JP2011139980A - Electric deionized water producing apparatus and method of producing deionized water - Google Patents

Electric deionized water producing apparatus and method of producing deionized water Download PDF

Info

Publication number
JP2011139980A
JP2011139980A JP2010001158A JP2010001158A JP2011139980A JP 2011139980 A JP2011139980 A JP 2011139980A JP 2010001158 A JP2010001158 A JP 2010001158A JP 2010001158 A JP2010001158 A JP 2010001158A JP 2011139980 A JP2011139980 A JP 2011139980A
Authority
JP
Japan
Prior art keywords
chamber
cation
anion
deionized water
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010001158A
Other languages
Japanese (ja)
Other versions
JP5415966B2 (en
Inventor
Kenta Aiba
健太 合庭
Keisuke Sasaki
慶介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2010001158A priority Critical patent/JP5415966B2/en
Publication of JP2011139980A publication Critical patent/JP2011139980A/en
Application granted granted Critical
Publication of JP5415966B2 publication Critical patent/JP5415966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric deionized water producing apparatus which can suppress an increase in operating voltage and deterioration of treated water quality by inhibiting generation of scales in concentrating chambers. <P>SOLUTION: The electric deionized water producing apparatus includes an anode 4 and a cathode 5, cation desalting chambers D1, D1' filled with at least a cation exchanger, anion desalting chambers D2, D2' filled with at least an anion exchanger, and concentrating chambers C1, C2 located between the anode 4 and the cathode 5 to be adjacent to the anion desalting chambers D2, D2' through first anion exchange membranes (a), a' respectively. The cation desalting chambers D1, D1' communicate with the anion desalting chambers D2, D2' so that a part of intermediate treated water, which flows out from the cation desalting chambers D1, D1' and from which at least cation components are removed, flows into the anion desalting chambers D2, D2'. The cation desalting chambers D1, D1' communicate with the concentrating chambers C1, C2 so that the other part of the intermediate treated water having flowed through the cation desalting chambers D1, D1'flows into the concentrating chambers C1, C2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気式脱イオン水製造装置および脱イオン水製造方法に関する。   The present invention relates to an electrical deionized water production apparatus and a deionized water production method.

脱イオン水の製造装置として、イオン交換体に被処理水を通水して脱イオンを行う製造装置が知られている。この装置ではイオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、酸やアルカリといった薬剤によって再生を行う必要がある。すなわち、イオン交換基に吸着した陰イオンや陽イオンを、酸あるいはアルカリ由来のH+、OH-と置き換える処理が必要となる。近年、このような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置が実用化されている。 As a deionized water production apparatus, a production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In this apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered, it is necessary to regenerate with a chemical such as acid or alkali. That is, the anion and cation adsorbed on ion exchange groups, acid or alkali from the H +, OH - and replacing processing is required. In recent years, in order to eliminate such disadvantages in operation, an electric deionized water production apparatus that does not require regeneration by a drug has been put into practical use.

電気式脱イオン水製造装置は、電気泳動と電気透析とを組み合わせた装置である。電気式脱イオン水製造装置は、アニオン交換膜とカチオン交換膜との間にイオン交換体を充填し主脱塩室とし、アニオン交換膜およびカチオン交換膜の外側に各々濃縮室を設け、さらにその外側に陽極を備える陽極室と、陰極を備える陰極室と、を配置した装置である。   The electric deionized water production apparatus is an apparatus that combines electrophoresis and electrodialysis. The electric deionized water production apparatus is filled with an ion exchanger between an anion exchange membrane and a cation exchange membrane to form a main desalting chamber, and a concentration chamber is provided outside the anion exchange membrane and the cation exchange membrane. This is an apparatus in which an anode chamber having an anode on the outside and a cathode chamber having a cathode are arranged.

電気式脱イオン水製造装置により脱イオン水(処理水)を製造するには、電極に直流電圧を印加した状態で主脱塩室に被処理水を通水する。被処理水中のイオン成分は脱塩室内のイオン交換体で吸着され、脱イオン化(脱塩)処理が行われる。脱塩室ではまた、印加電圧によって異種イオン交換体の界面、すなわち、脱塩室のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(H2O→H++OH-)。イオン交換体に吸着されたイオン成分はこの水素イオンおよび水酸化物イオンと交換されて、イオン交換体から遊離する。遊離したイオン成分はイオン交換膜まで電気泳動し、イオン交換膜で電気透析されて、濃縮室を流れる濃縮水に排出される。このように、電気式脱イオン水製造装置では、水素イオンおよび水酸化物イオンが、イオン交換体を再生する酸、アルカリの再生剤として連続的に作用する。このため、薬剤による再生は基本的に不要であり、薬剤によるイオン交換体の再生を行わずに連続運転ができる。 In order to produce deionized water (treated water) using an electrical deionized water production apparatus, water to be treated is passed through the main demineralization chamber with a DC voltage applied to the electrodes. The ionic component in the water to be treated is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment. In the desalting chamber, a dissociation reaction of water occurs at the interface of the different ion exchanger, that is, the interface between the anion exchanger and the cation exchanger in the desalting chamber due to the applied voltage, and hydrogen ions and hydroxide ions are generated ( H 2 O → H + + OH ). The ionic component adsorbed on the ion exchanger is exchanged with the hydrogen ions and hydroxide ions, and is released from the ion exchanger. The liberated ion component is electrophoresed to the ion exchange membrane, electrodialyzed on the ion exchange membrane, and discharged into the concentrated water flowing through the concentration chamber. Thus, in the electric deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as acid and alkali regenerators for regenerating the ion exchanger. For this reason, the regeneration by the medicine is basically unnecessary, and the continuous operation can be performed without the regeneration of the ion exchanger by the medicine.

上述の電気式脱イオン水製造装置では、被処理水中のアニオン成分だけでなく、水の解離反応によって発生した水酸化物イオンも、脱塩室からアニオン交換膜を透過して濃縮室に排出される。そのため、アニオン交換膜近傍での濃縮水の液性はアルカリ性に傾く。一方、上述の電気式脱イオン水製造装置で硬度成分の高い被処理水を処理した場合、濃縮室内では、被処理水中の硬度成分と炭酸成分(遊離炭酸、炭酸水素イオン、炭酸イオンの総称)とが排出され濃縮される。その結果、濃縮水がアルカリ性に傾いた(pH値が上昇した)アニオン交換膜近傍では、炭酸カルシウムを主成分とするスケールが生成されることがある。スケールが生成されると、その部分での電気抵抗が上昇し、運転電圧が上昇することで、消費電力が増加することになる。また、生成されたスケールがイオン交換膜の膜面に付着すると、濃縮室に排出されるべきイオン成分が排出されなくなり、処理水の水質低下を招いてしまう。   In the electric deionized water production apparatus described above, not only the anion component in the water to be treated, but also hydroxide ions generated by the water dissociation reaction are permeated through the anion exchange membrane from the desalting chamber and discharged into the concentration chamber. The For this reason, the liquidity of the concentrated water in the vicinity of the anion exchange membrane tends to be alkaline. On the other hand, when the water to be treated having a high hardness component is treated with the above-described electric deionized water production apparatus, the hardness component and the carbonic acid component in the water to be treated (general name for free carbonic acid, hydrogen carbonate ion, carbonate ion) in the concentration chamber. Are discharged and concentrated. As a result, in the vicinity of the anion exchange membrane in which the concentrated water is inclined to be alkaline (pH value is increased), a scale mainly composed of calcium carbonate may be generated. When the scale is generated, the electric resistance at that portion increases, and the operating voltage increases, thereby increasing the power consumption. Moreover, when the produced | generated scale adheres to the membrane surface of an ion exchange membrane, the ion component which should be discharged | emitted by a concentration chamber will not be discharged | emitted, and the water quality of treated water will fall.

このスケール生成を抑制する対策の一つとして、特許文献1には、電気式脱イオン水製造装置の濃縮室にイオン交換体を充填し、遊離炭酸を含む水を濃縮室へ供給する方法が開示されている。この方法では、水酸化物イオンの濃縮室への拡散希釈が促進されるため、アニオン交換膜近傍におけるpH値の上昇が緩和され、それにより、スケールの生成を抑制することができる。   As one of the measures for suppressing the scale generation, Patent Document 1 discloses a method of filling an ion exchanger in a concentration chamber of an electric deionized water production apparatus and supplying water containing free carbonic acid to the concentration chamber. Has been. In this method, since the diffusion dilution of hydroxide ions into the concentration chamber is promoted, the increase in pH value in the vicinity of the anion exchange membrane is mitigated, thereby suppressing the generation of scale.

特開2004−358440号公報JP 2004-358440 A

しかしながら、処理される被処理水にさらに高濃度の硬度成分が含まれる場合や、より高い空間速度での処理を行う場合には、濃縮室にイオン交換体を充填し、遊離炭酸を含む水を濃縮室へ供給するだけでは十分とは言えず、依然としてスケールが生成されてしまうことがある。このような場合には、濃縮室に供給する濃縮室供給水の流量を増加させ、濃縮水の濃縮倍率を下げることによって、濃縮水中の炭酸カルシウムの濃度をスケールが析出しない濃度に保つことも考えられる。しかしながら、この対策も、濃縮室供給水として被処理水を用いる場合、より多くの水が濃縮水として排出され、水の回収率が減少することになるため好ましくない。さらには、濃縮室供給水に塩酸等の酸性の溶液を添加して、アニオン交換膜近傍における濃縮水のpH値の上昇を抑制する対策も考えられるが、このことは、コストアップにつながる上、薬剤を使用しない電気式脱イオン水製造装置の本来の利点と相反するものである。   However, if the water to be treated contains a higher-concentration hardness component or if processing at a higher space velocity is performed, the concentration chamber is filled with an ion exchanger and water containing free carbonic acid is added. Supplying to the concentrating chamber is not sufficient and scale may still be generated. In such a case, the concentration of calcium carbonate in the concentrated water can be kept at a level that does not precipitate by increasing the flow rate of the concentration chamber supply water supplied to the concentration chamber and lowering the concentration rate of the concentrated water. It is done. However, this measure is also not preferable when the water to be treated is used as the concentration chamber supply water because more water is discharged as the concentrated water and the water recovery rate is reduced. Furthermore, it is possible to add an acidic solution such as hydrochloric acid to the concentration chamber supply water to suppress the increase in the pH value of the concentration water in the vicinity of the anion exchange membrane, but this leads to an increase in cost. This is contrary to the original advantage of the electric deionized water production apparatus that does not use chemicals.

以上のことから、濃縮室でのスケール生成に対して、これまでとは異なる着想に基づいた対策が望まれている。   From the above, a measure based on a different idea from the past is desired for scale generation in the concentration chamber.

そこで、本発明は、濃縮室内のスケールの生成を抑制することで、運転電圧の上昇と処理水質の低下を抑制することができる電気式脱イオン水製造装置および脱イオン水製造方法を提供することを目的とする。   Then, this invention provides the electrical deionized water manufacturing apparatus and the deionized water manufacturing method which can suppress the raise of an operating voltage and the fall of treated water quality by suppressing the production | generation of the scale in a concentration chamber. With the goal.

上述した目的を達成するために、本発明の電気式脱イオン水製造装置は、被処理水を処理して脱イオン水を製造する電気式脱イオン水製造装置であって、陽極および陰極と、少なくともカチオン交換体が充填されたカチオン脱塩室と、少なくともアニオン交換体が充填されたアニオン脱塩室と、陽極と陰極との間に位置し、第1のアニオン交換膜を介しアニオン脱塩室と隣接する濃縮室と、を有し、カチオン脱塩室とアニオン脱塩室とは、被処理水がカチオン脱塩室に流入し、カチオン脱塩室を流出して少なくともカチオン成分が除去された中間処理水の一部がアニオン脱塩室に流入するように連通されており、カチオン脱塩室と濃縮室とは、カチオン脱塩室を流出した中間処理水の他の一部が濃縮室に流入するように連通されている。   In order to achieve the above-described object, an electrical deionized water production apparatus of the present invention is an electrical deionized water production apparatus for producing deionized water by treating water to be treated, comprising an anode and a cathode, A cation desalting chamber filled with at least a cation exchanger, an anion desalting chamber filled with at least an anion exchanger, and an anion desalting chamber located between an anode and a cathode via a first anion exchange membrane A cation demineralization chamber and an anion demineralization chamber in which water to be treated flows into the cation demineralization chamber and flows out of the cation demineralization chamber to remove at least the cation component. A part of the intermediate treated water is communicated so as to flow into the anion desalination chamber, and the cation desalting chamber and the concentrating chamber are the other part of the intermediate treated water that has flowed out of the cation desalting chamber into the concentrating chamber. It is connected so that it may flow in.

また、本発明の脱イオン水製造方法は、陽極および陰極と、少なくともカチオン交換体が充填されたカチオン脱塩室と、少なくともアニオン交換体が充填されたアニオン脱塩室と、陽極と陰極との間に位置し、第1のアニオン交換膜を介してアニオン脱塩室と隣接する濃縮室と、を有する電気式脱イオン水製造装置を用いて、被処理水を処理して脱イオン水を製造する脱イオン水製造方法であって、被処理水をカチオン脱塩室に流し、少なくともカチオン成分が除去された中間処理水を生成するステップと、カチオン脱塩室を流出した中間処理水の一部を、アニオン脱塩室に流すステップと、カチオン脱塩室を流出した中間処理水の他の一部を、濃縮室に流すステップと、を含んでいる。   The deionized water production method of the present invention includes an anode and a cathode, a cation demineralization chamber filled with at least a cation exchanger, an anion demineralization chamber filled with at least an anion exchanger, and an anode and a cathode. A deionized water is produced by treating the water to be treated using an electrical deionized water production apparatus located between and having an anion demineralization chamber and a concentrating chamber adjacent to each other via a first anion exchange membrane. A method for producing deionized water, the step of flowing treated water into a cation demineralization chamber to generate intermediate treated water from which at least a cation component has been removed, and a part of the intermediate treated water that has flowed out of the cation demineralization chamber And flowing the other part of the intermediate treated water that has flowed out of the cation desalting chamber into the concentrating chamber.

このような電気式脱イオン水製造装置および脱イオン水製造方法では、カチオン脱塩室に流入した被処理水のカチオン成分はカチオン交換体に吸着し、カチオン脱塩室からは、カチオン成分が除去された中間処理水が流出する。中間処理水は、カチオン脱塩室で水の解離反応などによって発生した水素イオンを取り込んでいるため、その液性は酸性となる。この中間処理水の一部を濃縮室に流入させることで、濃縮水の、特にアニオン交換膜近傍におけるpH値の上昇を抑えることができる。それによって、濃縮室内のスケールの生成を抑え、運転電圧の上昇と処理水質の低下を抑制することが可能となる。   In such an electric deionized water production apparatus and deionized water production method, the cation component of the water to be treated that has flowed into the cation demineralization chamber is adsorbed to the cation exchanger, and the cation component is removed from the cation demineralization chamber. The treated intermediate water flows out. Since the intermediate treated water takes in hydrogen ions generated by the dissociation reaction of water in the cation desalting chamber, its liquidity becomes acidic. By causing a portion of this intermediate treated water to flow into the concentration chamber, it is possible to suppress an increase in the pH value of the concentrated water, particularly in the vicinity of the anion exchange membrane. Thereby, generation of scale in the concentration chamber can be suppressed, and an increase in operating voltage and a decrease in the quality of treated water can be suppressed.

以上説明したように、本発明によれば、濃縮室内のスケールの生成を抑制することで、運転電圧の上昇と処理水質の低下を抑制することができる電気式脱イオン水製造装置および脱イオン水製造方法を提供することができる。   As described above, according to the present invention, an electric deionized water production apparatus and deionized water that can suppress an increase in operating voltage and a decrease in the quality of treated water by suppressing the generation of scale in the concentration chamber. A manufacturing method can be provided.

本発明の第1の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る電気式脱イオン水製造装置の別の構成例を示す概略構成図である。It is a schematic block diagram which shows another structural example of the electric deionized water manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 比較例に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on a comparative example.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る電気式脱イオン水製造装置の概略構成図である。電気式脱イオン水製造装置1は、陽極4を備える陽極室E1と陰極5を備える陰極室E2との間に、3つの濃縮室C1〜C3と、第1および第2の濃縮室C1,C2の間に位置する第1の主脱塩室Dと、第2および第3の濃縮室C2,C3の間に位置する第2の主脱塩室D’とが設けられ、これらの各室がイオン交換膜a,a’c,c’,mで仕切られている。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to the first embodiment of the present invention. The electric deionized water production apparatus 1 includes three concentrating chambers C1 to C3 and first and second concentrating chambers C1 and C2 between an anode chamber E1 having an anode 4 and a cathode chamber E2 having a cathode 5. A first main desalting chamber D positioned between the second and third concentrating chambers C2 and C3, and a second main desalting chamber D ′ positioned between the second and third concentrating chambers C2 and C3. It is partitioned by ion exchange membranes a, a′c, c ′, m.

第1の主脱塩室Dは、陰極側のカチオン交換膜cと隣接する第1のカチオン脱塩室D1と、陽極側のアニオン交換膜aと隣接する第1のアニオン脱塩室D2と、を有している。第2の主脱塩室D’は、陰極側のカチオン交換膜c’と隣接する第2のカチオン脱塩室D1’と、陽極側のアニオン交換膜a’と隣接する第2のアニオン脱塩室D2’と、を有している。各主脱塩室D,D’内の、カチオン脱塩室D1,D1’とアニオン脱塩室D2,D2’とは、それぞれ中間イオン交換膜3を介して互いに隣接している。   The first main desalination chamber D includes a first cation desalination chamber D1 adjacent to the cation exchange membrane c on the cathode side, a first anion desalination chamber D2 adjacent to the anion exchange membrane a on the anode side, have. The second main desalting chamber D ′ includes a second cation desalting chamber D1 ′ adjacent to the cation exchange membrane c ′ on the cathode side and a second anion desalting adjacent to the anion exchange membrane a ′ on the anode side. And a chamber D2 ′. In each main desalting chamber D, D ', the cation desalting chambers D1, D1' and the anion desalting chambers D2, D2 'are adjacent to each other through the intermediate ion exchange membrane 3.

第1および第2の主脱塩室D,D’は、それぞれの陽極側で、アニオン交換膜(第1のアニオン交換膜)a,a’を介して濃縮室(陽極側濃縮室)C1,C2と隣接し、それぞれの陰極側で、カチオン交換膜(第1のカチオン交換膜)c,c’を介して濃縮室(陰極側濃縮室)C2,C3と隣接している。したがって、第2の濃縮室C2は、第1の主脱塩室D1にとっては陰極側濃縮室であり、第2の主脱塩室D’にとっては陽極側濃縮室となる。電気式脱イオン水製造装置1において最も陽極側に位置する第1の濃縮室C1は、カチオン交換膜またはアニオン交換膜のいずれであるイオン交換膜mを介して陽極室E1と隣接している。電気式脱イオン水製造装置1において最も陰極側に位置する第3の濃縮室C3は、イオン交換膜mを介して陰極室E2と隣接している。   The first and second main desalting chambers D and D ′ are on the anode side, through the anion exchange membranes (first anion exchange membranes) a and a ′, and the concentration chambers (anode side concentration chambers) C1, Adjacent to C2 and adjacent to the concentrating chambers (cathode-side concentrating chambers) C2 and C3 via cation exchange membranes (first cation exchange membranes) c and c ′ on the respective cathode sides. Therefore, the second concentration chamber C2 is a cathode-side concentration chamber for the first main desalting chamber D1, and an anode-side concentration chamber for the second main desalting chamber D '. In the electric deionized water production apparatus 1, the first concentration chamber C1 located closest to the anode side is adjacent to the anode chamber E1 through an ion exchange membrane m which is either a cation exchange membrane or an anion exchange membrane. In the electric deionized water production apparatus 1, the third concentrating chamber C3 located closest to the cathode side is adjacent to the cathode chamber E2 through the ion exchange membrane m.

第1のカチオン脱塩室D1には少なくともカチオン交換体が充填され、主に被処理水中のカチオン成分(Na+、Ca2+、Mg2+等)が除去される。カチオン交換体としては、カチオン交換樹脂、カチオン交換繊維、モノリス状多孔質カチオン交換体等が挙げられ、最も汎用的なカチオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。第1のカチオン脱塩室D1に充填するイオン交換体の充填形態としては、カチオン交換体の単床形態が挙げられる。第2のカチオン脱塩室D1’は、第1のカチオン脱塩室D1と同様の構成を有している。 The first cation desalting chamber D1 is filled with at least a cation exchanger to mainly remove cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated. Examples of the cation exchanger include a cation exchange resin, a cation exchange fiber, and a monolithic porous cation exchanger, and the most versatile cation exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. As a filling form of the ion exchanger filled in the first cation desalting chamber D1, a single bed form of the cation exchanger can be mentioned. The second cation desalting chamber D1 ′ has the same configuration as that of the first cation desalting chamber D1.

第1のアニオン脱塩室D2には少なくともアニオン交換体が充填され、主に被処理水中のアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする)等)が除去される。アニオン交換体としては、アニオン交換樹脂、アニオン交換繊維、モノリス状多孔質アニオン交換体等が挙げられ、最も汎用的なアニオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。第1のアニオン脱塩室D2にはカチオン交換体がさらに充填されていてもよい。第1のアニオン脱塩室D2に充填するアニオン交換体の充填形態としては、アニオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態または複床形態が挙げられる。第2のアニオン脱塩室D2’は、第1のアニオン脱塩室D2と同様の構成を有している。 The first anion desalination chamber D2 is filled with at least an anion exchanger and mainly contains anion components (Cl , CO 3 2− , HCO 3 , SiO 2 in silica to be treated (silica takes a special form). In many cases, the display is different from that of general ions). Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and monolithic porous anion exchangers, and the most general anion exchange resin is preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers. The first anion desalting chamber D2 may be further filled with a cation exchanger. Examples of the filling form of the anion exchanger filled in the first anion desalting chamber D2 include a single bed form of the anion exchanger, a mixed bed form of an anion exchanger and a cation exchanger, or a double bed form. The second anion desalting chamber D2 ′ has the same configuration as the first anion desalting chamber D2.

中間イオン交換膜3は、被処理水の水質、脱イオン水に求められる水質、カチオン脱塩室D1,D1’またはアニオン脱塩室D2,D2’に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜3は、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。   The intermediate ion exchange membrane 3 takes into consideration the quality of water to be treated, the quality required for deionized water, the type of ion exchanger filled in the cation demineralization chambers D1, D1 ′ or the anion demineralization chambers D2, D2 ′, and the like. Can be selected. The intermediate ion exchange membrane 3 may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane.

このように、各主脱塩室D,D’がそれぞれ、カチオン脱塩室D1,D1’とアニオン脱塩室D2,D2’の2つの小脱塩室に区画され、各主脱塩室D,D’の外側に濃縮室が隣接する構成(主脱塩室2室構成)は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも、各主脱塩室D,D’のカチオン脱塩室D1,D1’とアニオン脱塩室D2,D2’との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり運転費の低減を図ることが可能である。   Thus, each main desalting chamber D, D ′ is divided into two small desalting chambers, a cation desalting chamber D1, D1 ′ and an anion desalting chamber D2, D2 ′. , D ′ (concentration chamber 2 chamber configuration) adjacent to the concentration chamber is capable of multi-stage treatment of water to be treated, and is effective in improving deionization performance. Moreover, since there is no need to provide a concentration chamber between the cation desalting chambers D1, D1 ′ and the anion desalting chambers D2, D2 ′ of the main desalting chambers D, D ′, the applied voltage between the anode and the cathode is Therefore, the power consumption is reduced and the operation cost can be reduced.

第1の濃縮室C1は、第1のアニオン脱塩室D2から排出されるアニオン成分および陽極室E1から排出されるカチオン成分を取り込み、それらを系外に放出するために設けられている。第2の濃縮室C2は、第1のカチオン脱塩室D1から排出されるカチオン成分および第2のアニオン脱塩室D2’から排出されるアニオン成分を取り込み、それらを系外に放出するために設けられている。第3の濃縮室C3は、第2のカチオン脱塩室D1’から排出されるカチオン成分および陰極室E2から排出されるアニオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1〜C3には、第1および第2のカチオン脱塩室D1,D1’でカチオン成分が除去された脱カチオン水(中間処理水)の一部が濃縮室供給水として流入する。濃縮室供給水はカチオン成分およびアニオン成分を含んだ濃縮水となって、各濃縮室C1〜C3から排出される。電気式脱イオン水製造装置1の電気抵抗を抑えるために、各濃縮室C1〜C3にイオン交換体が充填されていてもよい。   The first concentrating chamber C1 is provided for taking in the anion component discharged from the first anion desalting chamber D2 and the cation component discharged from the anode chamber E1, and releasing them out of the system. The second concentrating chamber C2 takes in the cation component discharged from the first cation desalting chamber D1 and the anion component discharged from the second anion desalting chamber D2 ′ and releases them out of the system. Is provided. The third concentrating chamber C3 is provided for taking in the cation component discharged from the second cation desalting chamber D1 'and the anion component discharged from the cathode chamber E2 and releasing them out of the system. A part of the decationized water (intermediate treated water) from which the cation component has been removed in the first and second cation demineralization chambers D1 and D1 'flows into the concentration chambers C1 to C3 as the concentration chamber supply water. Concentrated chamber supply water becomes concentrated water containing a cation component and an anion component, and is discharged from each of the concentration chambers C1 to C3. In order to suppress the electric resistance of the electric deionized water production apparatus 1, each of the concentrating chambers C1 to C3 may be filled with an ion exchanger.

陽極室E1は陽極4を収容している。陽極4は金属の網状体あるいは板状体からなっている。被処理水にCl-を含む場合、陽極4に塩素が発生する。このため、陽極4には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 The anode chamber E1 accommodates the anode 4. The anode 4 is made of a metal net or plate. When the water to be treated contains Cl , chlorine is generated at the anode 4. For this reason, it is desirable to use a material having chlorine resistance for the anode 4, and examples thereof include a metal such as platinum, palladium, iridium, or a material obtained by coating titanium with these metals.

陰極室E2は陰極5を収容している。陰極5は、金属の網状体あるいは板状体からなっており、例えばステンレス製の網状体あるいは板状体を用いることができる。   The cathode chamber E2 accommodates the cathode 5. The cathode 5 is made of a metal net or plate, and for example, a stainless steel net or plate can be used.

電極室(陽極室および陰極室)E1,E2には電極水が流入する。電気式脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E1および陰極室E2にはイオン交換体が充填されていることが好ましい。陽極室E1および陰極室E2に充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。   Electrode water flows into the electrode chambers (anode chamber and cathode chamber) E1, E2. In order to suppress the electric resistance of the electric deionized water production apparatus 1, it is preferable that the anode chamber E1 and the cathode chamber E2 are filled with an ion exchanger. Examples of the ion exchanger filled in the anode chamber E1 and the cathode chamber E2 include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resins are preferably used.

各電極室E1,E2、第1および第2カチオン脱塩室D1,D1’、第1および第2アニオン脱塩室D2,D2’、および各濃縮室C1〜C3は各々、開口部を備えた板状部材である枠体2の内部に設けられている。図1では、枠体2は一体的に示されているが、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体2は絶縁性を有し、流入する被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m−PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。   Each of the electrode chambers E1, E2, the first and second cation desalting chambers D1, D1 ′, the first and second anion desalting chambers D2, D2 ′, and the concentration chambers C1 to C3 each have an opening. It is provided inside the frame 2 that is a plate-like member. In FIG. 1, the frame body 2 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other. The frame body 2 is not particularly limited as long as it has an insulating property and does not leak in water to be treated. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether), etc. Can be mentioned.

各部屋同士の連絡、あるいは被処理水や電極水等の供給、排出用にいくつかの流路U1〜U5,L1〜L5が設けられている。   Several flow paths U1 to U5 and L1 to L5 are provided for communication between rooms, supply and discharge of treated water, electrode water, and the like.

電気式脱イオン水製造装置1の上部に位置する流路U1は、一端が被処理水の供給側に接続され、他端側では途中で分岐して、第1のカチオン脱塩室D1と第2のカチオン脱塩室D1’とに接続されている。電気式脱イオン水製造装置1の下部に位置する流路L1は、第1のカチオン脱塩室D1と第2のカチオン脱塩室D1’とに接続され、途中で合流し、渡り配管Yの一端に接続している。渡り配管Yの他端は電気式脱イオン水製造装置1の上部に位置する流路U2に接続されており、流路U2は、途中で分岐して、第1のアニオン脱塩室D2と第2のアニオン脱塩室D2’とに接続されている。電気式脱イオン水製造装置1の下部に位置する流路L2は、第1のアニオン脱塩室D2と第2のアニオン脱塩室D2’とに接続され、途中で合流し、処理水の流出側に接続されている。   One end of the flow path U1 located in the upper part of the electric deionized water production apparatus 1 is connected to the supply side of the water to be treated, and the other end side branches in the middle to form the first cation demineralization chamber D1 and the first cation demineralization chamber D1. 2 cation demineralization chamber D1 '. The flow path L1 located in the lower part of the electric deionized water production apparatus 1 is connected to the first cation demineralization chamber D1 and the second cation demineralization chamber D1 ′, and merges in the middle of the transition pipe Y. Connected to one end. The other end of the transition pipe Y is connected to a flow path U2 located in the upper part of the electric deionized water production apparatus 1, and the flow path U2 is branched in the middle to form the first anion demineralization chamber D2 and the second one. 2 anion desalination chamber D2 '. The flow path L2 located in the lower part of the electric deionized water production apparatus 1 is connected to the first anion demineralization chamber D2 and the second anion demineralization chamber D2 ′, and merges in the middle to discharge the treated water. Connected to the side.

電気式脱イオン水製造装置1の下部に位置する流路L3は、一端側では渡り配管Yに接続され、他端側では途中で分岐して、各濃縮室C1〜C3に接続されている。すなわち、第1および第2のカチオン脱塩室D1,D1’を流出した脱カチオン水は、一部が第1および第2のアニオン脱塩室D2,D2’に流入するようにされ、他の一部が各濃縮室C1〜C3に流入するようにされている。電気式脱イオン水製造装置1の上部に位置する流路U3は、各濃縮室C1〜C3に接続され、途中で合流し、濃縮水の流出側に接続されている。   The flow path L3 located in the lower part of the electric deionized water production apparatus 1 is connected to the crossover pipe Y on one end side, and is branched in the middle on the other end side to be connected to the concentration chambers C1 to C3. That is, a part of the decationized water that has flowed out of the first and second cation demineralization chambers D1, D1 ′ is allowed to flow into the first and second anion demineralization chambers D2, D2 ′. A part is made to flow into each concentration chamber C1-C3. The flow path U3 located in the upper part of the electric deionized water production apparatus 1 is connected to each of the concentrating chambers C1 to C3, merges on the way, and is connected to the concentrated water outflow side.

図1では、流路U1〜U3,L1〜L3は、図示の都合上枠体2の外側に位置しているが、これらの流路U1〜U3,L1〜L3は、枠体2に内蔵されているのが有利である。   In FIG. 1, the flow paths U <b> 1 to U <b> 3, L <b> 1 to L <b> 3 are located outside the frame body 2 for convenience of illustration, but these flow paths U <b> 1 to U <b> 3, L <b> 1 to L <b> 3 are built in the frame body 2. It is advantageous.

陽極室E1には流路L4,U4が接続しており、電極水は陽極室E1の下部に接続された流路L4から陽極室E1に流入し、陽極室E1の上部に接続された流路U4を通って陽極室E1から排出される。陰極室E2には流路L5,U5が接続しており、電極水は陰極室E2の下部に接続された流路L5から陰極室E2に流入し、陰極室E2の上部に接続された流路U5を通って陰極室E2から排出される。   Flow paths L4 and U4 are connected to the anode chamber E1, and electrode water flows into the anode chamber E1 from the flow path L4 connected to the lower portion of the anode chamber E1, and is connected to the upper portion of the anode chamber E1. It is discharged from the anode chamber E1 through U4. Channels L5 and U5 are connected to the cathode chamber E2, and electrode water flows into the cathode chamber E2 from the channel L5 connected to the lower portion of the cathode chamber E2, and is connected to the upper portion of the cathode chamber E2. It is discharged from the cathode chamber E2 through U5.

次に、引き続き図1を参照して、被処理水の流れと脱イオンの原理について説明する。   Next, the flow of water to be treated and the principle of deionization will be described with reference to FIG.

あらかじめ、陽極室E1には、流路L4から電極水を供給し、流路U4から排出させておく。同様に、陰極室E2には、流路L5から電極水を供給し、流路U5から排出させておく。陽極4、陰極5間には所定の電圧を印加しておく。この状態で、被処理水を流路U1から、第1のカチオン脱塩室D1および第2のカチオン脱塩室D1’に並列に流入させる。被処理水は、第1のカチオン脱塩室D1および第2のカチオン脱塩室D1’で、カチオン成分が除去される。   In advance, electrode water is supplied to the anode chamber E1 from the flow path L4 and discharged from the flow path U4. Similarly, electrode water is supplied to the cathode chamber E2 from the flow path L5 and discharged from the flow path U5. A predetermined voltage is applied between the anode 4 and the cathode 5. In this state, the water to be treated is caused to flow in parallel from the flow path U1 to the first cation desalting chamber D1 and the second cation desalting chamber D1 '. The cation component is removed from the water to be treated in the first cation desalting chamber D1 and the second cation desalting chamber D1 '.

具体的には、Ca2+等のカチオン成分は、第1および第2のカチオン脱塩室D1,D1’で、第1および第2のカチオン脱塩室D1,D1’に充填されたカチオン交換体に吸着される。主脱塩室D,D’では、水が水素イオン(以下、「H+」という)と水酸化物イオン(以下、「OH-」という)とに解離する反応(水解離反応)が、連続的に進行している。H+はカチオン交換体に吸着したCa2+等のカチオン成分と交換され、第1および第2のカチオン脱塩室D1,D1’に充填されたカチオン交換体が再生される。除去されたCa2+等のカチオン成分は陽極4、陰極5間の電位差によって陰極5側に引き寄せられ、カチオン交換膜c,c’を通過して第2および第3の濃縮室C2,C3に流入する。第1の濃縮室C1には、陽極室E1を流れる電極水に含まれるカチオン成分が、陽極4、陰極5間の電位差によって陰極5側に引き寄せられ、イオン交換膜mを通って流入する。 Specifically, the cation component such as Ca 2+ is exchanged between the first and second cation desalting chambers D1 and D1 ′ in the first and second cation desalting chambers D1 and D1 ′. Adsorbed to the body. In the main desalting chambers D and D ′, a reaction (water dissociation reaction) in which water is dissociated into hydrogen ions (hereinafter referred to as “H + ”) and hydroxide ions (hereinafter referred to as “OH ”) continues. Is progressing. H + is exchanged with a cation component such as Ca 2+ adsorbed on the cation exchanger to regenerate the cation exchanger filled in the first and second cation desalting chambers D1 and D1 ′. The removed cation component such as Ca 2+ is attracted to the cathode 5 side by the potential difference between the anode 4 and the cathode 5, passes through the cation exchange membranes c and c ′, and enters the second and third concentration chambers C2 and C3. Inflow. In the first concentration chamber C1, the cation component contained in the electrode water flowing through the anode chamber E1 is drawn toward the cathode 5 due to the potential difference between the anode 4 and the cathode 5, and flows in through the ion exchange membrane m.

このようにしてCa2+等のカチオン成分が除去された水(脱カチオン水)は流路L1で合流し、その一部が、渡り配管Yを通って流路U2に流入し、他の一部が、渡り配管Yから流路L3に流入する。 The water from which cation components such as Ca 2+ have been removed in this way (decationized water) merges in the flow path L1, and a part of the water flows into the flow path U2 through the transition pipe Y. Part flows into the flow path L3 from the crossover pipe Y.

流路U2に流入した脱カチオン水は、第1のアニオン脱塩室D2および第2のアニオン脱塩室D2’に並列に流入し、第1のアニオン脱塩室D2および第2のアニオン脱塩室D2’で、アニオン成分が除去される。   The decationized water that has flowed into the flow path U2 flows in parallel into the first anion desalination chamber D2 and the second anion desalination chamber D2 ′, and the first anion desalination chamber D2 and the second anion desalination chamber D2 ′. In chamber D2 ′, the anion component is removed.

具体的には、HCO3 -等のアニオン成分は、第1および第2のアニオン脱塩室D2,D2’で、第1および第2のアニオン脱塩室D2,D2’に充填されたアニオン交換体に吸着される。主脱塩室D,D’では、上述のように、水解離反応によってOH-が連続的に発生している。OH-はアニオン交換体に吸着したHCO3 -等のアニオン成分と交換され、アニオン交換体が再生される。除去されたHCO3 -等のアニオン成分は陽極4、陰極5間の電位差によって陽極4側に引き寄せられ、アニオン交換膜a,a’を通過して第1および第2の濃縮室C1,C2に流入する。第3の濃縮室C3には、陰極室E2を流れる電極水に含まれるアニオン成分が、陽極4、陰極5間の電位差によって陽極4側に引き寄せられ、イオン交換膜mを通って流入する。第1および第2のアニオン脱塩室D2,D2’でアニオン成分が除去された処理水は流路L2で合流し、電気式脱イオン水製造装置1の外へ排出される。 Specifically, the anion component such as HCO 3 is anion exchange in the first and second anion desalting chambers D2 and D2 ′ and filled in the first and second anion desalting chambers D2 and D2 ′. Adsorbed to the body. In the main desalting chambers D and D ′, as described above, OH is continuously generated by the water dissociation reaction. OH is exchanged with an anion component such as HCO 3 adsorbed on the anion exchanger to regenerate the anion exchanger. The removed anion component such as HCO 3 is attracted to the anode 4 side by the potential difference between the anode 4 and the cathode 5, passes through the anion exchange membranes a and a ′, and enters the first and second concentration chambers C 1 and C 2. Inflow. In the third concentrating chamber C3, the anion component contained in the electrode water flowing through the cathode chamber E2 is attracted to the anode 4 side by the potential difference between the anode 4 and the cathode 5, and flows in through the ion exchange membrane m. The treated water from which the anion component has been removed in the first and second anion demineralization chambers D2 and D2 ′ joins in the flow path L2 and is discharged out of the electric deionized water production apparatus 1.

一方、流路L3に流入した脱カチオン水は、濃縮室供給水として、各濃縮室C1〜C3に供給される。各濃縮室C1〜C3では、脱カチオン水は、第1および第2のカチオン脱塩室D1,D1’、第1および第2のアニオン脱塩室D2,D2’、および各電極室から排出されるカチオン成分およびアニオン成分を取り込み、濃縮水となって電気式脱イオン水製造装置1の上部に位置する流路U3を通って電気式脱イオン水製造装置1の外へ排出される。   On the other hand, the decationized water that has flowed into the flow path L3 is supplied to the concentration chambers C1 to C3 as the concentration chamber supply water. In each of the concentration chambers C1 to C3, decationized water is discharged from the first and second cation demineralization chambers D1, D1 ′, the first and second anion demineralization chambers D2, D2 ′, and the electrode chambers. The cation component and the anion component are taken in, become concentrated water, and are discharged out of the electric deionized water production apparatus 1 through the flow path U3 located in the upper part of the electric deionized water production apparatus 1.

このようにして、被処理水は、第1および第2のカチオン脱塩室D1,D1’でカチオン成分が除去されて脱カチオン水となり、第1および第2のカチオン脱塩室D1,D1’のカチオン交換体は水解離反応によって生成されたH+により再生される。同様にして、脱カチオン水は、第1および第2のアニオン脱塩室D2,D2’でアニオン成分が除去されて脱イオン水となり、第1および第2のアニオン脱塩室D2,D2’のアニオン交換体は水解離反応によって生成されたOH-により再生される。 In this way, the water to be treated becomes decationized water by removing the cation component in the first and second cation demineralization chambers D1, D1 ′, and the first and second cation demineralization chambers D1, D1 ′. The cation exchanger is regenerated by H + produced by the water dissociation reaction. Similarly, the decationized water is deionized water by removing the anion component in the first and second anion demineralization chambers D2 and D2 ′, and the deionized water in the first and second anion demineralization chambers D2 and D2 ′. anion exchanger OH produced by the water dissociation reaction - are played by.

本実施形態では、上述のように、各濃縮室C1〜C3には、第1および第2のカチオン脱塩室D1,D1’を流出した脱カチオン水の一部が流入するようにされている。この構成による効果について、以下に、第2の濃縮室C2を例に挙げて説明する。   In the present embodiment, as described above, a part of the decationized water that has flowed out of the first and second cation demineralization chambers D1 and D1 ′ flows into each of the concentration chambers C1 to C3. . The effects of this configuration will be described below by taking the second concentration chamber C2 as an example.

第2の濃縮室C2には、アニオン交換膜a’を介して陰極側に位置する第2のアニオン脱塩室D2’から、被処理水中の除去されたアニオン成分と共に、水の解離反応によって発生したOH-も排出される。その結果、第2の濃縮室C2の、特にアニオン交換膜a’近傍では、OH-が多く存在し、濃縮水のpH値が上昇する。一方、例えばCa2+等の硬度成分の高い被処理水を処理した場合、第2の濃縮室C2には、被処理水中の硬度成分と炭酸成分とが排出され濃縮される。そのため、上述のように濃縮水がアルカリ性に傾いたアニオン交換膜a’近傍では、排出された炭酸成分は主に炭酸イオン(CO3 2-)として存在するため、炭酸カルシウムを主成分とするスケールが生成されやすくなる。しかしながら、第2の濃縮室C2に供給される中間処理水(脱カチオン水)は、第1および第2のカチオン脱塩室D1,D1’でカチオン成分が除去される代わりに、H+を多く取り込んでいるため、そのpH値は低くなっている。したがって、カチオン脱塩室を通過して酸性となった中間処理水を第2の濃縮室C2に供給することによって、第2のアニオン脱塩室D2’から排出されるOH-によるpH値の上昇を抑制することができ、スケールの生成を抑制することができる。このようにして、スケールの生成による電気式脱イオン水製造装置の運転電圧の増加や、脱イオン水の水質低下を低減することができる。 In the second concentrating chamber C2, it is generated from the second anion desalting chamber D2 ′ located on the cathode side through the anion exchange membrane a ′ together with the anion component removed from the water to be treated by a water dissociation reaction. OH -is also discharged. As a result, a large amount of OH is present in the second concentration chamber C2, particularly in the vicinity of the anion exchange membrane a ′, and the pH value of the concentrated water increases. On the other hand, when the water to be treated having a high hardness component such as Ca 2+ is treated, the hardness component and the carbonic acid component in the water to be treated are discharged and concentrated in the second concentration chamber C2. Therefore, in the vicinity of the anion exchange membrane a ′ in which the concentrated water is inclined to be alkaline as described above, the discharged carbonic acid component exists mainly as carbonate ions (CO 3 2− ). Is more likely to be generated. However, the intermediate treated water (decationized water) supplied to the second concentration chamber C2 contains a large amount of H + instead of removing the cation component in the first and second cation demineralization chambers D1 and D1 ′. Since it has taken in, the pH value is low. Therefore, by supplying the intermediate treated water that has passed through the cation desalting chamber and has become acidic to the second concentrating chamber C2, the pH value increases due to OH discharged from the second anion desalting chamber D2 ′. And the generation of scale can be suppressed. In this way, it is possible to reduce an increase in the operating voltage of the electric deionized water production apparatus due to the generation of scale and a decrease in the quality of deionized water.

したがって、例えば、被処理水中により高濃度の硬度成分が含まれている場合でも、特許文献1のように逆浸透膜の透過水を直接濃縮室へ供給する方法よりも確実にpHを低下させた水を濃縮室へ供給することができる。これにより、濃縮室供給水に塩酸等の酸性溶液を添加することで濃縮室内のpH上昇を抑えたり、濃縮室供給水の流量を増加させることで炭酸カルシウム濃度を一定濃度以下に保持したりする必要がなく、スケールの生成を確実に抑制することが可能となる。   Therefore, for example, even when a high-concentration hardness component is contained in the water to be treated, the pH is reliably lowered as compared with the method of supplying the permeated water of the reverse osmosis membrane directly to the concentration chamber as in Patent Document 1. Water can be supplied to the concentration chamber. As a result, an acidic solution such as hydrochloric acid is added to the concentration chamber supply water to suppress the pH increase in the concentration chamber, or the calcium carbonate concentration is kept below a certain concentration by increasing the flow rate of the concentration chamber supply water. This is unnecessary, and scale generation can be reliably suppressed.

スケール生成は、各濃縮室C1〜C3に流入する脱カチオン水のpH値をより低くすることで、より一層抑制される。そのために、第1および第2のカチオン脱塩室D1,D1’には、カチオン交換体が単床形態で充填されていることが最も好ましい。   Scale generation is further suppressed by lowering the pH value of the decationized water flowing into the concentration chambers C1 to C3. Therefore, it is most preferable that the first and second cation desalting chambers D1 and D1 'are filled with a cation exchanger in a single bed form.

また、図1からもわかるように、本実施形態では、各濃縮室C1〜C3に流入する脱カチオン水の流入方向と、第1および第2のアニオン脱塩室D2,D2’に流入する脱カチオン水の流入方向とが反対向きである。このことは、各濃縮室C1〜C3における脱カチオン水の流入位置が、第1および第2のアニオン脱塩室D2,D2’における脱カチオン水の排出位置と隣接する位置関係にあることを意味する。各アニオン脱塩室D2,D2’においては、脱カチオン水に含まれるアニオン成分は、各アニオン脱塩室D2,D2’内のアニオン交換体によって除去されるため、排出位置近傍での含有量が、流入位置近傍での含有量に比べて少なくなる。そのため、逆に、水の解離反応によって発生し、アニオン交換体の再生のために使われるOH-は、各アニオン脱塩室D2,D2’の排出位置近傍では、流入位置近傍と比べて過剰となる。したがって、OH-が過剰となる各アニオン脱塩室D2,D2’の排出位置に隣接して、酸性の脱カチオン水が流入する、各濃縮室C1〜C3の流入位置が設けられていることで、より効果的に各濃縮室C1〜C3内のpH値の上昇を抑制することができる。このように、各濃縮室C1〜C3に流入する脱カチオン水の流入方向と、第1および第2のアニオン脱塩室D2,D2’に流入する脱カチオン水の流入方向とが反対向きであることで、上述のスケール生成の抑制効果はより顕著になる。 As can be seen from FIG. 1, in this embodiment, the inflow direction of the decationized water flowing into each of the concentration chambers C1 to C3 and the deionization flowing into the first and second anion demineralization chambers D2 and D2 ′. The inflow direction of the cationic water is opposite. This means that the inflow position of the decationized water in each of the concentration chambers C1 to C3 is adjacent to the discharge position of the decationized water in the first and second anion demineralization chambers D2 and D2 ′. To do. In each anion desalting chamber D2, D2 ′, the anion component contained in the decationized water is removed by the anion exchanger in each anion desalting chamber D2, D2 ′. , Less than the content in the vicinity of the inflow position. Therefore, conversely, OH generated by the dissociation reaction of water and used for the regeneration of the anion exchanger is excessive in the vicinity of the discharge position of each anion desalting chamber D2, D2 ′ compared to the vicinity of the inflow position. Become. Therefore, an inflow position of each of the concentration chambers C1 to C3 into which acidic decationized water flows is provided adjacent to the discharge position of each of the anion desalination chambers D2 and D2 ′ where OH is excessive. Thus, an increase in the pH value in each of the concentration chambers C1 to C3 can be suppressed more effectively. Thus, the inflow direction of the decation water flowing into each of the concentration chambers C1 to C3 is opposite to the inflow direction of the decation water flowing into the first and second anion demineralization chambers D2 and D2 ′. As a result, the effect of suppressing the scale generation described above becomes more prominent.

なお、各濃縮室C1〜C3に流入する脱カチオン水は、スケールの生成が抑制できる程度に各濃縮室C1〜C3のpH値の上昇を抑えることができれば十分である。そのため、各濃縮室C1〜C3に流入する脱カチオン水の流量は、各アニオン脱塩室D2,D2’に流入する脱カチオン水の流量に対して、0.05〜1倍の範囲であれば十分である。また、濃縮室供給水として脱イオン水等を追加供給することで、pH値を調整することも可能である。   In addition, the decationized water which flows into each concentration chamber C1-C3 is enough if the raise of the pH value of each concentration chamber C1-C3 can be suppressed to such an extent that the production | generation of a scale can be suppressed. Therefore, if the flow rate of the decationized water flowing into each of the concentration chambers C1 to C3 is in the range of 0.05 to 1 times the flow rate of the decationized water flowing into each of the anion demineralization chambers D2 and D2 ′. It is enough. Moreover, it is also possible to adjust the pH value by additionally supplying deionized water or the like as the concentration chamber supply water.

本実施形態では、本発明の電気式脱イオン製造装置について、中間イオン交換膜を介して互いに隣接する、カチオン脱塩室とアニオン脱塩室とからなる主脱塩室が2つ設けられている場合を例に挙げて説明したが、主脱塩室は1つだけであってもよく、または3つ以上設けられていてもよい。主脱塩室がいくつの場合であっても、主脱塩室と濃縮室とは交互に設けられ、最も陽極側に位置する濃縮室が陽極室と隣接し、最も陰極側に位置する濃縮室が陰極室と隣接することになる。   In the present embodiment, the electric deionization production apparatus of the present invention is provided with two main demineralization chambers that are adjacent to each other via an intermediate ion exchange membrane and are composed of a cation demineralization chamber and an anion demineralization chamber. Although the case has been described as an example, only one main desalting chamber may be provided, or three or more main desalting chambers may be provided. Regardless of the number of main desalting chambers, the main desalting chambers and concentrating chambers are provided alternately, the concentrating chamber located closest to the anode side is adjacent to the anode chamber, and the concentrating chamber located closest to the cathode side Will be adjacent to the cathode chamber.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る電気式脱イオン水製造装置を示す概略構成図である。
(Second Embodiment)
FIG. 2 is a schematic configuration diagram showing an electric deionized water production apparatus according to the second embodiment of the present invention.

図2に示す電気式脱イオン水製造装置1では、カチオン脱塩室D11が、陽極室E1と濃縮室Cとの間に位置し、第1のカチオン交換膜c1を介して濃縮室Cに隣接し、第2のカチオン交換膜c2を介して前記陽極室に隣接して位置している。また、アニオン脱塩室D12が、陰極室E2と濃縮室Cとの間に位置し、第1のアニオン交換膜a1を介して濃縮室に隣接し、第2のアニオン交換膜a2を介して陰極室E2に隣接して位置している。   In the electric deionized water production apparatus 1 shown in FIG. 2, the cation demineralization chamber D11 is located between the anode chamber E1 and the concentration chamber C and is adjacent to the concentration chamber C via the first cation exchange membrane c1. And located adjacent to the anode chamber via the second cation exchange membrane c2. An anion desalination chamber D12 is located between the cathode chamber E2 and the concentration chamber C, is adjacent to the concentration chamber via the first anion exchange membrane a1, and is connected to the cathode via the second anion exchange membrane a2. Located adjacent to chamber E2.

言い換えれば、本実施形態の電気式脱イオン水製造装置1は、図1に示す第1の実施形態から、第1の濃縮室C1と第1のアニオン脱塩室D2とを取り除き、第1のカチオン脱塩室D1と陽極室E1とをカチオン交換膜を介して隣接させ、第3の濃縮室C3と第2のカチオン脱塩室D1’とを取り除き、第2のアニオン脱塩室D2’と陰極室E2とを第2のアニオン交換膜a2を介して隣接させた構成を有している。そのため、本実施形態における各室の構成は、第1の実施形態の対応する各室の構成と同様であり、被処理水の流れ(流路構成)や脱イオンの原理についても、第1の実施形態と同様である。また、スケール生成の抑制効果についても、第1の実施形態と同様である。   In other words, the electric deionized water production apparatus 1 of the present embodiment removes the first concentration chamber C1 and the first anion demineralization chamber D2 from the first embodiment shown in FIG. The cation desalting chamber D1 and the anode chamber E1 are adjacent to each other through a cation exchange membrane, the third concentrating chamber C3 and the second cation desalting chamber D1 ′ are removed, and the second anion desalting chamber D2 ′ The cathode chamber E2 is adjacent to the cathode chamber E2 via the second anion exchange membrane a2. Therefore, the configuration of each chamber in this embodiment is the same as the configuration of each corresponding chamber in the first embodiment, and the flow of water to be treated (flow channel configuration) and the principle of deionization are also the first. This is the same as the embodiment. Further, the effect of suppressing the scale generation is the same as that of the first embodiment.

一方で、本実施形態では、電極室E1,E2において水の電気分解反応によって生じた水素イオンおよび水酸化物イオンを、電極室E1,E2にそれぞれ隣接するカチオン脱塩室D11およびアニオン脱塩室D12のイオン交換体の再生に利用している点で、第1の実施形態と異なっている。このことについて、以下に簡単に説明する。   On the other hand, in the present embodiment, hydrogen ions and hydroxide ions generated by the electrolysis reaction of water in the electrode chambers E1 and E2 are converted into the cation desalting chamber D11 and the anion desalting chamber adjacent to the electrode chambers E1 and E2, respectively. This is different from the first embodiment in that it is used for regeneration of the ion exchanger of D12. This will be briefly described below.

陽極室E1で電気分解反応(2H2O→O2+4H++4e-)によって発生した水素イオンは、第2のカチオン交換膜c2を通ってカチオン脱塩室D11に流入する。カチオン脱塩室D11では流入した被処理水のカチオン成分がカチオン交換体に吸着され、カチオン成分が吸着したカチオン交換体は、陽極室E1から移動してきた水素イオンによって再生される。一方、陽極室E1と同様の電気分解反応によって陰極室E2で発生した水酸化物イオンは、第2のアニオン交換膜a2を通ってアニオン脱塩室D12に移動する。アニオン脱塩室D12では流入した被処理水のアニオン成分がアニオン交換体に吸着され、アニオン成分が吸着したアニオン交換体は、陰極室E2から移動してきた水酸化物イオンによって再生される。 Hydrogen ions generated by the electrolysis reaction (2H 2 O → O 2 + 4H + + 4e ) in the anode chamber E1 flow into the cation desalting chamber D11 through the second cation exchange membrane c2. In the cation desalting chamber D11, the cation component of the treated water that has flowed in is adsorbed by the cation exchanger, and the cation exchanger that has adsorbed the cation component is regenerated by the hydrogen ions that have moved from the anode chamber E1. On the other hand, hydroxide ions generated in the cathode chamber E2 by the same electrolysis reaction as in the anode chamber E1 move to the anion desalination chamber D12 through the second anion exchange membrane a2. In the anion desalting chamber D12, the anion component of the treated water that has flowed in is adsorbed by the anion exchanger, and the anion exchanger that has adsorbed the anion component is regenerated by the hydroxide ions that have moved from the cathode chamber E2.

このようにして、本実施形態の電気式脱イオン水製造装置1では、陽極室E1で発生した水素イオンおよび陰極室E2で発生した水酸化物イオンが各脱塩室D11,D12のイオン交換体の再生に有効利用されている。これにより、陽極・陰極間の印加電圧を低減し、使用電力量を低減することが可能となる。   Thus, in the electric deionized water production apparatus 1 of the present embodiment, the hydrogen ions generated in the anode chamber E1 and the hydroxide ions generated in the cathode chamber E2 are ion exchangers in the demineralization chambers D11 and D12. It is effectively used for playback. As a result, the applied voltage between the anode and the cathode can be reduced, and the amount of power used can be reduced.

図3は、本実施形態の電気式脱イオン水製造装置の別の構成例を示す概略構成図である。図3では、各室の符号は、図2における各室の符号に対応している。図中の符号Xは、符号Xで示した流路の端部同士が接続されていることを意味している。   FIG. 3 is a schematic configuration diagram showing another configuration example of the electric deionized water production apparatus of the present embodiment. In FIG. 3, the reference numerals of the respective rooms correspond to the reference numerals of the respective rooms in FIG. The symbol X in the figure means that the ends of the flow path indicated by the symbol X are connected to each other.

図2に示す構成例では、アニオン脱塩室D12と濃縮室Cとカチオン脱塩室D11の3室からなる単位構成は1組設けられていたが、この単位構成は、例えば大量の被処理水を処理する場合などには、図3に示すように、複数設けることも可能である。その場合、各単位構成は、第1の実施形態と同様の構成を有する中間イオン交換膜3を介して互いに隣接している。そして、最も陽極側に位置するカチオン脱塩室D11が第2のカチオン交換膜c2を介して陽極室E1と隣接し、最も陰極側に位置するアニオン脱塩室D12が第2のアニオン交換膜a2を介して陰極室E2と隣接する。また、すべてのカチオン脱塩室D11は、並列に被処理水が流入するように並列流路を形成し、すべてのアニオン脱塩室D12に、並列に脱カチオン水が流入するように並列流路を形成する。このような構成によって、被処理水量の増大にも対応可能となる。   In the configuration example shown in FIG. 2, one unit configuration including three chambers of the anion demineralization chamber D12, the concentration chamber C, and the cation demineralization chamber D11 is provided. This unit configuration includes, for example, a large amount of water to be treated. For example, as shown in FIG. 3, it is possible to provide a plurality. In that case, each unit structure is adjacent to each other via an intermediate ion exchange membrane 3 having the same structure as that of the first embodiment. The cation desalting chamber D11 located on the most anode side is adjacent to the anode chamber E1 via the second cation exchange membrane c2, and the anion desalting chamber D12 located on the most cathode side is located on the second anion exchange membrane a2. Is adjacent to the cathode chamber E2. Moreover, all the cation demineralization chambers D11 form parallel flow paths so that the water to be treated flows in parallel, and the parallel flow paths so that the decationized water flows in parallel to all the anion demineralization chambers D12. Form. With such a configuration, it is possible to cope with an increase in the amount of water to be treated.

(実施例)
図1に示す構成の電気式脱イオン水製造装置(実施例)と、図4に示す電気式脱イオン水製造装置(比較例)を用いて、本発明の効果を確認した。比較例は、図1に示す実施例と、各室の構成は同様であり、濃縮室供給水がカチオン脱塩室に流入させる前の被処理水、すなわち原水である点で異なっている。濃縮室供給水の流量と、得られる処理水の流量とは、実施例および比較例で共に同量であるが、カチオン脱塩室を流出した脱カチオン水を濃縮室に流す実施例では、カチオン脱塩室入口での被処理水の流量が、比較例と比べて、濃縮室に流す分だけ大きくなっている。また、中間イオン交換膜としてはアニオン交換膜を用い、陽極室と濃縮室との間のイオン交換膜としてはカチオン交換膜、陰極室と濃縮室との間のイオン交換膜としてはアニオン交換膜をそれぞれ用いている。
(Example)
The effect of the present invention was confirmed using the electric deionized water production apparatus (Example) having the configuration shown in FIG. 1 and the electric deionized water production apparatus (Comparative Example) shown in FIG. The comparative example is different from the embodiment shown in FIG. 1 in the configuration of each chamber, and is different in that the concentrated chamber supply water is treated water before flowing into the cation demineralization chamber, that is, raw water. The flow rate of the supply water of the concentrating chamber and the flow rate of the treated water obtained are the same in both the example and the comparative example, but in the example in which the decationized water that has flowed out of the cation demineralization chamber is flowed to the concentration chamber, the cation Compared with the comparative example, the flow rate of the water to be treated at the inlet of the desalination chamber is increased by the amount that flows into the concentration chamber. An anion exchange membrane is used as the intermediate ion exchange membrane, a cation exchange membrane is used as the ion exchange membrane between the anode chamber and the concentration chamber, and an anion exchange membrane is used as the ion exchange membrane between the cathode chamber and the concentration chamber. Each is used.

なお、実際には、実施例および比較例ともに、主脱塩室が3室設けられた電気式脱イオン水製造装置を用いて検証を行った。   In practice, both the examples and the comparative examples were verified using an electric deionized water production apparatus provided with three main demineralization chambers.

実施例および比較例における電気式脱イオン水製造装置の仕様、通水流量、供給水の仕様等は以下の通りである。なお、CERはカチオン交換樹脂、AERはアニオン交換樹脂の略である。
・陽極室E1:寸法300×80×4mm CER充填
・陰極室E2:寸法300×80×4mm AER充填
・カチオン脱塩室:寸法300×80×5mm(3室とも) CER充填
・アニオン脱塩室:寸法300×80×5mm(3室とも) AER充填
・濃縮室:300×80×5mm(4室とも) AER充填
・処理水流量:100L/h
・濃縮水流量:10L/h
・電極水流量:15L/h
・カチオン脱塩室供給水(被処理水):一段RO透過水11±1μS/cm
・カチオン脱塩室供給水硬度(CaCO3含有量):1±0.1mg/L
・濃縮室供給水(実施例):カチオン脱塩室処理水(脱カチオン水)
(比較例):カチオン脱塩室供給水(被処理水)
・電極室供給水:一段RO透過水11±1μS/cm
・印加電流値:2.0A
・印加電流密度:0.83A/dm2
The specifications of the electric deionized water production apparatus, the water flow rate, the specifications of the feed water, etc. in the examples and comparative examples are as follows. CER is an abbreviation for cation exchange resin, and AER is an anion exchange resin.
・ Anode chamber E1: Dimensions 300 × 80 × 4 mm CER filling ・ Cathode chamber E2: Dimensions 300 × 80 × 4 mm AER filling ・ Cation desalting chamber: Dimensions 300 × 80 × 5 mm (all three chambers) CER filling : Dimensions 300 x 80 x 5 mm (both 3 chambers) AER filling / concentration chamber: 300 x 80 x 5 mm (both 4 chambers) AER filling and treated water flow rate: 100 L / h
・ Concentrated water flow: 10 L / h
-Electrode water flow rate: 15 L / h
・ Cation desalination chamber supply water (treated water): One-stage RO permeated water 11 ± 1 μS / cm
・ Cation desalination chamber water hardness (CaCO 3 content): 1 ± 0.1 mg / L
・ Concentration chamber supply water (Example): Cation demineralization chamber treated water (decation water)
(Comparative example): Cation demineralization chamber supply water (treated water)
・ Electrode chamber supply water: One-stage RO permeated water 11 ± 1 μS / cm
-Applied current value: 2.0A
Applied current density: 0.83 A / dm 2

実施例および比較例の装置について、1000時間の運転を行い、処理水質(処理水比抵抗)および運転電圧の経時変化を比較した。結果を表1に示す。   About the apparatus of the Example and the comparative example, the driving | running for 1000 hours was performed and the temporal change of the treated water quality (treated water specific resistance) and the operating voltage was compared. The results are shown in Table 1.

Figure 2011139980
Figure 2011139980

実施例では、比較例と比べて、良好な処理水質が得られるとともに、運転電圧が低く抑えられていることが確認された。これは、表1に示すように、カチオン脱塩室を流出してpH値が低くなった脱カチオン水を濃縮室に供給したことで、スケールの生成が抑制された効果であると考えられる。実際、約1000時間の運転後、それぞれの装置を解体したところ、比較例1の装置では、濃縮室にスケールが生成されていることが確認されたが、実施例1の装置では、スケールの生成は確認できなかった。   In the examples, it was confirmed that a good treated water quality was obtained and the operating voltage was kept low compared to the comparative example. As shown in Table 1, this is considered to be the effect of suppressing the generation of scale by supplying decationized water having a low pH value after flowing out of the cation demineralization chamber to the concentration chamber. In fact, after about 1000 hours of operation, each device was disassembled, and it was confirmed that scale was generated in the concentration chamber in the device of Comparative Example 1, but in the device of Example 1, scale was generated. Could not be confirmed.

1 電気式脱イオン水製造装置
2 枠体
3 中間イオン交換膜
4 陽極
5 陰極
D,D’ 主脱塩室
D1 第1のカチオン脱塩室
D1’ 第2のカチオン脱塩室
D11 カチオン脱塩室
D2 第1のアニオン脱塩室
D2’ 第2のアニオン脱塩室
D12 アニオン脱塩室
C 濃縮室
C1〜C3 第1〜第3の濃縮室
E1 陽極室
E2 陰極室
a,a’ アニオン交換膜
a1 第1のアニオン交換膜
a2 第2のアニオン交換膜
c,c’ カチオン交換膜
c1 第1のカチオン交換膜
c2 第2のカチオン交換膜
DESCRIPTION OF SYMBOLS 1 Electric deionized water manufacturing apparatus 2 Frame 3 Intermediate ion exchange membrane 4 Anode 5 Cathode D, D 'Main desalination chamber D1 1st cation desalination chamber D1' 2nd cation desalination chamber D11 Cation desalination chamber D2 First anion desalination chamber D2 ′ Second anion desalination chamber D12 Anion desalination chamber C Concentration chamber C1 to C3 First to third concentration chamber E1 Anode chamber E2 Cathode chamber a, a ′ Anion exchange membrane a1 1st anion exchange membrane a2 2nd anion exchange membrane c, c 'cation exchange membrane c1 1st cation exchange membrane c2 2nd cation exchange membrane

Claims (11)

被処理水を処理して脱イオン水を製造する電気式脱イオン水製造装置であって、
陽極および陰極と、
少なくともカチオン交換体が充填されたカチオン脱塩室と、
少なくともアニオン交換体が充填されたアニオン脱塩室と、
前記陽極と前記陰極との間に位置し、第1のアニオン交換膜を介して前記アニオン脱塩室と隣接する濃縮室と、を有し、
前記カチオン脱塩室と前記アニオン脱塩室とは、被処理水が前記カチオン脱塩室に流入し、該カチオン脱塩室を流出して少なくともカチオン成分が除去された中間処理水の一部が前記アニオン脱塩室に流入するように連通されており、
前記カチオン脱塩室と前記濃縮室とは、前記カチオン脱塩室を流出した前記中間処理水の他の一部が前記濃縮室に流入するように連通されている、
電気式脱イオン水製造装置。
An electrical deionized water production apparatus for producing deionized water by treating water to be treated,
An anode and a cathode;
A cation desalting chamber filled with at least a cation exchanger;
An anion desalting chamber filled with at least an anion exchanger;
A concentration chamber located between the anode and the cathode and adjacent to the anion desalting chamber via a first anion exchange membrane;
The cation demineralization chamber and the anion demineralization chamber are a portion of intermediate treated water in which treated water flows into the cation demineralization chamber and flows out of the cation demineralization chamber to remove at least the cation component. Communicated to flow into the anion desalination chamber,
The cation desalting chamber and the concentrating chamber are communicated so that another part of the intermediate treated water that has flowed out of the cation desalting chamber flows into the concentrating chamber.
Electric deionized water production equipment.
前記濃縮室が、前記アニオン脱塩室の前記陽極側で、前記第1のアニオン交換膜を介して前記アニオン脱塩室に隣接して位置する陽極側濃縮室と、前記カチオン脱塩室の前記陰極側で、第1のカチオン交換膜を介して前記カチオン脱塩室に隣接して位置する陰極側濃縮室と、を有し、
前記アニオン脱塩室が、前記カチオン脱塩室の前記陽極側で、中間イオン交換膜を介して前記カチオン脱塩室と隣接する、請求項1に記載の電気式脱イオン水製造装置。
The concentration chamber is located on the anode side of the anion demineralization chamber, adjacent to the anion demineralization chamber via the first anion exchange membrane, and the cation demineralization chamber A cathode side concentrating chamber located adjacent to the cation desalting chamber via a first cation exchange membrane on the cathode side;
The electric deionized water production apparatus according to claim 1, wherein the anion demineralization chamber is adjacent to the cation demineralization chamber via an intermediate ion exchange membrane on the anode side of the cation demineralization chamber.
前記濃縮室が、前記カチオン脱塩室の前記陰極側で、第1のカチオン交換膜を介して前記カチオン脱塩室と隣接する、請求項1に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1, wherein the concentration chamber is adjacent to the cation demineralization chamber via a first cation exchange membrane on the cathode side of the cation demineralization chamber. 前記陽極を備えた陽極室と、前記陰極を備えた陰極室と、を有し、
前記カチオン脱塩室が、第2のカチオン交換膜を介して前記陽極室と隣接し、前記アニオン脱塩室が、第2のアニオン交換膜を介して前記陰極室と隣接する、請求項3に記載の電気式脱イオン水製造装置。
An anode chamber provided with the anode, and a cathode chamber provided with the cathode,
The cation desalting chamber is adjacent to the anode chamber via a second cation exchange membrane, and the anion desalting chamber is adjacent to the cathode chamber via a second anion exchange membrane. The electric deionized water production apparatus as described.
前記陽極を備えた陽極室と、前記陰極を備えた陰極室と、を有し、
前記アニオン脱塩室と前記濃縮室と前記カチオン脱塩室とは、中間イオン交換膜を介して互いに隣接するように2つ以上設けられ、
2つ以上の前記アニオン脱塩室が並列流路を形成し、2つ以上の前記カチオン脱塩室が並列流路を形成し、
最も前記陽極側に位置する前記カチオン脱塩室が、第2のカチオン交換膜を介して前記陽極室と隣接し、最も前記陰極側に位置する前記アニオン脱塩室が、第2のアニオン交換膜を介して前記陰極室と隣接する、請求項3に記載の電気式脱イオン水製造装置。
An anode chamber provided with the anode, and a cathode chamber provided with the cathode,
Two or more of the anion desalting chamber, the concentration chamber, and the cation desalting chamber are provided so as to be adjacent to each other via an intermediate ion exchange membrane,
Two or more anion desalination chambers form parallel flow paths, two or more of the cation desalination chambers form parallel flow paths,
The cation demineralization chamber located closest to the anode side is adjacent to the anode chamber via a second cation exchange membrane, and the anion desalination chamber located closest to the cathode side is the second anion exchange membrane. The electric deionized water production apparatus according to claim 3, wherein the apparatus is adjacent to the cathode chamber via a gap.
前記カチオン脱塩室には、前記カチオン交換体が単床形態で充填されている、請求項1から5のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 5, wherein the cation demineralization chamber is filled with the cation exchanger in a single-bed form. 前記濃縮室に流入する前記中間処理水の前記他の一部の流入方向と、前記アニオン脱塩室に流入する前記中間処理水の前記一部の流入方向とが互いに反対向きである、請求項1から6のいずれか1項に記載の電気式脱イオン水製造装置。   The inflow direction of the other part of the intermediate treated water flowing into the concentrating chamber and the inflow direction of the part of the intermediate treated water flowing into the anion desalination chamber are opposite to each other. The electric deionized water production apparatus according to any one of 1 to 6. 前記濃縮室に流入する前記中間処理水の前記他の一部の、前記アニオン脱塩室に流入する前記中間処理水の前記一部に対する流量比が0.05〜1倍の範囲にある、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。   The flow rate ratio of the other part of the intermediate treated water flowing into the concentrating chamber to the part of the intermediate treated water flowing into the anion desalting chamber is in a range of 0.05 to 1 times. Item 8. The electric deionized water production apparatus according to any one of Items 1 to 7. 陽極および陰極と、
少なくともカチオン交換体が充填されたカチオン脱塩室と、
少なくともアニオン交換体が充填されたアニオン脱塩室と、
前記陽極と前記陰極との間に位置し、第1のアニオン交換膜を介して前記アニオン脱塩室と隣接する濃縮室と、
を有する電気式脱イオン水製造装置を用いて、被処理水を処理して脱イオン水を製造する脱イオン水製造方法であって、
被処理水を前記カチオン脱塩室に流し、少なくともカチオン成分が除去された中間処理水を生成するステップと、
前記カチオン脱塩室を流出した前記中間処理水の一部を、前記アニオン脱塩室に流すステップと、
前記カチオン脱塩室を流出した前記中間処理水の他の一部を、前記濃縮室に流すステップと、
を含む、脱イオン水製造方法。
An anode and a cathode;
A cation desalting chamber filled with at least a cation exchanger;
An anion desalting chamber filled with at least an anion exchanger;
A concentration chamber located between the anode and the cathode and adjacent to the anion desalting chamber via a first anion exchange membrane;
A deionized water production method for producing deionized water by treating water to be treated using an electrical deionized water production apparatus having:
Flowing the water to be treated into the cation desalting chamber to produce intermediate treated water from which at least the cation component has been removed;
Flowing a portion of the intermediate treated water that has flowed out of the cation desalting chamber into the anion desalting chamber;
Flowing another part of the intermediate treated water that has flowed out of the cation desalting chamber to the concentrating chamber;
A method for producing deionized water.
前記濃縮室に流すステップは、前記中間処理水の前記一部を前記アニオン脱塩室に流す方向と反対向きに、前記中間処理水の前記他の一部を前記濃縮室に流すことを含む、請求項9に記載の脱イオン水製造方法。   The step of flowing into the concentrating chamber includes flowing the other part of the intermediate treated water into the concentrating chamber in a direction opposite to the direction of flowing the part of the intermediate treated water into the anion desalting chamber. The method for producing deionized water according to claim 9. 前記濃縮室に流すステップは、前記アニオン脱塩室に流す前記中間処理水の前記一部の流量に対して0.05〜1倍の範囲の流量で、前記中間処理水の前記他の一部を前記濃縮室に流すことを含む、請求項9または10に記載の電気式脱イオン水製造装置。   The step of flowing into the concentrating chamber has a flow rate in the range of 0.05 to 1 times the flow rate of the part of the intermediate treated water flowing into the anion desalting chamber, and the other part of the intermediate treated water. The electric deionized water production apparatus according to claim 9 or 10, comprising flowing water into the concentration chamber.
JP2010001158A 2010-01-06 2010-01-06 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP5415966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001158A JP5415966B2 (en) 2010-01-06 2010-01-06 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001158A JP5415966B2 (en) 2010-01-06 2010-01-06 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2011139980A true JP2011139980A (en) 2011-07-21
JP5415966B2 JP5415966B2 (en) 2014-02-12

Family

ID=44456229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001158A Expired - Fee Related JP5415966B2 (en) 2010-01-06 2010-01-06 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP5415966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
CN109789375A (en) * 2016-08-23 2019-05-21 Swan水质分析仪表公司 Device and method for carrying out electrodeionization to liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198577A (en) * 2000-01-20 2001-07-24 Kurita Water Ind Ltd Electric deionizing device
JP2001239270A (en) * 1999-03-25 2001-09-04 Japan Organo Co Ltd Device for electrically manufacturing deionized water and method for manufacturing deionized water
JP2003001258A (en) * 2001-06-15 2003-01-07 Kurita Water Ind Ltd Electrolytic deionizing apparatus
JP2007125455A (en) * 2005-11-01 2007-05-24 Japan Organo Co Ltd Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2009125738A (en) * 2007-11-28 2009-06-11 Japan Organo Co Ltd Electrical device for producing deionized water and driving method thereof
JP2009208046A (en) * 2008-03-06 2009-09-17 Japan Organo Co Ltd Apparatus for producing electrodeionization water
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2009297670A (en) * 2008-06-16 2009-12-24 Japan Organo Co Ltd Electric deionized water making apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239270A (en) * 1999-03-25 2001-09-04 Japan Organo Co Ltd Device for electrically manufacturing deionized water and method for manufacturing deionized water
JP2001198577A (en) * 2000-01-20 2001-07-24 Kurita Water Ind Ltd Electric deionizing device
JP2003001258A (en) * 2001-06-15 2003-01-07 Kurita Water Ind Ltd Electrolytic deionizing apparatus
JP2007125455A (en) * 2005-11-01 2007-05-24 Japan Organo Co Ltd Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2009125738A (en) * 2007-11-28 2009-06-11 Japan Organo Co Ltd Electrical device for producing deionized water and driving method thereof
JP2009208046A (en) * 2008-03-06 2009-09-17 Japan Organo Co Ltd Apparatus for producing electrodeionization water
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2009297670A (en) * 2008-06-16 2009-12-24 Japan Organo Co Ltd Electric deionized water making apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
CN109789375A (en) * 2016-08-23 2019-05-21 Swan水质分析仪表公司 Device and method for carrying out electrodeionization to liquid

Also Published As

Publication number Publication date
JP5415966B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JPWO2011152226A1 (en) Electric deionized water production equipment
JP5295927B2 (en) Electric deionized water production equipment
JP5145305B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP5379025B2 (en) Electric deionized water production equipment
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
JP5695926B2 (en) Electric deionized water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP5114307B2 (en) Electric deionized water production equipment
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP2011121027A (en) Electric type deionized water producing apparatus
JPWO2011152227A1 (en) Electric deionized water production equipment
JP2011251266A (en) Apparatus for electrically producing deionized water
JP5661930B2 (en) Electric deionized water production equipment
JP2013039510A (en) Electric deionized water production apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2008030004A (en) Electric deionizer
JP5719707B2 (en) Electric deionized water production equipment
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
JP5620229B2 (en) Electric deionized water production equipment
JP6181510B2 (en) Pure water production equipment
JP6994351B2 (en) Electric deionized water production equipment
JP6034736B2 (en) Electric deionized water production equipment
JP5866163B2 (en) Electric deionized water production equipment
JP5770013B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees