JP5058217B2 - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method Download PDF

Info

Publication number
JP5058217B2
JP5058217B2 JP2009147975A JP2009147975A JP5058217B2 JP 5058217 B2 JP5058217 B2 JP 5058217B2 JP 2009147975 A JP2009147975 A JP 2009147975A JP 2009147975 A JP2009147975 A JP 2009147975A JP 5058217 B2 JP5058217 B2 JP 5058217B2
Authority
JP
Japan
Prior art keywords
chamber
water
exchange membrane
small
small desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009147975A
Other languages
Japanese (ja)
Other versions
JP2011000575A (en
Inventor
真生 日高
一哉 長谷川
健太 合庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009147975A priority Critical patent/JP5058217B2/en
Publication of JP2011000575A publication Critical patent/JP2011000575A/en
Application granted granted Critical
Publication of JP5058217B2 publication Critical patent/JP5058217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、半導体製造分野、医薬品製造分野、原子力や火力等の発電分野、食品工業等の各種の産業又は研究施設で使用される、電気式脱イオン水製造装置及び脱イオン水製造方法に関する。   The present invention relates to an electric deionized water production apparatus and a deionized water production method used in various industries or research facilities such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry and the like.

従来、脱イオン水を製造する方法として、イオン交換樹脂に被処理水を通して脱イオンを行う方法が知られている。しかし、この方法ではイオン交換樹脂がイオンで飽和されたときに、薬剤によって再生処理を行う必要がある。近年、このような処理操作上の不利な点を解消するため、薬剤によるイオン交換体再生の必要がない、電気式脱イオン水製造装置(以下、EDIという)が実用化されている。このEDIは、電気泳動と電気透析を組み合わせた脱イオン水(純水)製造装置である。一般的なEDIは、陽極側に配置されたアニオン交換膜と陰極側に配置されたカチオン交換膜との間にイオン交換体が充填された脱塩室が設けられ、該脱塩室の両側に濃縮室が設けられたものである。このようなEDIでは、陰極と陽極との間に直流電圧を印加した状態で脱塩室に被処理水を通水することにより、被処理水中のイオン成分がイオン交換体で吸着される。そして、吸着されたイオン成分を電気泳動にて膜面までイオンを泳動させ、イオン交換膜にて電気透析して濃縮水中へと除去し、脱イオン水を製造する。
従来の典型的なEDIは、濃縮室を介して複数の脱塩室を積層し、その両端に陰極と陽極を配した構造である。
2. Description of the Related Art Conventionally, as a method for producing deionized water, a method for performing deionization by passing water to be treated through an ion exchange resin is known. However, in this method, when the ion exchange resin is saturated with ions, it is necessary to perform a regeneration treatment with a chemical. In recent years, in order to eliminate such disadvantages in processing operation, an electric deionized water production apparatus (hereinafter referred to as EDI) which does not require regeneration of an ion exchanger by a drug has been put into practical use. This EDI is a deionized water (pure water) production apparatus that combines electrophoresis and electrodialysis. In general EDI, a demineralization chamber filled with an ion exchanger is provided between an anion exchange membrane arranged on the anode side and a cation exchange membrane arranged on the cathode side, and both sides of the demineralization chamber are provided. A concentration chamber is provided. In such EDI, by passing water to be treated into the desalting chamber with a DC voltage applied between the cathode and the anode, ion components in the water to be treated are adsorbed by the ion exchanger. Then, ions are adsorbed to the membrane surface by electrophoresis through the adsorbed ion component, and electrodialyzed through an ion exchange membrane to be removed into concentrated water to produce deionized water.
Conventional typical EDI has a structure in which a plurality of desalting chambers are stacked through a concentration chamber, and a cathode and an anode are arranged at both ends thereof.

これまでにも、EDIで得られる脱イオン水の水質向上や、省電力での不純物イオンの除去を目的として、種々の試みがなされてきた。脱塩室では、使用されるイオン交換体の充填方法や充填量が、要求される脱イオン水の水質によって決定されるため、脱塩室の電気抵抗を低減させるには限界があった。そこで、濃縮室の電気抵抗を低減させるための対策が採られることが多い。例えば、特許文献1では、濃縮室に電解質を添加供給して、濃縮室における電気抵抗を低減する方法が開示されている。
一方、特許文献2には、脱塩室がアニオン交換膜とカチオン交換膜との間に配置された中間イオン交換膜で区画され、2つの小脱塩室が形成された脱塩室2セル構造のEDIが開示されている。該EDIにおける脱イオン水の製造は、電圧を印加しながら一方の小脱塩室(第一小脱塩室)に被処理水を流入させ、次いで、該小脱塩室の流出水を他方の小脱塩室(第二小脱塩室)に流入させる(直列通水)と共に、濃縮室に濃縮水を流入させ被処理水中の不純物イオンを除去して、脱イオン水を得る。このような構造のEDIによれば、2つの小脱塩室のうち、少なくとも1つの小脱塩室に充填されるイオン交換体を例えばアニオン交換体のみ、又はカチオン交換体のみ等の単床形態、もしくはアニオン交換体とカチオン交換体の混床形態とすることができ、イオン交換体の種類毎に電気抵抗を低減し、かつ高い脱イオン性能を得るための最適な厚さに設定することができる。
Until now, various attempts have been made for the purpose of improving the quality of deionized water obtained by EDI and removing impurity ions with power saving. In the desalting chamber, the filling method and the filling amount of the ion exchanger to be used are determined by the required water quality of the deionized water, so there is a limit in reducing the electrical resistance of the desalting chamber. Therefore, measures are often taken to reduce the electrical resistance of the concentrating chamber. For example, Patent Document 1 discloses a method of reducing the electrical resistance in the concentration chamber by adding and supplying an electrolyte to the concentration chamber.
On the other hand, Patent Document 2 discloses a desalination chamber 2-cell structure in which a desalination chamber is partitioned by an intermediate ion exchange membrane disposed between an anion exchange membrane and a cation exchange membrane. EDI is disclosed. In the production of deionized water in the EDI, water to be treated is introduced into one small demineralization chamber (first small demineralization chamber) while voltage is applied, and then the effluent from the small demineralization chamber is fed to the other. In addition to flowing into the small desalting chamber (second small desalting chamber) (series water flow), the concentrated water is flowed into the concentrating chamber to remove impurity ions in the water to be treated to obtain deionized water. According to the EDI having such a structure, the ion exchanger filled in at least one of the two small desalting chambers is, for example, an anion exchanger alone or a single bed form such as only a cation exchanger. Or, it can be a mixed bed form of anion exchanger and cation exchanger, and it can be set to an optimum thickness for reducing the electric resistance and obtaining high deionization performance for each type of ion exchanger. it can.

特開平9−24374号公報Japanese Patent Laid-Open No. 9-24374 特許第3385553号公報Japanese Patent No. 3385553

しかしながら、これまでの技術では、脱塩室内又は濃縮室内における電気抵抗を低減できるものの、イオン成分の除去やスケール発生防止が不十分であった。加えて、被処理水の原水水質の変動によって、得られる脱イオン水の水質が安定しないという問題があった。従来の脱塩室2セル構造のEDIで高い水質の脱イオン水を得るために、上記の直列通水を繰返すと、脱塩室内の差圧が高くなり、被処理水の処理量の著しい低下を招き、実用的でない。
本発明は、被処理水の処理量を確保しつつ、スケール発生を防止でき、原水水質の変動に影響されずに高い水質の脱イオン水を得る(原水耐性)ことができるEDI及び脱イオン水の製造方法を目的とする。
However, with the conventional techniques, although the electrical resistance in the desalting chamber or the concentration chamber can be reduced, removal of ion components and prevention of scale generation have been insufficient. In addition, there has been a problem that the quality of the deionized water obtained is not stable due to fluctuations in the raw water quality of the treated water. In order to obtain deionized water with high water quality by EDI having a conventional two-cell desalination chamber structure, if the above series water flow is repeated, the differential pressure in the desalination chamber increases and the amount of treated water decreases significantly. Is not practical.
The present invention provides EDI and deionized water that can prevent the generation of scale while ensuring the amount of treated water, and can obtain high quality deionized water (raw water resistance) without being affected by fluctuations in the raw water quality. It aims at the manufacturing method of.

本発明者は、従来のEDIにおけるイオン除去能力の低下、ならびにスケールの生成について鋭意検討した結果、次のような知見を得た。
従来の脱塩室2セル構造では、イオン交換体や中間イオン交換膜の配置によっては、第一小脱塩室と第二小脱塩室との間を、中間イオン交換膜を介して、シリカや炭酸、ナトリウム等のイオンが循環してしまい、濃縮室まで排出されにくいという問題があった。例えば、シリカが循環した場合には、被処理水から持ち込まれるシリカの量と、隣の脱塩室から持ち込まれるシリカの量が合算され、実際には被処理水から持ち込まれるシリカよりも、多くのシリカ量を処理することとなる。その結果、シリカを除去しきれずに、脱イオン水に漏洩したり、電気抵抗を極端に上昇させるといった問題に繋がっている。
As a result of intensive studies on the reduction of ion removal ability and the generation of scale in the conventional EDI, the present inventor has obtained the following knowledge.
In the conventional two-cell structure of the desalination chamber, depending on the arrangement of the ion exchanger and the intermediate ion exchange membrane, the silica is interposed between the first small desalination chamber and the second small desalination chamber via the intermediate ion exchange membrane. In addition, ions such as carbonic acid and sodium circulate, and there is a problem that it is difficult to discharge to the concentration chamber. For example, when silica circulates, the amount of silica brought in from the water to be treated and the amount of silica brought in from the adjacent desalting chamber are added together, and actually more than silica brought from the water to be treated. The amount of silica is to be treated. As a result, silica cannot be completely removed, leading to problems such as leakage into deionized water and extremely increasing electrical resistance.

また、陰極側を第一小脱塩室とし、陽極側を第二小脱塩室とし、第一小脱塩室にカチオン交換体、第二小脱塩室にアニオン交換体を充填したような構造の場合、第一小脱塩室においてカチオン成分が除去されるに従い、被処理水のpHが酸性側に傾き、H濃度が高くなる。このため、Na、Ca2+、Mg2+等、除去対象のカチオン成分への電流効率が低下し、カチオン成分を一定濃度以下には低減できなくなる。そして、第二小脱塩室にはカチオン交換体が充填されていないため、そのまま脱イオン水にまで漏洩してしまうという問題があった。さらに、第二小脱塩室を構成するアニオン交換膜のカチオン成分除去能が100%ではないため、一旦濃縮室に移動したカチオン成分は、極微量ではあるものの、アニオン交換膜を介して第二小脱塩室に逆移動してしまう。そして、第二小脱塩室にカチオン交換体が充填されていないために、結果として脱イオン水に、カチオン成分が漏洩するという現象がある。 Also, the cathode side is the first small desalting chamber, the anode side is the second small desalting chamber, the first small desalting chamber is filled with a cation exchanger, and the second small desalting chamber is filled with an anion exchanger. In the case of the structure, as the cation component is removed in the first small desalting chamber, the pH of the water to be treated is inclined to the acidic side, and the H + concentration is increased. For this reason, the current efficiency to the cation component to be removed, such as Na + , Ca 2+ , Mg 2+ , is reduced, and the cation component cannot be reduced below a certain concentration. And since the 2nd small desalination chamber was not filled with the cation exchanger, there existed a problem that it would leak to deionized water as it is. Furthermore, since the cation component removal ability of the anion exchange membrane constituting the second small desalting chamber is not 100%, the cation component once moved to the concentration chamber is very small, but the second component passes through the anion exchange membrane. It moves back to the small desalination chamber. And since the 2nd small desalination chamber is not filled with the cation exchanger, there exists a phenomenon that a cation component leaks in deionized water as a result.

また、陽極側を第一小脱塩室とし、陰極側を第二小脱塩室とし、第一小脱塩室にアニオン交換体、第二小脱塩室にカチオン交換体を充填したような構造の場合、第一小脱塩室においてアニオン成分が除去されるに従い、被処理水のpHがアルカリ側に傾き、OH濃度が高くなる。このため、Cl、HCO 、CO 2−、SiO(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする)等、除去対象のアニオン成分への電流効率が低下し、アニオン成分を一定濃度以下には低減できなくなる。そして、第二小脱塩室にはアニオン交換体が充填されていないため、そのまま脱イオン水にまで漏洩してしまうという問題があった。さらに、第二小脱塩室を構成するカチオン交換膜のアニオン成分除去能が100%ではないため、一旦濃縮室に移動したアニオン成分は、極微量ではあるものの、カチオン交換膜を介して、第二小脱塩室に逆移動してしまう。そして、第二小脱塩室にアニオン交換体が充填されていないために、結果として脱イオン水に、アニオン成分が漏洩するという現象がある。 Also, the anode side is the first small desalting chamber, the cathode side is the second small desalting chamber, the first small desalting chamber is filled with an anion exchanger, and the second small desalting chamber is filled with a cation exchanger. In the case of the structure, as the anion component is removed in the first small desalting chamber, the pH of the water to be treated is inclined toward the alkali side and the OH concentration is increased. For this reason, to anion components to be removed such as Cl , HCO 3 , CO 3 2− , SiO 2 (silica often takes a special form and is therefore displayed differently from general ions). Current efficiency decreases, and the anion component cannot be reduced below a certain concentration. And since the 2nd small desalination chamber was not filled with the anion exchanger, there existed a problem that it would leak to deionized water as it is. Further, since the anion component removal ability of the cation exchange membrane constituting the second small desalting chamber is not 100%, the anion component once moved to the concentration chamber is very small, but the second component passes through the cation exchange membrane. It moves backward to the two small desalting chambers. And since the anion exchanger is not filled in the second small desalting chamber, there is a phenomenon that an anion component leaks into the deionized water as a result.

また、脱塩室を中間イオン交換膜で分割していない1セル構造のEDIにおいて、脱塩室に複数種のイオン交換体を積層して充填した場合、次のような問題があった。積層されたカチオン交換体の単床形態のイオン交換層、アニオン交換体の単床形態のイオン交換層、カチオン交換体とアニオン交換体の混床形態のイオン交換層では、それぞれ電気抵抗が大きく異なる。このため、より電気抵抗の低いイオン交換層にしか電気が流れず、電気抵抗の高いイオン交換層でのイオン除去率が極端に低下するという現象がある。
加えて、アニオン交換膜とカチオン交換体との接点で発生したHは、カチオン交換体の再生に寄与するが、OHは濃縮室に移動してしまい、何の機能も果たさないという問題がある。この現象について、図4を用いて説明する。図4は、1セル構造のEDIの脱イオンモジュール220の模式図である。図4の通り、脱イオンモジュール220は、陰極側のカチオン交換膜222と、陽極側のアニオン交換膜230との間に脱塩室224が形成され、脱塩室224の両側に濃縮室234が形成され、図示されない陰極室と陽極室との間に配置されている。脱塩室224には、アニオン交換体が充填された脱塩層224aと、カチオン交換体が充填された脱塩層224bとが形成されている。被処理水を脱塩室224に通水すると、アニオン交換膜230と、脱塩層224bのカチオン交換体との界面では、脱塩室224側にH、濃縮室234側にOHが発生する。脱塩室224側に発生したHは、脱塩層224bのカチオン交換体の再生に寄与するが、濃縮室234側で発生したOHは、脱塩室224中のいずれのイオン交換体の再生にも寄与しない。同様に、カチオン交換膜222と脱塩層224aに充填したアニオン交換体との界面で発生したOHは、脱塩層224aのアニオン交換体の再生に寄与するが、濃縮室234側で発生したHは、脱塩室224中のいずれのイオン交換体の再生にも寄与しない。
本発明は、以上の知見を基になされたものである。
Further, in the EDI having a one-cell structure in which the desalting chamber is not divided by the intermediate ion exchange membrane, there are the following problems when a plurality of types of ion exchangers are stacked and filled in the desalting chamber. The stacked cation exchanger single-bed ion exchange layer, anion exchanger single-bed ion exchange layer, and cation exchanger and anion-exchange mixed-bed ion exchange layer have different electrical resistances. . For this reason, there is a phenomenon that electricity flows only to the ion exchange layer having a lower electric resistance, and the ion removal rate in the ion exchange layer having a higher electric resistance is extremely reduced.
In addition, H + generated at the contact point between the anion exchange membrane and the cation exchanger contributes to regeneration of the cation exchanger, but OH moves to the concentration chamber and does not perform any function. is there. This phenomenon will be described with reference to FIG. FIG. 4 is a schematic diagram of an EDI deionization module 220 having a one-cell structure. As shown in FIG. 4, in the deionization module 220, a desalination chamber 224 is formed between the cation exchange membrane 222 on the cathode side and the anion exchange membrane 230 on the anode side, and concentration chambers 234 are formed on both sides of the desalination chamber 224. It is formed and disposed between a cathode chamber and an anode chamber (not shown). In the desalting chamber 224, a desalting layer 224a filled with an anion exchanger and a desalting layer 224b filled with a cation exchanger are formed. When the water to be treated is passed through the desalting chamber 224, H + is generated on the desalting chamber 224 side and OH is generated on the concentrating chamber 234 side at the interface between the anion exchange membrane 230 and the cation exchanger of the desalting layer 224b. To do. H + generated on the desalting chamber 224 side contributes to the regeneration of the cation exchanger in the desalting layer 224 b, while OH generated on the concentration chamber 234 side is not any ion exchanger in the desalting chamber 224. Does not contribute to regeneration. Similarly, OH generated at the interface between the cation exchange membrane 222 and the anion exchanger filled in the desalting layer 224a contributes to the regeneration of the anion exchanger of the desalting layer 224a, but is generated on the concentration chamber 234 side. H + does not contribute to the regeneration of any ion exchanger in the desalting chamber 224.
The present invention has been made based on the above findings.

即ち、本発明のEDIは、陰極側のカチオン交換膜と陽極側のアニオン交換膜とで区画され、被処理水を流通する複数の脱塩室が設けられ、前記カチオン交換膜又は前記アニオン交換膜を介して前記脱塩室の両側に、濃縮水を流通する濃縮室が設けられ、前記脱塩室には、前記カチオン交換膜と前記アニオン交換膜との間に配置された中間イオン交換膜によって、その厚さ方向に区画された第一小脱塩室と第二小脱塩室が形成され、任意の前記第一小脱塩室を流通した被処理水を分配し、分配した被処理水を任意の複数の前記第二小脱塩室に流通させる第一の通水手段が設けられ、前記の任意の第二小脱塩室を流通した被処理水を他の前記第一小脱塩室に流通させる第二の通水手段が設けられていることを特徴とする。
前記第二の通水手段は、複数の前記第二小脱塩室を流通した被処理水を合流させ、合流した被処理水を前記の他の第一小脱塩室に流通させることが好ましく、濃縮水を前記の任意の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させ、次いで前記の他の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させる手段が設けられていることがより好ましい。前記の任意の第一小脱塩室の体積V1と、前記の他の第一小脱塩室の体積V2との体積比は、V1:V2=2:8〜8:2であることが好ましく、前記の任意の第一小脱塩室に隣接する濃縮室の体積v1と、前記の他の第一小脱塩室に隣接する濃縮室の体積v2との体積比は、v1:v2=2:8〜8:2であることが好ましく、前記第一小脱塩室は、前記アニオン交換膜と前記中間イオン交換膜との間にアニオン交換体が単床形態で充填されて形成され、前記第二小脱塩室は、前記カチオン交換膜と前記中間イオン交換膜との間にカチオン交換体が単床形態で充填されて形成されていることがより好ましく、前記中間イオン交換膜は、カチオン交換膜、アニオン交換膜、カチオン交換膜及びアニオン交換膜の両方を配置した複式膜又はバイポーラ膜であることが好ましい。
That is, the EDI of the present invention is partitioned by a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, and is provided with a plurality of desalting chambers for circulating the water to be treated, and the cation exchange membrane or the anion exchange membrane Concentration chambers through which concentrated water flows are provided on both sides of the desalting chamber through the intermediate, and the desalting chamber is provided with an intermediate ion exchange membrane disposed between the cation exchange membrane and the anion exchange membrane. The first small desalting chamber and the second small desalting chamber partitioned in the thickness direction are formed, and the treated water distributed through any of the first small desalting chambers is distributed, and the treated water is distributed. The first small water desalination chamber is provided with a first water passage means, and the water to be treated which has circulated through the arbitrary second small desalination chamber is supplied to the other first small desalination chamber. It is characterized by the 2nd water flow means to distribute | circulate to a chamber.
Preferably, the second water flow means joins the water to be treated that has circulated through the plurality of second small desalination chambers and causes the merged water to be circulated to the other first small desalination chambers. The concentrated water is circulated through the optional first small desalting chamber and the adjacent concentrating chamber via the anion exchange membrane or the cation exchange membrane, and then the other first small desalting chamber and the anion exchange membrane or the cation. It is more preferable that a means for flowing through the adjacent concentrating chamber through the exchange membrane is provided. The volume ratio between the volume V1 of the arbitrary first small desalting chamber and the volume V2 of the other first small desalting chamber is preferably V1: V2 = 2: 8 to 8: 2. The volume ratio of the volume v1 of the concentrating chamber adjacent to the arbitrary first small desalting chamber to the volume v2 of the concentrating chamber adjacent to the other first small desalting chamber is v1: v2 = 2. Preferably, the first small desalting chamber is formed by filling an anion exchanger in a single bed between the anion exchange membrane and the intermediate ion exchange membrane, More preferably, the second small desalting chamber is formed by filling a cation exchanger in a single-bed form between the cation exchange membrane and the intermediate ion exchange membrane. Exchange membranes, anion exchange membranes, duplex membranes or biofilms with both cation exchange membranes and anion exchange membranes It is preferable that the over La film.

本発明の脱イオン水の製造方法は、前記の電気式脱イオン水製造装置を用いた脱イオン水の製造方法であって、任意の前記第一小脱塩室に流通させた被処理水を分配し、分配した被処理水を任意の複数の前記第二小脱塩室に流通させ、さらに他の前記第一小脱塩室に流通させることを特徴とする。   The method for producing deionized water according to the present invention is a method for producing deionized water using the electric deionized water production apparatus described above, and the treated water circulated through any of the first small demineralization chambers. It distributes and distributes the to-be-processed water distribute | circulates to arbitrary said some said 2nd small desalination chamber, Furthermore, it distribute | circulates to another said 1st small desalination chamber, It is characterized by the above-mentioned.

本発明によれば、被処理水の処理量を確保しつつ、スケール発生を防止でき、原水水質の変動に影響されずに高い水質の脱イオン水を得る(原水耐性)ことができる。   ADVANTAGE OF THE INVENTION According to this invention, scale generation | occurrence | production can be prevented, ensuring the processing amount of to-be-processed water, and high-quality deionized water can be obtained (raw water tolerance) without being influenced by the fluctuation | variation of raw | natural water quality.

本発明の実施形態にかかる脱イオンモジュール群の斜視図である。It is a perspective view of the deionization module group concerning the embodiment of the present invention. 本発明の実施形態にかかるEDIの模式図である。It is a schematic diagram of EDI concerning the embodiment of the present invention. 本発明の実施形態にかかる脱イオンモジュールの模式図である。It is a schematic diagram of the deionization module concerning embodiment of this invention. 従来の1セル構造のEDIの脱イオンモジュールの模式図である。It is a schematic diagram of a conventional one-cell EDI deionization module.

以下に本発明のEDIの一例を図1〜2を用いて説明する。図1は、本発明の一実施形態を説明する脱イオンモジュール群2の斜視図である。図2は、本発明の一実施形態を説明するEDI1を示す模式図である。なお、説明の便宜上、脱イオンモジュール群2の各構成部材は一定間隔を空けて図示しており、実際の脱イオンモジュール群2では各構成部材が密着している。   Hereinafter, an example of the EDI of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a deionization module group 2 for explaining an embodiment of the present invention. FIG. 2 is a schematic diagram showing an EDI 1 for explaining an embodiment of the present invention. For convenience of explanation, the constituent members of the deionization module group 2 are illustrated with a certain interval, and in the actual deionization module group 2, the constituent members are in close contact.

EDI1は、脱イオンモジュール群2と、第一の濃縮室20と、第三の濃縮室140とが、陽極室12と陰極室142との間に設けられたものである。
脱イオンモジュール群2は、第一の脱イオンモジュール4と、第二の脱イオンモジュール6と、第一の脱イオンモジュール4と第二の脱イオンモジュール6との間に設けられた第二の濃縮室80とで概略構成されている。脱イオンモジュール群2には、被処理水流入ライン42と脱イオン水流出ライン102とが接続されている。
In EDI 1, the deionization module group 2, the first concentration chamber 20, and the third concentration chamber 140 are provided between the anode chamber 12 and the cathode chamber 142.
The deionization module group 2 includes a first deionization module 4, a second deionization module 6, and a second deionization module 4 provided between the first deionization module 4 and the second deionization module 6. A concentrating chamber 80 is schematically configured. A treated water inflow line 42 and a deionized water outflow line 102 are connected to the deionized module group 2.

第一の脱イオンモジュール4は、陽極10側から順に配置されたアニオン交換膜30と枠体41と中間イオン交換膜50と枠体61とカチオン交換膜70とで、概略構成されている。第一の脱イオンモジュール4には、枠体41の開口部にアニオン交換体が単床形態で充填され第一小脱塩室40が形成され、枠体61の開口部にカチオン交換体が単床形態で充填され第二小脱塩室60が形成されている。第一小脱塩室40と、中間イオン交換膜50を介して隣接する第二小脱塩室60とで、第一の脱塩室39が形成されている。   The first deionization module 4 is roughly configured by an anion exchange membrane 30, a frame body 41, an intermediate ion exchange membrane 50, a frame body 61, and a cation exchange membrane 70 that are arranged in order from the anode 10 side. In the first deionization module 4, an opening of the frame body 41 is filled with an anion exchanger in a single-bed form to form a first small desalting chamber 40, and a cation exchanger is simply formed in the opening of the frame body 61. Filled in a floor form, a second small desalting chamber 60 is formed. A first desalting chamber 39 is formed by the first small desalting chamber 40 and the second small desalting chamber 60 adjacent via the intermediate ion exchange membrane 50.

第二の脱イオンモジュール6は、陽極10側から順に配置されたアニオン交換膜90と枠体101と中間イオン交換膜110と枠体121とカチオン交換膜130とで、概略構成されている。第二の脱イオンモジュール6には、枠体101の開口部にアニオン交換体が単床形態で充填され第一小脱塩室100が形成され、枠体121の開口部にカチオン交換体が単床形態で充填され第二小脱塩室120が形成されている。第一小脱塩室100と、中間イオン交換膜110を介して隣接する第二小脱塩室120とで、第二の脱塩室99が形成されている。   The second deionization module 6 is schematically configured by an anion exchange membrane 90, a frame body 101, an intermediate ion exchange membrane 110, a frame body 121, and a cation exchange membrane 130 arranged in this order from the anode 10 side. In the second deionization module 6, the opening of the frame body 101 is filled with an anion exchanger in a single bed form to form a first small desalting chamber 100, and the opening of the frame body 121 has a single cation exchanger. Filled in a floor form, a second small desalting chamber 120 is formed. A second desalting chamber 99 is formed by the first small desalting chamber 100 and the second small desalting chamber 120 adjacent via the intermediate ion exchange membrane 110.

アニオン交換膜30には、通水孔32、33、34が形成されている。通水孔32には、被処理水流入ライン42が接続されている。通水孔33と34には、配管35が接続されている。枠体41には、通水孔44、45、46が形成されている。枠体41には、通水孔44と第一小脱塩室40とを連通する通水路47と、通水孔45と第一小脱塩室40とを連通する通水路48が形成されている。中間イオン交換膜50には、通水孔51が形成されている。枠体61には通水孔62、63が形成されている。枠体61には、通水孔62と第二小脱塩室60とを連通する通水路64と、通水孔63と第二小脱塩室60とを連通する通水路65とが形成されている。カチオン交換膜70には、通水孔71、72が形成されている(以上、第一の脱イオンモジュール4)。枠体81には通水孔84、85が形成されている。   Water passage holes 32, 33, and 34 are formed in the anion exchange membrane 30. A treated water inflow line 42 is connected to the water passage 32. A pipe 35 is connected to the water holes 33 and 34. In the frame body 41, water holes 44, 45, 46 are formed. The frame body 41 is formed with a water passage 47 communicating the water passage hole 44 and the first small desalination chamber 40 and a water passage 48 communicating the water passage hole 45 and the first small desalination chamber 40. Yes. Water passage holes 51 are formed in the intermediate ion exchange membrane 50. Water passage holes 62 and 63 are formed in the frame body 61. The frame body 61 is formed with a water passage 64 communicating the water passage 62 and the second small desalination chamber 60 and a water passage 65 communicating the water passage 63 and the second small desalination chamber 60. ing. Water passage holes 71 and 72 are formed in the cation exchange membrane 70 (the first deionization module 4). Water flow holes 84 and 85 are formed in the frame 81.

アニオン交換膜90には、通水孔91、92が形成されている。枠体101には、通水孔103、104、105、106が形成されている。枠体101には、通水孔104と第一小脱塩室100とを連通する通水路107と、通水孔105と第一小脱塩室100とを連通する通水路108とが形成されている。中間イオン交換膜110には、通水孔111、112、113、114が形成されている。枠体121には、通水孔123、124、125、126が形成されている。枠体121には、通水孔123と第二小脱塩室120とを連通する通水路127と、通水孔126と第二小脱塩室120とを連通する通水路128とが形成されている。カチオン交換膜130には、通水孔132、133、134が形成されている。通水孔132と133とには、配管135が接続されている。通水孔134には、脱イオン水流出ライン102が接続されている(以上、第二の脱イオンモジュール6)。   Water passage holes 91 and 92 are formed in the anion exchange membrane 90. Water passage holes 103, 104, 105, and 106 are formed in the frame body 101. The frame body 101 is formed with a water passage 107 that communicates the water passage 104 and the first small desalination chamber 100, and a water passage 108 that communicates the water passage 105 and the first small desalination chamber 100. ing. Water passage holes 111, 112, 113, and 114 are formed in the intermediate ion exchange membrane 110. Water passage holes 123, 124, 125, and 126 are formed in the frame body 121. The frame body 121 is formed with a water passage 127 that connects the water passage hole 123 and the second small desalination chamber 120, and a water passage 128 that communicates the water passage 126 and the second small desalination chamber 120. ing. Water passage holes 132, 133, and 134 are formed in the cation exchange membrane 130. A pipe 135 is connected to the water passage holes 132 and 133. The deionized water outflow line 102 is connected to the water passage hole 134 (the second deionization module 6).

「第一の通水手段」は、通水孔33、34、45、46、51、62、71、84、91、103、111、123、通水路48、64、127、配管35で構成されている。「第二の通水手段」は、通水孔63、72、85、92、104、106、112、114、124、126、132、133、通水路65、107、128、配管135で構成されている。   The “first water passage means” includes water passage holes 33, 34, 45, 46, 51, 62, 71, 84, 91, 103, 111, 123, water passages 48, 64, 127, and piping 35. ing. The “second water passage means” includes water passage holes 63, 72, 85, 92, 104, 106, 112, 114, 124, 126, 132, 133, water passages 65, 107, 128, and piping 135. ing.

陽極10と陰極150とは、図示されない電源と接続されている。
陽極室12は、陽極10と枠体11と仕切膜14とが順に配置され、枠体11の開口部にイオン交換体が充填され形成されたものである。陽極室12には、電極水流入ライン16と電極水流出ライン18とが接続されている。
陰極室152は、陽極10側から仕切膜154と枠体151と陰極150とが順に配置され、枠体151の開口部にイオン交換体が充填され形成されたものである。陰極室152には、電極水流入ライン156と電極水流出ライン158とが接続されている。
The anode 10 and the cathode 150 are connected to a power source (not shown).
In the anode chamber 12, the anode 10, the frame body 11, and the partition film 14 are arranged in order, and the opening of the frame body 11 is filled with an ion exchanger. An electrode water inflow line 16 and an electrode water outflow line 18 are connected to the anode chamber 12.
In the cathode chamber 152, a partition film 154, a frame body 151, and a cathode 150 are arranged in this order from the anode 10 side, and an opening of the frame body 151 is filled with an ion exchanger. An electrode water inflow line 156 and an electrode water outflow line 158 are connected to the cathode chamber 152.

第一の濃縮室20は、仕切膜14とアニオン交換膜30との間に枠体21が配置され、枠体21の開口部にアニオン交換体が単床形態で充填され形成されたものである。第一の濃縮室20には、濃縮水流入ライン22と濃縮水流出ライン23とが接続されている。
第二の濃縮室80は、カチオン交換膜70とアニオン交換膜90との間、即ち、第一の脱イオンモジュール4と第二の脱イオンモジュール6との間に枠体81が配置され、枠体81の開口部にアニオン交換体が単床形態で充填され形成されたものである。第二の濃縮室80には、濃縮水流入ライン82と濃縮水流出ライン83とが接続されている。
第三の濃縮室140は、仕切膜154とカチオン交換膜130との間に枠体141が配置され、枠体141の開口部にアニオン交換体が単床形態で充填され形成されたものである。第三の濃縮室140には、濃縮水流入ライン142と濃縮水流出ライン143とが接続されている。
濃縮水流出ライン23と濃縮水流入ライン82とは、図示されない配管により接続されている。
In the first concentration chamber 20, a frame body 21 is disposed between the partition membrane 14 and the anion exchange membrane 30, and the anion exchanger is filled and formed in a single bed form in the opening of the frame body 21. . A concentrated water inflow line 22 and a concentrated water outflow line 23 are connected to the first concentration chamber 20.
In the second concentrating chamber 80, a frame body 81 is disposed between the cation exchange membrane 70 and the anion exchange membrane 90, that is, between the first deionization module 4 and the second deionization module 6. An opening of the body 81 is filled with an anion exchanger in the form of a single bed. A concentrated water inflow line 82 and a concentrated water outflow line 83 are connected to the second concentration chamber 80.
In the third concentrating chamber 140, a frame body 141 is disposed between the partition membrane 154 and the cation exchange membrane 130, and an opening of the frame body 141 is filled with an anion exchanger in a single bed form. . A concentrated water inflow line 142 and a concentrated water outflow line 143 are connected to the third concentration chamber 140.
The concentrated water outflow line 23 and the concentrated water inflow line 82 are connected by a pipe (not shown).

「濃縮水を前記の任意の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させ、次いで前記の他の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させる手段」は、濃縮水流出ライン23と濃縮水流入ライン82と、これらを接続する図示されない配管とで構成されている。   “Concentrated water is allowed to flow through the optional first small desalting chamber and the adjacent concentrating chamber via the anion exchange membrane or cation exchange membrane, and then the other first small desalting chamber and the anion exchange membrane or cation. The “means for circulating to the adjacent concentrating chamber through the exchange membrane” includes the concentrated water outflow line 23, the concentrated water inflow line 82, and a pipe (not shown) connecting them.

イオン交換膜としては、大別すると、原料モノマー液を補強体に含浸させた後に重合させ、全体を均質に形成した均質膜と、イオン交換樹脂を溶解成型可能なポリオレフィン系樹脂と共に粉砕成型した不均質膜の2種類がある。本実施形態におけるアニオン交換膜30、カチオン交換膜70、アニオン交換膜90、カチオン交換膜130はいずれも特に限定されず、EDIの製造の簡便さや、被処理水の水質、脱イオン水に求める水質、処理量等に応じて選択することができる。   The ion exchange membrane can be roughly classified into a homogeneous membrane formed by impregnating a raw material monomer solution into a reinforcing body and then polymerized, and a homogenous membrane formed by pulverization and molding together with a polyolefin resin capable of dissolving and molding the ion exchange resin. There are two types of homogeneous membranes. The anion exchange membrane 30, the cation exchange membrane 70, the anion exchange membrane 90, and the cation exchange membrane 130 in the present embodiment are not particularly limited. EDI manufacturing simplicity, quality of water to be treated, and water quality required for deionized water , And can be selected according to the amount of processing.

本実施形態における中間イオン交換膜50は、アニオン交換膜である。中間イオン交換膜は、特に限定されず、アニオン交換膜30と同様のものを用いることができる。中間イオン交換膜110は、中間イオン交換膜50と同様である。   The intermediate ion exchange membrane 50 in this embodiment is an anion exchange membrane. The intermediate ion exchange membrane is not particularly limited, and the same ion exchange membrane as that of the anion exchange membrane 30 can be used. The intermediate ion exchange membrane 110 is the same as the intermediate ion exchange membrane 50.

第一小脱塩室40に充填するアニオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、中でも最も汎用的なイオン交換樹脂が好適に用いられる。アニオン交換樹脂の種類は特に限定されず、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂等が挙げられる。例えば、市販品としてアンバーライト(商品名、ローム・アンド・ハース社製)等が挙げられる。
第一小脱塩室100に充填するアニオン交換体は、第一小脱塩室40に充填するアニオン交換体と同様である。
Examples of the anion exchanger filled in the first small desalting chamber 40 include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc. Among them, the most general-purpose ion exchange resins are preferably used. The kind of anion exchange resin is not particularly limited, and examples thereof include strong basic anion exchange resins and weak basic anion exchange resins. For example, as a commercial product, Amberlite (trade name, manufactured by Rohm and Haas) and the like can be mentioned.
The anion exchanger filled in the first small desalting chamber 100 is the same as the anion exchanger filled in the first small desalting chamber 40.

第二小脱塩室60に充填するカチオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、中でも最も汎用的なイオン交換樹脂が好適に用いられる。カチオン交換樹脂の種類は特に限定されず、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂等が挙げられる。例えば、市販品としてアンバーライト(商品名、ローム・アンド・ハース社製)等が挙げられる。
第二小脱塩室120に充填するカチオン交換体は、第二小脱塩室60に充填するカチオン交換体と同様である。
Examples of the cation exchanger filled in the second small desalting chamber 60 include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc. Among them, the most general-purpose ion exchange resins are preferably used. The kind of cation exchange resin is not particularly limited, and examples include strong acid cation exchange resins and weak acid cation exchange resins. For example, as a commercial product, Amberlite (trade name, manufactured by Rohm and Haas) and the like can be mentioned.
The cation exchanger filled in the second small desalting chamber 120 is the same as the cation exchanger filled in the second small desalting chamber 60.

枠体41は、絶縁性を有し、被処理水が漏洩しない材質であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製の枠体を挙げることができる。
枠体41の厚さは特に限定されることなく、所望する第一小脱塩室40の厚さに応じて設定することができる。例えば、第一小脱塩室40の厚さは、4〜16mmが好ましく、6〜12mmがより好ましい。4mm未満であると被処理水の滞留時間が十分に確保できず脱イオン水の水質が低下するおそれがある。16mmを超えると、第一の脱イオンモジュール4の成形が困難になる傾向となる。
The frame 41 is not particularly limited as long as it has an insulating property and does not leak water to be treated. For example, a frame made of resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl and the like can be given. be able to.
The thickness of the frame 41 is not particularly limited, and can be set according to the desired thickness of the first small desalting chamber 40. For example, the thickness of the first small desalting chamber 40 is preferably 4 to 16 mm, and more preferably 6 to 12 mm. If it is less than 4 mm, the residence time of the water to be treated cannot be sufficiently secured and the quality of the deionized water may be deteriorated. If it exceeds 16 mm, the first deionization module 4 tends to be difficult to mold.

枠体61、101、121の材質は、枠体41と同様である。枠体61、101、121の厚さは、枠体41の厚さと同様である。   The material of the frames 61, 101, 121 is the same as that of the frame 41. The thickness of the frames 61, 101, 121 is the same as the thickness of the frame 41.

第一小脱塩室40の厚さと第二小脱塩室60の厚さは、同じであってもよいし、異なっていてもよい。第一小脱塩室100の厚さと第二小脱塩室120の厚さとは、同じであってもよいし、異なっていてもよい。
また、第一小脱塩室40の厚さと第一小脱塩室100の厚さとは、同じであってもよいし、異なっていてもよい。第一小脱塩室40の厚さと第一小脱塩室100の厚さとは、各小脱塩室に求める体積に応じて決定できる。例えば、各小脱塩室の厚さは、前段の小脱塩室である第一小脱塩室40の体積V1と、後段の小脱塩室である第一小脱塩室100の体積V2との体積比が、好ましくはV1:V2=2:8〜8:2となるように設定される。上記範囲内であれば、第一小脱塩室100における被処理水の通水差圧を抑制できると共に、被処理水中のアニオン成分(Cl、HCO 、CO 2−、SiO等)を良好に除去できるためである。
The thickness of the first small desalting chamber 40 and the thickness of the second small desalting chamber 60 may be the same or different. The thickness of the first small desalting chamber 100 and the thickness of the second small desalting chamber 120 may be the same or different.
Further, the thickness of the first small desalting chamber 40 and the thickness of the first small desalting chamber 100 may be the same or different. The thickness of the first small desalting chamber 40 and the thickness of the first small desalting chamber 100 can be determined according to the volume required for each small desalting chamber. For example, the thickness of each small desalting chamber is the volume V1 of the first small desalting chamber 40, which is the preceding small desalting chamber, and the volume V2 of the first small desalting chamber 100, which is the subsequent small desalting chamber. Is preferably set so that V1: V2 = 2: 8 to 8: 2. Within the above range, it is possible to suppress the passing jug pressure of the water to be treated in the first small depletion chamber 100, an anionic component in the for-treatment water (Cl -, HCO 3 -, CO 3 2-, SiO 2 , etc. ) Can be removed satisfactorily.

陽極10は、陽極として機能を発揮するものであれば特に限定されないが、電極水中にClが存在する場合には、陽極には塩素発生が起きるため、耐塩素性能を有するものが好ましい。例えば、白金、パラジウム、イリジウム等の貴金属、あるいは前記貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。
陰極150は、陰極としての機能を発揮するものであれば特に限定されず、例えば、板状のステンレスや網状のステンレス、又は、白金、パラジウム、イリジウム等の貴金属、あるいは前記貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。
The anode 10 is not particularly limited as long as it functions as an anode. However, when Cl is present in the electrode water, chlorine generation occurs in the anode, and therefore, an anode 10 having chlorine resistance is preferable. For example, a noble metal such as platinum, palladium, iridium, or a net-like or plate-like electrode obtained by coating the noble metal on titanium or the like can be given.
The cathode 150 is not particularly limited as long as it functions as a cathode. For example, a plate-like stainless steel, a mesh-like stainless steel, or a noble metal such as platinum, palladium, iridium, or the noble metal is covered with titanium or the like. And a net-like or plate-like electrode.

枠体11の材質は、枠体41と同様である。枠体11の厚さは、陽極室12に求める厚さに応じて決定できる。陽極室12の厚さは、例えば、0.3〜10mmとされる。
陽極室12に充填されるイオン交換体は、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。イオン交換体の充填形態は、被処理水の水質等を勘案して決定でき、例えば、アニオン交換体の単床形態、カチオン交換体の単床形態もしくはアニオン交換体とカチオン交換体との混床形態又は複床形態が挙げられる。
The material of the frame 11 is the same as that of the frame 41. The thickness of the frame 11 can be determined according to the thickness required for the anode chamber 12. The thickness of the anode chamber 12 is, for example, 0.3 to 10 mm.
Examples of the ion exchanger filled in the anode chamber 12 include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resin is preferably used. The packing form of the ion exchanger can be determined in consideration of the quality of the water to be treated, for example, a single bed form of an anion exchanger, a single bed form of a cation exchanger, or a mixed bed of an anion exchanger and a cation exchanger. A form or a double bed form is mentioned.

枠体151の材質は、枠体41と同様である。枠体151の厚さは、陰極室152に求める厚さに応じて決定できる。陰極室152の厚さは、陽極室12の厚さと同様である。陰極室152に充填するイオン交換体は、陽極室12に充填するイオン交換体と同様である。   The material of the frame 151 is the same as that of the frame 41. The thickness of the frame 151 can be determined according to the thickness required for the cathode chamber 152. The thickness of the cathode chamber 152 is the same as the thickness of the anode chamber 12. The ion exchanger filled in the cathode chamber 152 is the same as the ion exchanger filled in the anode chamber 12.

仕切膜14は、イオン交換膜であれば特に限定されず、被処理水の水質や、EDI1の運転条件等を考慮して選択することができる。例えば、カチオン交換膜又はアニオン交換膜を選択することができる。仕切膜154は、仕切膜14と同様である。   The partition membrane 14 is not particularly limited as long as it is an ion exchange membrane, and can be selected in consideration of the quality of the water to be treated, the operating conditions of the EDI 1, and the like. For example, a cation exchange membrane or an anion exchange membrane can be selected. The partition film 154 is the same as the partition film 14.

第一の濃縮室20に充填されるアニオン交換体は、第一小脱塩室40に充填されるアニオン交換体と同様である。アニオン交換体の単床形態とすることで、アニオン交換膜30に接するアニオン交換体層が形成され、第一小脱塩室40から第一の濃縮室20へのアニオン成分の移動が促進されるためである。
枠体21の材質は枠体41と同様である。枠体21の厚さは、第一の濃縮室20に求める厚さに応じて決定できる。第一の濃縮室20の厚さは、例えば、3〜10mmとされる。
The anion exchanger filled in the first concentration chamber 20 is the same as the anion exchanger filled in the first small desalting chamber 40. By using the single bed form of the anion exchanger, an anion exchanger layer in contact with the anion exchange membrane 30 is formed, and the movement of the anion component from the first small desalting chamber 40 to the first concentration chamber 20 is promoted. Because.
The material of the frame body 21 is the same as that of the frame body 41. The thickness of the frame body 21 can be determined according to the thickness required for the first concentration chamber 20. The thickness of the first concentration chamber 20 is, for example, 3 to 10 mm.

第二の濃縮室80に充填されるアニオン交換体は、第一小脱塩室40に充填されるアニオン交換体と同様である。アニオン交換体の単床形態とすることで、アニオン交換膜90に接するアニオン交換体層が形成され、第一小脱塩室100から第二の濃縮室80へのアニオン成分の移動を促進し、アニオン交換膜90面にアニオン成分が高濃度に存在することを防止できる。この結果、第二小脱塩室60から第二の濃縮室80に移動してきた硬度成分(Ca2+、Mg2+等)が、アニオン交換膜90面で高濃度のアニオン成分と接触しないため、スケール発生を防止できる。
枠体81の材質は、枠体41と同様である。枠体81の厚さは、第二の濃縮室80に求める厚さに応じて決定できる。第二の濃縮室80の厚さは、例えば、3〜10mmとされる。
The anion exchanger filled in the second concentration chamber 80 is the same as the anion exchanger filled in the first small desalting chamber 40. By making a single bed form of the anion exchanger, an anion exchanger layer in contact with the anion exchange membrane 90 is formed, promoting the movement of the anion component from the first small desalting chamber 100 to the second concentration chamber 80, It is possible to prevent the anion component from being present at a high concentration on the surface of the anion exchange membrane 90. As a result, the hardness components (Ca 2+ , Mg 2+, etc.) that have moved from the second small desalting chamber 60 to the second concentration chamber 80 do not come into contact with the high-concentration anion components on the anion exchange membrane 90 surface. Occurrence can be prevented.
The material of the frame 81 is the same as that of the frame 41. The thickness of the frame 81 can be determined according to the thickness required for the second concentration chamber 80. The thickness of the second concentration chamber 80 is, for example, 3 to 10 mm.

第三の濃縮室140に充填されるアニオン交換体は、第一小脱塩室40に充填されるアニオン交換体と同様である。
枠体141の材質は、枠体41と同様である。枠体141の厚さは、第三の濃縮室140に求める厚さに応じて決定できる。第三の濃縮室140の厚さは、例えば、3〜10mmとされる。
The anion exchanger filled in the third concentration chamber 140 is the same as the anion exchanger filled in the first small desalting chamber 40.
The material of the frame body 141 is the same as that of the frame body 41. The thickness of the frame 141 can be determined according to the thickness required for the third concentration chamber 140. The thickness of the third concentration chamber 140 is, for example, 3 to 10 mm.

第一の濃縮室20の厚さ、第二の濃縮室80の厚さ、第三の濃縮室140厚さは、それぞれ同じであってもよいし、異なっていてもよい。各濃縮室の厚さは、各濃縮室に求める体積に応じて決定できる。例えば、第一の濃縮室20と第二の濃縮室80の厚さは、前段の濃縮室である第一の濃縮室20の体積v1と、後段の濃縮室である第二の濃縮室80の体積v2との体積比が、好ましくは2:8〜8:2となるように設定される。上記範囲内であれば、第二の濃縮室80における濃縮水の通水差圧を抑制し、十分量の濃縮水を通水できる。この結果、第一小脱塩室100から第二の濃縮室80へのアニオン成分の移動を促進できる。   The thickness of the first concentration chamber 20, the thickness of the second concentration chamber 80, and the thickness of the third concentration chamber 140 may be the same or different from each other. The thickness of each concentration chamber can be determined according to the volume required for each concentration chamber. For example, the thicknesses of the first concentration chamber 20 and the second concentration chamber 80 are the same as the volume v1 of the first concentration chamber 20 that is the preceding concentration chamber and the second concentration chamber 80 that is the subsequent concentration chamber. The volume ratio with the volume v2 is preferably set to be 2: 8 to 8: 2. If it is in the said range, the water flow differential pressure | voltage in the 2nd concentration chamber 80 can be suppressed, and sufficient amount of concentrated water can be flowed. As a result, the movement of the anion component from the first small desalting chamber 100 to the second concentration chamber 80 can be promoted.

次に、EDI1を用いた脱イオン水の製造方法について説明する。本発明の脱イオン水の製造方法は、工業用水や井水の濁質成分を除濁膜にて除去し、さらに逆浸透(RO)膜にて処理した水等を被処理水として脱イオン処理し、脱イオン水を得るものである。   Next, a method for producing deionized water using EDI1 will be described. In the method for producing deionized water of the present invention, the turbid components of industrial water and well water are removed by a turbidity membrane, and the water treated with a reverse osmosis (RO) membrane is treated as deionized water. Thus, deionized water is obtained.

まず、電極水流入ライン16から陽極室12に電極水を流し、電極水流入ライン156から陰極室152に電極水を流すと共に、陽極10と陰極150との間に、直流電圧を印加する。陽極室12に流入した電極水は、上昇流で、陽極室12のイオン交換体内を拡散しながら流通する。この間、電極水は陽極10から発生したCl、O等を取り込んで、電極水流出ライン18から流出する。陰極室150に流入した電極水は、上昇流で、陰極室150のイオン交換体内を拡散しながら流通する。この間、電極水は陰極150から発生したH等を取り込んで、電極水流出ライン158から流出する。 First, electrode water is caused to flow from the electrode water inflow line 16 to the anode chamber 12, electrode water is caused to flow from the electrode water inflow line 156 to the cathode chamber 152, and a DC voltage is applied between the anode 10 and the cathode 150. The electrode water flowing into the anode chamber 12 flows in an upward flow while diffusing through the ion exchanger in the anode chamber 12. During this time, the electrode water takes in Cl 2 , O 2 and the like generated from the anode 10 and flows out from the electrode water outflow line 18. The electrode water flowing into the cathode chamber 150 flows in an upward flow while diffusing through the ion exchanger in the cathode chamber 150. During this time, the electrode water takes in H 2 or the like generated from the cathode 150 and flows out from the electrode water outflow line 158.

電極水は、例えば、被処理水と同じ水源の水、脱イオン水や純水等が挙げられる。陽極室10への電極水の供給量は、印加電圧等に応じて決定することが好ましい。例えば、5〜200L/h、好適には30〜100L/hの範囲で決定される。電極水の供給量が少なすぎると、発生したO、Clガスを充分に排出することが困難となり、電極水の供給量が多すぎると、回収率が低下するため、好ましくない。陰極室150への電極水の供給量は、陽極室10への電極室の供給量と同様である。
印加する電流は、被処理水の水質やEDI1の規模等を勘案して決定される。
Examples of the electrode water include water from the same water source as the water to be treated, deionized water, and pure water. The amount of electrode water supplied to the anode chamber 10 is preferably determined according to the applied voltage or the like. For example, it is determined in the range of 5 to 200 L / h, preferably 30 to 100 L / h. If the supply amount of the electrode water is too small, it will be difficult to sufficiently discharge the generated O 2 and Cl 2 gas, and if the supply amount of the electrode water is too large, the recovery rate is lowered, which is not preferable. The supply amount of the electrode water to the cathode chamber 150 is the same as the supply amount of the electrode chamber to the anode chamber 10.
The current to be applied is determined in consideration of the quality of the water to be treated and the scale of EDI1.

次いで、濃縮水流入ライン22から第一の濃縮室20に濃縮水を流通させ、濃縮水流入ライン142から第三の濃縮室140に濃縮水を流通させる。濃縮水は、例えば、被処理水と同じ水源の水、脱イオン水や純水等が挙げられる。   Next, the concentrated water is circulated from the concentrated water inflow line 22 to the first concentrating chamber 20, and the concentrated water is circulated from the concentrated water inflow line 142 to the third concentrating chamber 140. Examples of the concentrated water include water from the same water source as the water to be treated, deionized water, and pure water.

EDI1への濃縮水の供給量は、EDI1の能力、被処理水の水質や処理量を勘案して決定できる。濃縮水の供給量が少なすぎると、各濃縮室に移動したイオンの濃度拡散にむらが生じ、例えば、アニオン交換膜90面の濃度分極層が厚くなり、スケール発生のおそれがある。一方、濃縮水の供給量が多すぎると、脱イオン水の回収率が低下するため好ましくない。   The amount of concentrated water supplied to EDI 1 can be determined in consideration of the ability of EDI 1, the quality of the water to be treated and the amount of treatment. If the supply amount of concentrated water is too small, uneven concentration diffusion of ions moved to each concentration chamber occurs, and for example, the concentration polarization layer on the surface of the anion exchange membrane 90 becomes thick, and scale may be generated. On the other hand, when the supply amount of concentrated water is too large, the recovery rate of deionized water is not preferable.

このような観点から、例えば、EDI1への濃縮水供給量は、好ましくは下記(1)式で表される濃縮倍率が3〜20となるように設定される。なお、下記(1)式中、「EDIへの濃縮水供給量」は、第一の濃縮室20への濃縮水供給量と第三の濃縮室140への濃縮水供給量の合計である。また、下記(1)式による濃縮倍率は、被処理水と濃縮水とに同一の原水を用いて、かつ、被処理水中のイオン成分が全て濃縮室に移行すると仮定し定義付けられる。   From such a viewpoint, for example, the amount of concentrated water supplied to EDI 1 is preferably set so that the concentration ratio represented by the following formula (1) is 3 to 20. In the following formula (1), “the amount of concentrated water supplied to EDI” is the sum of the amount of concentrated water supplied to the first concentrating chamber 20 and the amount of concentrated water supplied to the third concentrating chamber 140. In addition, the concentration ratio according to the following equation (1) is defined on the assumption that the same raw water is used for the treated water and the concentrated water, and that all the ionic components in the treated water are transferred to the concentration chamber.

濃縮倍率=(EDIへの被処理水供給量+EDIへの濃縮水供給量)÷EDIへの濃縮水供給量 ・・・(1)   Concentration rate = (Amount of treated water supplied to EDI + Amount of concentrated water supplied to EDI) ÷ Amount of concentrated water supplied to EDI (1)

被処理水を被処理水流入ライン42から、脱イオンモジュール群2に供給する。脱イオンモジュール群2への被処理水の供給量は、EDI1の能力や被処理水の水質を勘案して決定することができる。被処理水の供給量は、好ましくは、第一小脱塩室40における空間速度(SV)がSV=30〜300L/L・h−1となるように調整される。SVが高すぎると、イオン除去性能が低下したり、SVの増加と共に発生する通液速度(LV)の増加によって通水差圧が高くなり、第一の脱イオンモジュール4や第二の脱イオンモジュール6の破損を招いたり、運転上の困難を起こしたりするので好ましくない。一方、SVが低すぎると、第二小脱塩室60と第二小脱塩室100への流量分配が適切に行われず、脱イオン処理が充分な脱イオンモジュールと、脱イオン処理が不充分な脱イオンモジュールとが生じ、EDI1全体としての性能に悪影響を与える場合がある。 The treated water is supplied to the deionized module group 2 from the treated water inflow line 42. The supply amount of the water to be treated to the deionization module group 2 can be determined in consideration of the ability of the EDI 1 and the quality of the water to be treated. The supply amount of the water to be treated is preferably adjusted so that the space velocity (SV) in the first small desalting chamber 40 is SV = 30 to 300 L / L · h −1 . If the SV is too high, the ion removal performance decreases, or the water flow differential pressure increases due to an increase in the liquid flow rate (LV) generated with the increase in the SV, so that the first deionization module 4 and the second deionization are performed. This is not preferable because the module 6 may be damaged or operation may be difficult. On the other hand, if the SV is too low, the flow distribution to the second small demineralization chamber 60 and the second small demineralization chamber 100 is not properly performed, and the deionization module with sufficient deionization treatment and the deionization treatment are insufficient. May cause adverse effects on the performance of the EDI 1 as a whole.

なお、SVは、イオン交換体の単位体積(L)に対して1時間に流通させる流量(L)であり、L/L・h−1で表される(以降において同じ)。また、LVとは、単位面積当たりの流量であり、m/hで表される線速度である。 Note that SV is a flow rate (L) circulated in one hour with respect to the unit volume (L) of the ion exchanger, and is represented by L / L · h −1 (the same applies hereinafter). Moreover, LV is a flow rate per unit area, and is a linear velocity expressed in m / h.

供給された被処理水は、通水孔32、44、通水路47を順に流通し、第一小脱塩室40に流入する。第一小脱塩室40に流入した被処理水は、第一小脱塩室40のアニオン交換体内を拡散しながら流通する。この間、被処理水中のCl、HCO 等のアニオン成分は、アニオン交換体に吸着される。吸着されたアニオン成分は、陽極10に引き寄せられ、アニオン交換膜30を透過して第一の濃縮室20へ移動する。ここで、第一小脱塩室40では、アニオン成分の除去が進むと、被処理水のpHがアルカリ性側に移行して、アニオン成分の競合イオンであるOHの濃度が高くなる。このため、アニオン成分に対する電流効率が低下し、被処理水中のアニオン成分の濃度は、一定濃度以下に到達しにくくなる。この結果、第一小脱塩室40を流通した被処理水は、ある程度のアニオン成分が残存した状態となる。 The supplied treated water flows through the water passage holes 32 and 44 and the water passage 47 in order, and flows into the first small desalting chamber 40. The treated water that has flowed into the first small desalting chamber 40 flows while diffusing through the anion exchanger in the first small desalting chamber 40. During this time, anion components such as Cl and HCO 3 — in the water to be treated are adsorbed by the anion exchanger. The adsorbed anion component is attracted to the anode 10, passes through the anion exchange membrane 30, and moves to the first concentration chamber 20. Here, in the first small desalting chamber 40, when the removal of the anion component proceeds, the pH of the water to be treated shifts to the alkaline side, and the concentration of OH that is a competing ion of the anion component increases. For this reason, the current efficiency with respect to an anion component falls, and it becomes difficult for the density | concentration of the anion component in to-be-processed water to reach below a fixed concentration. As a result, the to-be-processed water which circulated through the first small desalting chamber 40 is in a state where a certain amount of anion component remains.

第一小脱塩室40を流通した被処理水は、通水路48、通水孔45、33、配管35、通水孔34、46、51を順に流通し、通水孔62に至る。通水孔62に至った被処理水の一部は、通水路64を流通し第二小脱塩室60に流入する。第二小脱塩室60に流入した被処理水は、第二小脱塩室60のカチオン交換体内を拡散しながら流通する。この間、被処理水中のNa、Ca2+等のカチオン成分は、カチオン交換体に吸着される。吸着されたカチオン成分は、陰極150に引き寄せられ、カチオン交換膜70を透過して第二の濃縮室80に移動する。ここで、第二小脱塩室60に流入した被処理水は、pHがアルカリ性側に移行しているため、カチオン成分の競合イオンであるH濃度が低い。このため、カチオン成分の除去は、良好に行われる。第二小脱塩室60を流通した被処理水は、通水路65、通水孔63、72、85、92、106、114を順に流通し、通水孔126に至る。なお、第二小脱塩室60を流通した段階で、被処理水のpHは中性領域となっている。 The treated water that has circulated through the first small desalination chamber 40 circulates through the water passage 48, the water passage holes 45 and 33, the pipe 35, and the water passage holes 34, 46, and 51 in this order, and reaches the water passage hole 62. Part of the water to be treated that has reached the water passage hole 62 flows through the water passage 64 and flows into the second small desalting chamber 60. The treated water that has flowed into the second small desalting chamber 60 flows while diffusing through the cation exchanger in the second small desalting chamber 60. During this time, cation components such as Na + and Ca 2+ in the water to be treated are adsorbed by the cation exchanger. The adsorbed cation component is attracted to the cathode 150, passes through the cation exchange membrane 70, and moves to the second concentration chamber 80. Here, since the pH of the water to be treated that has flowed into the second small desalting chamber 60 has shifted to the alkaline side, the H + concentration, which is a competitive ion of the cation component, is low. For this reason, the removal of a cation component is performed favorably. The treated water that has circulated through the second small desalination chamber 60 circulates through the water passage 65 and the water passage holes 63, 72, 85, 92, 106, 114 in order, and reaches the water passage hole 126. In addition, in the stage which distribute | circulated the 2nd small desalination chamber 60, pH of to-be-processed water is a neutral area | region.

また、中間イオン交換膜50とカチオン交換体との接点では、水分解によりOHとHとが生じる。水分解により生じたOHは、中間イオン交換膜50を透過して第一小脱塩室40に移動し、第一小脱塩室40のアニオン交換体の再生に利用される。水分解により生じたHは、第二小脱塩室60のカチオン交換体の再生に利用される。 Further, OH and H + are generated by water decomposition at the contact point between the intermediate ion exchange membrane 50 and the cation exchanger. OH generated by water splitting passes through the intermediate ion exchange membrane 50 and moves to the first small desalting chamber 40, and is used for regeneration of the anion exchanger in the first small desalting chamber 40. H + generated by water splitting is used for regeneration of the cation exchanger in the second small desalting chamber 60.

通水孔62に至った被処理水の他の一部は、さらに通水孔71、84、91、103、111、123、通水路127を順に流通し、第二小脱塩室120に流入する。第二小脱塩室120に流入した被処理水は、第二小脱塩室120のカチオン交換体中を拡散しながら流通する。この間、被処理水中のカチオン成分は、カチオン交換体に吸着される。吸着されたカチオン成分は、陰極150に引き寄せられ、カチオン交換膜130を透過して第三の濃縮室140に移動する。第二小脱塩室120に流入した被処理水は、第二小脱塩室60に流入した被処理水と同様にアルカリ性に移行している。このため、第二小脱塩室120を流通した被処理水は、カチオン成分が良好に除去されると共に、中性領域となる。第二小脱塩室120を流通した被処理水は、通水路128を流通して通水孔126に至る。こうして、第二小脱塩室60を流通した被処理水と、第二小脱塩室120を流通した被処理水とは、通水孔126で合流する。   Other part of the water to be treated that has reached the water passage 62 further flows through the water passages 71, 84, 91, 103, 111, 123, and the water passage 127 in order, and flows into the second small desalination chamber 120. To do. The treated water that has flowed into the second small desalting chamber 120 flows while diffusing through the cation exchanger in the second small desalting chamber 120. During this time, the cation component in the water to be treated is adsorbed by the cation exchanger. The adsorbed cation component is attracted to the cathode 150, passes through the cation exchange membrane 130, and moves to the third concentration chamber 140. The to-be-processed water which flowed into the 2nd small desalination chamber 120 has transferred to the alkalinity similarly to the to-be-processed water which flowed into the 2nd small desalination chamber 60. For this reason, the to-be-processed water which distribute | circulated the 2nd small desalination chamber 120 becomes a neutral area | region while a cationic component is removed favorably. The treated water that has circulated through the second small desalination chamber 120 circulates through the water passage 128 and reaches the water passage hole 126. In this way, the water to be treated flowing through the second small desalting chamber 60 and the water to be treated flowing through the second small desalting chamber 120 merge at the water passage hole 126.

また、中間イオン交換膜110とカチオン交換体との接点では、水分解によりOHとHとが生じる。水分解により生じたOHは、中間イオン交換膜110を透過して第一小脱塩室100に移動し、第一小脱塩室100のアニオン交換体の再生に利用される。水分解により生じたHは、第二小脱塩室120のカチオン交換体の再生に利用される。 Further, at the contact point between the intermediate ion exchange membrane 110 and the cation exchanger, OH and H + are generated by water decomposition. OH generated by water splitting passes through the intermediate ion exchange membrane 110 and moves to the first small desalting chamber 100, and is used for regeneration of the anion exchanger in the first small desalting chamber 100. H + generated by water splitting is used for regeneration of the cation exchanger in the second small desalting chamber 120.

通水孔126で合流した被処理水は、通水孔133、配管135、通水孔132、124、112、104、通水路107を順に流通し、第一小脱塩室100に流入する。第一小脱塩室100に流入した被処理水は、第一小脱塩室100のアニオン交換体内を拡散しながら流通する。この間、被処理水中のアニオン成分は、アニオン交換体に吸着される。吸着されたアニオン成分は、陽極10に引き寄せられアニオン交換膜90を透過し、第二の濃縮室80に移動する。ここで、第一小脱塩室100に流入した被処理水は、第一小脱塩室40で予めアニオン成分の大部分が除去されているため、アニオン成分の除去が進んでも中性領域のpHが維持される。このため、残存しているアニオン成分を良好に除去できる。被処理水は、第一小脱塩室100を流通し、脱イオン水となる。脱イオン水は、通水路108、通水孔105、113、125、134を順に流通し、脱イオン水流出ライン102から流出する。   The treated water that has joined at the water passage hole 126 flows in order through the water passage hole 133, the pipe 135, the water passage holes 132, 124, 112, 104, and the water passage 107, and flows into the first small desalination chamber 100. The treated water that has flowed into the first small desalting chamber 100 flows while diffusing through the anion exchanger in the first small desalting chamber 100. During this time, the anion component in the water to be treated is adsorbed by the anion exchanger. The adsorbed anion component is attracted to the anode 10, passes through the anion exchange membrane 90, and moves to the second concentration chamber 80. Here, since most of the anion component of the water to be treated that has flowed into the first small desalination chamber 100 has been removed in advance in the first small desalination chamber 40, even if the removal of the anion component proceeds, The pH is maintained. For this reason, the remaining anion component can be removed satisfactorily. The treated water flows through the first small desalting chamber 100 and becomes deionized water. The deionized water flows through the water passage 108 and the water passage holes 105, 113, 125, 134 in order, and flows out from the deionized water outflow line 102.

第一の濃縮室20に流入した濃縮水は、上昇流で第一の濃縮室20のイオン交換体内を拡散しながら流通する。この間、濃縮水は、第一小脱塩室40から第一の濃縮室20に移動したアニオン成分を取り込んで、濃縮水流出ライン23から流出する。
なお、第一小脱塩室40に流入する被処理水には、多種類のアニオン成分が含まれていることが想定される。このような被処理水が第一小脱塩室40を流通すると、HCO 、CO 、Cl等が優先的にアニオン交換体に吸着され、第一の濃縮室20に移動する。一方、OHの第一の濃縮室20への移動は少ない。このため、第一の濃縮室20を流通した濃縮水は、OHに比べHCO 、CO 、Cl等を多く含んだ状態で、濃縮水流出ライン23、濃縮水流入ライン82を流通し、第二の濃縮室80に流入する。
The concentrated water that has flowed into the first concentration chamber 20 flows while diffusing in the ion exchanger of the first concentration chamber 20 in an upward flow. During this time, the concentrated water takes in the anion component moved from the first small desalting chamber 40 to the first concentration chamber 20 and flows out from the concentrated water outflow line 23.
In addition, it is assumed that the to-be-processed water which flows into the 1st small desalination chamber 40 contains many types of anion components. When such treated water flows through the first small desalting chamber 40, HCO 3 , CO 3 , Cl − and the like are preferentially adsorbed on the anion exchanger and move to the first concentration chamber 20. On the other hand, there is little movement of OH to the first concentration chamber 20. For this reason, the concentrated water flowing through the first concentration chamber 20 includes the concentrated water outflow line 23 and the concentrated water inflow line 82 in a state containing more HCO 3 , CO 3 , Cl − and the like than OH −. It flows and flows into the second concentration chamber 80.

第二の濃縮室80に流入した濃縮水は、上昇流で第二の濃縮室80のイオン交換体内を拡散しながら流通する。この間、濃縮水は、第二小脱塩室60から第二の濃縮室80に移動したカチオン成分と、第一小脱塩室100から第二の濃縮室80に移動したアニオン成分とを取り込んで、濃縮水流出ライン83から流出する。
第二の濃縮室80を流通する濃縮水には、第一小脱塩室40又は第二小脱塩室80で除去されたアニオン成分が含まれる。このアニオン成分の内、HCO 、CO は、ガス化してカチオン交換膜70を透過し、第二小脱塩室60に移動してくる場合がある。このように、第二の濃縮室80から第二小脱塩室60に移動し被処理水に混入したHCO 、CO は、さらに被処理水が第一小脱塩室100を流通させることで除去できる。
The concentrated water that has flowed into the second concentration chamber 80 flows in an upward flow while diffusing through the ion exchanger in the second concentration chamber 80. During this time, the concentrated water takes in the cation component moved from the second small desalting chamber 60 to the second concentration chamber 80 and the anion component moved from the first small desalting chamber 100 to the second concentration chamber 80. Then, it flows out from the concentrated water outflow line 83.
The concentrated water flowing through the second concentration chamber 80 contains the anion component removed in the first small desalting chamber 40 or the second small desalting chamber 80. Of these anion components, HCO 3 and CO 3 may be gasified, permeate the cation exchange membrane 70, and move to the second small desalting chamber 60. As described above, the HCO 3 and CO 3 moved from the second concentrating chamber 80 to the second small desalting chamber 60 and mixed into the water to be treated further pass the water to be treated through the first small desalting chamber 100. Can be removed.

第三の濃縮室140に流入した濃縮水は、上昇流で、第三の濃縮室140のイオン交換体内を拡散しながら流通する。この間、濃縮水は、第二小脱塩室120から第三の濃縮室140に移動したカチオン成分を取り込んで、濃縮水流出ライン143から流出する。   The concentrated water flowing into the third concentrating chamber 140 flows in an upward flow while diffusing through the ion exchanger in the third concentrating chamber 140. During this time, the concentrated water takes in the cation component moved from the second small desalting chamber 120 to the third concentration chamber 140 and flows out from the concentrated water outflow line 143.

上述のとおり、EDI1では、被処理水を第一小脱塩室40に流通させてアニオン成分を除去した後、被処理水を第二小脱塩室60又は第二小脱塩室120に分配し流通させてカチオン成分を除去し、さらに各第二小脱塩室を流通した被処理水を第一小脱塩室100に流通させて、再度、アニオン成分を除去している。このため、被処理水中のアニオン成分及びカチオン成分が高度に除去された脱イオン水を製造できる。
加えて、第一小脱塩室40を流通した被処理水を第二小脱塩室60と第二小脱塩室120とに分配するため、第二小脱塩室60又は第二小脱塩室120における通水差圧の上昇を抑制できる。通水差圧の上昇を抑制することで、各第二小脱塩室での被処理水の滞留時間を十分なものとし、カチオン成分を良好に除去できる。さらに、通水差圧の上昇を抑制することで、EDI1での被処理水の処理量を低減することなく、高い水質の脱イオン水を安定的に製造できる。
As described above, in EDI 1, the treated water is circulated through the first small desalting chamber 40 to remove the anion component, and then the treated water is distributed to the second small desalting chamber 60 or the second small desalting chamber 120. Then, the cation component is removed by circulation, and the water to be treated that has circulated through each second small desalination chamber is circulated through the first small desalination chamber 100 to remove the anion component again. For this reason, the deionized water from which the anion component and cation component in the to-be-processed water were removed highly can be manufactured.
In addition, in order to distribute the treated water flowing through the first small desalting chamber 40 to the second small desalting chamber 60 and the second small desalting chamber 120, the second small desalting chamber 60 or the second small desalting chamber 60 is used. An increase in water flow differential pressure in the salt chamber 120 can be suppressed. By suppressing the increase in the water flow differential pressure, the residence time of the water to be treated in each second small desalting chamber can be made sufficient, and the cation component can be favorably removed. Furthermore, deionized water having high water quality can be stably produced without reducing the amount of water to be treated in EDI 1 by suppressing the increase in water flow differential pressure.

