JP6571312B2 - Pure water production method - Google Patents

Pure water production method Download PDF

Info

Publication number
JP6571312B2
JP6571312B2 JP2014021037A JP2014021037A JP6571312B2 JP 6571312 B2 JP6571312 B2 JP 6571312B2 JP 2014021037 A JP2014021037 A JP 2014021037A JP 2014021037 A JP2014021037 A JP 2014021037A JP 6571312 B2 JP6571312 B2 JP 6571312B2
Authority
JP
Japan
Prior art keywords
water
chamber
concentration
edi
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014021037A
Other languages
Japanese (ja)
Other versions
JP2015147172A (en
Inventor
直也 杉本
直也 杉本
修 笠間
修 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2014021037A priority Critical patent/JP6571312B2/en
Publication of JP2015147172A publication Critical patent/JP2015147172A/en
Application granted granted Critical
Publication of JP6571312B2 publication Critical patent/JP6571312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、純水製造方法に関し、詳しくは、逆浸透膜装置(RO)とその後段に配置された電気式脱イオン装置(EDI)とを利用した経済的に有利な純水製造方法に関する。   The present invention relates to a pure water production method, and more particularly, to an economically advantageous pure water production method using a reverse osmosis membrane device (RO) and an electric deionization device (EDI) disposed in the subsequent stage.

高純度の純水を製造するための純水製造システムには、一般に、前処理装置としてのROと、得られたRO透過水を高度処理する脱イオン装置としてのEDIとが組み込まれている(例えば特許文献1〜3)。   In general, a pure water production system for producing high-purity pure water incorporates RO as a pretreatment device and EDI as a deionization device for advanced treatment of the obtained RO permeated water ( For example, Patent Documents 1 to 3).

ところで、EDIは、基本的には、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室には陽イオン交換体および陰イオン交換体の混合物が収容されて構成されている。   By the way, EDI basically includes a plurality of sets of desorptions that are sequentially formed by alternately arranging an anion exchange membrane and a cation exchange membrane between an anode chamber having an anode and a cathode chamber having a cathode. It is composed of a salt chamber and a concentration chamber, and a mixture of a cation exchanger and an anion exchanger is accommodated in the desalting chamber.

陽極および陰極から直流電流を通ずると、各脱塩室では被処理水(RO透過水)中の不純物イオンが陰イオン交換基および陽イオン交換基により捕捉除去され、純水が製造されると共に、捕捉された不純物イオンは脱塩室の隔膜でもある陰イオン交換膜および陽イオン交換膜により電気透析されて隣接する濃縮室に移動し、濃縮されて排出される。   When direct current is passed from the anode and the cathode, impurity ions in the water to be treated (RO permeated water) are captured and removed by the anion exchange group and the cation exchange group in each desalting chamber, and pure water is produced. The trapped impurity ions are electrodialyzed by an anion exchange membrane and a cation exchange membrane which are also a membrane of the desalting chamber, move to an adjacent concentration chamber, and are concentrated and discharged.

そして、EDIの上記の各脱塩室および濃縮室への通水方向は、特に制限されないが、上から下方向に通水する場合に懸念される空気の巻き込みを防止するとの観点から、脱塩室および濃縮室ともに上向流するのが一般的である。   And although the water flow direction to said each desalination chamber and concentration chamber of EDI is not restrict | limited, it is desalted from a viewpoint of preventing the entrainment of the air concerned when passing water from the top to the bottom. It is common for both the chamber and the concentration chamber to flow upward.

特開2000−317457号公報JP 2000-317457 A 特開2001−104959号公報JP 2001-104959 A 特開2002−320971号公報JP 2002-320971 A

ところで、EDIの被処理水はイオン交換膜への析出成分(弱電解質であるシリカ)の閉塞等の影響が懸念されるため、水質制限値が規定されている。それ故、EDIの前段に配置されるROの被処理水にも水質制限値が設けられ、EDIの水質制限値を守るためには、ROを二段にする、ROの回収率を下げるなどの対策が講じられるが、それでは、処理システムの煩雑化及び処理費用の増大を招くこととなる。処理費用の削減策として、ROの回収率をアップさせた場合は、ROの経年使用による交換頻度の増大に繋がることが考えられる。因みに、EDIに被処理水として供給されるROの透過水のシリカ濃度は、通常1.0mg/L以下、好ましくは1.0mg/L以下とされている。   By the way, the EDI water to be treated has a water quality limit value because there is a concern about the blockage of the deposited component (silica which is weak electrolyte) on the ion exchange membrane. Therefore, the water quality limit value is also set for the treated water of RO arranged in the previous stage of EDI. To protect the EDI water quality limit value, the RO is doubled, the RO recovery rate is lowered, etc. Measures are taken, but this leads to complication of the processing system and an increase in processing costs. As a measure for reducing processing costs, when the RO recovery rate is increased, it is conceivable that the replacement frequency increases due to the use of RO over time. Incidentally, the silica concentration of RO permeate supplied to EDI as treated water is usually 1.0 mg / L or less, preferably 1.0 mg / L or less.

本発明は上記実情に鑑みなされたものであり、その目的は、EDIにおけるシリカの除去効果を高めることにより、規定されているEDIの被処理水の水質制限値を上回るRO処理水の通液を可能とした経済的に有利な純水製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is improving the removal effect of the silica in EDI, and the passage of RO treated water exceeding the water quality limit value of the treated water of EDI prescribed | regulated is the objective. An object of the present invention is to provide an economically advantageous method for producing pure water.

本発明者らは、鋭意検討を重ねた結果、意外にも、EDIの上記の各脱塩室および濃縮室への通水方向によってシリカの除去効果が異なり、通水方向を向流にするならば、シリカの除去効果が顕著に高められるとの知見を得た。   As a result of intensive investigations, the present inventors have surprisingly found that the removal effect of silica differs depending on the direction of water flow to the desalination chamber and the concentration chamber of EDI. In other words, the inventors have found that the silica removal effect is remarkably enhanced.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、逆浸透膜装置とその後段に配置された電気式脱イオン装置とを利用した純水製造方法において、電気式脱イオン装置として、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室および濃縮室には陽イオン交換体および陰イオン交換体の混合物が収容されて成る電気式脱イオン装置を使用し、上記の各脱塩室の通水方向を上向流とし、上記の各濃縮室への通水方向を下向流することにより、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にし、電気式脱イオン装置に被処理水として供給される逆浸透膜装置の透過水のシリカ濃度を1.5〜3.0mg/Lの範囲とすることを特徴とする純水製造方法に存する。 The present invention has been completed on the basis of the above knowledge, and the gist of the present invention is that in a pure water production method using a reverse osmosis membrane device and an electric deionization device arranged in a subsequent stage, The system consists of multiple sets of desalting chambers and concentrating chambers that are sequentially formed by alternately arranging anion exchange membranes and cation exchange membranes between an anode chamber with an anode and a cathode chamber with a cathode. In addition, an electric deionization device in which a mixture of a cation exchanger and an anion exchanger is accommodated in the desalting chamber and the concentration chamber is used, and the water flow direction of each of the above desalting chambers is set as an upward flow. By flowing downward in the direction of water flow to each of the concentration chambers, the water flow direction of each of the desalting chambers and the direction of water flow to each of the above-described concentration chambers are made counter-current directions, and electric drainage is performed. Silica concentration of permeated water of reverse osmosis membrane device supplied to ion device as treated water It consists in pure water production method characterized by the range of 1.5~3.0mg / L.

本発明によれば、軟水器の削減、RO導入本数の低減又はRO水回収率の向上、RO劣化の際の交換頻度の低減が可能であり、従来法より、低コスト、省スペース且つメンテナンスが少なく長期連続運転可能な純水製造方法が提供される。   According to the present invention, it is possible to reduce the number of water softeners, reduce the number of ROs introduced or improve the RO water recovery rate, and reduce the frequency of replacement when RO deteriorates. A pure water production method capable of continuous operation for a long period of time is provided.

図1はEDIの一例の垂直縦断正面略図である。FIG. 1 is a schematic vertical front view of an example of EDI.

以下、本発明を詳細に説明する。本発明の純水製造方法においては、ROとその後段に配置されたEDIとを利用する。   Hereinafter, the present invention will be described in detail. In the pure water manufacturing method of this invention, RO and EDI arrange | positioned in the back | latter stage are utilized.

ROとしては、その形式や膜の種類は特に制限されず、水処理分野で使用されている各種のものを使用することが出来る。運転圧力などの処理条件についても同様である。   The type of RO and the type of membrane are not particularly limited, and various types of RO used in the water treatment field can be used. The same applies to processing conditions such as operating pressure.

EDIとしても、上記と同様であり、特に制限されないが、例えば、特開2001−137859号公報により本出願人が提案した図1に示すものを使用することが出来る。   The EDI is the same as described above, and is not particularly limited. For example, the one shown in FIG. 1 proposed by the present applicant in Japanese Patent Laid-Open No. 2001-137859 can be used.

図1に示すEDI(1)は、陽極(2)を備えた陽極室(3)と陰極(4)を備えた陰極室(5)との間に陰イオン交換膜(61)及び陽イオン交換膜(71)を交互に配列して順次形成される複数組の脱塩室(81)、(82)・・・及び濃縮室(91)、(92)・・・から構成される。   The EDI (1) shown in FIG. 1 includes an anion exchange membrane (61) and a cation exchange between an anode chamber (3) having an anode (2) and a cathode chamber (5) having a cathode (4). It comprises a plurality of sets of desalting chambers (81), (82)... And concentration chambers (91), (92).

すなわち、陰イオン交換膜(61)と陽イオン交換膜(71)とに挟まれて脱塩室(81)が構成され、同様にして陰イオン交換膜(62)と陽イオン交換膜(72)とに挟まれて第2の脱塩室(82)が形成される。この様に陰イオン交換膜(61)と陽イオン交換膜(71)とが交互に配列され、図示の装置の場合は5個の脱塩室が形成されている。一方、陽イオン交換膜(71)と陰イオン交換膜(62)とに挟まれて第1濃縮室(91)が形成され、同様にして陽イオン交換膜(72)と陰イオン交換膜(63)とに挟まれて第2濃縮室(92)が形成される。この様にして図示の装置の場合は4個の濃縮室が形成されている。そして、上記の5個の脱塩室には陽イオン交換体および陰イオン交換体の混合物(A)がそれぞれ収容されている。また、4個の濃縮室にも陽イオン交換体および陰イオン交換体の混合物(a)がそれぞれ収容されている。   That is, a desalination chamber (81) is configured by being sandwiched between an anion exchange membrane (61) and a cation exchange membrane (71), and similarly, an anion exchange membrane (62) and a cation exchange membrane (72). A second desalting chamber (82) is formed between the two. In this way, the anion exchange membrane (61) and the cation exchange membrane (71) are alternately arranged, and in the case of the illustrated apparatus, five desalting chambers are formed. On the other hand, a first concentration chamber (91) is formed between the cation exchange membrane (71) and the anion exchange membrane (62). Similarly, the cation exchange membrane (72) and the anion exchange membrane (63) are formed. ) To form a second concentration chamber (92). In this way, in the case of the illustrated apparatus, four concentration chambers are formed. And the mixture (A) of a cation exchanger and an anion exchanger is accommodated in each of the five desalting chambers. Further, the mixture (a) of the cation exchanger and the anion exchanger is accommodated in each of the four concentration chambers.

図1に示すEDI(1)は、上記の様に濃縮室にも陽イオン交換体および陰イオン交換体の混合物(a)を収納しているために電気的安定性に優れる特徴を有する。   The EDI (1) shown in FIG. 1 has a feature of excellent electrical stability because the mixture (a) of the cation exchanger and the anion exchanger is accommodated in the concentration chamber as described above.

上記の脱塩室および濃縮室を形成するためのイオン交換膜としては、通常のEDIで採用されているものが使用され、例えば、商品名「セレミオン(旭硝子(株))」、「ネオセプタ(トクヤマ(株))」、「アシプレックス(旭化成(株))」等の市販品が挙げられる。   As the ion exchange membrane for forming the desalting chamber and the concentrating chamber, those used in ordinary EDI are used. For example, trade names “Celemion (Asahi Glass Co., Ltd.)”, “Neocepta (Tokuyama) ) "," Aciplex (Asahi Kasei Corporation) "and the like.

上記の脱塩室に充填されるイオン交換体としては、通常の純水製造時の脱塩処理に使用されているイオン交換樹脂の他に所定厚さの不織布状に加工されたイオン交換繊維を使用することが出来る。イオン交換樹脂は、通常の純水製造に採用されているイオン交換樹脂から適宜選定される。例えば、強酸性陽イオン交換樹脂としては、「ダイヤイオン(三菱化学(株)登録商標)SK1B」、「PK208」等、強塩基性陰イオン交換樹脂としては、「ダイヤイオンSA10A」、「PA316」等が挙げられる。イオン交換繊維としては、具体的には、ポリスチレン系繊維と補助剤との複合繊維にイオン交換基を導入したもの、ポリビニルアルコールの繊維基体にイオン交換基を導入したもの、ポリオレフィン系の繊維に放射線を照射して放射線グラフト重合を利用してイオン交換基を導入したもの等の市販品が利用できる。上記の陽イオン交換体および陰イオン交換体とは、一般的には両者の交換容量が同じとなる量で使用される。   As the ion exchanger filled in the desalting chamber, ion exchange fibers processed into a non-woven fabric having a predetermined thickness are used in addition to the ion exchange resin used for the desalting treatment during normal pure water production. Can be used. The ion exchange resin is appropriately selected from ion exchange resins employed for normal pure water production. For example, “Diaion (registered trademark) SK1B” and “PK208” as strong acid cation exchange resins, and “Diaion SA10A” and “PA316” as strong base anion exchange resins. Etc. Specific examples of the ion exchange fibers include those obtained by introducing ion exchange groups into a composite fiber of polystyrene fiber and auxiliary agent, those obtained by introducing ion exchange groups into a fiber base material of polyvinyl alcohol, and radiation on polyolefin fibers. Commercially available products such as those in which an ion exchange group is introduced by using radiation graft polymerization by irradiation with the above can be used. The cation exchanger and the anion exchanger are generally used in such an amount that both exchange capacities are the same.

また、イオン交換体は、再生型および塩型の何れの型で使用してもよいが、水質の立ち上がりを早くするのには再生型を使用するのがよい。なお、陽イオン交換樹脂および陰イオン交換樹脂の再生型混合樹脂としては、例えば、三菱化学(株)製の商品「SMT100L」等がある。   In addition, the ion exchanger may be used in either a regeneration type or a salt type, but it is preferable to use the regeneration type in order to speed up the water quality. An example of the regenerated mixed resin of cation exchange resin and anion exchange resin is “SMT100L” manufactured by Mitsubishi Chemical Corporation.

本発明の最大の特徴は、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にしてEDIの運転を行うことにより、EDIに被処理水として供給されるROの透過水のシリカ濃度を1.5〜3.0mg/L(好ましくは1.5〜2.5mg/L)の範囲に高めた点にある。上記の向流方式により、EDIにおけるシリカの除去効果が顕著に高められる(換言すれば、EDIに被処理水として供給されるROの透過水のシリカ濃度を厳しく制限せずに上記のような高濃度の範囲にし得る)理由は次のように推定される。   The greatest feature of the present invention is that the EDI is operated as the water to be treated by performing the EDI operation with the water flow direction of each of the desalting chambers and the water flow direction of each of the concentration chambers as a countercurrent direction. The silica concentration of the RO permeate supplied is increased to a range of 1.5 to 3.0 mg / L (preferably 1.5 to 2.5 mg / L). The countercurrent method significantly enhances the silica removal effect in EDI (in other words, the above-mentioned high concentration can be achieved without severely limiting the silica concentration of RO permeated water supplied to EDI as treated water. The reason for possible concentration ranges is estimated as follows.

向流の場合、当然ながら、濃縮水の入口側と被処理水の出口側とは並列であり、濃縮水の出口側と被処理水の入口側とは並列になる。このとき、被処理水の塩成分は、電気脱塩により濃縮水側に移動し、濃縮水の塩濃度を上昇させる。この上昇傾向は、被処理水の入口側の方が大きくなる。その結果、向流方式であれば、濃縮水の塩濃度が上昇しても、直ちに出口から濃縮水を排水することができ、濃縮水が濃縮室内部(イオン交換膜、特にアニオン交換膜)に接触する時間も短く、濃縮室内部での塩成分の析出(電圧上昇と脱塩効率の低下の原因)を抑えることが可能になる。   In the case of counterflow, naturally, the concentrated water inlet side and the treated water outlet side are in parallel, and the concentrated water outlet side and the treated water inlet side are in parallel. At this time, the salt component of to-be-processed water moves to the concentrated water side by electric desalination, and raises the salt concentration of concentrated water. This upward tendency is greater on the inlet side of the water to be treated. As a result, with the countercurrent system, even if the salt concentration of the concentrated water rises, the concentrated water can be drained immediately from the outlet, and the concentrated water is placed inside the concentration chamber (ion exchange membrane, particularly anion exchange membrane). The contact time is short, and it becomes possible to suppress precipitation of salt components in the concentration chamber (cause of voltage increase and desalting efficiency decrease).

濃縮室内部での塩成分の析出を抑えることができれば、電流の流れも阻害されず、脱塩効率を維持し易くなり、弱電解質(シリカ成分)の除去効果も改善される。換言すれば、電圧上昇と脱塩効率の低下の原因である濃縮室内部での塩成分の析出を抑制することにより、弱電解質(シリカ成分)除去効果が維持される。   If precipitation of the salt component in the concentration chamber can be suppressed, the current flow is not inhibited, the desalting efficiency is easily maintained, and the effect of removing the weak electrolyte (silica component) is improved. In other words, the weak electrolyte (silica component) removal effect is maintained by suppressing the precipitation of the salt component in the concentration chamber, which is the cause of the increase in voltage and the decrease in desalting efficiency.

本発明で使用するEDI(1)においては、濃縮室にも陽イオン交換体および陰イオン交換体の混合物が収容されているため、空気の巻き込みによる偏流等の影響は殆どなく、濃縮室の通水方向は上向流、下向流どちらも可能である。従って、脱塩室の通水方向を下向流、濃縮室の通水方向を上向流とする向流方式にすることも可能である。   In the EDI (1) used in the present invention, since the mixture of the cation exchanger and the anion exchanger is accommodated in the concentrating chamber, there is almost no influence such as drift due to the entrainment of air, and the concentrating chamber passes through. The water direction can be either upward or downward. Therefore, it is possible to adopt a countercurrent system in which the water flow direction of the desalting chamber is a downward flow and the water flow direction of the concentration chamber is an upward flow.

しかしながら、図1に示すように、脱塩室への通水方向を上向流とし、濃縮室への通水方向を下向流とする態様の向流方式が推奨される。何故ならば、イオン交換およびイオンの流れが起こる脱塩室では、より安定した流れが必要とされ、通水方向を上向流とすることにより空気の巻き込みの機会を一層確実に防止するのが好ましいからである。   However, as shown in FIG. 1, a counter-current system in which the water flow direction to the desalination chamber is an upward flow and the water flow direction to the concentration chamber is a downward flow is recommended. This is because in the desalination chamber where ion exchange and ion flow occur, a more stable flow is required, and the upward flow in the water flow direction prevents the chance of air entrainment more reliably. It is because it is preferable.

図1に示すEDI(1)は次の様に運転される。5個の各脱塩室には、並行して被処理水(RO透過水)を脱塩室側流入管(131)から供給する。脱イオンされた水(純水)は脱塩室側流出管(132)から流出される。4個の各濃縮室には、並行して濃縮水を濃縮室側流入管(141)から供給する。各濃縮室に供給された濃縮水は、不純物イオンを濃縮した濃縮水として濃縮室側流出管(142)から排出される。また、濃縮室への濃縮水の供給と同時に、被処理水(電極水)を、陽極室側流入管(121)から陽極室(3)に、陰極室側流入管(123)から陰極室(5)にそれぞれ導入し、各々、陽極室側流出管(122)、陰極室側流出管(124)から排出させる。   The EDI (1) shown in FIG. 1 is operated as follows. To the five desalting chambers, water to be treated (RO permeated water) is supplied in parallel from the desalting chamber side inflow pipe (131). The deionized water (pure water) flows out from the desalting chamber side outflow pipe (132). Concentrated water is supplied to the four concentration chambers in parallel from the concentration chamber side inflow pipe (141). The concentrated water supplied to each concentration chamber is discharged from the concentration chamber side outflow pipe (142) as concentrated water in which impurity ions are concentrated. Simultaneously with the supply of concentrated water to the concentration chamber, water to be treated (electrode water) is supplied from the anode chamber side inflow pipe (121) to the anode chamber (3) and from the cathode chamber side inflow pipe (123) to the cathode chamber ( 5) and discharged from the anode chamber side outflow pipe (122) and the cathode chamber side outflow pipe (124), respectively.

上記の各流路により通水させながら、陽極(2)及び陰極(4)から直流電流を通ずると、各脱塩室では被処理水中の不純物イオンが陽イオン交換体および陰イオン交換体の混合物が有する陰イオン交換基および陽イオン交換基により捕捉除去され、純水が製造されると共に、陽イオン交換体および陰イオン交換体の混合物に捕捉された不純物イオンは脱塩室の隔膜でもある陰イオン交換膜および陽イオン交換膜により電気透析されて隣接する濃縮室に移動して濃縮され濃縮室側流出管(142)から排出される。   When a direct current is passed from the anode (2) and the cathode (4) while allowing water to flow through each of the flow paths described above, impurity ions in the water to be treated are mixed with the cation exchanger and the anion exchanger in each desalting chamber. The anion exchange groups and cation exchange groups possessed by the cation exchange groups produce pure water, and the impurity ions trapped in the mixture of cation exchangers and anion exchangers are anions that also serve as a membrane for the desalination chamber. It is electrodialyzed by the ion exchange membrane and the cation exchange membrane, moves to the adjacent concentration chamber, is concentrated, and is discharged from the concentration chamber side outflow pipe (142).

本発明においては、ROとその後段に配置されたEDIとを利用するが、EDIにおけるシリカ除去率が高められるため、ROは1段処理で充分であるばかりか、EDIの被処理水の水質制限値規定を必要以上に考慮してROの回収率を下げる必要もない。従って、経済的に有利な純水製造方法を実現するため、本発明におけるRO透過水(EDI被処理水)のシリカ濃度は、従来の1.0mg/L以下に対し、大幅に高い範囲、すなわち、1.5〜3.0(好ましく1.5〜2.5)mg/Lの範囲としている。   In the present invention, RO and EDI disposed in the subsequent stage are used. However, since the silica removal rate in EDI is increased, RO is not only required for one-stage treatment, but also water quality limitation of EDI treated water. There is no need to reduce the RO recovery rate considering the value regulation more than necessary. Therefore, in order to realize an economically advantageous pure water production method, the silica concentration of RO permeated water (EDI treated water) in the present invention is significantly higher than the conventional 1.0 mg / L or less, that is, 1.5-3.0 (preferably 1.5-2.5) mg / L.

以下、本発明を実施例および比較例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
ROにはモジュール「SU−710」(東レ(株)製)を用いた。EDIには、図1に示す構造を有し、以下に記載の仕様のものを使用した。
Example 1:
The module “SU-710” (manufactured by Toray Industries, Inc.) was used for RO. An EDI having the structure shown in FIG. 1 and having the following specifications was used.

(EDIの仕様)
陰イオン交換膜としては、セレミオンAMD[旭硝子(株)製、セレミオンは同社登録商標]を使用し、陽イオン交換膜としては、セレミオンCMD[旭硝子(株)製]を使用した。脱塩室および濃縮室に充填するイオン交換樹脂としては、陽イオン交換樹脂および陰イオン交換樹脂の再生型混合樹脂(三菱化学(株)製の商品「ダイヤイオンSMT100L」:含水率50重量%)を使用した。脱塩室数45室、濃縮室数44室、脱塩室は、縦390mm、横130mm、厚さ2mmであり、濃縮室は、縦390mm、横130mm、厚さ2mmである。
(EDI specifications)
As the anion exchange membrane, Selemion AMD (manufactured by Asahi Glass Co., Ltd., Selemion is a registered trademark of the company) was used, and as the cation exchange membrane, Selemion CMD (manufactured by Asahi Glass Co., Ltd.) was used. As the ion exchange resin filled in the desalination chamber and the concentration chamber, a regenerated mixed resin of cation exchange resin and anion exchange resin (product “Diaion SMT100L” manufactured by Mitsubishi Chemical Corporation: water content 50% by weight) It was used. The number of desalting chambers is 45, the number of concentrating chambers is 44, and the desalting chamber is 390 mm long, 130 mm wide, and 2 mm thick. The concentration chamber is 390 mm long, 130 mm wide, and 2 mm thick.

原水として横浜市水を使用し、活性炭塔で処理した後にROで処理し、シリカ濃度:1.5mg/L、電気伝導度:20μS/cmの透過水を得、これを被処理水としてEDIに供給して処理し、純水を製造した。   Yokohama city water is used as raw water, treated with an activated carbon tower and then treated with RO to obtain permeated water having a silica concentration of 1.5 mg / L and an electric conductivity of 20 μS / cm. The pure water was manufactured by supplying and processing.

EDIの運転においては、脱塩室への通水方向を上向流とし、濃縮室への通水方向を下向流とする向流方式を採用した。脱塩室および濃縮室への通水量は、共に、LV100m/hとし、通水と同時に両電極室の電極板に4Aの直流電流を印可した。通水時間は700時間、EDI水回収率は90%とした。   In the operation of EDI, a counter-current system was adopted in which the water flow direction to the desalination chamber was an upward flow and the water flow direction to the concentration chamber was a downward flow. The amount of water flow to the desalting chamber and the concentration chamber was both LV 100 m / h, and simultaneously with the water flow, a 4 A direct current was applied to the electrode plates of both electrode chambers. The water passing time was 700 hours, and the EDI water recovery rate was 90%.

比較のために、EDIの運転において、濃縮室への通水方向を上向流に変更して並流方式を採用した以外は、上記と同一の操作を行って純水を製造した。   For comparison, in the operation of EDI, pure water was produced by performing the same operation as above except that the flow direction to the concentrating chamber was changed to an upward flow and a parallel flow system was adopted.

得られた純水中のシリカを分析し、上記の向流方式と並流方式におけるシリカ除去率の比較を行った結果、向流方式のシリカ除去率は並流方式に比して4.9倍高い値であった。シリカの分析はモリブデン青吸光光度法によって行った。   As a result of analyzing the silica in the obtained pure water and comparing the silica removal rate between the above countercurrent method and the cocurrent method, the silica removal rate of the countercurrent method is 4.9 compared to the cocurrent method. It was twice as high. Silica was analyzed by molybdenum blue absorptiometry.

1:EDI
2:陽極
3:陽極室
4:陰極
5:陰極室
61:陰イオン交換膜
71:陽イオン交換膜
81:脱塩室
91:濃縮室
121:陽極室側流入管
122:陽極室側流出管
123:