JP2003326269A - Electric regenerative demineralizer - Google Patents

Electric regenerative demineralizer

Info

Publication number
JP2003326269A
JP2003326269A JP2002136602A JP2002136602A JP2003326269A JP 2003326269 A JP2003326269 A JP 2003326269A JP 2002136602 A JP2002136602 A JP 2002136602A JP 2002136602 A JP2002136602 A JP 2002136602A JP 2003326269 A JP2003326269 A JP 2003326269A
Authority
JP
Japan
Prior art keywords
chamber
desalting
concentrating
chambers
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002136602A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Atsushi Aoyama
淳 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002136602A priority Critical patent/JP2003326269A/en
Publication of JP2003326269A publication Critical patent/JP2003326269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric regenerative demineralizer which prevents the deformation of membranes due to a pressure difference and prevents the membrane deterioration due to the contact of the channelling membranes with each other between respective chambers. <P>SOLUTION: This electric regenerative demineralizer has a cathode chamber 2 and an anode chamber 4, cation exchange membranes 6 and anion exchange membranes 5 are partially alternately arranged between both chambers, desalting chambers 7 and concentration chambers 8 are formed by using the ion exchange membranes and chamber frames, and ion exchangers 9 are packed at least in the desalting chambers 7 among the above chambers. Further, concentration chamber-splitting plates 30 made of a conductive substance having the rigidity in the interior thereof are disposed on one or more of the concentration chambers 8, and the chamber frames are formed on the concentration chambers 8 provided with the concentration chamber-splitting plates 30 in such a manner that introduced concentrated water flows through both surfaces of the concentration chamber-splitting plates 30. The concentration chamber- splitting plates 30 are disposed nearly on the central part in the plate thickness direction of the chamber frames constituting the concentration chambers 8 and are incorporated into the chamber frames and, in the ion exchangers 9, ion exchange groups are preferably introduced by a radiation graft polymerization method. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気再生式脱塩装
置に係り、特に、各室における圧力差による膜の変形に
よる片流、及び脱塩効率が低下することを防ぐ電気再生
式脱塩装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric regenerative desalination apparatus, and more particularly, to an electric regenerative desalination apparatus which prevents partial flow due to deformation of a membrane due to pressure difference in each chamber and reduction of desalination efficiency. Regarding the device.

【0002】[0002]

【従来の技術】従来の純水製造方法としては、イオン交
換樹脂を充填した容器に脱塩室入口水を通過させ、脱塩
室入口水中のイオンをH+、OH-イオンに交換すること
により純水を製造するイオン交換法が知られている。し
かし、このイオン交換法では、イオン交換樹脂の交換能
力が飽和すると、イオン交換樹脂の種類に応じて、酸、
アルカリを用いてイオン交換能力の再生をする必要があ
る。イオン交換樹脂の再生操作は、煩雑で、多量の酸、
アルカリの貯蔵、取り扱い及び廃棄に、細心の注意が必
要であると共に設備が大きくなる、という問題を有して
いる。それに対し、近年、電気によってイオン交換体を
再生し、連続的に純水を製造する電気再生式脱塩装置が
開発された。これは図5に示すように、脱塩室入口水1
0中のイオン分を装置の両端に印可した直流電源によ
り、濃縮室出口水13及び陰極液、陽極液に移動させる
ことにより除去する装置であり、陰極1を有する陰極室
2と陽極3を有する陽極室4及び陰極室2と陽極室4の
間に、陰イオン交換膜5と陽イオン交換膜6を交互に配
置することにより形成された脱塩室7と濃縮室8を備
え、少なくとも脱塩室7内にはイオン交換体9を充填し
ているものである。
2. Description of the Related Art A conventional method for producing pure water is to pass water in an inlet of a desalting chamber through a container filled with an ion exchange resin and exchange the ions in the water in the inlet of the desalting chamber for H + and OH ions. An ion exchange method for producing pure water is known. However, in this ion exchange method, when the exchange capacity of the ion exchange resin is saturated, an acid,
It is necessary to regenerate the ion exchange capacity using alkali. The regeneration operation of the ion exchange resin is complicated, and a large amount of acid,
There is a problem that careful storage and handling of the alkali are required and the equipment becomes large. On the other hand, in recent years, an electric regeneration type desalination apparatus has been developed which regenerates an ion exchanger by electricity and continuously produces pure water. This is as shown in FIG.
This is a device for removing the ionic components in 0 by moving it to the outlet water 13 of the concentrating chamber and the catholyte and anolyte with a DC power supply applied to both ends of the device, and has a cathode chamber 2 having a cathode 1 and an anode 3. A desalting chamber 7 and a concentrating chamber 8 formed by alternately arranging anion exchange membranes 5 and cation exchange membranes 6 are provided between the anode chamber 4 and the cathode chamber 2 and the anode chamber 4, and at least desalination chamber is provided. The chamber 7 is filled with an ion exchanger 9.

【0003】陰極室2に陰極室入口水14を、陽極室4
に陽極室入口水16を、濃縮室8に濃縮室入口水12
を、脱塩室7に脱塩室入口水10を導入し、陰極1と陽
極3間に直流電流を印可することにより、脱塩室入口水
10中に含まれているイオン分は、イオン交換体9の表
面を電位の方向に移動し、陰イオンは陰イオン交換膜
5、陽イオンは陽イオン交換膜6を透過して濃縮室8中
の濃縮水、陰極室2中の陰極液及び陽極室4中の陽極液
に移動し、脱塩室入口水10は脱イオン処理され純水1
1が製造される。 脱塩室7内に充填されたイオン交換
体9は、水解によって発生するH+、OH-により連続的
に再生されるため、酸あるいはアルカリによる再生作業
は必要なく、このようにして、純水11を連続的に製造
することが可能となる。脱塩室入口水10は、通常市
水、工水等を原水として、逆浸透膜等により硬度成分を
除去された水が用いられる。
The cathode chamber inlet water 14 is supplied to the cathode chamber 2, and the anode chamber 4 is supplied.
To the anode chamber inlet water 16 and to the concentration chamber 8 to the concentration chamber inlet water 12
By introducing a desalting chamber inlet water 10 into the desalting chamber 7 and applying a direct current between the cathode 1 and the anode 3, the ion content contained in the desalting chamber inlet water 10 is ion-exchanged. Anions move through the surface of the body 9 in the direction of electric potential, anions permeate the anion exchange membrane 5, and cations permeate the cation exchange membrane 6 to concentrate water in the concentrating chamber 8 and catholyte and anode in the cathodic chamber 2. The water 10 is transferred to the anolyte in the chamber 4 and the deionization chamber inlet water 10 is deionized and purified water 1
1 is manufactured. Since the ion exchanger 9 filled in the desalting chamber 7 is continuously regenerated by H + and OH generated by hydrolyzation, regeneration work with an acid or an alkali is not necessary, and thus pure water is obtained. 11 can be continuously manufactured. The demineralizing chamber inlet water 10 is usually city water, industrial water, or the like, and water from which hardness components have been removed by a reverse osmosis membrane or the like is used.

【0004】また、濃縮室入口水12は、脱塩室入口水
10から分岐して濃縮室8に供給してもよいし、外部か
ら濃縮水として使用可能な水質の水を別途導入してもよ
く、濃縮水ポンプ(図示せず)を使用して供給してもよ
い。濃縮水ポンプを使用して濃縮室入口水12を濃縮室
8に供給する場合は、濃縮室出口水13、陰極室出口水
15、陽極室出口水17の一部を循環使用し、濃縮室入
口水12の流量を増加させて運転することも可能であ
る。また、濃縮水には、電気抵抗を減少させるために、
外部から電解質を添加する方法も用いられている。陰極
室入口水14、陽極室入口水16は、それぞれ濃縮室入
口水12と同じ水を用いてもよいし、脱塩室入口水1
0、純水11を用いても、別途外部から供給してもかま
わない。
The concentration chamber inlet water 12 may be branched from the demineralization chamber inlet water 10 and supplied to the concentration chamber 8, or water of a quality that can be used as concentrated water may be introduced from the outside. Well, it may be supplied using a concentrated water pump (not shown). When the concentration chamber inlet water 12 is supplied to the concentration chamber 8 using a concentrated water pump, a part of the concentration chamber outlet water 13, the cathode chamber outlet water 15, and the anode chamber outlet water 17 is circulated and used to It is also possible to operate by increasing the flow rate of the water 12. In addition, in order to reduce the electrical resistance in the concentrated water,
A method of adding an electrolyte from the outside is also used. The cathode chamber inlet water 14 and the anode chamber inlet water 16 may be the same as the concentrating chamber inlet water 12, respectively, or the desalting chamber inlet water 1
0 or pure water 11 may be used or may be separately supplied from the outside.

【0005】また、図6に示すように、電気再生式脱塩
装置の他の形態として、脱塩室入口水10中のイオンを
粗脱塩する第1の脱塩室群20と、さらに脱塩処理を行
う第2の脱塩室群21を有する電気再生式脱塩装置も存
在する。この形の電気再生式脱塩装置においては、第1
の脱塩室群20と第2の脱塩室群21の間に濃縮室を配
置することによって第1の脱塩室群と第2の脱塩室群を
分割している。第1の脱塩室群において、粗脱塩処理さ
れた処理水19は、装置内配管、もしくは装置外配管を
経由して第2の脱塩室群に導入され、さらに脱塩処理さ
れて純水11として外部に供給される。この場合、第2
の脱塩室群に隣接している濃縮室には、第1の脱塩室群
に隣接している濃縮室入口水と同じ水を供給することも
あるし、別の水を用いることもある。別の水の例として
は、第1の脱塩室群に隣接している濃縮水出口水を第2
の脱塩室群に隣接する濃縮室入口水として用いるか、第
2の脱塩室群に隣接する濃縮室出口水を第1の脱塩室群
に隣接する濃縮室入口水として用いるか、又は外部より
濃縮水に適する水を供給する等があげられる。
Further, as shown in FIG. 6, as another form of the electric regenerative desalting apparatus, a first desalting chamber group 20 for roughly desalting ions in the desalting chamber inlet water 10 and further desalting There is also an electric regeneration type desalination apparatus having a second desalination chamber group 21 for performing salt treatment. In this type of electric regenerative desalination device,
By disposing the concentrating chamber between the desalting chamber group 20 and the second desalting chamber group 21, the first desalting chamber group and the second desalting chamber group are divided. In the first desalination chamber group, the treated water 19 that has been subjected to the crude desalination treatment is introduced into the second desalination chamber group through the internal pipe of the apparatus or the external pipe of the apparatus, and is further desalted to be pure. It is supplied to the outside as water 11. In this case, the second
The same water as the inlet water of the concentrating chamber adjacent to the first desalting chamber group may be supplied to the concentrating chamber adjacent to the desalting chamber group, or another water may be used. . As another example of water, the concentrated water outlet water adjacent to the first deionization chamber group may be
Used as the concentration chamber inlet water adjacent to the desalination chamber group, or the concentration chamber outlet water adjacent to the second desalination chamber group as the concentration chamber inlet water adjacent to the first desalination chamber group, or It is possible to supply water suitable for concentrated water from the outside.

【0006】前述した電気再生式脱塩装置においては、
濃縮室、極室と脱塩室に供給される濃縮水、極液、被処
理水の圧力が異なることから、脱塩室、濃縮室、極室の
間に備えられているイオン交換膜が変形してしまい、膜
同士が接触することによる膜焼けが生じたり、各脱塩
室、濃縮室に均一に液が供給されない、同一脱塩室内に
おいて片流が生じる、などの問題が発生し、電気再生式
脱塩装置のトラブル、流量低下、性能劣化の原因となっ
ていた。また、粗脱塩を行う第1の脱塩室群と、第1の
脱塩室群で処理された水をさらに脱塩する第2の脱塩室
群を、1台の電気再生式脱塩装置に組込んだ電気再生式
脱塩装置においては、第1の脱塩室群と第2の脱塩室群
の圧力差も膜の変形が生じる原因となり、上述の問題の
他、第1の脱塩室群の圧力が高いために、第2の脱塩室
群がつぶされてしまい、第2の脱塩室群の圧損が高くな
るという問題もあった。
In the above-mentioned electric regeneration type desalination apparatus,
Since the pressures of concentrated water, polar solution, and treated water supplied to the concentrating chamber, the polar chamber, and the desalting chamber are different, the ion exchange membrane provided between the desalting chamber, the concentrating chamber, and the polar chamber is deformed. Therefore, problems such as film burning due to contact between the membranes, liquid not being uniformly supplied to each desalting chamber and concentrating chamber, and one-way flow in the same desalting chamber may occur. This caused problems with the regenerative desalination equipment, decreased flow rate, and degraded performance. In addition, a first desalination chamber group for performing crude desalination and a second desalination chamber group for further desalting the water treated in the first desalination chamber group are provided as one electric regenerative desalination unit. In the electric regeneration type desalination device incorporated in the apparatus, the pressure difference between the first and second desalination chamber groups also causes the deformation of the membrane, and in addition to the above-mentioned problems, Since the pressure of the desalination chamber group is high, the second desalination chamber group is crushed, which causes a problem that the pressure loss of the second desalination chamber group becomes high.

【0007】このような、各室の圧力差による膜の変形
を防ぐために、脱塩室、濃縮室、極室を形成する室枠
に、格子状の室枠を用い、この格子を利用してイオン交
換膜の変形を減少させる、などの対策がとられている
(例えば、特開平7−100391号公報)。しかし、こ
の様な方法では、膜の変形を防ぐための格子によって有
効脱塩面積が減少してしまう、格子があるために、イオ
ン交換体の充填に手間がかかる、といった問題がある。
また、図7に示すように、第1の脱塩室群と第2の脱塩
室群を有する電気再生式脱塩装置においては、第1の脱
塩室群と第2の脱塩室群の間に剛性のある隔壁を配置す
ることにより、第1の脱塩室群と第2の脱塩室群の圧力
差による影響をなくす、といった方法も採られることが
あるが、隔壁に導電性がないため、隔壁の両側にさらに
電極、極室が必要となり、装置が大型になる、組立に手
間がかかる、といった問題も生じる。
In order to prevent such deformation of the membrane due to the pressure difference between the chambers, a lattice-shaped chamber frame is used as the chamber frame forming the desalting chamber, the concentrating chamber, and the polar chamber. Measures such as reducing the deformation of the ion exchange membrane are taken.
(For example, JP-A-7-100391). However, in such a method, there is a problem that the effective desalination area is reduced by the lattice for preventing the deformation of the membrane, and it takes time to fill the ion exchanger because of the lattice.
Further, as shown in FIG. 7, in the electric regenerative desalination apparatus having the first desalination chamber group and the second desalination chamber group, the first desalination chamber group and the second desalination chamber group A method of eliminating the influence of the pressure difference between the first desalination chamber group and the second desalination chamber group by arranging a rigid partition wall between the partition walls may be adopted. Therefore, electrodes and polar chambers are required on both sides of the partition wall, which causes a problem that the device becomes large and assembly is troublesome.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、脱塩室、濃縮室、極室間に生じる
圧力差による膜の変形を防止することで、電気再生式脱
塩装置のトラブルの原因である、各脱塩室間、濃縮室間
での片流膜同士の接触による膜焼け等を防止することが
できる電気再生式脱塩装置を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and prevents the membrane from being deformed due to the pressure difference generated between the desalting chamber, the concentrating chamber and the polar chamber. It is an object of the present invention to provide an electric regenerative desalination device capable of preventing film burning or the like due to contact of one-flow membranes between demineralization chambers and concentration chambers, which is a cause of troubles in the desalination device. To do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、陰極を有する陰極室と、陽極を有する
陽極室とを有し、この両極室の間に、陽イオン交換膜及
び陰イオン交換膜を少なくとも一部交互に配列し、これ
らのイオン交換膜と室枠を用いて脱塩室と濃縮室を形成
させると共に、前記存在する室のうちの少なくとも脱塩
室にはイオン交換体が充填されている電気再生式脱塩装
置であって、前記濃縮室のうちの1以上には、内部に剛
性のある導電性物質で作られた濃縮室分割板が備えられ
ると共に、該濃縮室分割板を備える濃縮室には、導入さ
れる濃縮水が、該濃縮室分割板の両面を流れるように室
枠が形成されていることを特徴とする電気再生式脱塩装
置としたものである。
In order to solve the above-mentioned problems, the present invention has a cathode chamber having a cathode and an anode chamber having an anode, and a cation exchange membrane and a cation exchange membrane are provided between the both electrode chambers. At least a part of the anion exchange membranes are alternately arranged, and a desalting chamber and a concentrating chamber are formed by using these ion exchange membranes and a chamber frame, and at least the desalting chamber among the existing chambers is ion-exchanged. An electric regenerative desalination apparatus in which a body is filled, wherein one or more of the concentrating chambers is provided with a concentrating chamber dividing plate made of a rigid conductive material, and An electric regenerative desalination device characterized in that a chamber frame is formed in a concentrating chamber equipped with a chamber dividing plate so that concentrated water to be introduced flows on both sides of the concentrating chamber dividing plate. is there.

【0010】また、本発明では、陰極を有する陰極室
と、陽極を有する陽極室とを有し、この両極室の間に、
陽イオン交換膜及び陰イオン交換膜を少なくとも一部交
互に配列し、これらのイオン交換膜と室枠を用いて脱塩
室と濃縮室を形成させると共に、前記存在する室のうち
の少なくとも脱塩室にはイオン交換体が充填されてお
り、該脱塩室は、被処理水を粗脱塩する第1の脱塩室群
と、第1の脱塩室群で処理された処理水をさらに脱塩処
理する第2の脱塩室群とに濃縮室を介して分けられてい
る電気再生式脱塩装置であって、前記第1の脱塩室群と
第2の脱塩室群を隔てている濃縮室内部には、剛性のあ
る導電性物質で作られた濃縮室分割板が備えられると共
に、該濃縮室分割板を備える濃縮室には、導入される濃
縮水が、該濃縮室分割板の両面を流れるように室枠が形
成されていることを特徴とする電気再生式脱塩装置とし
たものである。
Further, according to the present invention, a cathode chamber having a cathode and an anode chamber having an anode are provided, and between the both electrode chambers,
At least a part of cation exchange membranes and anion exchange membranes are alternately arranged, and a desalting chamber and a concentrating chamber are formed by using these ion exchange membranes and chamber frames, and at least desalting of the existing chambers. The chamber is filled with an ion exchanger, and the desalination chamber further includes a first desalination chamber group for roughly desalting the water to be treated and treated water treated in the first desalination chamber group. An electric regenerative desalination apparatus which is divided into a second desalination chamber group for desalination through a concentrating chamber, wherein the first desalination chamber group and the second desalination chamber group are separated from each other. Inside the concentrating chamber, a concentrating chamber dividing plate made of a rigid conductive material is provided, and the concentrated water introduced into the concentrating chamber dividing plate is provided with the concentrating chamber dividing plate. The electric regenerating desalination device is characterized in that a chamber frame is formed so as to flow on both sides of the plate.

【0011】前記電気再生式脱塩装置において、濃縮室
分割板は、該濃縮室を構成している室枠の板厚方向にほ
ぼ中央部に配置され、該室枠に組込まれているのがよ
く、また、前記イオン交換体は、放射線グラフト重合法
によってイオン交換基が導入されたイオン交換体であ
り、その形状が不織布、織布、ネット様のシートとする
ことができ、前記剛性のある導電性物質は、例えばチタ
ン板等の金属、表面に白金メッキを施したチタン板等、
及びなんらかの処理を施した金属導電性プラスチック等
が用いられている。
In the electric regenerating type desalination apparatus, the concentration chamber dividing plate is arranged substantially in the center of the chamber frame forming the concentration chamber in the plate thickness direction and is incorporated in the chamber frame. Well, the ion exchanger is an ion exchanger having ion exchange groups introduced by a radiation graft polymerization method, and the shape thereof may be a non-woven fabric, a woven fabric, a net-like sheet, and the rigidity is high. The conductive material is, for example, a metal such as a titanium plate, a titanium plate whose surface is plated with platinum, or the like,
Also, a metal conductive plastic or the like which has been subjected to some kind of treatment is used.

【0012】[0012]

【発明の実施の形態】本発明者は、濃縮室内部、望まし
くは厚み方向の中央部分付近に、イオン交換膜よりもは
るかに剛性が高い導電性板(複極)を介在させることに
より、電極面積を減少させずに各室間の圧力による膜変
形を減少させることが可能であることを見いだし、本発
明を完成するに至った。そして、本発明によれば、粗脱
塩を行う第1の脱塩室群と、第1の脱塩室群で処理され
た水をさらに脱塩する第2の脱塩室群を1台の電気再生
式脱塩装置に組み込んだ場合にも、第1の脱塩室群と第
2の脱塩室群の双方に隣接する濃縮室内に、イオン交換
膜よりもはるかに剛性が高い導電性板(複極)を介在さ
せることにより、間に電極、極室を増加させずに第1の
脱塩室群と第2の脱塩室群の間に生じる圧力差による膜
変形を減少させることも可能である。このように、本発
明では、イオン交換膜よりもはるかに剛性が高い導電性
物質、例えばチタン等の金属板、導電性プラスチック
等、からなる濃縮室分割板を濃縮室内に組込むことによ
り、脱塩室面積を減少させずに、各室間に生じる圧力差
による膜の変形を抑えることにより、流路圧力損失の増
大、あるいは偏流を防ぎ、性能向上が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has proposed that an electrode is provided by interposing a conductive plate (a bipolar electrode) having much higher rigidity than an ion exchange membrane in the concentration chamber, preferably in the vicinity of the central portion in the thickness direction. The inventors have found that it is possible to reduce the film deformation due to the pressure between the chambers without reducing the area, and have completed the present invention. And according to this invention, the 1st desalination-chamber group which performs crude desalination and the 2nd desalination-chamber group which further desalinates the water processed by the 1st desalination chamber group are one unit. Even when incorporated in an electric regeneration type desalination apparatus, a conductive plate having much higher rigidity than the ion exchange membrane is provided in the concentration chambers adjacent to both the first desalination chamber group and the second desalination chamber group. By interposing the (double electrode), it is possible to reduce the membrane deformation due to the pressure difference generated between the first desalination chamber group and the second desalination chamber group without increasing the number of electrodes and electrode chambers therebetween. It is possible. As described above, in the present invention, desalting is performed by incorporating a concentration chamber dividing plate made of a conductive substance having a much higher rigidity than the ion exchange membrane, for example, a metal plate such as titanium or a conductive plastic into the concentration chamber. By suppressing the deformation of the membrane due to the pressure difference generated between the chambers without reducing the chamber area, it is possible to prevent an increase in flow channel pressure loss or prevent drift and improve the performance.

【0013】次に、本発明を図面を用いて詳細に説明す
る。図1は、本発明の電気再生式脱塩装置の一例を示す
概略構成図であり、先に説明した図5に示す構成と同一
構成を同一符号で示して説明する。陰極1を有する陰極
室2と、陽極3を有する陽極室4を対向して配置し、こ
の陰極室2と陽極室4の間に陰イオン交換膜5と陽イオ
ン交換膜6を交互に配置することにより、脱塩室7と濃
縮室8を形成し、濃縮室8中には導電性物質により作ら
れた濃縮室分割板30を設け、濃縮水は濃縮室分割板3
0の両面を流れるように濃縮室8を形成する。脱塩室7
には、イオン交換体9を充填することにより、電気再生
式脱塩装置が構成される。また、濃縮室8、及び両極室
2、4にもイオン交換体9を充填することが望ましい。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of the electric regeneration type desalination apparatus of the present invention. The same configuration as the configuration shown in FIG. A cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3 are arranged to face each other, and an anion exchange membrane 5 and a cation exchange membrane 6 are alternately arranged between the cathode chamber 2 and the anode chamber 4. As a result, a demineralizing chamber 7 and a concentrating chamber 8 are formed. In the concentrating chamber 8, a concentrating chamber dividing plate 30 made of a conductive material is provided, and concentrated water is concentrated by the concentrating chamber dividing plate 3.
The concentrating chamber 8 is formed so as to flow on both sides of 0. Desalination room 7
An electric regeneration type desalination apparatus is configured by filling the ion exchanger 9 with the ion exchanger 9. Further, it is desirable to fill the concentrating chamber 8 and the bipolar chambers 2 and 4 with the ion exchanger 9.

【0014】陰極室2に陰極室入口水14を、陽極室4
に陽極室入口水16を、濃縮室8に濃縮室入口水12
を、脱塩室7に脱塩室入口水10を導入し、陰極1と陽
極3間に直流電流を印可することにより、脱塩室入口水
10中に含まれているイオン分は、イオン交換体9の表
面を電位の方向に移動し、陰イオンは陰イオン交換膜
5、陽イオンは陽イオン交換膜6を透過して濃縮室8中
の濃縮水、陰極室2中の陰極水、陽極室4中の陽極水に
移動し系外に排出され、脱塩室入口水10は脱イオン処
理され純水11が製造される。脱塩室7内に充填された
イオン交換体は、水解によって発生するH+、OH-によ
り連続的に再生されるため、酸あるいはアルカリによる
再生作業は必要なく、以後、このようにして、純水11
を連続的に製造することが可能となる。陰極室陽、極室
に隣接する室は、脱塩室であっても、濃縮室であっても
かまわない。
The cathode chamber inlet water 14 is supplied to the cathode chamber 2, and the anode chamber 4 is supplied.
To the anode chamber inlet water 16 and to the concentration chamber 8 to the concentration chamber inlet water 12
By introducing a desalting chamber inlet water 10 into the desalting chamber 7 and applying a direct current between the cathode 1 and the anode 3, the ion content contained in the desalting chamber inlet water 10 is ion-exchanged. Anions move through the surface of the body 9 in the direction of electric potential, anions permeate the anion exchange membrane 5, and cations permeate the cation exchange membrane 6 to concentrate water in the concentrating chamber 8, cathode water in the cathode chamber 2, and anode. It moves to the anode water in the chamber 4 and is discharged to the outside of the system, and the deionization chamber inlet water 10 is deionized to produce pure water 11. Since the ion exchanger filled in the desalting chamber 7 is continuously regenerated by H + and OH generated by hydrolyzation, no regeneration work by acid or alkali is necessary. Water 11
Can be continuously manufactured. The chamber adjacent to the cathode chamber and the cathode chamber may be a desalting chamber or a concentrating chamber.

【0015】また、陰極室に脱塩室が隣接する場合に
は、陰極室中に充填するイオン交換体は、陽イオン交換
体が望ましく、濃縮室が隣接する場合には、陰イオン交
換体が望ましい。陽極室に脱塩室が隣接する場合には、
陽極室中に充填するイオン交換体は、陰イオン交換体が
望ましく、濃縮室が隣接する場合には、陽イオン交換体
が望ましい。また、図2は、本発明の電気再生式脱塩装
置の他の例を示す概略構成図であり、第1の脱塩室群2
0と第2の脱塩室群21に隣接する濃縮室8中に濃縮室
分割板30を組込んだ例である。濃縮室分割板30の組
込み方法は、その機能を満足すれば特に制限するもので
はないが、その1例として本発明では、図3に示すよう
に2枚の濃縮室室枠で濃縮室分割板を挟み込み、これを
1つの濃縮室として使用した。ここで、両者は完全に分
割されていても差し支えない。この場合は、当然両側に
水を供給する必要がある。
When the desalting chamber is adjacent to the cathode chamber, the ion exchanger to be filled in the cathode chamber is preferably a cation exchanger, and when the concentrating chamber is adjacent to the anion exchanger. desirable. When the desalting chamber is adjacent to the anode chamber,
The ion exchanger to be filled in the anode chamber is preferably an anion exchanger, and is preferably a cation exchanger when the concentrating chambers are adjacent to each other. Further, FIG. 2 is a schematic configuration diagram showing another example of the electric regenerative desalination apparatus of the present invention.
This is an example in which the concentration chamber dividing plate 30 is incorporated in the concentration chamber 8 adjacent to 0 and the second desalting chamber group 21. The method for incorporating the concentrating chamber dividing plate 30 is not particularly limited as long as its function is satisfied, but as one example thereof, in the present invention, as shown in FIG. 3, the concentrating chamber dividing plate is composed of two concentrating chamber dividing plates. And was used as one concentrating chamber. Here, both may be completely divided. In this case, it is naturally necessary to supply water to both sides.

【0016】[0016]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 本実施例では、図4に示す試験装置のフロー図にしたが
って脱塩処理する実験を行った。脱塩室入口水10、濃
縮室入口水1、陰極室入口水14、陽極室入口水16と
して、藤沢市水を活性炭濾過器保安フィルタ、逆浸透膜
装置で前処理したものを使用し、その水質は、比抵抗
0.20MΩ・cm、カルシウム濃度0.75mg/
L、マグネシウム濃度0.22mg/Lであった。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 In this example, an experiment of desalting was performed according to the flow chart of the test apparatus shown in FIG. As the demineralizing chamber inlet water 10, the concentrating chamber inlet water 1, the cathode chamber inlet water 14, and the anode chamber inlet water 16, Fujisawa city water pretreated with an activated carbon filter safety filter and a reverse osmosis membrane device was used. The water quality is a specific resistance of 0.20 MΩ · cm and a calcium concentration of 0.75 mg /
L and magnesium concentration were 0.22 mg / L.

【0017】実験は、図4の試験装置に図1に示す構成
の電気再生式脱塩装置を用い、脱塩室入口水10の流量
は1m3/h、濃縮室入口水12の流量は360L/
h、陰極室入口水14の流量及び陽極室入口水16の流
量をそれぞれ40L/hとして、濃縮室分割板30は、
表面に白金メッキを施したチタン製の板を使用し、1.
2Aの直流電流を陰極1と陽極3に印可して運転を行っ
た。電気再生式脱塩装置は、電極面積0.256m2
脱塩室は10室、濃縮室は9室とし、両端に陰極室と陽
極室を設け、脱塩室と濃縮室内部には陰イオン交換体と
陽イオン交換体を、陰極室には陽イオン交換体を、陽極
室には陰イオン交換体を充填してある。上記条件で運転
した結果、純水11の比抵抗は14.8MΩ・cmであ
り、比較例1に対して比抵抗の高い純水を得ることがで
きた。
In the experiment, an electric regenerative desalting apparatus having the structure shown in FIG. 1 was used in the test apparatus of FIG. 4, the flow rate of the demineralizing chamber inlet water 10 was 1 m 3 / h, and the flow rate of the concentrating chamber inlet water 12 was 360 L. /
h, the flow rate of the cathode chamber inlet water 14 and the flow rate of the anode chamber inlet water 16 are respectively 40 L / h, the concentration chamber dividing plate 30 is
Using a titanium plate with platinum plating on the surface, 1.
A DC current of 2 A was applied to the cathode 1 and the anode 3 for operation. The electric regeneration type desalination device has an electrode area of 0.256 m 2 ,
There are 10 desalting chambers and 9 concentrating chambers. Cathode chambers and anode chambers are provided at both ends. Anion exchangers and cation exchangers are placed inside the desalting chambers and concentration chambers, and cations are placed inside the cathode chambers. The exchanger is filled with an anion exchanger in the anode chamber. As a result of operating under the above conditions, the specific resistance of pure water 11 was 14.8 MΩ · cm, and pure water having a higher specific resistance than Comparative Example 1 could be obtained.

【0018】比較例1として、図4中の電気再生式脱塩
装置に図5に示す構成の電気再生式脱塩装置を用い、濃
縮室分割板を用いずに、他の条件は実施例1と同じとし
た。その結果、比抵抗10.4MΩ・cm程度の純水1
1が連続して製造された。この結果から、実施例1で
は、濃縮室分割板を濃縮室中に入れたために、各室の圧
力差による膜の変形量が減少し、各脱塩室に均等に脱塩
室入口水10が導入された。本実施例1に示すように、
濃縮室8中に濃縮室分割板30を組込むことにより、各
室間の圧力の影響を減少でき、それにより各室間におけ
る脱塩室入口水10の流量が均等になることにより脱塩
性能が向上した。
As Comparative Example 1, an electric regenerating desalination apparatus having the structure shown in FIG. 5 was used for the electric regenerating desalination apparatus in FIG. 4, and the concentration chamber partition plate was not used. Same as As a result, pure water 1 having a specific resistance of 10.4 MΩ · cm
1 was produced continuously. From this result, in Example 1, since the concentration chamber dividing plate was placed in the concentration chamber, the amount of deformation of the membrane due to the pressure difference in each chamber was reduced, and the desalination chamber inlet water 10 was evenly distributed to each desalination chamber. Was introduced. As shown in the first embodiment,
By incorporating the concentrating chamber dividing plate 30 in the concentrating chamber 8, the influence of the pressure between the chambers can be reduced, and the flow rate of the desalting chamber inlet water 10 between the chambers can be made uniform, thereby improving the desalination performance. Improved.

【0019】実施例2 実施例2では、図4の試験装置に図2に示す構成の電気
再生式脱塩装置を用いて試験を行った。脱塩室入口水1
0の流量は1m3/h、濃縮室入口水12の流量は68
0L/h、陰極室入口水14流量及び陽極室入口水16
の流量をそれぞれ40L/hとして、濃縮室分割板30
は、表面に白金メッキを施したチタン製の板を使用し、
1.2Aの直流電流を陰極1と陽極3に印可して運転を
行った。電気再生式脱塩装置は、電極面積0.256m
2、第1、第2の脱塩室群はともに8室、濃縮室は17
室とし、両端に陰極室と陽極室を設け、脱塩室、濃縮室
内部には陰イオン交換体と陽イオン交換体を、陰極室に
は陽イオン交換体を、陽極室には陰イオン交換体を充填
してある。
Example 2 In Example 2, an electric regenerative desalination apparatus having the structure shown in FIG. 2 was used in the test apparatus shown in FIG. Desalination chamber inlet water 1
The flow rate of 0 is 1 m 3 / h and the flow rate of the water 12 at the inlet of the concentrating chamber is 68
0 L / h, cathode chamber inlet water 14 flow rate and anode chamber inlet water 16
Flow rate of 40 L / h for each of the concentrating chamber dividing plates 30
Uses a titanium plate with platinum plating on the surface,
A DC current of 1.2 A was applied to the cathode 1 and the anode 3 for operation. Electric regenerative desalination equipment has an electrode area of 0.256 m
2 , 8 in the first and second desalination chamber groups, 17 in the concentration chamber
A cathode chamber and an anode chamber are provided at both ends, and anion exchanger and cation exchanger are provided in the desalting chamber and the concentration chamber, a cation exchanger is provided in the cathode chamber, and an anion exchange is provided in the anode chamber. The body is filled.

【0020】上記条件で運転した結果、純水11の比抵
抗は17.5MΩ・cm程度となり、水質も比較例2に
対して向上したほか、第1の脱塩室群及び第2の脱塩室
群の圧損はそれぞれ0.05MPa程度となり、脱塩室
入口水10の供給圧力は約0.1MPaで供給すること
ができた。また、第1の脱塩室群20及び第2の脱塩室
群21にそれぞれ隣接する濃縮室出口水13の流量は、
第1の脱塩室群20に隣接している濃縮室出口水13は
320L/hで、第2の脱塩室群21に隣接している濃
縮室出口水13は360L/hと、比較例2に対して流
量のアンバランスは大分解消されていた。
As a result of operating under the above conditions, the specific resistance of the pure water 11 was about 17.5 MΩ · cm, the water quality was improved as compared with Comparative Example 2, and the first desalination chamber group and the second desalination chamber were used. The pressure loss of each chamber group was about 0.05 MPa, and the desalting chamber inlet water 10 could be supplied at a supply pressure of about 0.1 MPa. Further, the flow rate of the outlet water 13 of the concentrating chamber adjacent to each of the first desalting chamber group 20 and the second desalting chamber group 21 is
The concentration chamber outlet water 13 adjacent to the first desalting chamber group 20 is 320 L / h, and the concentration chamber outlet water 13 adjacent to the second desalting chamber group 21 is 360 L / h. However, the imbalance of the flow rate was largely eliminated compared with 2.

【0021】また、比較例2として、図4の電気再生式
脱塩装置に図6に示す構成の電気再生式脱塩装置を用
い、濃縮室分割板を用いずに他の条件は実施例2と同じ
とした。その結果、比抵抗16.5MΩ・cm程度の純
水11が連続して製造できた。しかし、第1の脱塩室群
の圧損が約0.05MPa程度であるのに対し、第2の
脱塩室群の圧損が約0.12MPaとなり、脱塩室入口
水10の供給圧力は約0.2MPa必要であった。ま
た,第1の脱塩室群に隣接している濃縮室出口水13の
流量と第2の脱塩室群に隣接している濃縮室出口水13
の流量を測定したところ、第2の脱塩室群に隣接してい
る濃縮室出口水13の流量が約440L/hであったの
に比べ第1の脱塩室群に隣接している濃縮室出口水13
の流量は約240L/hとかなりアンバランスが生じて
いた。
As Comparative Example 2, an electric regenerative desalination apparatus having the structure shown in FIG. 6 was used in the electric regenerative desalination apparatus of FIG. 4, and other conditions were used in Example 2 without using a concentrating chamber dividing plate. Same as As a result, pure water 11 having a specific resistance of about 16.5 MΩ · cm could be continuously produced. However, while the pressure loss in the first desalination chamber group is approximately 0.05 MPa, the pressure loss in the second desalination chamber group is approximately 0.12 MPa, and the supply pressure of the desalination chamber inlet water 10 is approximately 0.2 MPa was required. Further, the flow rate of the outlet water 13 of the concentrating chamber adjacent to the first desalting chamber group and the outlet water 13 of the concentrating chamber adjacent to the second desalting chamber group
Of the concentration chamber outlet water 13 adjacent to the second desalination chamber group was about 440 L / h, the concentration of the concentration water adjacent to the first desalination chamber group was Room outlet water 13
The flow rate was about 240 L / h, which was a considerable imbalance.

【0022】[0022]

【発明の効果】本発明の電気再生式脱塩装置によれば、
上述したように、被処理水中のイオン分を除去して純水
を製造する電気再生式脱塩装置において、濃縮室内に導
電性物質により作られた濃縮室分割板(複極)を組込む
ことで、各室の圧力差による膜の変形等の影響を抑える
ことができ、これにより、電極板面積を減少させること
なく、圧力差による膜変形を防止することが可能とな
り、安定した運転をすることができる電気再生装置を作
ることができる。
According to the electric regeneration type desalination apparatus of the present invention,
As described above, in the electric regenerative desalination device that removes the ion components in the water to be treated to produce pure water, by incorporating the concentration chamber dividing plate (double electrode) made of a conductive substance in the concentration chamber, , It is possible to suppress the influence of the membrane deformation etc. due to the pressure difference in each chamber, which makes it possible to prevent the membrane deformation due to the pressure difference without reducing the electrode plate area, and ensure stable operation. It is possible to make an electric regenerator that can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気再生式脱塩装置の一例を示す概略
構成図。
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus of the present invention.

【図2】本発明の電気再生式脱塩装置の他の例を示す概
略構成図。
FIG. 2 is a schematic configuration diagram showing another example of the electric regeneration type desalination apparatus of the present invention.

【図3】本発明に用いる濃縮室分割板の組込み方法を示
す説明図。
FIG. 3 is an explanatory view showing a method of incorporating the concentrating chamber dividing plate used in the present invention.

【図4】実施例に用いた試験装置のフロー図。FIG. 4 is a flowchart of the test apparatus used in the examples.

【図5】従来の電気再生式脱塩装置の他の例を示す概略
構成図。
FIG. 5 is a schematic configuration diagram showing another example of a conventional electric regeneration desalination apparatus.

【図6】従来の電気再生式脱塩装置の他の例を示す概略
構成図。
FIG. 6 is a schematic configuration diagram showing another example of a conventional electric regeneration desalination apparatus.

【図7】従来の電気再生式脱塩装置の他の例を示す概略
構成図。
FIG. 7 is a schematic configuration diagram showing another example of a conventional electric regenerative desalination apparatus.

【符号の説明】[Explanation of symbols]

1:陰極、2:陰極室、3:陽極、4:陽極室、5:陰
イオン交換膜、6:陽イオン交換膜、7:脱塩室、8:
濃縮室、9:イオン交換体、10:脱塩室入口水、1
1:純水、12:濃縮室入口水、13:濃縮室出口水、
14:陰極室入口水、15:陰極室出口水、16:陽極
室入口水、17:陽極室出口水、19:第1の脱塩室出
口水、20:第1の脱塩室群、21:第2の脱塩室群、
30:濃縮室分割板
1: Cathode, 2: Cathode chamber, 3: Anode, 4: Anode chamber, 5: Anion exchange membrane, 6: Cation exchange membrane, 7: Deionization chamber, 8:
Concentration chamber, 9: ion exchanger, 10: water in the desalting chamber, 1
1: Pure water, 12: Concentration chamber inlet water, 13: Concentration chamber outlet water,
14: cathode chamber inlet water, 15: cathode chamber outlet water, 16: anode chamber inlet water, 17: anode chamber outlet water, 19: first desalting chamber outlet water, 20: first desalting chamber group, 21 : Second desalination chamber group,
30: Concentration chamber dividing plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA17 HA47 HA55 JA05A JA05C JA05Z JA06C JA30A JA30C JA43A MA03 MA13 MA14 PA01 PB06 4D061 DA03 DB13 EA09 EB04 EB11 EB13 EB17 FA08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA17 HA47 HA55 JA05A                       JA05C JA05Z JA06C JA30A                       JA30C JA43A MA03 MA13                       MA14 PA01 PB06                 4D061 DA03 DB13 EA09 EB04 EB11                       EB13 EB17 FA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陰極を有する陰極室と、陽極を有する陽
極室とを有し、この両極室の間に、陽イオン交換膜及び
陰イオン交換膜を少なくとも一部交互に配列し、これら
のイオン交換膜と室枠を用いて脱塩室と濃縮室を形成さ
せると共に、前記存在する室のうちの少なくとも脱塩室
にはイオン交換体が充填されている電気再生式脱塩装置
であって、前記濃縮室のうちの1以上には、内部に剛性
のある導電性物質で作られた濃縮室分割板が備えられる
と共に、該濃縮室分割板を備える濃縮室には、導入され
る濃縮水が、該濃縮室分割板の両面を流れるように室枠
が形成されていることを特徴とする電気再生式脱塩装
置。
1. A cathode chamber having a cathode and an anode chamber having an anode, and at least a part of a cation exchange membrane and an anion exchange membrane are alternately arranged between the both electrode chambers, and these ions are An electric regenerative desalination apparatus in which a desalting chamber and a concentrating chamber are formed using an exchange membrane and a chamber frame, and at least the desalting chamber among the existing chambers is filled with an ion exchanger. At least one of the concentrating chambers is provided with a concentrating chamber dividing plate made of a rigid conductive material therein, and the concentrating chamber provided with the concentrating chamber dividing plate is provided with concentrated water to be introduced. An electric regeneration type desalination apparatus, wherein a chamber frame is formed so as to flow on both sides of the concentrating chamber division plate.
【請求項2】 陰極を有する陰極室と、陽極を有する陽
極室とを有し、この両極室の間に、陽イオン交換膜及び
陰イオン交換膜を少なくとも一部交互に配列し、これら
のイオン交換膜と室枠を用いて脱塩室と濃縮室を形成さ
せると共に、前記存在する室のうちの少なくとも脱塩室
にはイオン交換体が充填されており、該脱塩室は、被処
理水を粗脱塩する第1の脱塩室群と、第1の脱塩室群で
処理された処理水をさらに脱塩処理する第2の脱塩室群
とに濃縮室を介して分けられている電気再生式脱塩装置
であって、前記第1の脱塩室群と第2の脱塩室群を隔て
ている濃縮室内部には、剛性のある導電性物質で作られ
た濃縮室分割板が備えられると共に、該濃縮室分割板を
備える濃縮室には、導入される濃縮水が、該濃縮室分割
板の両面を流れるように室枠が形成されていることを特
徴とする電気再生式脱塩装置。
2. A cathode chamber having a cathode and an anode chamber having an anode, and at least a part of a cation exchange membrane and an anion exchange membrane are alternately arranged between the two electrode chambers, and these ions are A desalting chamber and a concentrating chamber are formed using an exchange membrane and a chamber frame, and at least the desalting chamber among the existing chambers is filled with an ion exchanger, and the desalting chamber is filled with water to be treated. Is divided into a first desalting chamber group for roughly desalting the water and a second desalting chamber group for further desalting the treated water treated in the first desalting chamber group. An electric regeneration type desalination device in which the inside of the concentrating chamber separating the first desalting chamber group and the second desalting chamber group is divided into a concentrating chamber made of a rigid conductive material. The concentrated water to be introduced into the concentrating chamber having the plate and the concentrating chamber dividing plate flows on both sides of the concentrating chamber dividing plate. An electric regeneration type desalination device characterized in that a chamber frame is formed.
【請求項3】 前記濃縮室分割板は、該濃縮室を構成し
ている室枠の板厚方向にほぼ中央部に配置され、該室枠
に組込まれていることを特徴とする請求項1又は2記載
の電気再生式脱塩装置。
3. The concentrating chamber dividing plate is arranged in a substantially central portion in a plate thickness direction of a chamber frame forming the concentrating chamber and is incorporated in the chamber frame. Alternatively, the electric regenerative desalination apparatus according to 2 above.
【請求項4】 前記イオン交換体は、放射線グラフト重
合法によってイオン交換基が導入されたイオン交換体で
あり、その形状が不織布、織布、ネット様のシートであ
ることを特徴とする請求項1、2又は3記載の電気再生
式脱塩装置。
4. The ion exchanger is an ion exchanger in which an ion exchange group is introduced by a radiation graft polymerization method, and the shape thereof is a non-woven fabric, a woven fabric, or a net-like sheet. The electric regenerative desalination apparatus according to 1, 2, or 3.
JP2002136602A 2002-05-13 2002-05-13 Electric regenerative demineralizer Pending JP2003326269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136602A JP2003326269A (en) 2002-05-13 2002-05-13 Electric regenerative demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136602A JP2003326269A (en) 2002-05-13 2002-05-13 Electric regenerative demineralizer

Publications (1)

Publication Number Publication Date
JP2003326269A true JP2003326269A (en) 2003-11-18

Family

ID=29698572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136602A Pending JP2003326269A (en) 2002-05-13 2002-05-13 Electric regenerative demineralizer

Country Status (1)

Country Link
JP (1) JP2003326269A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123984A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Bipolar chamber and electrochemical liquid treatment apparatus having such bipolar chamber
KR100734164B1 (en) 2006-02-20 2007-07-02 이환재 Calcium concentration equipment
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
WO2015088278A1 (en) * 2013-12-13 2015-06-18 삼성전자주식회사 Water softening device and method for regenerating ion exchange resin
JP2015131292A (en) * 2013-12-13 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. Water softener and method for regenerating ion exchange resin
WO2015120688A1 (en) * 2014-02-17 2015-08-20 叶之谦 Calcium ion separation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123984A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Bipolar chamber and electrochemical liquid treatment apparatus having such bipolar chamber
KR100734164B1 (en) 2006-02-20 2007-07-02 이환재 Calcium concentration equipment
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
WO2015088278A1 (en) * 2013-12-13 2015-06-18 삼성전자주식회사 Water softening device and method for regenerating ion exchange resin
JP2015131292A (en) * 2013-12-13 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. Water softener and method for regenerating ion exchange resin
JP2016163890A (en) * 2013-12-13 2016-09-08 三星電子株式会社Samsung Electronics Co.,Ltd. Water softener and method for regenerating ion exchange resin
US20160311700A1 (en) * 2013-12-13 2016-10-27 Samsung Electronics Co., Ltd. Water softening device and method for regenerating ion exchange resin
US9815713B2 (en) 2013-12-13 2017-11-14 Samsung Electronics Co., Ltd. Water softening device and method for regenerating ion exchange resin
WO2015120688A1 (en) * 2014-02-17 2015-08-20 叶之谦 Calcium ion separation device

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP2004082092A (en) Electric deionizing apparatus
WO2005075359A1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP2014069122A (en) Desalination method, desalination apparatus, and bipolar membrane
JP4672601B2 (en) Deionized water production equipment
JP4609924B2 (en) Electric deionized water production equipment
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
JP5114307B2 (en) Electric deionized water production equipment
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP6001399B2 (en) Desalination method and desalting apparatus
JP2003326269A (en) Electric regenerative demineralizer
JP3952127B2 (en) Electrodeionization treatment method
JP3729349B2 (en) Electric regenerative desalination equipment
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3729347B2 (en) Electric regenerative desalination equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JP3717147B2 (en) Electric regenerative desalination equipment
JP2003326271A (en) Electric regenerative demineralizer
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2002011475A (en) Electric deionization device and device for producing pure water
JP4660890B2 (en) Operation method of electrodeionization equipment
JP5492612B2 (en) Electric deionized water production equipment