JP2011167633A - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus Download PDF

Info

Publication number
JP2011167633A
JP2011167633A JP2010033718A JP2010033718A JP2011167633A JP 2011167633 A JP2011167633 A JP 2011167633A JP 2010033718 A JP2010033718 A JP 2010033718A JP 2010033718 A JP2010033718 A JP 2010033718A JP 2011167633 A JP2011167633 A JP 2011167633A
Authority
JP
Japan
Prior art keywords
water
treated
organic matter
concentration
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033718A
Other languages
Japanese (ja)
Other versions
JP5499753B2 (en
Inventor
Hiroto Tokoshima
裕人 床嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010033718A priority Critical patent/JP5499753B2/en
Publication of JP2011167633A publication Critical patent/JP2011167633A/en
Application granted granted Critical
Publication of JP5499753B2 publication Critical patent/JP5499753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce high-purity ultrapure water by removing a TOC (total organic carbon) component including low molecular weight nitrogen compounds in a higher degree. <P>SOLUTION: When organic matter-containing raw water is passed through an organic matter removal catalyst column 4 including a metal, on which hydrogen is adsorbed in the presence of dissolved oxygen, to remove organic matter, the raw water is passed through a H<SB>2</SB>O<SB>2</SB>decomposition catalyst column 1 to remove hydrogen peroxide. The DO (dissolved oxygen) concentration of the hydrogen peroxide-removed raw water is adjusted in a gas dissolution membrane module 2. The organic matter in the raw water having the adjusted DO concentration is decomposed in a low-pressure UV oxidation unit 3. The organic matter-decomposed raw water is passed through the organic matter removal catalyst column 4 and further passed through an ion exchange resin column 5 to perform ion exchange treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は水中の有機物を高度に除去する水処理方法及び装置に係り、特に、水中の難除去性有機物を簡便かつ高度に除去することにより、TOC1ppb以下の実質的に有機物を含まない高純度水を得る方法及び装置に関する。   The present invention relates to a water treatment method and apparatus for highly removing organic substances in water, and in particular, high-purity water substantially free of organic substances having a TOC of 1 ppb or less by easily and highly removing difficult-to-removable organic substances in water. It is related with the method and apparatus which obtains.

電子部品の洗浄や表面処理には、高濃度の薬液や洗剤と、それを濯ぐための大量の純水ないし超純水が用いられている。しかして、近年、電子部品の高度化に伴い、超純水の水質向上と水使用量の低減を狙った排水回収による水回収率向上が課題となっており、そのために、水中の有機物成分(TOC)をより効率的により低濃度にまで低減させる技術の開発が要望されている。   For cleaning and surface treatment of electronic parts, highly concentrated chemicals and detergents and a large amount of pure water or ultrapure water for rinsing them are used. In recent years, with the advancement of electronic components, the improvement of water recovery by wastewater recovery aimed at improving the quality of ultrapure water and reducing the amount of water used has become a challenge. There is a demand for the development of a technique for reducing TOC) to a lower concentration more efficiently.

従来、水中のTOCを除去する方法として、生物処理や物理化学処理などがあり、生物処理が適用困難な場合には、逆浸透(RO)膜を用いた有機物除去や低圧紫外線(UV)ランプを用いた低圧UV酸化装置などが用いられている。   Conventional methods for removing TOC in water include biological treatment and physicochemical treatment. When biological treatment is difficult to apply, organic matter removal using a reverse osmosis (RO) membrane or a low-pressure ultraviolet (UV) lamp can be used. The low-pressure UV oxidizer used is used.

例えば、特許文献1には、低圧UV酸化装置を用いて水中の有機物を除去する水処理装置として、低圧UV酸化装置の前段に、被処理水に酸素ガスを添加する手段を設けたものが提案されている。
即ち、低圧UV酸化装置処理される水中に溶存酸素が存在していると、以下のように、UV照射によってヒドロキシラジカルや過酸化水素が生成し、TOC分解効率が向上することから、特許文献1では、低圧UV酸化装置の前段で被処理水に酸素ガスを添加する。
For example, Patent Document 1 proposes a water treatment device that removes organic substances in water using a low-pressure UV oxidizer, and is provided with a means for adding oxygen gas to the water to be treated in the previous stage of the low-pressure UV oxidizer. Has been.
That is, if dissolved oxygen is present in the water to be treated with the low-pressure UV oxidizer, hydroxy radicals and hydrogen peroxide are generated by UV irradiation and the TOC decomposition efficiency is improved as described below. Then, oxygen gas is added to the water to be treated at the front stage of the low-pressure UV oxidizer.

通常、水はUVの照射エネルギーによって励起され次式のようにHラジカルとOHラジカルに解離し、瞬時にまた水に戻る反応を繰り返している。   Usually, water is excited by UV irradiation energy, dissociates into H radicals and OH radicals as shown in the following formula, and repeats the reaction of returning to water instantly.

Figure 2011167633
Figure 2011167633

解離したOHラジカルの一部がTOC成分と反応し、TOC成分酸化分解に寄与するが、大部分は再結合して水に戻る。TOC成分分解量を上げるためにはTOC成分と反応するOHラジカル量を増やす必要がある。   A part of the dissociated OH radical reacts with the TOC component and contributes to the TOC component oxidative decomposition, but most recombines and returns to water. In order to increase the amount of TOC component decomposition, it is necessary to increase the amount of OH radicals that react with the TOC component.

特許文献1におけるように、UV照射の前段で被処理水に酸素ガスを注入した場合、次式のようにして、解離した一部のHラジカルと注入した酸素が結合し、水に戻る反応が起こる。このとき水が解離して生成されたOHラジカルの一部が余り、このOHラジカルがTOC成分の酸化分解に寄与し、TOC成分分解効率を上げていると考えられる。   As in Patent Document 1, when oxygen gas is injected into the water to be treated before UV irradiation, the dissociated part of the H radical and the injected oxygen are combined and returned to water as shown in the following equation. Occur. At this time, a part of the OH radical generated by the dissociation of water remains, and this OH radical contributes to the oxidative decomposition of the TOC component, and is considered to increase the TOC component decomposition efficiency.

Figure 2011167633
Figure 2011167633

なお、低圧UV酸化装置では、水中の酸素と水との反応で過酸化水素の生成もあり、同時に水の励起で以下の反応による過酸化水素の発生もある。   In the low-pressure UV oxidation apparatus, hydrogen peroxide is generated by the reaction of oxygen in water and water, and at the same time, hydrogen peroxide is generated by the following reaction by excitation of water.

Figure 2011167633
Figure 2011167633

しかし、超純水製造装置などで通常用いられるRO膜や低圧UV酸化装置などは、分子量が小さい窒素化合物(尿素など)に代表される難除去性有機物と称されるTOC成分に対しては、極端に除去効率が悪いといった問題点があった。   However, RO membranes and low-pressure UV oxidizers that are usually used in ultrapure water production equipment, etc., are used for TOC components called difficult-to-removable organic substances typified by nitrogen compounds with low molecular weight (such as urea). There was a problem that the removal efficiency was extremely poor.

一方で、超純水中に存在するTOC成分の殆どをこれらの低分子窒素化合物が占めるため、これらを除去することができれば、超純水中のTOCの殆どすべてを除去することが可能となり、より高純度な超純水を得ることが可能となる。   On the other hand, since these low molecular nitrogen compounds occupy most of the TOC components present in the ultrapure water, if these can be removed, it becomes possible to remove almost all of the TOC in the ultrapure water, Higher purity ultrapure water can be obtained.

本出願人は、先に、水中の有機物を低消費エネルギーで効率的に分解除去する方法として、有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着した白金族金属触媒に接触させることにより、被処理水中の有機物を分解除去する方法を提案した(特許文献2)。   As a method for efficiently decomposing and removing organic substances in water with low energy consumption, the present applicant has first converted water to be treated containing organic substances into a platinum group metal catalyst that has adsorbed hydrogen in the presence of dissolved oxygen. The method of decomposing and removing the organic substance in to-be-processed water by making it contact is proposed (patent document 2).

特許文献2の方法であれば、水素及び酸素の共存下に白金族金属触媒の触媒作用で、有機物が効率よく分解除去される。その理由は以下の通りであると推測される。   With the method of Patent Document 2, organic substances are efficiently decomposed and removed by the catalytic action of a platinum group metal catalyst in the presence of hydrogen and oxygen. The reason is estimated as follows.

即ち、白金族金属触媒の存在下で、白金族金属触媒に吸着した水素と水中の酸素とが結合し、白金族金属触媒表面に電子の偏在が生じる。この結果、白金族金属触媒表面の電子が粗の部分に尿素等の低分子窒素化合物の有する非共有電子対が結合(吸着)していると推測される。そして、続いて水素を供給することで、酸素が水素と接触して水になる際に、非共有電子対の結合が切れて有機物が金属触媒上から脱離し元の状態に戻る。このように有機物の吸着、脱離を繰り返すことで、有機物が分解され、水中から除去されるものと考えられる。   That is, in the presence of the platinum group metal catalyst, hydrogen adsorbed on the platinum group metal catalyst and oxygen in water are combined, and electrons are unevenly distributed on the surface of the platinum group metal catalyst. As a result, it is presumed that the unshared electron pair possessed by the low-molecular nitrogen compound such as urea is bonded (adsorbed) to the rough portion of the platinum group metal catalyst surface. Then, by subsequently supplying hydrogen, when oxygen comes into contact with hydrogen and becomes water, the bond of the unshared electron pair is broken, and the organic substance is desorbed from the metal catalyst and returns to the original state. Thus, it is considered that the organic matter is decomposed and removed from the water by repeating the adsorption and desorption of the organic matter.

特開2008−264630号公報JP 2008-264630 A 特願2008−193626Japanese Patent Application No. 2008-193626

特許文献2の方法によれば、水中の有機物を簡便かつ高度に除去することができるが、より一層の有機物除去効率の向上が望まれる。   According to the method of Patent Document 2, organic substances in water can be easily and highly removed, but further improvement in organic substance removal efficiency is desired.

本発明は、特許文献2の方法を更に改良し、水中の低分子窒素化合物をより一層高度に除去することにより、高純度な超純水を製造する方法及び装置を提供することを課題とする。   An object of the present invention is to provide a method and an apparatus for producing ultrapure water with high purity by further improving the method of Patent Document 2 and further removing low-molecular nitrogen compounds in water to a higher degree. .

本発明者は、上記課題を解決すべく鋭意検討した結果、有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着させた金属を含む有機物除去触媒に接触させて、該被処理水中の有機物を除去するに先立ち、低圧紫外線酸化処理して被処理水中の有機物を分解することにより、被処理水中の有機物をより一層高度に除去することが可能となることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor brought water to be treated containing an organic substance into contact with an organic substance removal catalyst containing a metal adsorbed with hydrogen in the presence of dissolved oxygen. Prior to the removal of the organic matter in the treated water, it was found that the organic matter in the treated water can be removed to a higher degree by decomposing the organic matter in the treated water by low-pressure ultraviolet oxidation treatment.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着させた金属を含む有機物除去触媒に接触させて、該被処理水中の有機物を除去する有機物除去工程を含む水処理方法において、該被処理水中の有機物を低圧紫外線酸化して分解する低圧UV酸化工程を有し、該低圧UV酸化工程の処理水が前記有機物除去工程に導入されることを特徴とする水処理方法。 [1] Water containing an organic matter removing step of contacting an organic matter-containing water with an organic matter removing catalyst containing a metal adsorbed with hydrogen in the presence of dissolved oxygen to remove the organic matter in the treated water A water treatment characterized by having a low-pressure UV oxidation step for decomposing organic matter in the water to be treated by low-pressure ultraviolet oxidation, wherein the treated water of the low-pressure UV oxidation step is introduced into the organic matter removal step. Method.

[2] [1]において、前記被処理水の溶存酸素濃度を調整するDO濃度調整工程を有し、該DO濃度調整工程の処理水が前記低圧UV酸化工程に導入されることを特徴とする水処理方法。 [2] The method according to [1], further comprising a DO concentration adjustment step of adjusting a dissolved oxygen concentration of the water to be treated, wherein the treated water of the DO concentration adjustment step is introduced into the low-pressure UV oxidation step. Water treatment method.

[3] [2]において、前記DO濃度調整工程において、水中の溶存酸素濃度を1〜200ppbに調整することを特徴とする水処理方法。 [3] The water treatment method according to [2], wherein in the DO concentration adjusting step, the dissolved oxygen concentration in water is adjusted to 1 to 200 ppb.

[4] [2]又は[3]において、前記被処理水中の過酸化水素を除去するH除去工程を有し、該H除去工程の処理水が前記DO濃度調整工程に導入されることを特徴とする水処理方法。 [4] In [2] or [3], there is a H 2 O 2 removal step for removing hydrogen peroxide in the water to be treated, and the treated water in the H 2 O 2 removal step is used as the DO concentration adjustment step. A water treatment method characterized by being introduced.

[5] [1]ないし[4]のいずれかにおいて、前記有機物除去工程の処理水をイオン交換処理するイオン交換工程を有することを特徴とする水処理方法。 [5] The water treatment method according to any one of [1] to [4], further comprising an ion exchange step of subjecting the treated water in the organic matter removal step to an ion exchange treatment.

[6] [1]ないし[5]のいずれかにおいて、前記被処理水が、逆浸透膜分離装置、イオン交換装置、及び低圧紫外線酸化装置のいずれか1以上で処理された処理水であることを特徴とする水処理方法。 [6] In any one of [1] to [5], the water to be treated is treated water treated by any one or more of a reverse osmosis membrane separation device, an ion exchange device, and a low-pressure ultraviolet oxidation device. A water treatment method characterized by the above.

[7] 有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着させた金属を含む有機物除去触媒に接触させて、該被処理水中の有機物を除去する有機物除去手段を含む水処理装置において、該有機物除去手段の前段に、該被処理水中の有機物を低圧紫外線酸化して分解する低圧UV酸化手段を有し、該低圧UV酸化手段の処理水が前記有機物除去手段に導入されることを特徴とする水処理装置。 [7] Water containing organic matter removing means for contacting organic matter-containing water with an organic matter removal catalyst containing a metal adsorbed with hydrogen in the presence of dissolved oxygen to remove the organic matter in the treated water In the treatment apparatus, the organic matter removing means has a low pressure UV oxidizing means for decomposing the organic matter in the water to be treated by low-pressure ultraviolet oxidation before the organic matter removing means, and the treated water of the low pressure UV oxidizing means is introduced into the organic matter removing means. A water treatment apparatus.

[8] [7]において、前記低圧UV酸化手段の前段に前記被処理水の溶存酸素濃度を調整するDO濃度調整手段を有し、該DO濃度調整手段の処理水が該低圧UV酸化手段に導入されることを特徴とする水処理装置。 [8] In [7], a DO concentration adjusting unit that adjusts a dissolved oxygen concentration of the water to be treated is provided upstream of the low pressure UV oxidizing unit, and the treated water of the DO concentration adjusting unit is supplied to the low pressure UV oxidizing unit. A water treatment device that is introduced.

[9] [8]において、前記DO濃度調整手段において、水中の溶存酸素濃度が1〜200ppbに調整されることを特徴とする水処理装置。 [9] The water treatment apparatus according to [8], wherein the DO concentration adjusting means adjusts the dissolved oxygen concentration in water to 1 to 200 ppb.

[10] [8]又は[9]において、前記DO濃度調整手段の前段に、前記被処理水中の過酸化水素を除去するH除去手段を有し、該H除去手段の処理水が該DO濃度調整手段に導入されることを特徴とする水処理装置。 [10] In [8] or [9], an H 2 O 2 removing unit that removes hydrogen peroxide in the water to be treated is provided upstream of the DO concentration adjusting unit, and the H 2 O 2 removing unit A water treatment apparatus, wherein treated water is introduced into the DO concentration adjusting means.

[11] [7]ないし[10]のいずれかにおいて、前記有機物除去手段の後段に、該有機物除去手段の処理水をイオン交換処理するイオン交換手段を有することを特徴とする水処理装置。 [11] The water treatment apparatus according to any one of [7] to [10], further comprising an ion exchange means for performing an ion exchange treatment of the treated water of the organic matter removing means after the organic matter removing means.

[12] [7]ないし[11]のいずれかにおいて、前記被処理水が、逆浸透膜分離装置、イオン交換装置、及び低圧紫外線酸化装置のいずれか1以上で処理された処理水であることを特徴とする水処理装置。 [12] In any one of [7] to [11], the water to be treated is treated water treated by any one or more of a reverse osmosis membrane separation device, an ion exchange device, and a low-pressure ultraviolet oxidation device. Water treatment device characterized by.

本発明によれば、水素を吸着させた金属を含む有機物除去触媒を用いた有機物除去工程と、低圧紫外線酸化処理による有機物分解工程とを組み合わせることにより、薬品処理や加温処理を施すことなく、被処理水中の有機物を高度に除去して、有機物を実質的に含まない、高純度の水を得ることができる。   According to the present invention, by combining an organic substance removal step using an organic substance removal catalyst containing a metal adsorbed with hydrogen and an organic substance decomposition step by low-pressure ultraviolet oxidation treatment, without performing chemical treatment or heating treatment, Organic matter in the water to be treated is highly removed, and high-purity water substantially free of organic matter can be obtained.

本発明の水処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the water treatment method and apparatus of this invention.

以下に図面を参照して本発明の水処理方法及び装置の実施の形態を詳細に説明する。
なお、以下においては、図1に従って本発明を説明するが、本発明は何ら図1の方法及び装置に限定されるものではない。
Embodiments of a water treatment method and apparatus according to the present invention will be described below in detail with reference to the drawings.
In the following, the present invention will be described with reference to FIG. 1, but the present invention is not limited to the method and apparatus of FIG.

図1は本発明の水処理方法及び装置の実施の形態を示す系統図であり、1はH分解カラム、2はガス溶解膜モジュール、3は低圧UV酸化器、4は有機物除去触媒カラム、5はイオン交換樹脂カラムである。即ち、被処理水(以下「原水」と称す。)は、H分解触媒カラム1、ガス溶解膜モジュール2、低圧UV酸化器3、有機物除去触媒カラム4、及びイオン交換樹脂カラム5に順次通水されて処理される。 FIG. 1 is a system diagram showing an embodiment of a water treatment method and apparatus of the present invention, wherein 1 is a H 2 O 2 decomposition column, 2 is a gas dissolution membrane module, 3 is a low-pressure UV oxidizer, and 4 is an organic substance removal catalyst. Column 5 is an ion exchange resin column. That is, the water to be treated (hereinafter referred to as “raw water”) is added to the H 2 O 2 decomposition catalyst column 1, the gas dissolution membrane module 2, the low-pressure UV oxidizer 3, the organic substance removal catalyst column 4, and the ion exchange resin column 5. Sequentially passed and processed.

[原水]
本発明で処理する原水としては、本発明の特長を有効に発揮する上で、超純水を製造するための原水、例えば、市水、井水、表流水や、半導体又は電子部品等の製造工程からの排水などが挙げられるが、特に、逆浸透膜分離装置、低圧UV酸化装置、イオン交換装置などの不純物除去装置で処理された処理水、具体的には、一般的な純水製造装置や超純水製造装置で得られる一次純水や二次純水(超純水)が好ましく適用される。
[Raw water]
As raw water to be treated in the present invention, raw water for producing ultrapure water, for example, city water, well water, surface water, semiconductors, electronic components, etc., in order to effectively demonstrate the features of the present invention Examples include waste water from the process. In particular, treated water treated by an impurity removing device such as a reverse osmosis membrane separation device, a low-pressure UV oxidation device, an ion exchange device, specifically a general pure water production device In addition, primary pure water and secondary pure water (ultra pure water) obtained by an ultrapure water production apparatus are preferably used.

本発明で処理する原水のTOC濃度としては、1〜1000ppb、特に1〜50ppb、とりわけ1〜30ppb程度が好適である。
また、超純水や低圧UV酸化装置の処理水のように、過酸化水素を含む原水の場合、その濃度は100ppb以下、特に1〜60ppb程度であることが好ましい。
The TOC concentration of the raw water to be treated in the present invention is preferably 1 to 1000 ppb, particularly 1 to 50 ppb, especially 1 to 30 ppb.
In the case of raw water containing hydrogen peroxide, such as ultrapure water or treated water of a low-pressure UV oxidizer, the concentration is preferably 100 ppb or less, particularly about 1 to 60 ppb.

[H分解触媒カラム]
図1の水処理装置では、原水をまず、H分解触媒1Aが充填されたH分解触媒カラム1に導入して、水中に含まれる過酸化水素を分解除去する。
即ち、上述のように、超純水や低圧UV酸化処理水を原水とする場合、原水中に含まれる1〜60ppb程度の過酸化水素を分解して後段の有機物除去触媒への酸素負荷を軽減するために過酸化水素を除去する。また、後段のガス溶解膜モジュール2などによるDO濃度の調整を確実に行うためにも、分解により酸素を生成する過酸化水素は予め除去しておくことが好ましい。
[H 2 O 2 decomposition catalyst column]
In the water treatment apparatus of FIG. 1, the raw water is first introduced into the H 2 O 2 decomposition catalyst column 1 packed with the H 2 O 2 decomposition catalyst 1A to decompose and remove hydrogen peroxide contained in the water.
That is, as described above, when ultrapure water or low-pressure UV-oxidized water is used as raw water, the hydrogen load of about 1 to 60 ppb contained in the raw water is decomposed to reduce the oxygen load on the subsequent organic substance removal catalyst. To remove hydrogen peroxide. Further, in order to surely adjust the DO concentration by the gas-dissolving membrane module 2 in the subsequent stage, it is preferable to previously remove hydrogen peroxide that generates oxygen by decomposition.

このH分解触媒カラム1に充填されるH分解触媒1Aとしては、活性炭が挙げられるが、その他、触媒有効成分として、白金、パラジウム、ルテニウム、ロジウム、インジウム、イリジウム、銀、金、コバルト、銅、ニッケル及びタングステン、並びにこれらの金属の水不溶性又は水難溶性の化合物、具体的には、一酸化コバルト、過酸化コバルト、一酸化ニッケル、二酸化ルテニウム、三二酸化ロジウム、一酸化パラジウム、二酸化イリジウム、酸化第二銅、二酸化タングステン等の酸化物から選ばれる1種又は2種以上を、アルミナ、活性炭、酸化チタン、ジルコニア、ゼオライト、その他の合成樹脂等の担体に担持したものも挙げられる。担持触媒中の金属及び/又はその化合物の担持量は、通常、担体重量の0.05〜25重量%、好ましくは0.5〜10重量%であることが望ましい。このような活性炭や担持触媒は、球状、ペレット状、円柱状、破砕片状、ハニカム状、粉末状等の種々の形態で使用可能であり、その粒径は、通常0.2〜10mm、特に0.5〜5mm程度であることが好ましい。 The H 2 O 2 decomposition catalyst 1A which is charged to the H 2 O 2 decomposition catalyst column 1, there may be mentioned activated carbon, other, as catalytically active component, platinum, palladium, ruthenium, rhodium, indium, iridium, silver, Gold, cobalt, copper, nickel and tungsten, and water-insoluble or poorly water-soluble compounds of these metals, specifically, cobalt monoxide, cobalt peroxide, nickel monoxide, ruthenium dioxide, rhodium trioxide, palladium monoxide In addition, one or two or more selected from oxides such as iridium dioxide, cupric oxide, and tungsten dioxide are supported on a carrier such as alumina, activated carbon, titanium oxide, zirconia, zeolite, and other synthetic resins. It is done. The supported amount of the metal and / or the compound thereof in the supported catalyst is usually 0.05 to 25% by weight, preferably 0.5 to 10% by weight of the support weight. Such activated carbon and supported catalyst can be used in various forms such as a spherical shape, a pellet shape, a columnar shape, a fragmented shape, a honeycomb shape, and a powder shape, and the particle size is usually 0.2 to 10 mm, particularly It is preferably about 0.5 to 5 mm.

本発明では、H分解触媒カラム1に原水を通水して処理することにより、原水中の過酸化水素を5ppb以下程度に除去することが好ましい。 In the present invention, it is preferable to remove hydrogen peroxide in the raw water to about 5 ppb or less by passing the raw water through the H 2 O 2 decomposition catalyst column 1 for treatment.

なお、本発明において、H分解触媒カラム1は必ずしも必要とされず、原水中に過酸化水素が含まれない場合、或いはH濃度が5ppb以下の場合には、これを省略することができる。 In the present invention, the H 2 O 2 decomposition catalyst column 1 is not necessarily required, and is omitted when hydrogen peroxide is not contained in the raw water or when the H 2 O 2 concentration is 5 ppb or less. can do.

また、原水中の過酸化水素除去手段は、何らH分解触媒を用いるものに限定されるものではないが、水中の過酸化水素を、H→HO+1/2Oの反応で触媒分解するH分解触媒を用いる方法が、二次汚染を引き起こすことなく、効率的な処理を行える点において好ましい。 Further, the means for removing hydrogen peroxide in the raw water is not limited to the one using the H 2 O 2 decomposition catalyst, but the hydrogen peroxide in the water is changed to H 2 O 2 → H 2 O + 1 / 2O 2 . A method using an H 2 O 2 decomposition catalyst that undergoes catalytic decomposition by reaction is preferable in that efficient treatment can be performed without causing secondary contamination.

[ガス溶解膜モジュール]
図1において、H分解触媒カラム1の流出水は、ガス溶解膜モジュール2に導入されて、溶存酸素(DO)濃度の調整が行われる。
[Gas dissolved membrane module]
In FIG. 1, the effluent of the H 2 O 2 decomposition catalyst column 1 is introduced into the gas dissolution membrane module 2 to adjust the dissolved oxygen (DO) concentration.

このガス溶解膜モジュール2は、気体透過膜2Mにより内部が液相室2Aと気相室2Bとに仕切られている。気相室2Bは、内部を真空ポンプ2Pで真空引きしながら、酸素ガスを所定の流量で供給する構成とされており、このような構成により、この気相室2Bから気体透過膜2Mを介して液相室2A内の液に所定濃度の酸素ガスを溶解させることができる。また、このように、気相室2Bに真空引きを行いながら酸素ガスを供給することにより、前段のH分解触媒カラム1における過酸化水素の分解で生成した溶存酸素濃度より低い濃度に溶存酸素濃度を調整することも可能となる。ここで用いる真空ポンプには特に制限はないが、二次汚染の問題のないオイルフリーのスクロール式真空ポンプなどが好適に用いられる。 The gas dissolution membrane module 2 is divided into a liquid phase chamber 2A and a gas phase chamber 2B by a gas permeable membrane 2M. The gas phase chamber 2B is configured to supply oxygen gas at a predetermined flow rate while evacuating the inside with a vacuum pump 2P. With such a configuration, the gas phase chamber 2B passes through the gas permeable membrane 2M from the gas phase chamber 2B. Thus, a predetermined concentration of oxygen gas can be dissolved in the liquid in the liquid phase chamber 2A. In addition, by supplying oxygen gas while evacuating the gas phase chamber 2B in this way, the concentration is lower than the concentration of dissolved oxygen generated by the decomposition of hydrogen peroxide in the preceding H 2 O 2 decomposition catalyst column 1. It is also possible to adjust the dissolved oxygen concentration. Although there is no restriction | limiting in particular in the vacuum pump used here, The oil-free scroll-type vacuum pump etc. which do not have a problem of secondary contamination are used suitably.

図1では、液相室2Aの出口配管に設けたDO計2Kに連動して、酸素ガス供給配管のバルブ2Vの開度を制御して酸素ガス供給量を調整することにより、所望のDO濃度の水を得る。   In FIG. 1, the desired DO concentration is obtained by adjusting the oxygen gas supply amount by controlling the opening of the valve 2V of the oxygen gas supply pipe in conjunction with the DO meter 2K provided in the outlet pipe of the liquid phase chamber 2A. Get the water.

気体透過膜2Mは、酸素、窒素、二酸化炭素、水蒸気などの気体は透過するが水は透過しない膜であり、例えば、シリコーン系膜、ポリテトラフルオロエチレン系膜、ポリオレフィン系膜、ポリウレタン系膜などを挙げることができる。   The gas permeable membrane 2M is a membrane that transmits gas such as oxygen, nitrogen, carbon dioxide, and water vapor but does not transmit water. For example, a silicone-based film, a polytetrafluoroethylene-based film, a polyolefin-based film, a polyurethane-based film, and the like Can be mentioned.

なお、DO濃度調整手段としては、エゼクターを用いるガス溶解方式や高濃度酸素水を注入して濃度調整する方法なども採用し得るが、図1のようなガス溶解膜モジュール2であれば、ppbオーダーの低濃度のDOを容易に精度よくかつ俊敏に濃度調整できることから好ましい。   As the DO concentration adjusting means, a gas dissolution method using an ejector or a method of adjusting the concentration by injecting high-concentration oxygen water can be adopted. However, if the gas dissolution membrane module 2 as shown in FIG. An order of low concentration DO is preferable because the concentration can be easily and accurately adjusted.

本発明においては、このようなガス溶解膜モジュール等を用いたDO濃度の調整により、DO濃度調整水(ガス溶解膜モジュール2の出口水)中のDO濃度を1〜200ppb程度、特に5〜100ppb程度に調整することが好ましい。   In the present invention, the DO concentration in the DO concentration adjusting water (the outlet water of the gas dissolving membrane module 2) is adjusted to about 1 to 200 ppb, particularly 5 to 100 ppb by adjusting the DO concentration using such a gas dissolving membrane module. It is preferable to adjust to the extent.

即ち、本発明では、図1に示すように、有機物除去手段として、低圧UV酸化器3と有機物除去触媒カラム4とを組み合わせて用いるが、低圧UV酸化器における有機物分解効率は、被処理水中のDO酸素濃度が5〜100ppb程度の方が、それよりも少ないDO濃度(例えば1ppb未満)と比べて高くなることが知られており(前述の特許文献1)、更に後段の有機物除去触媒カラム4における有機物処理のためにもDOが必要となる。このため、本発明では、低圧UV酸化に先立つDO濃度の調整により、DO濃度調整水(ガス溶解膜モジュール2の出口水)中のDO濃度を1〜200ppb程度、特に5〜100ppb程度に調整することが好ましい。   That is, in the present invention, as shown in FIG. 1, the organic substance removing means is used in combination with the low pressure UV oxidizer 3 and the organic substance removal catalyst column 4, but the organic substance decomposition efficiency in the low pressure UV oxidizer is It is known that a DO oxygen concentration of about 5 to 100 ppb is higher than a lower DO concentration (for example, less than 1 ppb) (Patent Document 1 described above), and further, an organic substance removal catalyst column 4 in the latter stage. DO is also required for the organic matter treatment. Therefore, in the present invention, the DO concentration in the DO concentration adjusting water (the outlet water of the gas dissolution membrane module 2) is adjusted to about 1 to 200 ppb, particularly about 5 to 100 ppb by adjusting the DO concentration prior to low-pressure UV oxidation. It is preferable.

このDO濃度が低過ぎると低圧UV酸化器3、更には有機物除去触媒カラム4において、十分に高い有機物除去効率を得ることができない。DO濃度が高過ぎると有機物除去触媒カラムの処理時間低下、処理量低下を引き起こすため好ましくない。   If the DO concentration is too low, a sufficiently high organic substance removal efficiency cannot be obtained in the low-pressure UV oxidizer 3 and further the organic substance removal catalyst column 4. If the DO concentration is too high, the processing time and processing amount of the organic substance removal catalyst column are reduced, which is not preferable.

なお、本発明において、DO濃度調整手段は必ずしも必要とされず、原水中のDO濃度が所望の範囲内で安定している場合には、これを省略することができる。   In the present invention, the DO concentration adjusting means is not necessarily required, and can be omitted when the DO concentration in the raw water is stable within a desired range.

[低圧UV酸化器]
図1において、ガス溶解膜モジュール2でDO濃度が調整された水は、次いで低圧UV酸化器3に導入され、水中の有機物の酸化分解処理が行われる。
[Low pressure UV oxidizer]
In FIG. 1, the water whose DO concentration is adjusted by the gas-dissolving membrane module 2 is then introduced into the low-pressure UV oxidizer 3 to oxidize and decompose organic substances in the water.

低圧UV酸化器3では、水中の難分解性有機物(主に尿素などの低分子窒素化合物)以外の有機物は二酸化炭素と有機酸に酸化分解処理され、分解生成物は後段の有機物除去触媒カラム4の有機物除去触媒4Aのアニオン交換基と、更にその後段のイオン交換樹脂カラム5のイオン交換樹脂で除去される。   In the low-pressure UV oxidizer 3, organic substances other than the hardly decomposable organic substances (mainly low molecular nitrogen compounds such as urea) in water are oxidized and decomposed into carbon dioxide and organic acids, and the decomposition products are the organic substance removal catalyst column 4 in the subsequent stage. The anion exchange group of the organic matter removal catalyst 4A and the ion exchange resin of the ion exchange resin column 5 in the subsequent stage are removed.

また、低圧UV酸化装置3では、前述のように、過酸化水素の生成があるが、この過酸化水素は、後段の有機物除去触媒カラム4において、有機物除去触媒により接触分解され、過酸化水素の分解で生成した酸素は、有機物除去触媒による有機物除去処理に必要な溶存酸素源として活用される。   In the low-pressure UV oxidizer 3, as described above, hydrogen peroxide is generated. This hydrogen peroxide is catalytically decomposed by the organic substance removing catalyst in the organic substance removing catalyst column 4 in the subsequent stage to generate hydrogen peroxide. Oxygen generated by the decomposition is utilized as a dissolved oxygen source necessary for organic substance removal treatment by the organic substance removal catalyst.

なお、低圧UV酸化器3では、低圧UVの照射で水が励起されて、2HO→H+Hの反応で過酸化水素と水素が生成するが、この過酸化水素と水素は、後段の有機物除去触媒カラム4において、再びH+H→2HOの反応で水に戻る。ここで、前述の酸素由来の過酸化水素、1/2O+HO→Hは、分解して酸素源となる。生じる過酸化水素に区別はないが、HとOとHがバランスし、UV入口の酸素は触媒カラムで酸素源として用いられる。 In the low pressure UV oxidizer 3, water is excited by irradiation with low pressure UV, and hydrogen peroxide and hydrogen are generated by the reaction of 2H 2 O → H 2 O 2 + H 2. In the latter organic substance removal catalyst column 4, the reaction returns to water again by the reaction of H 2 O 2 + H 2 → 2H 2 O. Here, the hydrogen peroxide derived from oxygen, 1 / 2O 2 + H 2 O → H 2 O 2 is decomposed to become an oxygen source. There is no distinction between the resulting hydrogen peroxide, but H 2 O 2 , O 2 and H 2 are balanced, and the oxygen at the UV inlet is used as the oxygen source in the catalyst column.

低圧UV酸化器において、被処理水中の酸素が過酸化水素生成やTOC分解に寄与する割合は、低圧UVランプの照射強度による。例えば、(株)日本フォトサイエンス社製UVランプ 型式「AY−7」の場合、DO濃度10ppbまではほぼ全量、過酸化水素生成とTOC分解に消費され、10ppb以上はその差分(供給DO濃度−10ppb)がそのまま後段への溶存酸素負荷となる。このランプの場合、消費される溶存酸素は約80%が過酸化水素生成に用いられ、20%がTOCの分解に寄与する。従って、供給した(溶存酸素−2ppb)が後段への溶存酸素負荷となる。なお、上述の如く、UV照射で生成する水の励起に由来する過酸化水素は、水に戻るため、有機物除去触媒による有機物除去反応の酸素源として考慮する必要はない。   In the low-pressure UV oxidizer, the proportion of oxygen in the water to be treated that contributes to hydrogen peroxide generation and TOC decomposition depends on the irradiation intensity of the low-pressure UV lamp. For example, in the case of the UV lamp model “AY-7” manufactured by Nippon Photo Science Co., Ltd., almost all of the DO concentration up to 10 ppb is consumed for hydrogen peroxide generation and TOC decomposition, and the difference (supply DO concentration − 10 ppb) becomes the dissolved oxygen load to the subsequent stage as it is. In this lamp, about 80% of the dissolved oxygen consumed is used for hydrogen peroxide production, and 20% contributes to the decomposition of TOC. Therefore, the supplied (dissolved oxygen-2 ppb) becomes a dissolved oxygen load to the subsequent stage. As described above, since hydrogen peroxide derived from the excitation of water generated by UV irradiation returns to water, it is not necessary to consider it as an oxygen source for the organic substance removal reaction by the organic substance removal catalyst.

本発明においては、有機物除去触媒による有機物除去工程に先立ち、このような低圧UV酸化による有機物分解処理を行い、UV前でDOを高めることにより、UVでの分解効率の向上が見込める。これにより全体のTOC除去率を上げることができる。しかも、前述の如く、低圧UV酸化で生成する過酸化水素は、有機物除去触媒により分解除去されると共に、この過酸化水素の分解で生成した酸素は有機物除去触媒による有機物除去反応に利用されて消費されるため、有機物除去工程の後段のDO負荷が軽減され、その後のDO除去のための脱気手段などが不要となる。   In the present invention, prior to the organic substance removal step by the organic substance removal catalyst, the organic substance decomposition treatment by such low-pressure UV oxidation is performed, and the DO efficiency is expected to be improved by increasing the DO before UV. As a result, the overall TOC removal rate can be increased. Moreover, as described above, hydrogen peroxide generated by low-pressure UV oxidation is decomposed and removed by the organic substance removal catalyst, and oxygen generated by the decomposition of hydrogen peroxide is used for organic substance removal reaction by the organic substance removal catalyst and consumed. Therefore, the DO load at the latter stage of the organic substance removing step is reduced, and a deaeration means for removing the subsequent DO becomes unnecessary.

[有機物除去触媒カラム]
図1では、低圧UV酸化器3の処理水は、次いで有機物除去触媒4Aが充填された有機物除去触媒カラム4に導入されて、溶存酸素の存在下に、水素を吸着した有機物除去触媒により有機物が除去される。この有機物除去触媒カラム4における有機物除去機構は次の通りである。
[Organic substance removal catalyst column]
In FIG. 1, the treated water of the low-pressure UV oxidizer 3 is then introduced into an organic substance removing catalyst column 4 packed with an organic substance removing catalyst 4A, and the organic substances are removed by the organic substance removing catalyst that has adsorbed hydrogen in the presence of dissolved oxygen. Removed. The organic substance removal mechanism in the organic substance removal catalyst column 4 is as follows.

即ち、前述の如く、有機物除去触媒の存在下で、有機物除去触媒に吸着した水素と水中の酸素とが結合し、有機物除去触媒表面に電子の偏在が生じる。この結果、有機物除去触媒表面の電子が粗の部分に尿素等の低分子窒素化合物の有する非共有電子対が結合(吸着)していると推測される。そして、続いて水素を供給することで、酸素が水素と接触して水になる際に、非共有電子対の結合が切れて有機物が有機物除去触媒上から脱離し元の状態に戻る。このように有機物の吸着、脱離を繰り返すことで、有機物が分解され、水中から除去されるものと考えられる。   That is, as described above, in the presence of the organic substance removal catalyst, hydrogen adsorbed on the organic substance removal catalyst and oxygen in water are combined, and electrons are unevenly distributed on the surface of the organic substance removal catalyst. As a result, it is presumed that the unshared electron pair possessed by the low molecular nitrogen compound such as urea is bonded (adsorbed) to the rough portion of the surface of the organic substance removal catalyst. Then, by subsequently supplying hydrogen, when oxygen comes into contact with hydrogen and becomes water, the bond of the unshared electron pair is broken, and the organic matter is desorbed from the organic matter removing catalyst and returns to the original state. Thus, it is considered that the organic matter is decomposed and removed from the water by repeating the adsorption and desorption of the organic matter.

ここで、有機物除去触媒に含まれる金属としては、水素を十分に吸着し得るものであれば良く、白金族金属、マグネシウム或いはこれらの合金(以下、これらの触媒金属を「白金族金属等」と称す場合がある。)が挙げられ、このうち、白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。また、2種以上の金属よりなる合金として用いることもできる。また、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。   Here, the metal contained in the organic substance removal catalyst may be any metal that can sufficiently adsorb hydrogen, and platinum group metal, magnesium, or an alloy thereof (hereinafter, these catalyst metals are referred to as “platinum group metal etc.”). Among them, examples of the platinum group metal include ruthenium, rhodium, palladium, osmium, iridium and platinum. These metals can be used individually by 1 type, and can also be used in combination of 2 or more type. It can also be used as an alloy made of two or more metals. Moreover, the refined product of the mixture produced naturally can also be used without isolate | separating into a single-piece | unit. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them is particularly suitable because of its strong catalytic activity.

この有機物除去触媒は、白金族金属等の微粒子でもよく、白金族金属等のナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。また、有機物除去触媒は、セラミックボール等の基体に白金等の白金族金属等の被膜をめっき等により形成したものでもよい。   The organic substance removal catalyst may be a fine particle such as a platinum group metal or a metal supported catalyst in which nano colloidal particles such as a platinum group metal are supported on the surface of the support. Further, the organic substance removal catalyst may be one in which a coating such as platinum group metal such as platinum is formed on a base such as a ceramic ball by plating or the like.

白金族金属等のナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。金属塩還元反応法による場合、例えば、白金などの白金族金属等の塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を白金族金属等に対して4〜20当量倍添加し、1〜3時間煮沸することにより、白金族金属等のナノコロイド粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、白金ナノコロイド粒子を製造することができる。   There is no restriction | limiting in particular in the method of manufacturing nano colloidal particles, such as a platinum group metal, For example, a metal salt reduction reaction method, a combustion method etc. can be mentioned. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained. In the case of the metal salt reduction reaction method, for example, an alcohol, citric acid or a salt thereof is added to a 0.1 to 0.4 mmol / L aqueous solution such as a platinum group metal such as platinum, a nitrate, a sulfate, or a metal complex. Nano colloidal particles such as platinum group metals can be produced by adding a reducing agent such as formic acid, acetone, acetaldehyde, etc. 4 to 20 equivalents with respect to the platinum group metals and boiling for 1 to 3 hours. Further, for example, by dissolving 1-2 mmol / L of hexachloroplatinic acid, potassium hexachloroplatinate, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, Nanocolloid particles can be produced.

白金族金属等のナノコロイド粒子の重量平均粒子径は好ましくは1〜50nmであり、より好ましくは1.2〜20nmであり、さらに好ましくは1.4〜5nmである。金属ナノコロイド粒子の重量平均粒子径が1nm未満であると、有機物の分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の重量平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、有機物の分解除去に対する触媒活性が低下するおそれがある。   The weight average particle diameter of the nano colloidal particles such as platinum group metal is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the weight average particle diameter of the metal nanocolloid particles is less than 1 nm, the catalytic activity for the decomposition and removal of organic substances may be reduced. When the weight average particle diameter of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles becomes small, and the catalytic activity for the decomposition and removal of organic substances may be reduced.

白金族金属等のナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族金属等のナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくい。このアニオン交換樹脂は、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。アニオン交換樹脂の交換基は、OH形であることが好ましい。   There is no restriction | limiting in particular in the support | carrier which carries nano colloidal particles, such as a platinum group metal, For example, a magnesia, a titania, an alumina, a silica-alumina, a zirconia, activated carbon, a zeolite, a diatomaceous earth, an ion exchange resin etc. can be mentioned. Among these, an anion exchange resin can be particularly preferably used. Nano colloidal particles such as platinum group metals have an electric double layer and are negatively charged. Therefore, they are stably supported on an anion exchange resin and hardly peel off. This anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel resin. The exchange group of the anion exchange resin is preferably in the OH form.

アニオン交換樹脂等の担体への白金族金属等のナノコロイド粒子の担持量は、0.01〜0.2重量%であることが好ましく、0.04〜0.1重量%であることがより好ましい。金属ナノコロイド粒子の担持量が0.01重量%未満であると、有機物の分解除去に対する触媒活性が不足するおそれがある。金属ナノコロイド粒子の担持量は0.2重量%以下で有機物の分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノコロイド粒子を担持させる必要はない。また、金属ナノコロイド粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。   The amount of nanocolloid particles such as platinum group metal supported on a carrier such as an anion exchange resin is preferably 0.01 to 0.2% by weight, more preferably 0.04 to 0.1% by weight. preferable. If the supported amount of metal nanocolloid particles is less than 0.01% by weight, the catalytic activity for the decomposition and removal of organic substances may be insufficient. The supported amount of the metal nanocolloid particles is 0.2% by weight or less, and sufficient catalytic activity is exhibited for the decomposition and removal of the organic matter. Usually, it is not necessary to support the metal nanocolloid particles exceeding 0.2% by weight. In addition, when the amount of metal nanocolloid particles supported increases, the risk of metal elution into water also increases.

なお、有機物除去触媒カラム4で有機物除去処理を継続することにより、有機物除去触媒カラム4内の有機物除去触媒4aの水素吸着量が少なくなり、有機物除去効率が低下するので、この場合には、有機物除去触媒への水素吸着工程を実施する。   It should be noted that by continuing the organic substance removal treatment with the organic substance removal catalyst column 4, the amount of hydrogen adsorption of the organic substance removal catalyst 4a in the organic substance removal catalyst column 4 is reduced, and the organic substance removal efficiency is reduced. A hydrogen adsorption step is performed on the removed catalyst.

有機物除去触媒の水素吸着量が少なくなったか否かは、例えば、有機物除去触媒カラム4への流入水及び流出水のDO濃度を測定し、この濃度差が所定値以下であるか否かによって判定することができる。即ち、有機物除去触媒カラム4の流入水のDO濃度と流出水のDO濃度との差が所定値以下であれば、水素吸着量が十分であるためDOが水素との反応で除去されており、逆に所定値を超える場合は、水素吸着量が不足しているために、DOが水素との反応で消費されていないことを示す。
従って、例えば、有機物除去触媒カラム4の出口DO濃度をDO計4Kで測定し、このDO計4Kの測定値が上昇してきたときに、有機物除去工程から水素吸着工程に切り替えることができる。
Whether or not the hydrogen adsorption amount of the organic substance removal catalyst has decreased is determined, for example, by measuring the DO concentration of the inflow water and the effluent water to the organic substance removal catalyst column 4 and determining whether or not this difference in concentration is equal to or less than a predetermined value. can do. That is, if the difference between the DO concentration of the inflowing water and the DO concentration of the outflowing water of the organic matter removal catalyst column 4 is equal to or less than a predetermined value, the hydrogen adsorption amount is sufficient and the DO is removed by the reaction with hydrogen. Conversely, when it exceeds a predetermined value, it indicates that DO is not consumed in the reaction with hydrogen because the hydrogen adsorption amount is insufficient.
Therefore, for example, when the outlet DO concentration of the organic matter removal catalyst column 4 is measured by the DO meter 4K and the measured value of the DO meter 4K increases, the organic matter removal step can be switched to the hydrogen adsorption step.

水素吸着工程の実施に際しては、低圧UV酸化器3からの水の流入を停止して、有機物除去触媒カラム4内の水を排出した後、水素ガスを有機物除去触媒カラム4内に導入しカラム4内の有機物除去触媒4Aに水素を吸着させる(図1において破線で示す配管)。このとき、有機物除去触媒カラム4を密閉して、有機物除去触媒カラム4内を加圧して水素の吸着を促進してもよい。また、カラム4に水素を流通させるようにしてもよい。   In carrying out the hydrogen adsorption process, the inflow of water from the low-pressure UV oxidizer 3 is stopped and the water in the organic matter removal catalyst column 4 is discharged, and then hydrogen gas is introduced into the organic matter removal catalyst column 4 and the column 4 Hydrogen is adsorbed on the organic matter removal catalyst 4A in the inside (pipe shown by a broken line in FIG. 1). At this time, the organic substance removal catalyst column 4 may be sealed, and the inside of the organic substance removal catalyst column 4 may be pressurized to promote hydrogen adsorption. Further, hydrogen may be circulated through the column 4.

有機物除去触媒4Aに十分に水素を吸着させた後は再び低圧UV酸化器3からの水を通水して、カラム4内をこの水で満たして有機物除去工程を再開する。   After sufficiently adsorbing hydrogen to the organic matter removing catalyst 4A, the water from the low-pressure UV oxidizer 3 is passed again, the column 4 is filled with this water, and the organic matter removing step is restarted.

このように、有機物除去触媒カラム内の有機物除去触媒に水素を吸着させて再び使用する他、有機物除去触媒カラム内の有機物除去触媒を、水素を吸着した別の有機物除去触媒と交換するようにしてもよい。また、有機物除去触媒カラムを複数本並設し、一部のカラムで有機物除去工程を行い、他のカラムでは水素吸着工程を行うようにして、有機物除去と水素吸着を行うカラムを切り換えて連続処理することもできる。   In this way, in addition to adsorbing hydrogen to the organic substance removal catalyst in the organic substance removal catalyst column and using it again, the organic substance removal catalyst in the organic substance removal catalyst column is exchanged with another organic substance removal catalyst that has adsorbed hydrogen. Also good. In addition, multiple organic substance removal catalyst columns are arranged side by side, the organic substance removal process is performed in some columns, the hydrogen adsorption process is performed in other columns, and the column for removing organic substances and hydrogen adsorption is switched to perform continuous processing. You can also

[イオン交換樹脂カラム]
図1の装置において、有機物除去触媒カラム4の流出水は、次いで、イオン交換樹脂5Aが充填されたイオン交換樹脂カラム5に通水して、有機物除去処理水中に含有される未分解の有機物や有機物の分解過程で生じる有機酸等を吸着除去する。
[Ion exchange resin column]
In the apparatus of FIG. 1, the effluent of the organic substance removal catalyst column 4 is then passed through the ion exchange resin column 5 packed with the ion exchange resin 5A, and undecomposed organic substances contained in the organic substance removal treated water Adsorbs and removes organic acids, etc. that are generated during the decomposition of organic matter.

即ち、このイオン交換樹脂カラム5では、低圧UV酸化器3で生成した二酸化炭素や有機酸と、有機物除去触媒カラムから生じるイオン成分、その他の有機物を除去する。イオン交換樹脂としては、アニオン交換樹脂、カチオン交換樹脂、或いはその両方を含むものが挙げられるが、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とをイオン負荷に応じて混合充填した非再生型混床式イオン交換装置を用いることが好ましい。混床式イオン交換装置により、残留有機物や、有機物の分解過程で生成する有機酸等も除去されると共に、水中のカチオンとアニオンが完全に除去されて、有機物濃度及び電気伝導率が極めて低い超純水を得ることができる。   That is, the ion exchange resin column 5 removes carbon dioxide and organic acid generated by the low-pressure UV oxidizer 3, ion components generated from the organic substance removal catalyst column, and other organic substances. Examples of the ion exchange resin include those containing an anion exchange resin, a cation exchange resin, or both, but a non-regenerative type in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed and filled in accordance with an ion load. It is preferable to use a mixed bed type ion exchanger. The mixed-bed ion exchanger removes residual organic substances and organic acids generated during the decomposition process of organic substances, and also completely removes cations and anions in water, resulting in extremely low organic substance concentration and electrical conductivity. Pure water can be obtained.

なお、有機物除去触媒カラム4からの有機物除去処理水は、イオン交換樹脂カラム5に通水するに先立ち、脱気処理を行ってもよい。これにより、有機物の分解等によって生じた炭酸ガスが除去されるので、アニオン交換樹脂に対する炭酸イオン負荷が軽減される。   In addition, the organic substance removal treated water from the organic substance removal catalyst column 4 may be subjected to deaeration treatment before passing through the ion exchange resin column 5. Thereby, the carbon dioxide gas generated by the decomposition of the organic matter or the like is removed, so that the carbonate ion load on the anion exchange resin is reduced.

イオン交換樹脂カラム5の流出水は、有機物とイオン成分が高度に除去された超純水であり、処理水として使用場所に供給される。   The effluent water from the ion exchange resin column 5 is ultrapure water from which organic substances and ionic components are highly removed, and is supplied to the place of use as treated water.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
図1に示す水処理装置を用いて、水処理を行った。
この水処理装置の各部の仕様は次の通りである。
[Example 1]
Water treatment was performed using the water treatment apparatus shown in FIG.
The specifications of each part of this water treatment device are as follows.

分解触媒カラム1:栗田工業(株)製ナノセイバー用Pt担持樹脂を
100mL充填
ガス溶解膜モジュール2:セルガード社製脱気膜モジュール「リキセルG420」
低圧UV酸化器3:(株)日本フォトサイエンス製「AY−7]
有機物除去触媒カラム4:栗田工業(株)製ナノセイバー用Pt担持樹脂を
500mL充填
イオン交換樹脂カラム5:栗田工業(株)製アニオン交換樹脂「KR−UA1」
310mLと同カチオン交換樹脂「KR−UC1]
190mLを充填
H 2 O 2 decomposition catalyst column 1: Pt-supported resin for nanosaber manufactured by Kurita Kogyo Co., Ltd.
Gas dissolution membrane module 2 filled with 100 mL: Degassing membrane module “Lixel G420” manufactured by Celgard
Low pressure UV oxidizer 3: “AY-7” manufactured by Nippon Photo Science Co., Ltd.
Organic substance removal catalyst column 4: Pt-supported resin for nanosaber manufactured by Kurita Kogyo Co., Ltd.
500 mL packed ion exchange resin column 5: anion exchange resin “KR-UA1” manufactured by Kurita Kogyo Co., Ltd.
310 mL and the same cation exchange resin “KR-UC1”
Filled with 190mL

原水としては、超純水にTOC源として尿素3ppb(炭素換算濃度)とイソプロパノール5ppb(炭素換算濃度)とを添加した合成水を用いた。この原水中には、過酸化水素が15ppb含まれていた。原水処理水量は0.5L/minとし、処理水の水質計としては以下のものを用いた。また、有機物除去触媒には、予め水素を吸着させて使用した。ガス溶解膜モジュール2では、モジュール出口水中のDO濃度が30ppbとなるようにDO濃度調整を行なった。
TOC計:シーバス社製「シーバス500RLe」
DO計:ハックウルトラアナリティクスジャパン社製「オービス3610」
As raw water, synthetic water obtained by adding urea 3 ppb (carbon equivalent concentration) and isopropanol 5 ppb (carbon equivalent concentration) as TOC sources to ultrapure water was used. This raw water contained 15 ppb of hydrogen peroxide. The amount of raw water treated water was 0.5 L / min, and the following water quality meters were used. In addition, hydrogen was adsorbed in advance for the organic substance removal catalyst. In the gas dissolving membrane module 2, the DO concentration was adjusted so that the DO concentration in the module outlet water was 30 ppb.
TOC meter: "Seabas 500RLe" manufactured by Seabass
DO meter: “Orvis 3610” manufactured by Hack Ultra Analytics Japan

原水中には15ppbの過酸化水素が含まれており、そのままでは有機物除去触媒カラム4において、2H→2HO+Oの反応で分解して、この過酸化水素が7ppbの溶存酸素負荷となるが、前段にH分解触媒カラム1と脱気しながらのガス溶解膜モジュール2が設けられているので、設定値通りにDO濃度を調整することができた。なお、H分解触媒カラム1の出口水のH濃度は1ppb以下であった。
The raw water contains 15 ppb of hydrogen peroxide, and as it is, it is decomposed by the reaction of 2H 2 O 2 → 2H 2 O + O 2 in the organic substance removal catalyst column 4, and this hydrogen peroxide has a dissolved oxygen load of 7 ppb. However, since the H 2 O 2 decomposition catalyst column 1 and the gas dissolution membrane module 2 while degassing were provided in the previous stage, the DO concentration could be adjusted according to the set value. The H 2 O 2 concentration in the outlet water of the H 2 O 2 decomposition catalyst column 1 was 1 ppb or less.

この結果、処理水(イオン交換樹脂カラム5の出口水)のTOC濃度は、1ppb以下であり、原水中のTOC濃度は高度に除去された。
また、有機物除去触媒カラム4の出口水のDO濃度は1ppb以下、H濃度も1ppb以下であり、有機物除去触媒により脱酸素が行われ、また、過酸化水素も分解除去された。
As a result, the TOC concentration of the treated water (the outlet water of the ion exchange resin column 5) was 1 ppb or less, and the TOC concentration in the raw water was highly removed.
Further, the DO concentration of the outlet water of the organic matter removal catalyst column 4 was 1 ppb or less, the H 2 O 2 concentration was 1 ppb or less, deoxygenation was performed by the organic matter removal catalyst, and hydrogen peroxide was also decomposed and removed.

[比較例1]
実施例1において、低圧UV酸化器と3有機物除去触媒カラム4を入れ換え、H分解触媒カラム→ガス溶解膜モジュール→有機物除去触媒カラム→低圧UV酸化器→イオン交換樹脂カラムの順として、同様に原水の処理を行った。
その結果、処理水(イオン交換樹脂カラムの出口水)のTOC濃度は1.2ppbであり、H濃度は5ppb、DO濃度は2ppbであった。
本例では、低圧UV酸化器に有機物除去触媒により脱酸素された水が供給されたため、低圧UV酸化器での有機物酸化分解効率が低下したことにより有機物除去効果が低下したことが考えられる。また、低圧UV酸化器の後段に、過酸化水素を高度に分解する単位操作がないため、過酸化水素が残留した。また、イオン交換樹脂で少し分解した過酸化水素によりDOが上昇したと考えられる。
[Comparative Example 1]
In Example 1, the low-pressure UV oxidizer and the 3 organic substance removal catalyst column 4 are replaced, and the order of H 2 O 2 decomposition catalyst column → gas dissolution membrane module → organic substance removal catalyst column → low pressure UV oxidizer → ion exchange resin column is as follows: Similarly, the raw water was treated.
As a result, the TOC concentration of the treated water (the outlet water of the ion exchange resin column) was 1.2 ppb, the H 2 O 2 concentration was 5 ppb, and the DO concentration was 2 ppb.
In this example, since the water deoxygenated by the organic substance removal catalyst was supplied to the low-pressure UV oxidizer, it is considered that the organic substance removal effect was lowered due to the reduced organic substance oxidative decomposition efficiency in the low-pressure UV oxidizer. Further, since there was no unit operation for highly decomposing hydrogen peroxide in the subsequent stage of the low pressure UV oxidizer, hydrogen peroxide remained. In addition, it is considered that DO increased due to hydrogen peroxide slightly decomposed by the ion exchange resin.

[参考例1]
実施例1において、H分解触媒カラム1を省略し、ガス溶解膜モジュール2と低圧UV酸化器3を入れ換え、低圧UV酸化器→ガス溶解膜モジュール→有機物除去触媒カラム→イオン交換樹脂カラムの順として同様に原水の処理を行った。
その結果、処理水(イオン交換樹脂カラムの出口水)のTOC濃度は1.2ppb、H濃度は1ppb以下、DO濃度は1ppb以下であった。
本例では、低圧UV酸化器に流入する水のDO濃度が低いために低圧UV酸化器でのイソプロパノール分解能が低下したことにより有機物除去効果が低下したことが考えられる。
[Reference Example 1]
In Example 1, the H 2 O 2 decomposition catalyst column 1 is omitted, the gas dissolution membrane module 2 and the low pressure UV oxidizer 3 are replaced, and the low pressure UV oxidizer → the gas dissolution membrane module → the organic substance removal catalyst column → the ion exchange resin column. The raw water was treated in the same way.
As a result, the TOC concentration of the treated water (the outlet water of the ion exchange resin column) was 1.2 ppb, the H 2 O 2 concentration was 1 ppb or less, and the DO concentration was 1 ppb or less.
In this example, since the DO concentration of the water flowing into the low-pressure UV oxidizer is low, it can be considered that the organic substance removal effect is lowered due to the decrease in the isopropanol resolution in the low-pressure UV oxidizer.

本発明によれば、低分子窒素化合物を含むTOC成分を簡便にかつ高度に除去することが可能であり、更には、溶存酸素や過酸化水素についても高度に除去することができる。このため、本発明を超純水の製造システム等に好適に適用して、超純水中のTOC成分、溶存酸素、過酸化水素を簡便にかつ高度に低濃度化することができる。   According to the present invention, a TOC component containing a low molecular nitrogen compound can be easily and highly removed, and dissolved oxygen and hydrogen peroxide can also be highly removed. For this reason, the present invention can be suitably applied to an ultrapure water production system or the like, and the TOC component, dissolved oxygen, and hydrogen peroxide in ultrapure water can be easily and highly reduced in concentration.

1 H分解触媒カラム
2 ガス溶解膜モジュール
3 低圧UV酸化器
4 有機物除去触媒カラム
5 イオン交換樹脂カラム
1 H 2 O 2 decomposition catalyst column 2 Gas dissolution membrane module 3 Low pressure UV oxidizer 4 Organic substance removal catalyst column 5 Ion exchange resin column

Claims (12)

有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着させた金属を含む有機物除去触媒に接触させて、該被処理水中の有機物を除去する有機物除去工程を含む水処理方法において、
該被処理水中の有機物を低圧紫外線酸化して分解する低圧UV酸化工程を有し、該低圧UV酸化工程の処理水が前記有機物除去工程に導入されることを特徴とする水処理方法。
In a water treatment method including an organic matter removing step of removing an organic matter in water to be treated by bringing the treated water containing the organic matter into contact with an organic matter removing catalyst containing a metal adsorbed with hydrogen in the presence of dissolved oxygen. ,
A water treatment method comprising a low-pressure UV oxidation step of decomposing organic matter in the water to be treated by low-pressure ultraviolet oxidation, wherein treated water in the low-pressure UV oxidation step is introduced into the organic matter removal step.
請求項1において、前記被処理水の溶存酸素濃度を調整するDO濃度調整工程を有し、該DO濃度調整工程の処理水が前記低圧UV酸化工程に導入されることを特徴とする水処理方法。   2. The water treatment method according to claim 1, further comprising a DO concentration adjustment step of adjusting a dissolved oxygen concentration of the water to be treated, wherein the treated water of the DO concentration adjustment step is introduced into the low-pressure UV oxidation step. . 請求項2において、前記DO濃度調整工程において、水中の溶存酸素濃度を1〜200ppbに調整することを特徴とする水処理方法。   3. The water treatment method according to claim 2, wherein in the DO concentration adjustment step, the dissolved oxygen concentration in water is adjusted to 1 to 200 ppb. 請求項2又は3において、前記被処理水中の過酸化水素を除去するH除去工程を有し、該H除去工程の処理水が前記DO濃度調整工程に導入されることを特徴とする水処理方法。 According to claim 2 or 3, having a H 2 O 2 removal step of removing hydrogen peroxide of the water to be treated, that the treated water of the H 2 O 2 removal step is introduced into the DO concentration adjusting process A water treatment method characterized. 請求項1ないし4のいずれか1項において、前記有機物除去工程の処理水をイオン交換処理するイオン交換工程を有することを特徴とする水処理方法。   5. The water treatment method according to claim 1, further comprising an ion exchange step in which the treated water in the organic substance removal step is subjected to an ion exchange treatment. 請求項1ないし5のいずれか1項において、前記被処理水が、逆浸透膜分離装置、イオン交換装置、及び低圧紫外線酸化装置のいずれか1以上で処理された処理水であることを特徴とする水処理方法。   In any 1 item | term of the Claims 1 thru | or 5, The said to-be-processed water is a treated water processed with any one or more of a reverse osmosis membrane separator, an ion exchange apparatus, and a low voltage | pressure ultraviolet oxidation apparatus, It is characterized by the above-mentioned. Water treatment method. 有機物を含有する被処理水を、溶存酸素の存在下に、水素を吸着させた金属を含む有機物除去触媒に接触させて、該被処理水中の有機物を除去する有機物除去手段を含む水処理装置において、
該有機物除去手段の前段に、該被処理水中の有機物を低圧紫外線酸化して分解する低圧UV酸化手段を有し、該低圧UV酸化手段の処理水が前記有機物除去手段に導入されることを特徴とする水処理装置。
In a water treatment apparatus comprising an organic matter removing means for bringing water to be treated containing organic matter into contact with an organic matter removing catalyst containing a metal adsorbed with hydrogen in the presence of dissolved oxygen to remove the organic matter in the treated water. ,
It has a low-pressure UV oxidation means for decomposing the organic matter in the water to be treated by low-pressure ultraviolet oxidation before the organic matter removal means, and the treated water of the low-pressure UV oxidation means is introduced into the organic matter removal means. Water treatment equipment.
請求項7において、前記低圧UV酸化手段の前段に前記被処理水の溶存酸素濃度を調整するDO濃度調整手段を有し、該DO濃度調整手段の処理水が該低圧UV酸化手段に導入されることを特徴とする水処理装置。   8. The DO concentration adjusting means for adjusting the dissolved oxygen concentration of the water to be treated is provided upstream of the low pressure UV oxidizing means, and the treated water of the DO concentration adjusting means is introduced into the low pressure UV oxidizing means. The water treatment apparatus characterized by the above-mentioned. 請求項8において、前記DO濃度調整手段において、水中の溶存酸素濃度が1〜200ppbに調整されることを特徴とする水処理装置。   9. The water treatment apparatus according to claim 8, wherein the DO concentration adjusting means adjusts the dissolved oxygen concentration in water to 1 to 200 ppb. 請求項8又は9において、前記DO濃度調整手段の前段に、前記被処理水中の過酸化水素を除去するH除去手段を有し、該H除去手段の処理水が該DO濃度調整手段に導入されることを特徴とする水処理装置。 According to claim 8 or 9, wherein upstream of the DO concentration adjusting means includes a H 2 O 2 removing means for removing the hydrogen peroxide of the water to be treated, the H 2 O 2 treated water the DO removal means A water treatment apparatus which is introduced into a concentration adjusting means. 請求項7ないし10のいずれか1項において、前記有機物除去手段の後段に、該有機物除去手段の処理水をイオン交換処理するイオン交換手段を有することを特徴とする水処理装置。   11. The water treatment apparatus according to claim 7, further comprising an ion exchange unit that ion-exchanges treated water of the organic substance removing unit after the organic substance removing unit. 請求項7ないし11のいずれか1項において、前記被処理水が、逆浸透膜分離装置、イオン交換装置、及び低圧紫外線酸化装置のいずれか1以上で処理された処理水であることを特徴とする水処理装置。   In any 1 item | term of the Claims 7 thru | or 11, The said to-be-processed water is a treated water processed with any one or more of a reverse osmosis membrane separator, an ion exchange apparatus, and a low voltage | pressure ultraviolet oxidation apparatus, It is characterized by the above-mentioned. Water treatment equipment.
JP2010033718A 2010-02-18 2010-02-18 Water treatment method and apparatus Active JP5499753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033718A JP5499753B2 (en) 2010-02-18 2010-02-18 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033718A JP5499753B2 (en) 2010-02-18 2010-02-18 Water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2011167633A true JP2011167633A (en) 2011-09-01
JP5499753B2 JP5499753B2 (en) 2014-05-21

Family

ID=44682314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033718A Active JP5499753B2 (en) 2010-02-18 2010-02-18 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5499753B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208557A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
CN103366850A (en) * 2013-06-28 2013-10-23 清华大学 Method for treating radioactive anion exchange resin by wet catalytic oxidation method
CN103562139A (en) * 2011-05-25 2014-02-05 豪威株式会社 Apparatus and method for controlling total dissolved solids, and water treatment apparatus including the same
JP2015166064A (en) * 2014-03-04 2015-09-24 オルガノ株式会社 Apparatus for manufacturing ultrapure water
JP2015181984A (en) * 2014-03-20 2015-10-22 カーリットホールディングス株式会社 Method of treating peroxide
CN106348385A (en) * 2016-10-07 2017-01-25 玉灵华科技有限公司 Degradation device and method for organic matter in sewage
CN108249653A (en) * 2018-01-18 2018-07-06 杭州达京环保科技有限公司 The waste water treatment system and its processing method that a kind of Electro Sorb is combined with photocatalysis
KR20190066055A (en) 2016-11-18 2019-06-12 오르가노 코포레이션 Water treatment method and apparatus
KR20190066059A (en) 2016-11-18 2019-06-12 오르가노 코포레이션 Water treatment method and apparatus
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
WO2022181875A1 (en) * 2021-02-25 2022-09-01 (주)엘켐텍 Water management apparatus in hydrogen production system using water electrolysis
WO2022239314A1 (en) * 2021-05-12 2022-11-17 オルガノ株式会社 Pure water production apparatus and pure water production method
CN115611292A (en) * 2022-10-18 2023-01-17 国能(山东)能源环境有限公司 Copper-based zeolite molecular sieve of fly ash source and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231600B1 (en) 2020-08-27 2021-03-24 케이에스씨컴퍼니 주식회사 Water Treatment System For Treatment Of Total Organic Carbon In Sewage Waste Water
KR102231602B1 (en) 2020-08-31 2021-03-24 케이에스씨컴퍼니 주식회사 Water Treatment System Having Two Purification Part For Treatment Of Total Organic Carbon In Sewage Waste Water

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440292A (en) * 1990-06-06 1992-02-10 Nakano Koji Process for simultaneous removal of organic substance and dissolved oxygen
JPH08168756A (en) * 1994-12-16 1996-07-02 Kurita Water Ind Ltd Deaerator
JP2000042575A (en) * 1998-08-04 2000-02-15 Kurita Water Ind Ltd Treatment of water containing endocrine disrupters
JP2001047044A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Method for treating water containing endocrine disrupting substance
JP2002210494A (en) * 2001-01-18 2002-07-30 Kurita Water Ind Ltd Device for manufacturing extrapure water
JP2004167308A (en) * 2002-11-18 2004-06-17 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004181364A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making method and apparatus therefor
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JP2006192352A (en) * 2005-01-12 2006-07-27 Kurita Water Ind Ltd Ultrapure water production apparatus and ultrapure water production method
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008264630A (en) * 2007-04-17 2008-11-06 Kurita Water Ind Ltd Water treatment apparatus for making ultrapure water and water treatment system for making ultrapure water
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
WO2010013677A1 (en) * 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440292A (en) * 1990-06-06 1992-02-10 Nakano Koji Process for simultaneous removal of organic substance and dissolved oxygen
JPH08168756A (en) * 1994-12-16 1996-07-02 Kurita Water Ind Ltd Deaerator
JP2000042575A (en) * 1998-08-04 2000-02-15 Kurita Water Ind Ltd Treatment of water containing endocrine disrupters
JP2001047044A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Method for treating water containing endocrine disrupting substance
JP2002210494A (en) * 2001-01-18 2002-07-30 Kurita Water Ind Ltd Device for manufacturing extrapure water
JP2004167308A (en) * 2002-11-18 2004-06-17 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004181364A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making method and apparatus therefor
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JP2006192352A (en) * 2005-01-12 2006-07-27 Kurita Water Ind Ltd Ultrapure water production apparatus and ultrapure water production method
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008264630A (en) * 2007-04-17 2008-11-06 Kurita Water Ind Ltd Water treatment apparatus for making ultrapure water and water treatment system for making ultrapure water
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
WO2010013677A1 (en) * 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562139A (en) * 2011-05-25 2014-02-05 豪威株式会社 Apparatus and method for controlling total dissolved solids, and water treatment apparatus including the same
JP2013208557A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
CN103366850A (en) * 2013-06-28 2013-10-23 清华大学 Method for treating radioactive anion exchange resin by wet catalytic oxidation method
JP2015166064A (en) * 2014-03-04 2015-09-24 オルガノ株式会社 Apparatus for manufacturing ultrapure water
JP2015181984A (en) * 2014-03-20 2015-10-22 カーリットホールディングス株式会社 Method of treating peroxide
CN106348385A (en) * 2016-10-07 2017-01-25 玉灵华科技有限公司 Degradation device and method for organic matter in sewage
CN106348385B (en) * 2016-10-07 2019-08-27 玉灵华科技有限公司 A kind of dirt Organic substance in water decomposer and method
KR20190066059A (en) 2016-11-18 2019-06-12 오르가노 코포레이션 Water treatment method and apparatus
KR20190066055A (en) 2016-11-18 2019-06-12 오르가노 코포레이션 Water treatment method and apparatus
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
JP7040008B2 (en) 2017-12-27 2022-03-23 栗田工業株式会社 TOC removal device
CN108249653A (en) * 2018-01-18 2018-07-06 杭州达京环保科技有限公司 The waste water treatment system and its processing method that a kind of Electro Sorb is combined with photocatalysis
CN108249653B (en) * 2018-01-18 2020-09-18 杭州达京环保科技有限公司 Wastewater treatment system combining electro-adsorption and photocatalysis and treatment method thereof
WO2022181875A1 (en) * 2021-02-25 2022-09-01 (주)엘켐텍 Water management apparatus in hydrogen production system using water electrolysis
WO2022239314A1 (en) * 2021-05-12 2022-11-17 オルガノ株式会社 Pure water production apparatus and pure water production method
CN115611292A (en) * 2022-10-18 2023-01-17 国能(山东)能源环境有限公司 Copper-based zeolite molecular sieve of fly ash source and preparation method and application thereof
CN115611292B (en) * 2022-10-18 2024-02-13 国能(山东)能源环境有限公司 Fly ash source copper-based zeolite molecular sieve and preparation method and application thereof

Also Published As

Publication number Publication date
JP5499753B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5499753B2 (en) Water treatment method and apparatus
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
TWI392654B (en) Hydrogen peroxide removal method and removal device
JP5454468B2 (en) Pure water production method and pure water production apparatus
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP4552327B2 (en) Ultrapure water production equipment
WO2019116653A1 (en) Method and apparatus for removing hydrogen peroxide
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP5919960B2 (en) Treatment method for organic water
JP2000308815A (en) Producing device of ozone dissolved water
JP6848415B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment
WO2022190608A1 (en) Method and apparatus for treating water
JP7040008B2 (en) TOC removal device
JP2001044162A (en) Apparatus for manufacturing ozone dissolved water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250