中間イオン交換膜50と第二小脱塩室60のカチオン交換体との接点で生じたOHとHとは、それぞれ第一小脱塩室40のアニオン交換体、第二小脱塩室60のカチオン交換体の再生に寄与するため、電流効率の面で無駄が少ない。また、中間イオン交換膜110と第二小脱塩室120のカチオン交換体との設定で生じたOHとHとは、それぞれ第一小脱塩室100のアニオン交換体、第二小脱塩室120のカチオン交換体の再生に寄与するため、電流効率の面で無駄が少ない。この点について、図3を用いて説明する。図3は、脱イオンモジュール4におけるイオンの流れを説明する模式図である。図3に示すように、被処理水を第二小脱塩室60に流通させると、中間イオン交換膜50と第二小脱塩室60のカチオン交換体との接点(界面)では、第一小脱塩室40側にOH、第二小脱塩室60側にHが発生する。第一小脱塩室40側に発生したOHは、第一小脱塩室40のアニオン交換体の再生に寄与する。アニオン交換体の再生に当たって余剰となったOHは、第一の濃縮室20に移動する。第二小脱塩室60側に発生したHは、第二小脱塩室60のカチオン交換体の再生に寄与する。カチオン交換体の再生に当たって余剰となったHは、第二の濃縮室80に移動する。 OH and H + generated at the contact point between the intermediate ion exchange membrane 50 and the cation exchanger in the second small desalting chamber 60 are the anion exchanger and the second small desalting chamber in the first small desalting chamber 40, respectively. Since it contributes to the regeneration of the 60 cation exchanger, there is little waste in terms of current efficiency. Further, OH and H + generated by setting the intermediate ion exchange membrane 110 and the cation exchanger in the second small desalting chamber 120 are the anion exchanger and the second small desalting in the first small desalting chamber 100, respectively. Since it contributes to the regeneration of the cation exchanger in the salt chamber 120, there is little waste in terms of current efficiency. This point will be described with reference to FIG. FIG. 3 is a schematic diagram for explaining the flow of ions in the deionization module 4. As shown in FIG. 3, when the water to be treated is circulated through the second small desalting chamber 60, the contact (interface) between the intermediate ion exchange membrane 50 and the cation exchanger in the second small desalting chamber 60 is the first. OH is generated on the small desalting chamber 40 side, and H + is generated on the second small desalting chamber 60 side. The OH generated on the first small desalting chamber 40 side contributes to the regeneration of the anion exchanger in the first small desalting chamber 40. The excess OH − in the regeneration of the anion exchanger moves to the first concentration chamber 20. H + generated on the second small desalting chamber 60 side contributes to the regeneration of the cation exchanger in the second small desalting chamber 60. The excess H + in the regeneration of the cation exchanger moves to the second concentration chamber 80.

一般に、高濃度のOHと、Ca2+、Mg2+等の硬度成分とが存在すると、スケールが発生しやくなる。第一小脱塩室100に流入した被処理水は、第一小脱塩室40を流通した際にHCO 、CO 、Cl等の大部分が除去されている。このため、第一小脱塩室100から第二の濃縮室80に移動するアニオン成分の大部分は、OHである。このため、EDI1では、第一の濃縮室20を流通してHCO 、CO 、Cl等が多く含まれた濃縮水を第二の濃縮室80に流通させることで、硬度成分とOHとが出会う頻度を低減させ、アニオン交換膜90面でのスケール発生の防止を図れる。 In general, when a high concentration of OH and hardness components such as Ca 2+ and Mg 2+ are present, a scale is likely to be generated. Most of the water to be treated that has flowed into the first small desalting chamber 100, such as HCO 3 , CO 3 , and Cl , is removed when it flows through the first small desalting chamber 40. For this reason, most of the anion component moving from the first small desalting chamber 100 to the second concentration chamber 80 is OH . For this reason, in EDI 1, the concentrated component containing a large amount of HCO 3 , CO 3 , Cl − and the like is circulated through the first concentration chamber 20 to the second concentration chamber 80. The frequency of encountering OH can be reduced, and scale generation on the anion exchange membrane 90 surface can be prevented.

第一小脱塩室40及び100には、アニオン交換体が単床形態で充填され、第二小脱塩室60及び120には、カチオン交換体が単床形態で充填されている。このため、各第一小脱塩室及び各第二小脱塩室では、電流の偏りが防止され、電流効率の向上が図れる。   The first small desalting chambers 40 and 100 are filled with an anion exchanger in a single bed form, and the second small desalting chambers 60 and 120 are filled with a cation exchanger in a single bed form. For this reason, in each 1st small desalination chamber and each 2nd small desalination chamber, the bias | inclination of an electric current is prevented and current efficiency can be improved.

このように、本発明によれば、従来の脱塩室2セル構造のEDIを利用し、被処理水の処理量を確保しつつ、スケール発生を防止しつつ、原水水質の変動に影響されずに高い水質の脱イオン水を得ることができる。   As described above, according to the present invention, the conventional EDI having a two-cell structure for the desalination chamber is used, while ensuring the treatment amount of the water to be treated and preventing the occurrence of scale, it is not affected by the fluctuation of the raw water quality. In addition, deionized water with a high water quality can be obtained.

本発明は、上述の実施形態に限定されるものではない。
上述の実施形態では、EDI1に1つの脱イオンモジュール群2が設けられているが、例えば、2つ以上の脱イオンモジュール群2が設けられていてもよい。2つ以上の脱イオンモジュール群2を設ける場合、各脱イオンモジュール群2でそれぞれ個別に脱イオン水を製造してもよいし、2つ以上の脱イオンモジュール群2に直列通水して脱イオン水を製造してもよい。
The present invention is not limited to the embodiment described above.
In the above-described embodiment, one deionization module group 2 is provided in the EDI 1, but, for example, two or more deionization module groups 2 may be provided. When two or more deionization module groups 2 are provided, each of the deionization module groups 2 may produce deionized water individually, or the two or more deionization module groups 2 are connected in series to remove water. Ionic water may be produced.

上述の実施形態では、脱イオンモジュール群2が、第一の脱イオンモジュール4、第二の脱イオンモジュール6の2つの脱イオンモジュールにより構成されている。しかしながら、脱イオンモジュール群は、3つ以上の脱イオンモジュールにより構成されていてもよい。   In the above-described embodiment, the deionization module group 2 includes two deionization modules, the first deionization module 4 and the second deionization module 6. However, the deionization module group may be configured by three or more deionization modules.

3つ以上の脱イオンモジュールにより脱イオンモジュール群を構成する場合、最初に被処理水を流通させる第一小脱塩室は、1つであってもよいし、2つ以上であってもよい。なお、最初に被処理水を流通させる前段の第一小脱塩室の数と、後段の第一小脱塩室の数とは、前段の第一小脱塩室の合計の体積V1と後段の第一小脱塩室の合計の体積V2との体積比がV1:V2=2:8〜8:2となるように、設定することが好ましい。
加えて、最初に濃縮水を流通させる前段の濃縮室の数と後段の濃縮室の数とは、前段の濃縮室の合計の体積v1と後段の濃縮室の合計の体積v2との体積が、v1:v2=2:8〜8:2となるように、設定することが好ましい。
When the deionization module group is configured by three or more deionization modules, the number of the first small demineralization chambers through which the water to be treated is first circulated may be one or two or more. . In addition, the number of first small desalination chambers in the front stage through which the water to be treated is first circulated and the number of first small desalination chambers in the rear stage are the total volume V1 of the first small desalination chamber in the front stage and the subsequent stage. It is preferable that the volume ratio with the total volume V2 of the first small desalting chamber is V1: V2 = 2: 8 to 8: 2.
In addition, the number of pre-concentration chambers and the number of post-concentration chambers through which concentrated water is first circulated is the total volume v1 of the pre-concentration chamber and the total volume v2 of the post-concentration chamber. It is preferable to set so that v1: v2 = 2: 8 to 8: 2.

上述の実施形態では、中間イオン交換膜50、110がアニオン交換膜である。本発明はこれに限定されず、中間イオン交換膜50、110の種類は、被処理水の水質、脱イオン水に求める水質等を勘案して選択することができる。中間イオン交換膜50、110としては、アニオン交換膜の他、カチオン交換膜の単一膜、アニオン交換膜とカチオン交換膜との両方を配置した複合膜又はバイポーラ膜等が挙げられる。ただし、被処理水がアニオン成分を多く含む場合、中間イオン交換膜50及び110は、アニオン交換膜の単一膜が好ましい。例えば、中間イオン交換膜50をアニオン交換膜の単一膜とすることで、第二小脱塩室60を流通する被処理水中のアニオン成分(Cl、HCO 、CO 2−、SiO等)を第一小脱塩室40に移動させることで、アニオン成分を高度に除去できるためである。
なお、中間イオン交換膜50と中間イオン交換膜110には、異なる種類のイオン交換膜を用いてもよい。
In the above-described embodiment, the intermediate ion exchange membranes 50 and 110 are anion exchange membranes. The present invention is not limited to this, and the type of the intermediate ion exchange membranes 50 and 110 can be selected in consideration of the quality of water to be treated, the quality of water required for deionized water, and the like. Examples of the intermediate ion exchange membranes 50 and 110 include an anion exchange membrane, a single cation exchange membrane, a composite membrane in which both an anion exchange membrane and a cation exchange membrane are arranged, or a bipolar membrane. However, when the water to be treated contains a lot of anion components, the intermediate ion exchange membranes 50 and 110 are preferably single membranes of anion exchange membranes. For example, by making the intermediate ion exchange membrane 50 a single membrane of an anion exchange membrane, anion components (Cl , HCO 3 , CO 3 2− , SiO 2) in the water to be treated flowing through the second small desalting chamber 60. This is because the anion component can be removed to a high degree by moving 2 ) to the first small desalting chamber 40.
Different types of ion exchange membranes may be used for the intermediate ion exchange membrane 50 and the intermediate ion exchange membrane 110.

上述の実施形態では、第一小脱塩室40及び100は、いずれもアニオン交換体の単床形態であるが、例えば、カチオン交換体の単床形態、アニオン交換体とカチオン交換との混床形態又は複床形態であってもよい。ただし、上述の実施形態のように第一小脱塩室40及び100が陽極10側に形成されている場合には、アニオン交換体の単床形態もしくはアニオン交換体とカチオン交換との混床形態又は複床形態が好ましく、アニオン交換体の単床形態がより好ましい。   In the above-described embodiment, the first small desalting chambers 40 and 100 are all in the single bed form of the anion exchanger. For example, the single bed form of the cation exchanger, or the mixed bed of the anion exchanger and the cation exchange. It may be in the form or a multiple floor form. However, when the first small desalting chambers 40 and 100 are formed on the anode 10 side as in the above-described embodiment, a single bed form of an anion exchanger or a mixed bed form of an anion exchanger and cation exchange Or a double bed form is preferable and the single bed form of an anion exchanger is more preferable.

上述の実施形態では、第二小脱塩室60及び120は、いずれもカチオン交換体の単床形態であるが、例えば、アニオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態又は複床形態であってもよい。ただし、上述の実施形態のように第二小脱塩室60及び120が陰極側に形成されている場合には、カチオン交換体の単床形態もしくはアニオン交換体とカチオン交換との混床形態又は複床形態が好ましく、カチオン交換体の単床形態がより好ましい。   In the above-described embodiment, each of the second small desalting chambers 60 and 120 is a single bed form of the cation exchanger, but for example, a single bed form of the anion exchanger, a mixture of the anion exchanger and the cation exchanger. A floor form or a double floor form may be sufficient. However, when the second small desalting chambers 60 and 120 are formed on the cathode side as in the above-described embodiment, a single bed form of the cation exchanger or a mixed bed form of anion exchanger and cation exchange or A multiple bed form is preferred, and a single bed form of the cation exchanger is more preferred.

上述の実施形態では、アニオン交換膜と中間イオン交換膜との間に形成された小脱塩室を第一小脱塩室とし、カチオン交換膜と中間交換膜との間に形成された小脱塩室を第二小脱塩室としている。しかしながら、本発明は、これに限定されず、例えば、アニオン交換膜と中間イオン交換膜との間に形成された小脱塩室を第二小脱塩室とし、カチオン交換膜と中間交換膜との間に形成された小脱塩室を第一小脱塩室としてもよい。第一小脱塩室及び第二小脱塩室が形成される位置は、被処理水の水質等を勘案して決定できる。
なお、カチオン成分に比べて、アニオン成分が不純物として多く含まれる水を被処理水とする場合には、アニオン交換膜と中間イオン交換膜との間に形成された小脱塩室を第一小脱塩室とし、カチオン交換膜と中間交換膜との間に形成された小脱塩室を第二小脱塩室とすることが好ましい。
In the above embodiment, the small desalination chamber formed between the anion exchange membrane and the intermediate ion exchange membrane is the first small desalination chamber, and the small desalination chamber formed between the cation exchange membrane and the intermediate exchange membrane is used. The salt chamber is the second small desalination chamber. However, the present invention is not limited to this, for example, a small desalting chamber formed between the anion exchange membrane and the intermediate ion exchange membrane is used as the second small desalting chamber, and the cation exchange membrane and the intermediate exchange membrane are The small desalting chamber formed between the two may be used as the first small desalting chamber. The position where the first small desalting chamber and the second small desalting chamber are formed can be determined in consideration of the quality of the water to be treated.
When water to be treated contains a large amount of anion components as impurities compared to the cation component, the small desalting chamber formed between the anion exchange membrane and the intermediate ion exchange membrane is the first small size. It is preferable that the desalting chamber is a small desalting chamber formed between the cation exchange membrane and the intermediate exchange membrane.

上述の実施形態では、第一小脱塩室40、100、第二小脱塩室60、120の被処理水の流通方向が、全て下降流とされている。しかしながら、本発明はこれに限定されず、小脱塩室の被処理水の流通方向は、全て上昇流としてもよいし、各小脱塩室毎に異なっていてもよい。   In the above-described embodiment, the flow directions of the water to be treated in the first small desalting chambers 40 and 100 and the second small desalting chambers 60 and 120 are all downward. However, the present invention is not limited to this, and the flow direction of the water to be treated in the small desalting chamber may be all ascending flow or may be different for each small desalting chamber.

上述の実施形態では、第一の通水手段が、脱イオンモジュール群2に形成された通水孔、通水路と、脱イオンモジュール群2に設けられた配管により構成されている。しかしながら、第一の通水手段は、例えば、脱イオンモジュール群2の外部に設けられた配管により構成されていてもよい。また、第二の通水手段は、第一の通水手段と同様に、脱イオンモジュール群2の外部に設けられた配管により構成されていてもよい。   In the above-described embodiment, the first water passage means is constituted by the water passage holes and water passages formed in the deionization module group 2 and the piping provided in the deionization module group 2. However, the 1st water flow means may be comprised by piping provided in the exterior of the deionization module group 2, for example. Moreover, the 2nd water flow means may be comprised by the piping provided in the exterior of the deionization module group 2 similarly to the 1st water flow means.

上述の実施形態では、第一の濃縮室20、第二の濃縮室80及び第三の濃縮室140は、いずれもアニオン交換体の単床形態とされている。しかしながら、各濃縮室に充填されるイオン交換体はアニオン交換体の単床形態に限定されず、例えば、カチオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態又は複床形態であってもよい。また、各濃縮室にはイオン交換体を充填せず、スペーサ等を配置してもよい。ただし、各濃縮室でのスケール発生防止の観点からは、アニオン交換体を単床形態で充填することが好ましい。   In the above-described embodiment, the first concentration chamber 20, the second concentration chamber 80, and the third concentration chamber 140 are all in a single-bed form of an anion exchanger. However, the ion exchanger filled in each concentrating chamber is not limited to a single bed form of an anion exchanger, for example, a single bed form of a cation exchanger, a mixed bed form of an anion exchanger and a cation exchanger, or multiple beds. Form may be sufficient. In addition, each concentration chamber may be provided with a spacer or the like without being filled with an ion exchanger. However, from the viewpoint of preventing the occurrence of scale in each concentration chamber, it is preferable to fill the anion exchanger in a single bed form.

上述の実施形態では、各濃縮室における濃縮水の流通方向が、上昇流とされている。しかしながら、本発明はこれに限定されず、例えば、全ての濃縮室における濃縮水の流通方向が、下降流であってもよいし、各濃縮室で異なっていてもよい。   In the above-described embodiment, the flow direction of the concentrated water in each concentration chamber is an upward flow. However, the present invention is not limited to this. For example, the flow direction of the concentrated water in all the concentration chambers may be a downward flow or may be different in each concentration chamber.

上述の実施形態では、第一の濃縮室20を流通した濃縮水を第二の濃縮室80に流通させ、第三の濃縮室120には独立して濃縮水を流通させている。しかしながら、本発明はこれに限定されず、例えば、第一の濃縮室20、第二の濃縮室80に独立して濃縮水を流通させてもよいし、第二の濃縮室80を流通した濃縮水を第三の濃縮室140に流通させてもよい。また、例えば、第一の濃縮室20を流通した濃縮水を第二の濃縮室80と第三の濃縮室140に分配して流通させてもよいし、第一の濃縮室20と第二の濃縮室80とに独立して流通させた濃縮水を合流させ、合流した濃縮水を第三の濃縮室140に流通させてもよい。ただし、スケール発生を防止する観点からは、上述の実施形態のように、前段の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する第一の濃縮室20を流通した濃縮水を、後段の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する第二の濃縮室80に流通させることが好ましい。   In the above-described embodiment, the concentrated water flowing through the first concentration chamber 20 is circulated to the second concentration chamber 80, and the concentrated water is circulated independently to the third concentration chamber 120. However, the present invention is not limited to this, and for example, the concentrated water may be circulated independently in the first concentration chamber 20 and the second concentration chamber 80, or the concentration that is circulated through the second concentration chamber 80. Water may be circulated through the third concentration chamber 140. Further, for example, the concentrated water flowing through the first concentration chamber 20 may be distributed and distributed to the second concentration chamber 80 and the third concentration chamber 140, or the first concentration chamber 20 and the second concentration chamber 20 may be distributed. The concentrated water circulated independently from the concentration chamber 80 may be merged, and the merged concentrated water may be circulated to the third concentration chamber 140. However, from the viewpoint of preventing the generation of scale, as in the above-described embodiment, the concentration that circulates through the first concentration chamber 20 adjacent to the first small desalination chamber and the anion exchange membrane or the cation exchange membrane through the previous stage. It is preferable to circulate water to the second concentration chamber 80 adjacent to the first small desalting chamber in the subsequent stage via the anion exchange membrane or the cation exchange membrane.

上述の実施形態では、陽極室12にイオン交換体を充填しているが、例えば、イオン交換体を充填せずに、スペーサ等を配置してもよい。陰極室152も同様に、イオン交換体を充填せずに、スペーサ等を配置してもよい。   In the embodiment described above, the anode chamber 12 is filled with the ion exchanger. However, for example, a spacer or the like may be disposed without filling the ion exchanger. Similarly, the cathode chamber 152 may be provided with a spacer or the like without being filled with the ion exchanger.

上述の実施形態では、陽極室12及び陰極室152の電極水の流通方向が、上昇流とされている。しかしながら、本発明はこれに限定されず、例えば、陽極室12及び陰極室152における電極水の流通方向が、下降流であってもよいし、陽極室12と陰極室152とで電極水の流通方向が異なっていてもよい。   In the embodiment described above, the flow direction of the electrode water in the anode chamber 12 and the cathode chamber 152 is an upward flow. However, the present invention is not limited to this. For example, the flow direction of the electrode water in the anode chamber 12 and the cathode chamber 152 may be a downward flow, or the flow of electrode water between the anode chamber 12 and the cathode chamber 152. The directions may be different.

上述の実施形態では、第一小脱塩室40から第二小脱塩室60又は第二小脱塩室120、次いで第一小脱塩室100の順に被処理水が流通する、3段処理とされている。しかしながら、本発明はこれに限定されず、例えば、2つ以上の脱イオンモジュール群2を設けた場合や、3つ以上の脱イオンモジュールで脱イオンモジュール群を構成する場合には、3段処理の前段又は後段でさらに他の脱塩室に被処理水を流通させてもよい。ただし、EDIにおける通水差圧の上昇を抑え、脱イオン水を効率的に製造する観点から、上述の実施形態のように3段処理とすることが好ましい。   In the above-described embodiment, the three-stage treatment in which the water to be treated flows from the first small desalting chamber 40 to the second small desalting chamber 60 or the second small desalting chamber 120 and then the first small desalting chamber 100 in this order. It is said that. However, the present invention is not limited to this. For example, when two or more deionization module groups 2 are provided, or when a deionization module group is configured by three or more deionization modules, a three-stage process is performed. Further, the water to be treated may be circulated to another desalting chamber at the former stage or the latter stage. However, from the viewpoint of suppressing the increase in the water flow differential pressure in EDI and efficiently producing deionized water, it is preferable to use a three-stage treatment as in the above-described embodiment.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
<導電率・比抵抗>
水質評価には導電率ならびに比抵抗を用いた。不純物を全く含んでいない水の場合、25℃の水における導電率の理論値は0.055μS/cm、比抵抗の理論値は18.2MΩ・cmとなる。脱イオン水の水質は、比抵抗が18.2MΩ・cmに近づき、かつ高ければ高いほど水質としては清浄であると評価できる。脱イオン水の水質評価は、比抵抗をもって行った。
導電率は、導電率計(873CC、FOXBORO社製)を用いて測定した。また、比抵抗は、比抵抗計(873RS、FOXBORO社製)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
<Conductivity / specific resistance>
For water quality evaluation, conductivity and specific resistance were used. In the case of water containing no impurities, the theoretical value of conductivity in water at 25 ° C. is 0.055 μS / cm, and the theoretical value of specific resistance is 18.2 MΩ · cm. As for the water quality of deionized water, the specific resistance approaches 18.2 MΩ · cm, and the higher, the higher the water quality. Deionized water quality was evaluated with specific resistance.
The conductivity was measured using a conductivity meter (873CC, manufactured by FOXBORO). The specific resistance was measured using a specific resistance meter (873RS, manufactured by FOXBORO).

<シリカ濃度>
EDIの処理性能の一指標となるシリカ濃度を測定することにより、水質評価を行った。シリカ濃度は、分光光度計(U−3010、株式会社日立ハイテクノロジー製)を用い、モリブデン青吸光光度法により測定した。
<Silica concentration>
Water quality was evaluated by measuring the silica concentration, which is an index of EDI processing performance. The silica concentration was measured by molybdenum blue absorptiometry using a spectrophotometer (U-3010, manufactured by Hitachi High-Technology Corporation).

<脱塩室差圧>
各例のEDIの通水差圧として、脱塩室差圧を測定した。脱塩室差圧は、圧力計(GS50、長野計器株式会社製)を用い、各例のEDIに対する被処理水の供給圧(P1)と、脱イオン水流出ラインでの脱イオン水の排出圧(P2)とを測定し、下記(2)により算出した。
<Desalination chamber differential pressure>
The demineralization chamber differential pressure was measured as the EDI water flow differential pressure in each example. The demineralization chamber differential pressure is measured using a pressure gauge (GS50, manufactured by Nagano Keiki Co., Ltd.). (P2) was measured and calculated according to (2) below.

脱塩室差圧=P1−P2 ・・・(2)   Desalination chamber differential pressure = P1-P2 (2)

(実施例1)
下記仕様にて、図2に示すEDI1と同様のEDI−Aを製造した。EDI−Aには、4つの脱イオンモジュールからなる脱イオンモジュール群が1つ設けられている。
EDI−Aは、被処理水を2つの第一小脱塩室(前段の第一小脱塩室)に下降流で流通させた後、4つの第二小脱塩室に分配し下降流で流通させ、その後、4つの第二小脱塩室を流通した被処理水を合流させ、再度、残りの2つの第一小脱塩室(後段の第一小脱塩室)に分配して下降流で流通する構造とした。加えて、EDI−Aは、濃縮水を前段の第一小脱塩室とアニオン交換膜を介して隣接する2つの濃縮室に上昇流で流通させた後、後段の第一小脱塩室とアニオン交換膜を介して隣接する2つの濃縮室及び残りの濃縮室に分配し、上昇流で流通させる構造とした。電極水は、陰極室に上昇流で流通させた後、陽極室に上昇流で流通させた。
得られたEDI−Aを用い、下記運転条件にて脱イオン水の製造を2000時間、連続で行った。運転開始2000時間後に、得られた脱イオン水の比抵抗、シリカ濃度、脱塩室差圧、EDI−Aの平均印加電圧を測定し、その結果を表1に示す。
なお、被処理水の硬度は、原子吸光分光光度計(SpectrAA、VARIAN社製)での測定値であり、全炭酸濃度は湿式紫外線酸化TOC分析計(900型、SIEVERS社製)での測定値である。
Example 1
EDI-A similar to EDI1 shown in FIG. EDI-A is provided with one deion module group consisting of four deion modules.
EDI-A distributes the water to be treated to the two first small desalination chambers (downstream first small desalination chamber) and then distributes them to the four second small desalination chambers. Circulate, and then the treated water that has circulated through the four second small desalination chambers is merged and distributed again to the remaining two first small desalination chambers (the first small desalination chamber in the subsequent stage) A structure that circulates in a stream. In addition, EDI-A allows the concentrated water to flow in an upward flow to the two adjacent concentration chambers through the first small desalination chamber and the anion exchange membrane, and then to the first small desalination chamber in the subsequent stage. The structure was distributed to two adjacent concentrating chambers and the remaining concentrating chambers via an anion exchange membrane and circulated in an upward flow. The electrode water was circulated in the cathode chamber in an upward flow and then circulated in the anode chamber in an upward flow.
Using the obtained EDI-A, deionized water was continuously produced for 2000 hours under the following operating conditions. 2000 hours after the start of operation, the specific resistance of the obtained deionized water, the silica concentration, the pressure difference in the desalting chamber, and the average applied voltage of EDI-A were measured, and the results are shown in Table 1.
The hardness of the water to be treated is a value measured with an atomic absorption spectrophotometer (SpectrAA, manufactured by Varian), and the total carbonic acid concentration is a value measured with a wet ultraviolet oxidation TOC analyzer (model 900, manufactured by SIEVERS). It is.

<EDI−A仕様>
(1)カチオン交換膜:株式会社アストム製
(2)中間イオン交換膜:株式会社アストム製アニオン交換膜
(3)アニオン交換膜:株式会社アストム製
(4)第一小脱塩室厚さ:9mm
(5)第二小脱塩室厚さ:9mm
(6)脱塩室寸法:幅280mm×高さ400mm
(7)第一小脱塩室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
(8)第二小脱塩室充填イオン交換体:カチオン交換樹脂(ローム・アンド・ハース社製)単床形態
(9)濃縮室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
(10)前段の第一小脱塩室数:2つ
(11)後段の第一小脱塩室数:2つ
<EDI-A specifications>
(1) Cation exchange membrane: Astom Co., Ltd. (2) Intermediate ion exchange membrane: Astom Co., Ltd. anion exchange membrane (3) Anion exchange membrane: Astom Co., Ltd. (4) First small desalting chamber thickness: 9 mm
(5) Second small desalination chamber thickness: 9 mm
(6) Desalination chamber dimensions: 280mm wide x 400mm high
(7) First small desalination chamber filled ion exchanger: anion exchange resin (Rohm and Haas Co., Ltd.) single bed form (8) Second small desalination chamber filled ion exchanger: Cation exchange resin (Rohm and Haas) (Made by Haas) Single bed form (9) Concentrated chamber filled ion exchanger: Anion exchange resin (made by Rohm and Haas) Single bed form (10) Number of first small desalination chambers in the previous stage: 2 (11 ) Number of first small desalination chambers: 2

<運転条件>
(1)被処理水:工業用水を逆浸透膜装置で処理して得た水
(2)被処理水の導電率:7.7μS/cm
(3)被処理水の比抵抗:0.13MΩ・cm
(4)被処理水中のシリカ濃度:889μg/L
(5)被処理水中硬度:0.27mgCaCO/L
(6)被処理水中全炭酸濃度:8.2mgCO/L
(7)被処理水供給量:0.4m/h
(8)濃縮水供給量:0.1m/h
(9)電極水供給量:10L/h
(10)運転電流値:2.5A
<Operating conditions>
(1) Water to be treated: Water obtained by treating industrial water with a reverse osmosis membrane device (2) Conductivity of water to be treated: 7.7 μS / cm
(3) Specific resistance of water to be treated: 0.13 MΩ · cm
(4) Silica concentration in treated water: 889 μg / L
(5) Hardness to be treated: 0.27 mg CaCO 3 / L
(6) Total carbonic acid concentration in treated water: 8.2 mg CO 2 / L
(7) Amount of treated water supplied: 0.4 m 3 / h
(8) Concentrated water supply: 0.1 m 3 / h
(9) Amount of electrode water supplied: 10 L / h
(10) Operating current value: 2.5A

(実施例2)
前段の第一小脱塩室数を3つとし、後段の第一小脱塩室数を1つとした以外は、実施例1と同様の仕様で、EDI−Bを製造した。EDI−Bを用い、実施例1と同様の条件で脱イオン水の製造を行った。運転開始2000時間後に、得られた脱イオン水の比抵抗、シリカ濃度、脱塩室差圧、EDI−Bの平均印加電圧を測定し、その結果を表1に示す。
(Example 2)
EDI-B was produced with the same specifications as in Example 1, except that the number of first small desalination chambers in the front stage was three and the number of first small desalination chambers in the rear stage was one. Deionized water was produced under the same conditions as in Example 1 using EDI-B. After 2000 hours from the start of operation, the specific resistance of the obtained deionized water, the silica concentration, the pressure difference in the desalting chamber, and the average applied voltage of EDI-B were measured, and the results are shown in Table 1.

(比較例1)
脱イオン水を4つの第一小脱塩室に分配し下降流で流通させた後、4つの第一小脱塩室を流通した被処理水を合流させ、再度、4つの第二小脱塩室に分配し下降流で流通させる構造とした。加えて、全ての濃縮室に独立して濃縮水を上昇流で流通させる構造とした。これらの変更点以外は、実施例1と同様の仕様でEDI−Cを得た。EDI−Cを用い、実施例1と同様の条件で脱イオン水の製造を行った。運転開始2000時間後に、得られた脱イオン水の比抵抗、シリカ濃度、脱塩室差圧、EDI−Cの平均印加電圧を測定し、その結果を表1に示す。
(Comparative Example 1)
After deionized water is distributed to the four first small desalting chambers and circulated in the downward flow, the treated water that has circulated through the four first small desalting chambers is merged and again the four second small desalting chambers. The structure was distributed to the chamber and distributed in a downward flow. In addition, the concentrated water is circulated in an upward flow independently in all the concentration chambers. Except for these changes, EDI-C was obtained with the same specifications as in Example 1. Deionized water was produced under the same conditions as in Example 1 using EDI-C. 2000 hours after the start of operation, the specific resistance of the obtained deionized water, the silica concentration, the pressure difference in the desalting chamber, and the average applied voltage of EDI-C were measured, and the results are shown in Table 1.

(比較例2)
脱イオンモジュール毎には、被処理水を第一小脱塩室に下降流で流通させ、第一小脱塩室を流通した被処理水を第二小脱塩室に下降流で流通させる構造とした。さらに、4つの脱イオンモジュールに、脱イオン水を直列通水する構造とした。これらの変更点以外は、実施例1と同様の仕様で、EDI−Dを製造した。EDI−Dを用い、実施例1と同様の条件で脱イオン水の製造を行った。EDI−Dは、運転開始直後に脱塩室差圧が0.6MPa以上となり、脱イオン水の製造ができなくなった。本比較例では、運転開始直後に得られた脱イオン水の比抵抗、シリカ濃度、脱塩室差圧、EDI−Dの平均印加電圧を測定し、その結果を参考値として表1に示す。
(Comparative Example 2)
For each deionization module, the water to be treated is circulated in the first small desalination chamber in a downward flow, and the water to be treated that has circulated in the first small desalination chamber is circulated in the downward flow to the second small desalination chamber. It was. Furthermore, it was set as the structure which passes deionized water in series through four deionization modules. Except for these changes, EDI-D was manufactured with the same specifications as in Example 1. Deionized water was produced under the same conditions as in Example 1 using EDI-D. In EDI-D, the demineralization chamber differential pressure became 0.6 MPa or more immediately after the start of operation, and deionized water could not be produced. In this comparative example, the specific resistance of deionized water obtained immediately after the start of operation, the silica concentration, the desalting chamber differential pressure, and the average applied voltage of EDI-D were measured, and the results are shown in Table 1 as reference values.

Figure 0005058217
Figure 0005058217

表1の実施例1、2、比較例1、2に示すように、各例における平均印加電圧の差異は小さかった。
前段の第一小脱塩室を2つとし、後段の第一小脱塩室を2つとし、被処理水を流通させた実施例1は、比抵抗16.6MΩ・cm、シリカ濃度21μg/Lという極めて高い水質の脱イオン水が得られた。前段の第一小脱塩室を3つとし、後段の第一小脱塩室を1つとし、被処理水を流通させた実施例2は、比抵抗17.1MΩ・cm、シリカ濃度13μg/Lという、実施例1よりもさらに高い水質の脱イオン水が得られた。
これに対し、4つの脱イオンモジュールに独立して被処理水を流通させた比較例2では、比抵抗2.2、シリカ濃度750μg/Lという、低い水質の脱イオン水が得られた。また、4つの脱イオンモジュールに直列通水した比較例4は、比抵抗17.8MΩ・cm、シリカ濃度7μg/Lという高い水質が得られた。
加えて、実施例1、2、比較例1では、いずれも脱塩室差圧が0.2MPa未満であり、実用的なものであった。これに対し、比較例2は、脱イオン水の製造開始直後に脱塩室差圧が0.6MPa以上となり、運転できなかった。
運転開始2000時間後のEDI−A及びEDI−Bを分解して目視観察したところ、スケールの発生は見られなかった。
As shown in Examples 1 and 2 and Comparative Examples 1 and 2 in Table 1, the difference in average applied voltage in each example was small.
Example 1 in which two first small desalination chambers in the front stage and two first small desalination chambers in the rear stage and the water to be treated was circulated had a specific resistance of 16.6 MΩ · cm, a silica concentration of 21 μg / An extremely high quality deionized water of L was obtained. Example 2 in which three first small desalination chambers in the front stage and one first small desalination chamber in the rear stage and the water to be treated was circulated had a specific resistance of 17.1 MΩ · cm, a silica concentration of 13 μg / Deionized water with a higher quality than that of Example 1 was obtained.
On the other hand, in Comparative Example 2 in which the water to be treated was circulated independently through the four deionization modules, deionized water having a low water quality with a specific resistance of 2.2 and a silica concentration of 750 μg / L was obtained. In Comparative Example 4 in which water was passed through four deionization modules in series, a high water quality with a specific resistance of 17.8 MΩ · cm and a silica concentration of 7 μg / L was obtained.
In addition, in Examples 1 and 2 and Comparative Example 1, the desalting chamber differential pressure was less than 0.2 MPa, which was practical. On the other hand, in Comparative Example 2, the demineralization chamber differential pressure became 0.6 MPa or more immediately after the start of production of deionized water, and could not be operated.
When EDI-A and EDI-B 2000 hours after the start of operation were disassembled and visually observed, no generation of scale was observed.

以上の結果から、前段の第一小脱塩室を流通した被処理水を複数の第二小脱塩室に分配して流通させ、第二小脱塩室を流通した被処理水をさらに後段の第一小脱塩室に流通させる本発明のEDIは、処理量を維持したまま高い水質の脱イオン水を得られると共に、スケール発生を良好に防止できることが判った。   Based on the above results, the water to be treated that circulated through the first small desalination chamber in the previous stage is distributed and circulated to a plurality of second small desalination chambers, and the water to be treated that has circulated through the second small desalination chamber is further separated. It was found that the EDI of the present invention circulated in the first small desalting chamber can obtain deionized water with high water quality while maintaining the treatment amount, and can well prevent scale generation.

1 電気式脱イオン水製造装置
10 陽極
20、80、140、234 濃縮室
30、90、230 アニオン交換膜
39、99、224 脱塩室
40、100 第一小脱塩室
50、110 中間イオン交換膜
60、120 第二小脱塩室
70、130、222 カチオン交換膜
150 陰極
DESCRIPTION OF SYMBOLS 1 Electric deionized water production apparatus 10 Anode 20, 80, 140, 234 Concentration chamber 30, 90, 230 Anion exchange membrane 39, 99, 224 Desalination chamber 40, 100 First small demineralization chamber 50, 110 Intermediate ion exchange Membrane 60, 120 Second small desalting chamber 70, 130, 222 Cation exchange membrane 150 Cathode

Claims (8)

陰極側のカチオン交換膜と陽極側のアニオン交換膜とで区画され、被処理水を流通する複数の脱塩室が設けられ、
前記カチオン交換膜又は前記アニオン交換膜を介して前記脱塩室の両側に、濃縮水を流通する濃縮室が設けられ、
前記脱塩室には、前記カチオン交換膜と前記アニオン交換膜との間に配置された中間イオン交換膜によって、その厚さ方向に区画された第一小脱塩室と第二小脱塩室が形成され、
任意の前記第一小脱塩室を流通した被処理水を分配し、分配した被処理水を任意の複数の前記第二小脱塩室に流通させる第一の通水手段が設けられ、
前記の任意の第二小脱塩室を流通した被処理水を他の前記第一小脱塩室に流通させる第二の通水手段が設けられていることを特徴とする、電気式脱イオン水製造装置。
Partitioned by a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, and provided with a plurality of desalting chambers for circulating the water to be treated,
A concentration chamber for circulating concentrated water is provided on both sides of the desalting chamber via the cation exchange membrane or the anion exchange membrane,
In the desalting chamber, a first small desalting chamber and a second small desalting chamber which are partitioned in the thickness direction by an intermediate ion exchange membrane disposed between the cation exchange membrane and the anion exchange membrane. Formed,
Distributing the treated water that has circulated through any of the first small desalting chambers, and provided with a first water flow means for distributing the distributed treated water to any of the plurality of second small desalting chambers,
Electric deionization characterized in that second dewatering means is provided for circulating the water to be treated that has circulated through the optional second small demineralization chamber to the other first small demineralization chamber. Water production equipment.
前記第二の通水手段は、複数の前記第二小脱塩室を流通した被処理水を合流させ、合流した被処理水を前記の他の第一小脱塩室に流通させることを特徴とする、請求項1に記載の電気式脱イオン水製造装置。   Said 2nd water flow means joins the to-be-processed water which distribute | circulated several said 2nd small desalination chamber, and distribute | circulates the to-be-processed water to the said other 1st small desalination chamber. The electric deionized water production apparatus according to claim 1. 濃縮水を前記の任意の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させ、次いで前記の他の第一小脱塩室とアニオン交換膜又はカチオン交換膜を介して隣接する濃縮室に流通させる手段が設けられていることを特徴とする、請求項1又は2に記載の電気式脱イオン水製造装置。   Concentrated water is circulated to an adjacent first concentrating chamber via any one of the first small desalting chambers and the anion exchange membrane or cation exchange membrane, and then the other first small desalting chamber and the anion exchange membrane or cation exchange. The apparatus for producing electric deionized water according to claim 1 or 2, further comprising means for circulating through an adjacent concentrating chamber through a membrane. 前記の任意の第一小脱塩室の体積V1と、前記の他の第一小脱塩室の体積V2との体積比は、V1:V2=2:8〜8:2であることを特徴とする、請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置。   The volume ratio of the volume V1 of the arbitrary first small desalting chamber to the volume V2 of the other first small desalting chamber is V1: V2 = 2: 8 to 8: 2. The electric deionized water production apparatus according to any one of claims 1 to 3. 前記の任意の第一小脱塩室に隣接する濃縮室の体積v1と、前記の他の第一小脱塩室に隣接する濃縮室の体積v2との体積比は、v1:v2=2:8〜8:2であることを特徴とする、請求項3又は4に記載の電気式脱イオン水製造装置。   The volume ratio between the volume v1 of the concentrating chamber adjacent to the arbitrary first small desalting chamber and the volume v2 of the concentrating chamber adjacent to the other first small desalting chamber is v1: v2 = 2: It is 8-8: 2, The electrical deionized water manufacturing apparatus of Claim 3 or 4 characterized by the above-mentioned. 前記第一小脱塩室は、前記アニオン交換膜と前記中間イオン交換膜との間にアニオン交換体が単床形態で充填されて形成され、前記第二小脱塩室は、前記カチオン交換膜と前記中間イオン交換膜との間にカチオン交換体が単床形態で充填されて形成されていることを特徴とする請求項1〜5のいずれか1項に記載の電気式脱イオン水製造装置。   The first small desalting chamber is formed by filling an anion exchanger in a single bed between the anion exchange membrane and the intermediate ion exchange membrane, and the second small desalting chamber is formed of the cation exchange membrane. 6. The electric deionized water production apparatus according to claim 1, wherein a cation exchanger is filled in a single bed form between the intermediate ion exchange membrane and the intermediate ion exchange membrane. . 前記中間イオン交換膜は、カチオン交換膜、アニオン交換膜、カチオン交換膜及びアニオン交換膜の両方を配置した複式膜又はバイポーラ膜であることを特徴とする、請求項1〜6のいずれか1項に記載の電気式脱イオン水製造装置。   7. The intermediate ion exchange membrane is a cation exchange membrane, an anion exchange membrane, a duplex membrane or a bipolar membrane in which both a cation exchange membrane and an anion exchange membrane are arranged. The electrical deionized water production apparatus according to 1. 請求項1〜7のいずれか1項に記載の電気式脱イオン水製造装置を用いた脱イオン水の製造方法であって、任意の前記第一小脱塩室に流通させた被処理水を分配し、分配した被処理水を任意の複数の前記第二小脱塩室に流通させ、さらに他の前記第一小脱塩室に流通させることを特徴とする、脱イオン水の製造方法。
It is a manufacturing method of the deionized water using the electric deionized water manufacturing apparatus of any one of Claims 1-7, Comprising: The to-be-processed water distribute | circulated to arbitrary said 1st small demineralization chambers A method for producing deionized water, characterized in that the treated water thus distributed is circulated to any of the plurality of second small desalting chambers and further to the other first small desalting chambers.
JP2009147975A 2009-06-22 2009-06-22 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP5058217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147975A JP5058217B2 (en) 2009-06-22 2009-06-22 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147975A JP5058217B2 (en) 2009-06-22 2009-06-22 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2011000575A JP2011000575A (en) 2011-01-06
JP5058217B2 true JP5058217B2 (en) 2012-10-24

Family

ID=43558994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147975A Expired - Fee Related JP5058217B2 (en) 2009-06-22 2009-06-22 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP5058217B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757308B2 (en) * 1987-12-10 1995-06-21 株式会社トクヤマ Electrodialysis tank
JP4481418B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Electric deionized water production equipment
JP2001276835A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP4497388B2 (en) * 2000-05-15 2010-07-07 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP3727586B2 (en) * 2001-12-28 2005-12-14 株式会社荏原製作所 Electric desalination equipment
JP3729348B2 (en) * 2002-05-13 2005-12-21 株式会社荏原製作所 Electric regenerative desalination equipment
JP3729347B2 (en) * 2002-05-13 2005-12-21 株式会社荏原製作所 Electric regenerative desalination equipment
JP2003326269A (en) * 2002-05-13 2003-11-18 Ebara Corp Electric regenerative demineralizer
EP1506941A4 (en) * 2002-05-17 2005-11-23 Ebara Corp Electric demineralizer
JP2008132492A (en) * 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
JP4803649B2 (en) * 2005-11-01 2011-10-26 オルガノ株式会社 Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4981639B2 (en) * 2007-11-30 2012-07-25 シーシーアイ株式会社 Auxiliary rail
JP2009208046A (en) * 2008-03-06 2009-09-17 Japan Organo Co Ltd Apparatus for producing electrodeionization water

Also Published As

Publication number Publication date
JP2011000575A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US6733646B2 (en) Method and apparatus for electrodeionization of water
EP1038837B1 (en) Electrodeionization method and apparatus comprising sub-desalination chambers
EP1172145B1 (en) Electrodeionization apparatus and method of operating the same
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
KR20050102641A (en) Electric deionization apparatus and method of operating the same
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP4250922B2 (en) Ultrapure water production system
JP5114307B2 (en) Electric deionized water production equipment
JP2011062662A (en) Electric deionized water making apparatus
JP3952127B2 (en) Electrodeionization treatment method
JP2009208046A (en) Apparatus for producing electrodeionization water
JP5379025B2 (en) Electric deionized water production equipment
JP6627943B2 (en) Pure water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP6571312B2 (en) Pure water production method
JP5098216B2 (en) Electric regenerative pure water production apparatus and pure water production method
JP5058217B2 (en) Electric deionized water production apparatus and deionized water production method
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP5661930B2 (en) Electric deionized water production equipment
JP2011139980A (en) Electric deionized water producing apparatus and method of producing deionized water
JP4869297B2 (en) Electric deionized water production equipment
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees