水素濃度の場合に発生した水素ガスの気泡は、精密ろ過膜モジュール33に通水することで除去できることを示している。   This is because when hydrogen is generated at the cathode 13 of the SPE electrolysis cell 10 and all of the amount is dissolved in ultrapure water, it takes time to reach dissolution equilibrium. It is confirmed that hydrogen gas bubbles can be generated even when the pressure is sufficiently below, and hydrogen gas bubbles generated when the hydrogen concentration is lower than the saturation solubility can be removed by passing water through the microfiltration membrane module 33. Show.

[実施例2]
図2に示す水素溶解水製造装置を組み立てて水素溶解水を生成し、この水素溶解水を用いて、過酸化水素、溶存酸素除去を行い純水を製造した。SPE電解セル10としては、実施例1で使用したものを用いた。水素溶解水製造装置入口での被処理水(純水)の溶存酸素量は10μg/Lであった。被処理水の過酸化水素濃度は、フェノールフタリン法を用いて測定したところ、16μg/Lであった。過酸化水素、溶存酸素の除去には、Pdを担持したアニオン交換体モノリスを有する触媒装置を使用した。アニオン交換体におけるイオン形はOH形であって、Pdの担持量は、モノリスの乾燥重量1gあたり30mgであった。Pd担持アニオン交換体モノリスの湿潤体積4mLに対し、水素を溶解した超純水を流速0.3L/minで通水した。SVは5000h-1であった。圧力を0.14MPaとし、溶存水素濃度は50ppbとした。また、水素を溶解した超純水における気泡数(直径0.1μm以上のPSL粒子の数に換算したもの)は30個/mLであった。
[Example 2]
The hydrogen-dissolved water production apparatus shown in FIG. 2 was assembled to produce hydrogen-dissolved water, and pure water was produced by removing hydrogen peroxide and dissolved oxygen using this hydrogen-dissolved water. As the SPE electrolytic cell 10, the one used in Example 1 was used. The amount of dissolved oxygen in the water to be treated (pure water) at the hydrogen-dissolved water production apparatus inlet was 10 μg / L. The hydrogen peroxide concentration of the water to be treated was 16 μg / L as measured using the phenol phthaline method. For removal of hydrogen peroxide and dissolved oxygen, a catalyst device having an anion exchanger monolith carrying Pd was used. The ion form in the anion exchanger was OH form, and the supported amount of Pd was 30 mg per 1 g of dry weight of monolith. Ultrapure water in which hydrogen was dissolved was passed through a wet volume of 4 mL of the Pd-supporting anion exchanger monolith at a flow rate of 0.3 L / min. The SV was 5000h- 1 . The pressure was 0.14 MPa and the dissolved hydrogen concentration was 50 ppb. The number of bubbles (converted to the number of PSL particles having a diameter of 0.1 μm or more) in ultrapure water in which hydrogen was dissolved was 30 / mL.

このとき触媒装置の出口での過酸化水素、溶存酸素量は1μg/L以下であった。   At this time, the amount of hydrogen peroxide and dissolved oxygen at the outlet of the catalyst device was 1 μg / L or less.

1 一次純水タンク
2 ポンプ
3 紫外線酸化装置
4 水素溶解水製造装置
5 触媒装置
6 非再生型混床式イオン交換装置(CP)
7 限外ろ過装置(UF)
10 SPE(固体高分子電解質)電解セル
11 陽極
12 陽極室
13 陰極
14 陰極室
15 カチオン(陽イオン)交換膜
16 直流電源
21,33 精密ろ過(MF)膜モジュール
22,24 昇圧ポンプ
23,25 配管
31 メインライン
32 サンプリングライン
34 溶存水素計
35 パーティクルカウンタ
DESCRIPTION OF SYMBOLS 1 Primary pure water tank 2 Pump 3 Ultraviolet oxidizer 4 Hydrogen dissolved water production apparatus 5 Catalyst apparatus 6 Non-regenerative mixed bed type ion exchange apparatus (CP)
7 Ultrafiltration equipment (UF)
DESCRIPTION OF SYMBOLS 10 SPE (solid polymer electrolyte) electrolysis cell 11 Anode 12 Anode chamber 13 Cathode 14 Cathode chamber 15 Cation (cation) exchange membrane 16 DC power supply 21, 33 Microfiltration (MF) membrane module 22, 24 Booster pump 23, 25 Piping 31 Main line 32 Sampling line 34 Dissolved hydrogen meter 35 Particle counter

Claims (4)

陽極を備えて純水または超純水が通水される陽極室と陰極を備えた陰極室と前記陽極室と前記陰極室との間に設けられたカチオン交換膜とを有する電解セルと、
前記陽極と前記陰極との間に直流電圧を印加する電圧印加手段と、
を有し、
前記直流電圧によって前記陽極室内で水素イオンを発生させ、前記カチオン交換膜を介して前記陰極室に前記水素イオンを導いて電子と再結合させて水素分子を生成し、前記陰極室内に通水された純水または超純水に前記水素分子を溶解させて水素溶解水を得る水素溶解水製造装置であって、
水素ガスの気泡が実質的に残存しないように前記水素溶解水を生成する水素溶解手段を有し、
前記水素溶解手段は、前記陰極室に通水される前記純水または超純水の圧力を上昇させて前記陰極室に通水された前記純水または超純水に水素を溶解させる手段であり、
前記陰極室内に通水される前記純水または超純水の圧力が0.12MPa以上であり、
前記水素溶解手段は前記陰極室の出口に設けられたろ過装置を含み、
前記ろ過装置は精密ろ過膜モジュールである、水素溶解水製造装置。
An electrolytic cell having an anode chamber with an anode chamber through which pure water or ultrapure water is passed, a cathode chamber with a cathode, and a cation exchange membrane provided between the anode chamber and the cathode chamber;
Voltage applying means for applying a DC voltage between the anode and the cathode;
Have
Hydrogen ions are generated in the anode chamber by the DC voltage, and the hydrogen ions are led to the cathode chamber through the cation exchange membrane and recombined with electrons to generate hydrogen molecules, which are passed through the cathode chamber. A hydrogen-dissolved water production apparatus for obtaining hydrogen-dissolved water by dissolving the hydrogen molecules in pure water or ultrapure water,
Hydrogen dissolving means for generating the hydrogen-dissolved water so that hydrogen gas bubbles do not substantially remain,
The hydrogen dissolving means is means for increasing the pressure of the pure water or ultrapure water passed through the cathode chamber to dissolve hydrogen in the pure water or ultrapure water passed through the cathode chamber. ,
Wherein the pressure of the pure water or ultrapure water is passed through the cathode chamber Ri der least 0.12 MPa,
The hydrogen dissolving means includes a filtration device provided at the outlet of the cathode chamber,
The filtration device Ru Ah in microfiltration membrane module, hydrogen-dissolved water generator.
前記精密ろ過膜モジュールにおける精密ろ過膜の入口側に設けられた排出口から流出する水を前記陰極室に戻す配管をさらに有する、請求項に記載の水素溶解水製造装置。 The precise further comprising a pipe for returning to said cathode chamber water flowing out from the discharge port provided at the inlet side of the microfiltration membrane in the filtration membrane module, hydrogen-dissolved water generator of claim 1. 被処理水に対して紫外線を照射する紫外線照射手段と、
請求項1または2に記載された水素溶解水製造装置であって、前記紫外線照射手段で処理された水が前記陰極室に供給される水素溶解水製造装置と、
前記水素溶解水製造装置の前記陰極室から流出する水を白金族金属担持触媒と接触させて前記水の中の酸化性物質を除去する溶存酸素除去手段と、
を有する純水製造システム。
Ultraviolet irradiation means for irradiating the water to be treated with ultraviolet rays;
The hydrogen-dissolved water production apparatus according to claim 1 or 2 , wherein the water treated by the ultraviolet irradiation means is supplied to the cathode chamber,
Dissolved oxygen removing means for contacting the water flowing out from the cathode chamber of the hydrogen-dissolved water production apparatus with a platinum group metal-supported catalyst to remove oxidizing substances in the water;
Having a pure water production system.
被処理水に対して紫外線を照射する紫外線照射手段と、
請求項1または2に記載された水素溶解水製造装置であって、前記紫外線照射手段で処理された水を2つに分岐した一方の水が前記陰極室に供給される水素溶解水製造装置と、
前記水素溶解水製造装置の前記陰極室から流出する水と前記2つに分岐した他方の水とを混合して白金族金属担持触媒と接触させ、前記混合された水の中の酸化性物質を除去する溶存酸素除去手段と、
を有する純水製造システム。
Ultraviolet irradiation means for irradiating the water to be treated with ultraviolet rays;
3. The hydrogen-dissolved water production apparatus according to claim 1, wherein one of the water branched by the ultraviolet irradiation means is supplied to the cathode chamber. ,
The water flowing out from the cathode chamber of the hydrogen-dissolved water production apparatus and the other branched water are mixed and brought into contact with the platinum group metal-supported catalyst, and the oxidizing substance in the mixed water is A means for removing dissolved oxygen to be removed;
Having a pure water production system.
JP2014028156A 2014-02-18 2014-02-18 Hydrogen dissolved water production apparatus and pure water production system Active JP6400918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028156A JP6400918B2 (en) 2014-02-18 2014-02-18 Hydrogen dissolved water production apparatus and pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028156A JP6400918B2 (en) 2014-02-18 2014-02-18 Hydrogen dissolved water production apparatus and pure water production system

Publications (2)

Publication Number Publication Date
JP2015150529A JP2015150529A (en) 2015-08-24
JP6400918B2 true JP6400918B2 (en) 2018-10-03

Family

ID=53893348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028156A Active JP6400918B2 (en) 2014-02-18 2014-02-18 Hydrogen dissolved water production apparatus and pure water production system

Country Status (1)

Country Link
JP (1) JP6400918B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method
JP6868365B2 (en) * 2016-09-30 2021-05-12 カーリットホールディングス株式会社 Hydrogen water production equipment and production method
JP7079130B2 (en) * 2018-03-29 2022-06-01 オルガノ株式会社 Gas-dissolved water supply system
JP7205263B2 (en) * 2019-02-04 2023-01-17 栗田工業株式会社 Water treatment method and water treatment system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350496A (en) * 1992-08-13 1994-09-27 United Technologies Corporation Solid state high pressure oxygen generator and method of generating oxygen
JPH08126886A (en) * 1994-10-28 1996-05-21 Japan Organo Co Ltd Production of ultrapure water and device therefor
JP3193295B2 (en) * 1995-07-07 2001-07-30 株式会社日本トリム Dialysis machine
JPH09206743A (en) * 1996-02-01 1997-08-12 Japan Organo Co Ltd Superpure water producing and supplying device and washing method thereof
JP3228885B2 (en) * 1997-03-19 2001-11-12 神鋼パンテツク株式会社 Hydrogen and oxygen gas added water production equipment
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP3888183B2 (en) * 2002-02-25 2007-02-28 松下電工株式会社 Electrolytic hydrogen dissolved water generator
JP5918966B2 (en) * 2011-10-28 2016-05-18 有限会社スプリング Hydrogen water production equipment with increased dissolved hydrogen concentration
KR101407728B1 (en) * 2012-07-05 2014-06-12 주식회사 제이앤스테크 a water purifier

Also Published As

Publication number Publication date
JP2015150529A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6119886B1 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
KR101904507B1 (en) Method of membrane-coupled electrochemical advanced oxidation and its application device for water purification and water purification system using of the same
US10759678B2 (en) Dilute chemical solution producing apparatus and dilute chemical solution producing method
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP4756327B2 (en) Nitrogen gas dissolved water production method
US10442708B2 (en) Method and appliance for treating water
JP5714060B2 (en) Dialysate preparation water production equipment
US11325851B2 (en) Diluted chemical liquid production apparatus capable of controlling pH and oxidation-reduction potential
JP2008229506A (en) Pure water production system
JP5940689B1 (en) Dialysate preparation water production equipment
KR20150017566A (en) Electrolysis Apparatus for generating Dissolved hydrogen water
WO2016199435A1 (en) Ultrapure water manufacturing system and ultrapure water manufacturing method
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
JP5663410B2 (en) Ultrapure water production method and apparatus
JP2000354857A (en) Method and apparatus for making functional water
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JP6670047B2 (en) Ultrapure water production equipment
US20160347629A1 (en) Recycling loop method for preparation of high concentration ozone
JP2020124672A (en) Water treatment method and water treatment system
JP5257175B2 (en) Ultrapure water production equipment
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JP2014100691A (en) Pure water manufacturing method and pure water manufacturing system
US11975992B2 (en) Method of producing rinsing liquid
JP2003181251A (en) Method and apparatus for manufacturing ozone-dissolved water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180906

R150 Certificate of patent or registration of utility model

Ref document number: 6400918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250