JP3727586B2 - Electric desalination equipment - Google Patents
Electric desalination equipment Download PDFInfo
- Publication number
- JP3727586B2 JP3727586B2 JP2001399520A JP2001399520A JP3727586B2 JP 3727586 B2 JP3727586 B2 JP 3727586B2 JP 2001399520 A JP2001399520 A JP 2001399520A JP 2001399520 A JP2001399520 A JP 2001399520A JP 3727586 B2 JP3727586 B2 JP 3727586B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- water
- desalting
- ion
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、いわゆる電気式脱塩装置における改良に関するものである。特に、本発明は、電気式脱塩装置の脱塩室における被処理水からの炭酸成分の除去特性を改良する電気式脱塩装置に関する。
【0002】
【従来の技術】
電気式脱塩装置とは、陽極及び陰極の間にカチオン交換膜及びアニオン交換膜を配列して濃縮室及び脱塩室を交互に形成し、電位勾配を駆動源として、脱塩室内において被処理液体中のイオンをイオン交換膜を通して濃縮室へと移動・分離させることによって、液体中のイオン成分を除去するものである。
【0003】
図1に典型的な電気式脱塩装置の概念を示す。図1に示す電気式脱塩装置は、陰極(−)と陽極(+)の間に、アニオン交換膜A、カチオン交換膜Cが交互に配列されて、脱塩室及び濃縮室が形成されている。このアニオン交換膜とカチオン交換膜との交互配列を更に繰り返すことにより、複数の脱塩室が並列に形成される。必要に応じて、脱塩室や濃縮室内にはイオン交換体が充填されて、これにより室内でのイオンの移動が促進される。また、両端の陽極及び陰極に接する区画は一般に陽極室及び陰極室と称される。これら極室は、最も電極側の濃縮室が極室として用いられる場合もあるし、或いは、最も電極側の濃縮室の更に電極側に更にイオン交換膜を配置して独立して極室を形成する場合もある。前者の場合には、最も陰極側のイオン交換膜はカチオン交換膜、最も陽極側のイオン交換膜はアニオン交換膜であり、後者の場合には、最も陰極側のイオン交換膜はアニオン交換膜、最も陰極側のイオン交換膜はカチオン交換膜である。極室は、直流電源より印加される電流の電子を授受するという機能を果たす。このような電気式脱塩装置の運転においては、陽極及び陰極に電圧を印加すると共に、脱塩室、濃縮室、両極室に水が供給される。濃縮室に供給される水は濃縮水、脱塩室に供給される水は被処理水と称される。このように被処理水及び濃縮水を脱塩室及び濃縮室にそれぞれ導入すると、水中のカチオン及びアニオンはそれぞれ陰極側及び陽極側に引かれるが、イオン交換膜が同種のイオンのみを選択的に透過するため、被処理水中のカチオン(Ca2+、Na+、Mg2+、H+など)は、カチオン交換膜Cを通して陰極側の濃縮室へ、またアニオン(Cl−、SO4 2−、HSiO3 −、CO3 2−、HCO3 −、OH−など)は、アニオン交換膜Aを通して陽極側の濃縮室へ移動する。一方、濃縮室から脱塩室へのアニオンの移動及び濃縮室から脱塩室へのカチオンの移動は、イオン交換膜の異種イオン遮断性のために阻止される。この結果、脱塩室においては、イオン濃度の低められた脱塩水が得られ、濃縮室においては、イオン濃度の高められた濃縮水が得られる。
【0004】
しかし、このような電気式脱塩装置においては、特に被処理水として、弱解離性イオンである炭酸成分などを多量に含む水を使用する場合に、炭酸成分を解離させて電場の作用により除去することが困難であるために、脱塩効率が劣化するという問題があった。
【0005】
この問題点を解消するための手法として、従来から、予め被処理水にアルカリ性の薬品を添加して、被処理水をアルカリ性にして炭酸成分を解離させてから、電気式脱塩装置に導入して処理する方法が採用されている。これは、炭酸が、酸性域〜中性域においては炭酸H2CO3として存在し、アルカリ性域においては炭酸水素イオンHCO3 −及び炭酸イオンCO3 2−として存在するという知見に基づき、被処理水を薬品添加によってアルカリ性にすることにより炭酸成分の解離を促進させるという原理に基づくものである。しかしながら、この方法では、予めアルカリ性の薬品を添加する必要があり、薬品の取り扱いに注意を要するという運転操作上の問題点があり、薬品を使用せずに運転可能であるという電気式脱塩装置の利点を損なうことになる。
【0006】
【発明が解決しようとする課題】
そこで、本発明は、炭酸成分を多量に含む被処理水を用いる場合であっても、薬品を使用せずに、イオン交換効率を劣化させることなく、効率よく脱塩を行い得る電気式脱塩装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記の問題点を解決すべくなされたものであり、電気式脱塩装置の陰極室出口水を脱塩室に導入することを特徴とするものである。すなわち、本発明は、陽極及び陰極の間にカチオン交換膜及びアニオン交換膜を少なくとも一部交互に配列することによって脱塩室と濃縮室とが形成され、さらに陽極室及び陰極室が形成されている電気式脱塩装置において、陰極室出口水を脱塩室に導入するようになされていることを特徴とする電気式脱塩装置に関する。
【0008】
このように本発明においては、陰極室出口水を脱塩室に導入することにより、脱塩室に導入する被処理水に予めアルカリ性の薬品を添加する必要がなく、弱解離性の炭酸成分を多量に含む水であっても、イオン交換率を劣化させることなく、簡便に且つ効率よく脱塩を行うことができる。これは、陰極室において生じる電極反応により、被処理水中の水分子が
【0009】
【化1】
【0010】
のように電気分解されて、水素ガス(H2)が発生することにより、被処理水中にはOH−イオンが残るので、陰極室出口水がアルカリ性になるという知見に基づくものである。すなわち、アルカリ性の陰極室出口水を脱塩室に導入することにより、脱塩室内部での被処理水中の炭酸成分の解離が促進されるので、炭酸成分を多量に含む被処理水を処理する場合であっても、良好に脱塩処理することができる。
【0011】
なお、本発明においては、陰極室出口水を被処理水に添加して脱塩室に導入しても、被処理水を最初に陰極室に導入して得られる陰極室出口水を被処理水として脱塩室に導入してもよい。
【0012】
電気式脱塩装置を構成するイオン交換膜としては、通常市販されているイオン交換膜を制限なく用いることができ、カチオン交換膜としては例えば(株)トクヤマ製「NEOSEPTA CMB」、「NEOSEPTA CM1」など、アニオン交換膜としては例えば(株)トクヤマ製「NEOSEPTA AHA」、「NEOSEPTA AM1」などを使用することができる。
【0013】
また、電気式脱塩装置においては、脱塩室及び/又は濃縮室内に、例えばイオン交換樹脂ビーズ、イオン交換繊維材料及びイオン伝導スペーサなどのイオン交換体を配置することによって、これら室内におけるイオンの移動を促進させることができる。本発明はこのような態様の電気式脱塩装置においても適用することができる。かかる目的で用いることのできるイオン交換樹脂ビーズとしては、当該技術において公知の、ポリスチレンをジビニルベンゼンで架橋したビーズなどを基材樹脂として用いて製造したものを用いることができる。例えば、スルホン基を有する強酸性カチオン交換樹脂を製造する場合には、上記の基材樹脂を硫酸やクロロスルホン酸のようなスルホン化剤で処理してスルホン化を行い、基材にスルホン基を導入することによって、強酸性カチオン交換樹脂を得る。また、例えば4級アンモニウム基を有する強塩基性アニオン交換樹脂を製造する場合には、基材樹脂をクロロメチル化処理した後、トリメチルアミンのような3級アミンを反応させて4級アンモニウム化を行うことにより、強塩基性アニオン交換樹脂を得る。このような製造方法は当該技術分野において公知であり、またこのような手法によって製造されたイオン交換樹脂ビーズは、例えば、三菱化学(株)製カチオン交換樹脂ビーズSK1 B、アニオン交換樹脂ビーズSA1 OAなどの商品名で市販されている。
【0014】
また、脱塩室及び/又は濃縮室内に配置されるイオン交換体としては、イオン交換樹脂ビーズに代えて、イオン交換繊維材料やイオン伝導スペーサを用いることもできる。すなわち、織布、不織布などの繊維材料を用いてシート状基材を形成し、このシート状基材にイオン交換基を導入して形成されたイオン交換繊維材料、又はネットなどの基材にイオン交換基を導入して形成されたイオン伝導スペーサをイオン交換体として好ましく用いることができる。このようなイオン交換体の使用態様としては、例えば脱塩室及び/又は濃縮室内で対向配置させたり、対向配置させたイオン交換繊維材料の間にイオン伝導スペーサを介在させる態様などがある。例えば、本発明者らが先に国際出願したPCT/JP99/01391;国際公開WO 99/48820に記載した電気式脱塩装置などを挙げることができ、本発明はこのような電気式脱塩装置に適用することもできる。このように、イオン交換繊維材料やイオン伝導スペーサを使用する場合には、イオン交換樹脂ビーズでは充分に除去できないシリカなどの弱電解質や、アルコールや他の有機薬品など有機炭素(TOC)成分を含むイオンを良好に除去することができるという利点もある。
【0015】
このような態様の電気式脱塩装置に好ましく用いられるイオン交換繊維材料としては、高分子繊維基材にイオン交換基をグラフト重合法によって導入したものを挙げることができる。高分子繊維よりなるグラフト化基材は、ポリオレフィン系高分子、例えばポリエチレンやポリプロピレンなどの一種の高分子から構成される単繊維であってもよく、また軸芯と鞘部とが異なる高分子から構成される複合繊維であってもよい。用いることのできる複合繊維の例としては、ポリオレフィン系高分子、例えばポリエチレンを鞘成分とし、鞘成分として用いたもの以外の高分子、例えばポリプロピレンを芯成分とした芯鞘構造の複合繊維が挙げられる。かかる複合繊維材料に、イオン交換基を、放射線グラフト重合法を利用して導入したものが、イオン交換能力に優れ、厚みが均一に製造できるので、本発明において用いられるイオン交換繊維材料として好ましい。なお、イオン交換体としてイオン交換繊維材料を用いると、イオン交換樹脂ビーズを用いる場合と比較して、ビーズの緊密充填の必要性、ビーズの緊密充填ゆえの脱塩室及び/又は濃縮室内への高い流入圧力の保持の必要性、ビーズの形状ゆえの偏在のおそれ、ビーズの均一混合の必要性、ビーズ充填空隙率の制御の必要性などを排除することができるので、より好ましい。
【0016】
また、イオン伝導スペーサとしては、ポリオレフィン系高分子製樹脂、例えば、従来電気透析層において使用されていたポリエチレン製の斜交網(ネット)を基材として、これに、放射線グラフト法を用いてイオン交換機能を付与したものが、イオン伝導性に優れ、被処理水の分散性に優れているので、好ましい。なお、放射線グラフト重合法とは、高分子基材に放射線を照射してラジカルを形成させ、これにモノマーを反応させることによってモノマーを基材中に導入する技法である。
【0017】
放射線グラフト重合法に用いることができる放射線としては、α線、β線、ガンマ線、電子線、紫外線等を挙げることができるが、本発明においてはガンマ線や電子線を好ましく用いる。放射線グラフト重合法には、グラフト基材に予め放射線を照射した後、グラフトモノマーと接触させて反応させる前照射グラフト重合法と、基材とモノマーの共存下に放射線を照射する同時照射グラフト重合法とがあるが、本発明においては、いずれの方法も用いることができる。また、モノマーと基材との接触方法により、モノマー溶液に基材を浸漬させたまま重合を行う液相グラフト重合法、モノマーの上記に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法などを挙げることができるが、いずれの方法も本発明において用いることができる。
【0018】
これら繊維基材及びスペーサ基材に導入するイオン交換基としては、特に限定されることなく種々のカチオン交換基又はアニオン交換基を用いることができる。例えば、カチオン交換基としては、スルホン基などの強酸性カチオン交換基、リン酸基などの中酸性カチオン交換基、カルボキシル基などの弱酸性カチオン交換基、アニオン交換基としては、第1級〜第3級アミノ基などの弱塩基性アニオン交換基、第4級アンモニウム基などの強塩基性アニオン交換基を用いることができ、あるいは上記カチオン交換基及びアニオン交換基の両方を併有するイオン交換体を用いることもできる。
【0019】
これらの各種イオン交換基は、これらのイオン交換基を有するモノマーを用いてグラフト重合、好ましくは放射線グラフト重合を行うか、又はこれらのイオン交換基に転換可能な基を有する重合性モノマーを用いてグラフト重合を行った後に当該基をイオン交換基に転換することによって、繊維基材又はスペーサ基材に導入することができる。この目的で用いることのできるイオン交換基を有するモノマーとしては、アクリル酸(AAc)、メタクリル酸、スチレンスルホン酸ナトリウム(SSS)、メタクリルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、ビニルベンジルトリメチルアンモニウムクロライド(VBTAC)、ジエチルアミノエチルメタクリレート(DMAEMA)、ジメチルアミノプロピルアクリルアミド(DMAPAA)などを挙げることができる。例えば、スチレンスルホン酸ナトリウムをモノマーとして用いて放射線グラフト重合を行うことにより、基材に直接、強酸性カチオン交換基であるスルホン基を導入することができ、また、ビニルベンジルトリメチルアンモニウムクロライドをモノマーとして用いて放射線グラフト重合を行うことにより、基材に直接、強塩基性アニオン交換基である第4級アンモニウム基を導入することができる。また、イオン交換基に転換可能な基を有するモノマーとしては、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル(GMA)などが挙げられる。例えば、メタクリル酸グリシジルを放射線グラフト重合によって基材に導入し、次に亜硫酸ナトリウムなどのスルホン化剤を反応させることによって強酸性カチオン交換基であるスルホン基を導入したり、又はクロロメチルスチレンをグラフト重合した後に、基材をトリメチルアミン水溶液に浸漬して4級アンモニウム化を行うことによって、強塩基性アニオン交換基である第4級アンモニウム基を基材に導入することができる。
【0020】
また、脱塩室及び/又は濃縮室内にイオン交換体として、カチオン交換膜側にカチオン交換繊維材料を、アニオン交換膜側にアニオン交換繊維材料をそれぞれ向かい合わせて配置し、更にこれらイオン交換繊維材料の間に、イオン伝導機能を付与したイオン伝導スペーサを用いると、被処理水を分散して流しやすくするので、運転電圧の上昇を著しく軽減させることができると同時に、そのイオン捕捉機能により脱塩率も著しく向上し、炭酸成分、シリカ成分、有機窒素系(TOC)成分をさらに良好に除去することができる。
【0021】
かかる態様において用いるイオン伝導スペーサとしては、被処理水が乱流を起こしながら分散して流れやすいこと、スペーサとイオン交換体とが十分に密着することができること、溶出物や粒子の発生が少ないこと、圧力損失が少ないこと等の条件を満たすものであればよく、形状、寸法は適宜設定することができるが、これらの条件をすべて良好に満たすものとして、斜交網を挙げることができる。
【0022】
【発明の実施の形態】
以下、本発明の各種態様について説明する。以下の説明は、本発明の具体的な態様例を示すものであり、本発明はこれに限定されるものではない。
【0023】
図2は、本発明に係る電気式脱塩装置の一態様の模式図である。図2に示す態様の電気式脱塩装置は、両端に配置された陰極(−)と陽極(+)との間に、アニオン交換膜A及びカチオン交換膜Cを少なくとも一部交互に配置して、アニオン交換膜A及びカチオン交換膜Cの間に、複数の脱塩室(D1,D2,D3)及び濃縮室(C1,C2,C3,C4)を交互に形成して、且つ各脱塩室に被処理水を直列に供給する、いわゆるマルチパス型電気式脱塩装置である。マルチパス型電気式脱塩装置においては、被処理水を複数の脱塩室に直列に供給することにより、各脱塩室からカチオン及びアニオンが隣接する各濃縮室に逐次除去されるので、最終段階の脱塩室からは、イオン濃度が極めて低い処理水が得られる。本実施形態においては、さらに、陰極(−)と最も陰極側に位置づけられているイオン交換膜との間に陰極室K(−)が、陽極(+)と最も陽極側に位置づけられているイオン交換膜との間に陽極室K(+)が、それぞれ形成されている。図示した実施形態においては、脱塩室を3室、濃縮室を4室設けているが、脱塩室及び濃縮室の数は、被処理水の水質、水量、処理水の所望水質などに応じて、適宜変更することができる。
【0024】
本発明の電気式脱塩装置においては、脱塩室(D1,D2,D3)へ流入させる被処理水は、実線で示すように、被処理水源(図示せず)から陰極室K(−)に入り、陰極室K(−)を経由して、第1の脱塩室D1に入り、次いで第2の脱塩室D2及び第3の脱塩室D3をこの順番で経由して、第3の脱塩室D3から出るようになされている。一方、濃縮室(C1,C2,C3,C4)に流入する濃縮水は、一点鎖線で示されるように、第1の濃縮室C1へ入り、次いで第2の濃縮室C2、第3の濃縮室C3及び第4の濃縮室C4をこの順番で経由して、第4の濃縮室C4から出るようになされている。
【0025】
次に、図2で示される本発明の一態様に係る電気式脱塩装置の操作を説明する。陰極(−)と陽極(+)の間に直流電圧を印加し、陰極室K(−)に被処理水を通水させると、陰極室K(−)において、電極反応により被処理水中で
【0026】
【化2】
【0027】
の電気分解反応が進み、水素ガス(H2)が発生することにより、被処理水中にはOH−イオンが残るので、陰極室出口水はアルカリ性となる。このため、被処理水中のH2CO3はH+とCO3 2−、HCO3 −に解離する。次いで、この陰極室出口水を第1の脱塩室D1に通水させると、陰極室出口水(被処理水)中のCa2+、Mg2+、Na+などのカチオンは、第1の脱塩室D1からカチオン交換膜Cを通り、隣接する濃縮室C4に透過される。一方、陰極室出口水(被処理水)中のCl−、SO4 2−や解離されたCO3 2−、HCO3 −等のアニオンは、第1の脱塩室D1からアニオン交換膜Aを通り、隣接する濃縮室C3に透過される。
【0028】
本発明の電気式脱塩装置によれば、被処理水を最初に陰極室に通過させて、アルカリ性の陰極室出口水を生成させ、次いでこのアルカリ性の陰極室出口水を脱塩室に流通させるので、薬品を添加することなく、通常は解離しにくい炭酸成分なども良好に解離させて、電場の作用によって良好に被処理水から取り除くことができる。
【0029】
なお、図示した実施形態においては、被処理水を陰極室に導入して、陰極室出口水全量をその後の脱塩処理に供しているが、陰極室出口水をさらに被処理水に添加して、これを脱塩室に導入する構成としてもよい。この場合、アルカリ性の陰極室出口水を被処理水に添加することにより、被処理水をアルカリ性にして、炭酸をCO3 2−、HCO3 −に解離させることができる。
【0030】
本発明の別の実施形態として、上記に示したような本発明にかかる電気式脱塩装置において、陰極室出口水あるいは陰極室出口水を加えた被処理水を最初に導入する第1の脱塩室D1内に、アニオン交換体が豊富になるようにイオン交換体を充填してもよい。具体的な態様としては、例えば、脱塩室D1内において、アニオン交換膜側にアニオン交換不織布を、カチオン交換膜側にカチオン交換不織布をそれぞれ充填し、さらにこれらイオン交換不織布の間に、アニオン伝導スペーサのみを装填することができる。あるいは、脱塩室D1において、被処理水が導入される側にアニオン交換樹脂ビーズ層が配置されるように、アニオン交換樹脂ビーズとカチオン交換樹脂ビーズとを層状に充填することもできる。あるいはまた、アニオン交換樹脂ビーズとカチオン交換樹脂ビーズとをイオン交換容量基準で好ましくは3:1〜4:1の比率で含むアニオン交換樹脂ビーズ及びカチオン交換樹脂ビーズの混床を充填することもできる。このような構成を採用することにより、アルカリ性となって解離したCO3 2−やHCO3 −を効率よく移動させることができ、脱塩効率を増大させることができる。
【0031】
【実施例】
以下の実施例により、本発明をより具体的に説明するが、本発明はこれらによって限定されるものではない。
【0032】
【製造例1】
イオン交換繊維の製造
−強塩基性アニオン交換不織布の製造
繊維径17μmのポリエチレン(鞘)/ポリプロピレン(芯)の複合繊維よりなる目付55g/m2、厚さ0.35mmの熱融着不織布に、窒素雰囲気下で、電子線(150kGy)を照射した。予め活性アルミナ充填層に通液して重合禁止剤を取り除いた後、窒素曝気して脱酸素を行ったクロロメチルスチレン(セイミケミカル社製、商品名:CMS-AM)溶液中に、照射済みの不織布基材を浸漬して、50℃で6時間反応させた。その後、溶液から不織布を取り出して、トルエンに3時間浸漬してホモポリマーを除去した後、乾燥させて、グラフト不織布(グラフト率:161%)を得た。このグラフト不織布をトリメチルアミン水溶液(10wt%)にて、4級アンモニウム化を行い、水酸化ナトリウム水溶液で再生して、強塩基性アニオン交換不織布(中性塩分解容量:2.78meq/g)を得た。
−強酸性カチオン交換不織布の製造
繊維径17μmのポリエチレン(鞘)/ポリプロピレン(芯)の複合繊維よりなる目付55g/m2、厚さ0.35mmの熱融着不織布に、窒素雰囲気下で、電子線(150kGy)を照射した。この照射済みの不織布を、メタクリル酸グリシジルの10%メタノール溶液中に浸漬し、45℃で4時間反応させた後、乾燥させて、グラフト不織布(グラフト率:131%)を得た。このグラフト不織布を、亜硫酸ナトリウム:イソプロピルアルコール:水=1:1:8(重量比)の溶液に浸漬し、80℃で10時間反応させて、強酸性カチオン交換不織布(中性塩分解容量2.72meq/g)を得た。
【0033】
【製造例2】
イオン伝導スペーサの製造
−カチオン伝導スペーサの製造
厚み1.2mm、ピッチ3mmのポリエチレン製の斜交網をドライアイスで冷却しながら、窒素雰囲気下で、γ線(150kGy)を照射した。照射済み斜交網をスチレンスルホン酸ナトリウム25%、アクリル酸25%の混合モノマー溶液に浸漬して、50℃で3時間反応させ、スルホン酸及びアクリル酸導入カチオン伝導スペーサ(グラフト率:153%、中性塩分解容量:204meq/m2)を得た。
−アニオン伝導スペーサの製造
厚み1.2mm、ピッチ3mmのポリエチレン製の斜交網をドライアイスで冷却しながら、窒素雰囲気下で、γ線(150kGy)を照射した。この照射済み斜交網を、予め活性アルミナによって重合禁止剤を取り除いたクロロメチルスチレン(m体70%:p体30%、セイミケミカル社製、商品名:CMS-AM)中に浸漬して、50℃で5時間反応させて、クロロメチルスチレングラフト斜交網(グラフト率:90%)を得た。このグラフト斜交網をトリメチルアミン水溶液(10wt%)にて、4級アンモニウム化を行い、水酸化ナトリウム水溶液で再生して、アニオン伝導スペーサ(中性塩分解容量:267meq/m2)を得た。
【0034】
【実施例1】
幅5cm、長さ25cmの電極板を両端に位置づけ、その間にアニオン交換膜((株)トクヤマ製、商品名:NEOSEPTA AHA)及びカチオン交換膜((株)トクヤマ製、商品名:NEOSEPTA CMB)を交互に配列することによって、図2に示す脱塩室を3室有する電気式脱塩装置を構成した。各室の厚さは、3mmとした。脱塩室D1,D2、D3内には、カチオン交換膜側に製造例1で製造したカチオン交換不織布を、アニオン交換膜側に製造例1で製造したアニオン交換不織布をそれぞれ1枚配置し、両不織布の間に製造例2で製造したアニオン伝導スペーサを2枚装填した。濃縮室(厚さ:1.5mm)C1,C2,C3,C4内には、製造例2で製造したアニオン伝導スペーサをアニオン交換膜側に、カチオン伝導スペーサをカチオン交換膜側に、それぞれ1枚ずつ装填した。また、陽極室K(+)には、製造例2で製造したカチオン伝導スペーサを4枚、陰極室K(−)には、製造例2で製造したアニオン伝導スペーサを4枚、それぞれ装填した。
【0035】
図2に示す電気式脱塩装置の両電極間に電流(0.3A)を印加し、RO処理水(導電率0.5mS/m)に炭酸ガスを添加して調製した炭酸成分を多く含む被処理水(導電率2mS/m;流量5L/h)を陰極室K(−)、脱塩室D1,D2,D3の順番に通水させた。同時に、濃縮水(流量5L/h)を濃縮室C1、C2,C3,C4の順番に通水させた。得られた処理水の比抵抗は、16MΩ・cmであった。
【0036】
【比較例1】
実施例1と同じ電気式脱塩装置を用いて、図3に示すように被処理水を直接脱塩室D1に導入し,次いでD2,D3の順番に通水させた以外は、実施例1と同じ条件で通水を行った。得られた処理水の比抵抗は、1MΩ・cmであった。
【0037】
【発明の効果】
本発明の電気式脱塩装置によれば、アルカリ性である陰極室出口水を被処理水に導入するので、弱解離性である炭酸成分を多量に含む水を処理する場合にも、炭酸成分の解離を促進することができるので、イオン交換膜のイオン交換効率を劣化させることなく、効率よく水の脱塩処理を行うことができる。また、薬品を用いる必要がないので、薬品の取り扱いなど運転操作上の問題点も解決でき、電気式脱塩装置の利点を損なうことがない。
【図面の簡単な説明】
【図1】図1は、電気式脱塩装置の概念を示す模式図である。
【図2】図2は、本発明による電気式脱塩装置の一実施形態を示す模式図である。
【図3】図3は、比較例1で用いた一般的なマルチパス型電気式脱塩装置の概念を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a so-called electric desalination apparatus. In particular, the present invention relates to an electrical desalination apparatus that improves the removal characteristics of carbonic acid components from water to be treated in a desalination chamber of the electrical desalination apparatus.
[0002]
[Prior art]
An electrical desalination system is a process in which a cation exchange membrane and an anion exchange membrane are arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber, and a treatment is performed in the desalting chamber using a potential gradient as a driving source. By moving / separating ions in the liquid to the concentration chamber through the ion exchange membrane, the ion component in the liquid is removed.
[0003]
FIG. 1 shows a concept of a typical electric desalination apparatus. In the electric desalination apparatus shown in FIG. 1, an anion exchange membrane A and a cation exchange membrane C are alternately arranged between a cathode (−) and an anode (+) to form a desalination chamber and a concentration chamber. Yes. By further repeating this alternate arrangement of the anion exchange membrane and the cation exchange membrane, a plurality of desalting chambers are formed in parallel. If necessary, the demineralization chamber or the concentration chamber is filled with an ion exchanger, which promotes the movement of ions in the chamber. The sections in contact with the anode and cathode at both ends are generally referred to as an anode chamber and a cathode chamber. In these electrode chambers, the most electrode-side concentrating chamber may be used as the electrode chamber, or an ion-exchange membrane is further arranged on the electrode side of the most electrode-side concentrating chamber to form an independent electrode chamber. There is also a case. In the former case, the ion exchange membrane on the most cathode side is a cation exchange membrane, the ion exchange membrane on the most anode side is an anion exchange membrane, and in the latter case, the ion exchange membrane on the most cathode side is an anion exchange membrane, The ion exchange membrane on the most cathode side is a cation exchange membrane. The polar chamber fulfills the function of transferring and receiving current electrons applied from a DC power source. In the operation of such an electric desalination apparatus, a voltage is applied to the anode and the cathode, and water is supplied to the desalination chamber, the concentration chamber, and the bipolar chamber. The water supplied to the concentration chamber is called concentrated water, and the water supplied to the desalting chamber is called treated water. Thus, when treated water and concentrated water are introduced into the desalting chamber and the concentration chamber, respectively, cations and anions in the water are attracted to the cathode side and the anode side, respectively, but the ion exchange membrane selectively selects only the same type of ions. In order to permeate, cations (Ca 2+ , Na + , Mg 2+ , H + and the like) in the water to be treated pass through the cation exchange membrane C to the concentration chamber on the cathode side, and anions (Cl − , SO 4 2− , HSiO 3). − , CO 3 2− , HCO 3 − , OH − and the like) move to the concentration chamber on the anode side through the anion exchange membrane A. On the other hand, the movement of anions from the concentrating chamber to the desalting chamber and the movement of cations from the concentrating chamber to the desalting chamber are blocked due to the heterogeneous ion blocking property of the ion exchange membrane. As a result, desalted water having a reduced ion concentration is obtained in the desalting chamber, and concentrated water having an increased ion concentration is obtained in the concentrating chamber.
[0004]
However, in such an electric desalination apparatus, especially when water containing a large amount of weakly dissociative ions such as a carbonate component is used as water to be treated, the carbonate component is dissociated and removed by the action of an electric field. Since it was difficult to do, there was a problem that the desalting efficiency deteriorated.
[0005]
As a technique for solving this problem, conventionally, an alkaline chemical is added to the water to be treated in advance to make the water to be treated alkaline to dissociate the carbonic acid component, and then introduced into the electric desalting apparatus. Is used. This is based on the knowledge that carbonic acid is present as carbonic acid H 2 CO 3 in the acidic region to neutral region and is present as hydrogen carbonate ion HCO 3 − and carbonate ion CO 3 2− in the alkaline region. This is based on the principle of promoting the dissociation of the carbonic acid component by making water alkaline by adding chemicals. However, in this method, it is necessary to add an alkaline chemical in advance, and there is a problem in operation that requires careful handling of the chemical, and an electric desalination apparatus that can be operated without using the chemical. Will detract from the benefits.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention provides an electric desalination that can perform desalting efficiently without using chemicals and without deteriorating ion exchange efficiency, even when treated water containing a large amount of carbonic acid components is used. An object is to provide an apparatus.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and is characterized in that the cathode chamber outlet water of the electric desalination apparatus is introduced into the desalination chamber. That is, in the present invention, a desalination chamber and a concentration chamber are formed by alternately arranging a cation exchange membrane and an anion exchange membrane between an anode and a cathode, and an anode chamber and a cathode chamber are further formed. The present invention relates to an electrical desalination apparatus characterized in that cathode outlet water is introduced into the desalination chamber.
[0008]
As described above, in the present invention, by introducing the cathode chamber outlet water into the desalting chamber, it is not necessary to add an alkaline chemical to the water to be treated introduced into the desalting chamber in advance, and a weakly dissociating carbonic acid component is added. Even with a large amount of water, desalting can be performed easily and efficiently without deteriorating the ion exchange rate. This is because water molecules in the water to be treated are caused by an electrode reaction occurring in the cathode chamber.
[Chemical 1]
[0010]
This is based on the knowledge that the cathode chamber outlet water becomes alkaline because hydrogen gas (H 2 ) is generated by electrolysis as described above, and OH − ions remain in the water to be treated. That is, by introducing alkaline cathode chamber outlet water into the desalting chamber, dissociation of the carbonic acid component in the water to be treated in the desalting chamber is promoted, so that the water to be treated containing a large amount of carbonic acid component is treated. Even if it is a case, it can desalinate satisfactorily.
[0011]
In the present invention, even when the cathode chamber outlet water is added to the treated water and introduced into the desalting chamber, the cathode chamber outlet water obtained by first introducing the treated water into the cathode chamber is treated water. May be introduced into the desalting chamber.
[0012]
As the ion exchange membrane constituting the electric desalination apparatus, a commercially available ion exchange membrane can be used without limitation. Examples of the cation exchange membrane include “NEOSEPTA CMB” and “NEOSEPTA CM1” manufactured by Tokuyama Corporation. As the anion exchange membrane, for example, “NEOSEPTA AHA”, “NEOSEPTA AM1” manufactured by Tokuyama Corporation can be used.
[0013]
Moreover, in an electric desalination apparatus, ion exchangers such as ion exchange resin beads, ion exchange fiber materials, and ion conducting spacers are disposed in a desalting chamber and / or a concentrating chamber, so that ions in these chambers are disposed. Movement can be promoted. The present invention can also be applied to such an electric desalination apparatus. As the ion exchange resin beads that can be used for this purpose, those produced by using beads obtained by crosslinking polystyrene with divinylbenzene as a base resin, which are known in the art, can be used. For example, when a strongly acidic cation exchange resin having a sulfone group is produced, the above base resin is treated with a sulfonating agent such as sulfuric acid or chlorosulfonic acid to perform sulfonation, and the sulfone group is added to the base. By introducing, a strongly acidic cation exchange resin is obtained. For example, when producing a strongly basic anion exchange resin having a quaternary ammonium group, the base resin is subjected to a chloromethylation treatment, and then a tertiary amine such as trimethylamine is reacted to perform quaternary ammonium conversion. As a result, a strongly basic anion exchange resin is obtained. Such a production method is known in the art, and the ion exchange resin beads produced by such a method include, for example, cation exchange resin beads SK1 B and anion exchange resin beads SA1 OA manufactured by Mitsubishi Chemical Corporation. It is marketed under the trade name.
[0014]
Moreover, as an ion exchanger arrange | positioned in a desalination chamber and / or a concentration chamber, it can replace with an ion exchange resin bead and an ion exchange fiber material and an ion conduction spacer can also be used. That is, a sheet-like base material is formed using a fiber material such as a woven fabric or a non-woven fabric, and an ion-exchange fiber material formed by introducing an ion exchange group into the sheet-like base material, or a base material such as a net. An ion conductive spacer formed by introducing an exchange group can be preferably used as an ion exchanger. Examples of the usage mode of such an ion exchanger include a mode in which an ion conductive spacer is interposed between ion-exchange fiber materials that are opposed to each other in the desalting chamber and / or the concentration chamber, or that are opposed to each other. For example, the electric desalination apparatus described in PCT / JP99 / 01391; international publication WO 99/48820 previously filed by the inventors of the present invention can be cited. The present invention includes such an electric desalination apparatus. It can also be applied to. Thus, when using ion-exchange fiber materials or ion-conducting spacers, they contain weak electrolytes such as silica that cannot be sufficiently removed by ion-exchange resin beads, and organic carbon (TOC) components such as alcohol and other organic chemicals. There is also an advantage that ions can be removed well.
[0015]
Examples of the ion exchange fiber material preferably used in the electric desalting apparatus of such an embodiment include those obtained by introducing an ion exchange group into a polymer fiber base material by a graft polymerization method. The grafted substrate made of polymer fibers may be a polyolefin-based polymer, for example, a single fiber composed of a kind of polymer such as polyethylene or polypropylene, or from a polymer having a different shaft core and sheath. The composite fiber comprised may be sufficient. Examples of the composite fibers that can be used include core-sheath composite fibers having a polyolefin-based polymer, for example, polyethylene as a sheath component, and polymers other than those used as the sheath component, for example, polypropylene as a core component. . A material obtained by introducing an ion exchange group into such a composite fiber material using a radiation graft polymerization method is preferable as the ion exchange fiber material used in the present invention because it has excellent ion exchange capability and can be produced with a uniform thickness. In addition, when ion exchange fiber material is used as an ion exchanger, compared with the case of using ion exchange resin beads, the need for close packing of beads, desalination chamber and / or concentration chamber due to close packing of beads This is more preferable because it can eliminate the necessity of maintaining a high inflow pressure, the possibility of uneven distribution due to the shape of the beads, the necessity of uniform mixing of beads, the necessity of controlling the bead filling porosity, and the like.
[0016]
In addition, as the ion conductive spacer, a polyolefin polymer resin, for example, a polyethylene oblique net (net) conventionally used in an electrodialysis layer is used as a base material, and ion implantation is performed using a radiation graft method. What provided the exchange function is preferable since it has excellent ion conductivity and excellent dispersibility of water to be treated. The radiation graft polymerization method is a technique for introducing a monomer into a substrate by irradiating a polymer substrate with radiation to form radicals and reacting the monomer with this.
[0017]
Examples of radiation that can be used in the radiation graft polymerization method include α rays, β rays, gamma rays, electron beams, ultraviolet rays, and the like. In the present invention, gamma rays and electron beams are preferably used. The radiation graft polymerization method includes pre-irradiation graft polymerization method in which a graft substrate is irradiated with radiation in advance and then brought into contact with the graft monomer and reacted, and simultaneous irradiation graft polymerization method in which radiation is irradiated in the presence of the substrate and the monomer. However, in the present invention, any method can be used. In addition, by the contact method of the monomer and the substrate, a liquid phase graft polymerization method for performing polymerization while the substrate is immersed in the monomer solution, a gas phase graft polymerization method for performing polymerization by bringing the substrate into contact with the above of the monomer, Examples of the method include an impregnation gas phase graft polymerization method in which the base material is immersed in the monomer solution and then taken out from the monomer solution and reacted in the gas phase, and any method can be used in the present invention.
[0018]
As an ion exchange group introduce | transduced into these fiber base materials and spacer base materials, various cation exchange groups or anion exchange groups can be used, without being specifically limited. For example, as the cation exchange group, a strong acid cation exchange group such as a sulfone group, a neutral acid cation exchange group such as a phosphate group, a weak acid cation exchange group such as a carboxyl group, and an anion exchange group include primary to first-order cation exchange groups. A weakly basic anion exchange group such as a tertiary amino group and a strongly basic anion exchange group such as a quaternary ammonium group can be used, or an ion exchanger having both the cation exchange group and the anion exchange group It can also be used.
[0019]
These various ion exchange groups are graft-polymerized using monomers having these ion-exchange groups, preferably radiation graft polymerization, or using polymerizable monomers having groups convertible to these ion-exchange groups. By converting the group into an ion exchange group after graft polymerization, it can be introduced into the fiber substrate or spacer substrate. Monomers having ion exchange groups that can be used for this purpose include acrylic acid (AAc), methacrylic acid, sodium styrene sulfonate (SSS), sodium methacryl sulfonate, sodium allyl sulfonate, sodium vinyl sulfonate, vinyl benzyl Examples thereof include trimethylammonium chloride (VBTAC), diethylaminoethyl methacrylate (DMAEMA), dimethylaminopropylacrylamide (DMAPAA), and the like. For example, by conducting radiation graft polymerization using sodium styrenesulfonate as a monomer, a sulfone group that is a strongly acidic cation exchange group can be introduced directly into the substrate, and vinylbenzyltrimethylammonium chloride is used as a monomer. By using the radiation graft polymerization, a quaternary ammonium group which is a strongly basic anion exchange group can be directly introduced into the substrate. Examples of the monomer having a group that can be converted into an ion exchange group include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, and glycidyl methacrylate (GMA). For example, glycidyl methacrylate is introduced into a substrate by radiation graft polymerization, and then a sulfone group which is a strongly acidic cation exchange group is introduced by reacting with a sulfonating agent such as sodium sulfite, or chloromethylstyrene is grafted. After the polymerization, the quaternary ammonium group, which is a strongly basic anion exchange group, can be introduced into the substrate by immersing the substrate in an aqueous trimethylamine solution to perform quaternary ammonium formation.
[0020]
Further, as an ion exchanger in the desalting chamber and / or the concentration chamber, a cation exchange fiber material is disposed on the cation exchange membrane side, and an anion exchange fiber material is disposed on the anion exchange membrane side, and these ion exchange fiber materials are further disposed. In the meantime, if an ion conducting spacer with an ion conducting function is used, water to be treated can be dispersed and flowed easily, so that an increase in operating voltage can be remarkably reduced, and at the same time, desalting is achieved by the ion trapping function. The rate is also significantly improved, and the carbonic acid component, silica component, and organic nitrogen (TOC) component can be removed even better.
[0021]
As the ion conductive spacer used in such an embodiment, the water to be treated is easily dispersed and flowing while causing turbulent flow, the spacer and the ion exchanger can be sufficiently adhered, and the generation of eluate and particles is small. As long as it satisfies the conditions such as low pressure loss and the like, the shape and dimensions can be set as appropriate. An oblique network can be mentioned as a material that satisfies all of these conditions satisfactorily.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various aspects of the present invention will be described. The following description shows a specific example of the present invention, and the present invention is not limited to this.
[0023]
FIG. 2 is a schematic view of one embodiment of an electrical desalting apparatus according to the present invention. The electric desalination apparatus of the embodiment shown in FIG. 2 has an anion exchange membrane A and a cation exchange membrane C arranged alternately at least partially between a cathode (−) and an anode (+) arranged at both ends. A plurality of desalting chambers (D1, D2, D3) and concentration chambers (C1, C2, C3, C4) are alternately formed between the anion exchange membrane A and the cation exchange membrane C, and each desalting chamber is formed. This is a so-called multi-pass type electric desalination apparatus that supplies water to be treated in series. In the multi-pass type electric desalination apparatus, by supplying water to be treated in series to a plurality of desalting chambers, cations and anions are sequentially removed from each desalting chamber to each adjacent concentrating chamber. From the stage desalting chamber, treated water with a very low ion concentration is obtained. In the present embodiment, the cathode chamber K (−) is further positioned between the anode (+) and the most anode side between the cathode (−) and the ion exchange membrane positioned most on the cathode side. Anode chambers K (+) are respectively formed between the exchange membranes. In the illustrated embodiment, three desalting chambers and four concentrating chambers are provided, but the number of desalting chambers and concentrating chambers depends on the quality of the water to be treated, the amount of water, the desired quality of the treated water, etc. And can be changed as appropriate.
[0024]
In the electrical desalination apparatus of the present invention, the water to be treated that flows into the desalting chambers (D1, D2, D3) is supplied from a water source (not shown) to the cathode chamber K (-) as shown by the solid line. Enters the first desalting chamber D1 via the cathode chamber K (-), then passes through the second desalting chamber D2 and the third desalting chamber D3 in this order, The desalting chamber D3 is exited. On the other hand, the concentrated water flowing into the concentration chambers (C1, C2, C3, C4) enters the first concentration chamber C1, and then the second concentration chamber C2, the third concentration chamber, as indicated by the alternate long and short dash line. It goes through the C3 and the fourth concentrating chamber C4 in this order and leaves the fourth concentrating chamber C4.
[0025]
Next, operation of the electrical desalination apparatus according to one embodiment of the present invention illustrated in FIG. 2 will be described. When a direct current voltage is applied between the cathode (−) and the anode (+) and water to be treated is passed through the cathode chamber K (−), the cathode chamber K (−) is treated with water in the water to be treated by an electrode reaction. [0026]
[Chemical formula 2]
[0027]
As the electrolysis reaction proceeds and hydrogen gas (H 2 ) is generated, OH − ions remain in the water to be treated, so that the cathode chamber outlet water becomes alkaline. For this reason, H 2 CO 3 in the for-treatment water is dissociated into H + , CO 3 2− , and HCO 3 − . Next, when the cathode chamber outlet water is passed through the first demineralization chamber D1, cations such as Ca 2+ , Mg 2+ , and Na + in the cathode chamber outlet water (treated water) are converted into the first desalting salt. It passes through the cation exchange membrane C from the chamber D1 and permeates to the adjacent concentration chamber C4. On the other hand, anions such as Cl − , SO 4 2− , dissociated CO 3 2− , HCO 3 −, etc. in the cathode chamber outlet water (treated water) pass through the first desalting chamber D1 to the anion exchange membrane A. And is transmitted to the adjacent concentrating chamber C3.
[0028]
According to the electric desalination apparatus of the present invention, the water to be treated is first passed through the cathode chamber to generate alkaline cathode chamber outlet water, and then this alkaline cathode chamber outlet water is circulated to the desalting chamber. Therefore, without adding a chemical, a carbon dioxide component that is normally difficult to dissociate can be dissociated well, and can be well removed from the water to be treated by the action of an electric field.
[0029]
In the illustrated embodiment, the water to be treated is introduced into the cathode chamber, and the total amount of the cathode chamber outlet water is subjected to the subsequent desalting treatment, but the cathode chamber outlet water is further added to the water to be treated. This may be configured to be introduced into the desalting chamber. In this case, by adding alkaline cathode chamber outlet water to the water to be treated, the water to be treated can be made alkaline and carbon dioxide can be dissociated into CO 3 2− and HCO 3 − .
[0030]
As another embodiment of the present invention, in the electric desalination apparatus according to the present invention as described above, the first dewatering is performed by first introducing the cathode chamber outlet water or the water to be treated to which the cathode chamber outlet water is added. The salt chamber D1 may be filled with an ion exchanger so that the anion exchanger is rich. As a specific aspect, for example, in the desalination chamber D1, an anion exchange nonwoven fabric is filled on the anion exchange membrane side, and a cation exchange nonwoven fabric is filled on the cation exchange membrane side, and anion conduction is performed between these ion exchange nonwoven fabrics. Only spacers can be loaded. Alternatively, in the desalting chamber D1, the anion exchange resin beads and the cation exchange resin beads can be filled in layers so that the anion exchange resin bead layer is disposed on the side where the water to be treated is introduced. Alternatively, a mixed bed of anion exchange resin beads and cation exchange resin beads containing anion exchange resin beads and cation exchange resin beads preferably in a ratio of 3: 1 to 4: 1 based on the ion exchange capacity can be filled. . By adopting such a configuration, CO 3 2− and HCO 3 − which have become alkaline and dissociated can be efficiently moved, and desalting efficiency can be increased.
[0031]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
[0032]
[Production Example 1]
Manufacture of ion exchange fibers-Manufacture of strongly basic anion exchange nonwoven fabric A heat-bonded nonwoven fabric with a basis weight of 55 g / m 2 and a thickness of 0.35 mm consisting of a composite fiber of polyethylene (sheath) / polypropylene (core) with a fiber diameter of 17 μm is combined with nitrogen. In an atmosphere, an electron beam (150 kGy) was irradiated. After passing through the activated alumina packed bed in advance and removing the polymerization inhibitor, it was irradiated in a chloromethylstyrene solution (trade name: CMS-AM, manufactured by Seimi Chemical Co., Ltd.) that had been deoxygenated by aeration with nitrogen. The nonwoven fabric substrate was immersed and reacted at 50 ° C. for 6 hours. Thereafter, the nonwoven fabric was taken out from the solution, immersed in toluene for 3 hours to remove the homopolymer, and then dried to obtain a grafted nonwoven fabric (graft ratio: 161%). This grafted nonwoven fabric was quaternized with a trimethylamine aqueous solution (10 wt%) and regenerated with an aqueous sodium hydroxide solution to obtain a strongly basic anion exchange nonwoven fabric (neutral salt decomposition capacity: 2.78 meq / g). .
-Manufacture of strong acid cation exchange nonwoven fabric A heat-bonded nonwoven fabric with a basis weight of 55 g / m 2 and a thickness of 0.35 mm consisting of a composite fiber of polyethylene (sheath) / polypropylene (core) with a fiber diameter of 17 μm is applied to an electron beam in a nitrogen atmosphere. (150 kGy) was irradiated. This irradiated nonwoven fabric was immersed in a 10% methanol solution of glycidyl methacrylate, reacted at 45 ° C. for 4 hours, and then dried to obtain a grafted nonwoven fabric (graft ratio: 131%). This grafted nonwoven fabric was immersed in a solution of sodium sulfite: isopropyl alcohol: water = 1: 1: 8 (weight ratio) and reacted at 80 ° C. for 10 hours to give a strongly acidic cation exchange nonwoven fabric (neutral salt decomposition capacity 2.72 meq). / g).
[0033]
[Production Example 2]
Production of Ion Conductive Spacer-Production of Cation Conductive Spacer A γ-ray (150 kGy) was irradiated in a nitrogen atmosphere while cooling a polyethylene oblique network having a thickness of 1.2 mm and a pitch of 3 mm with dry ice. The irradiated oblique network is immersed in a mixed monomer solution of 25% sodium styrene sulfonate and 25% acrylic acid and reacted at 50 ° C. for 3 hours to introduce a sulfonic acid and acrylic acid-introduced cationic conductive spacer (graft ratio: 153%, Neutral salt decomposition capacity: 204 meq / m 2 ) was obtained.
-Production of anion-conducting spacer A polyethylene oblique mesh having a thickness of 1.2 mm and a pitch of 3 mm was cooled with dry ice, and irradiated with gamma rays (150 kGy) in a nitrogen atmosphere. This irradiated oblique network was immersed in chloromethylstyrene (m body 70%: p body 30%, manufactured by Seimi Chemical Co., Ltd., trade name: CMS-AM) from which the polymerization inhibitor was previously removed by activated alumina, The reaction was carried out at 50 ° C. for 5 hours to obtain a chloromethylstyrene graft oblique network (graft ratio: 90%). This graft oblique network was quaternized with a trimethylamine aqueous solution (10 wt%) and regenerated with an aqueous sodium hydroxide solution to obtain an anion conductive spacer (neutral salt decomposition capacity: 267 meq / m 2 ).
[0034]
[Example 1]
An electrode plate with a width of 5 cm and a length of 25 cm is positioned at both ends, and an anion exchange membrane (manufactured by Tokuyama Co., Ltd., trade name: NEOSEPTA AHA) and cation exchange membrane (manufactured by Tokuyama Co., Ltd., trade name: NEOSEPTA CMB) are placed between them. By alternately arranging, an electric desalting apparatus having three desalting chambers shown in FIG. 2 was constructed. The thickness of each chamber was 3 mm. In the desalting chambers D1, D2, and D3, the cation exchange nonwoven fabric produced in Production Example 1 is disposed on the cation exchange membrane side, and one anion exchange nonwoven fabric produced in Production Example 1 is disposed on the anion exchange membrane side. Two anion conducting spacers produced in Production Example 2 were loaded between the nonwoven fabrics. Concentration chambers (thickness: 1.5 mm) In C1, C2, C3, and C4, one anion conducting spacer produced in Production Example 2 is placed on the anion exchange membrane side, and one cation conducting spacer is placed on the cation exchange membrane side. Loaded. The anode chamber K (+) was loaded with four cation conducting spacers produced in Production Example 2, and the cathode chamber K (−) was loaded with four anion conducting spacers produced in Production Example 2.
[0035]
A treatment containing a large amount of carbonic acid component prepared by applying a current (0.3 A) between both electrodes of the electrical desalting apparatus shown in FIG. 2 and adding carbon dioxide gas to RO treated water (conductivity 0.5 mS / m). Water (
[0036]
[Comparative Example 1]
Using the same electrical desalination apparatus as in Example 1, treated water was directly introduced into the desalting chamber D1 as shown in FIG. 3 and then passed in the order of D2 and D3. Water was passed under the same conditions. The specific resistance of the treated water obtained was 1 MΩ · cm.
[0037]
【The invention's effect】
According to the electric desalting apparatus of the present invention, alkaline cathode chamber outlet water is introduced into the water to be treated. Therefore, even when water containing a large amount of weakly dissociating carbonic acid component is treated, Since dissociation can be promoted, water can be desalted efficiently without deteriorating the ion exchange efficiency of the ion exchange membrane. Further, since it is not necessary to use chemicals, problems in operation such as handling of chemicals can be solved, and the advantages of the electric desalting apparatus are not impaired.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the concept of an electric desalination apparatus.
FIG. 2 is a schematic view showing an embodiment of an electrical desalination apparatus according to the present invention.
FIG. 3 is a schematic diagram showing a concept of a general multi-pass type electric desalination apparatus used in Comparative Example 1;
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399520A JP3727586B2 (en) | 2001-12-28 | 2001-12-28 | Electric desalination equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399520A JP3727586B2 (en) | 2001-12-28 | 2001-12-28 | Electric desalination equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003190961A JP2003190961A (en) | 2003-07-08 |
JP3727586B2 true JP3727586B2 (en) | 2005-12-14 |
Family
ID=27604510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001399520A Expired - Fee Related JP3727586B2 (en) | 2001-12-28 | 2001-12-28 | Electric desalination equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3727586B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009220060A (en) * | 2008-03-18 | 2009-10-01 | Japan Organo Co Ltd | Electrically deionized water production apparatus and its deionization unit |
JP5058217B2 (en) * | 2009-06-22 | 2012-10-24 | オルガノ株式会社 | Electric deionized water production apparatus and deionized water production method |
JP6994351B2 (en) * | 2017-10-26 | 2022-01-14 | オルガノ株式会社 | Electric deionized water production equipment |
KR20230145404A (en) * | 2021-03-10 | 2023-10-17 | 오르가노 가부시키가이샤 | Water treatment methods and water treatment devices |
-
2001
- 2001-12-28 JP JP2001399520A patent/JP3727586B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003190961A (en) | 2003-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4343105B2 (en) | Electric desalination equipment | |
JP4065664B2 (en) | Electric desalination equipment | |
JP4454502B2 (en) | Electric desalination equipment | |
JP4384444B2 (en) | Electric demineralizer and electrodialyzer | |
JP4303242B2 (en) | Electric desalination module and apparatus equipped with the module | |
JP4489511B2 (en) | Bipolar chamber and electrochemical liquid processing apparatus having the bipolar chamber | |
US9550687B2 (en) | Electrodeionization module and apparatus | |
JP2003190820A (en) | Electric demineralizing apparatus | |
JP3727586B2 (en) | Electric desalination equipment | |
JP3727585B2 (en) | Electric desalination equipment | |
JP2008132492A (en) | Electric demineralizer | |
JP4291156B2 (en) | Electric desalination equipment | |
JP2003190821A (en) | Electric demineralizing apparatus | |
JP2006026488A (en) | Electric desalter | |
JP4193586B2 (en) | Electric regenerative pure water production equipment | |
JP4431710B2 (en) | ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE | |
JP4211488B2 (en) | Electric regenerative pure water production equipment | |
JP2003190962A (en) | Ion exchanger and electric demineralizer | |
JP2003190963A (en) | Ion exchanger and electric demineralizer | |
JP2003190960A (en) | Electric demineralizer | |
TWI388511B (en) | Electric desalting device | |
JP2004105869A (en) | Electrically regeneration type pure water producing apparatus | |
JP2004105868A (en) | Electrically regeneration type pure water producing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050928 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131007 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |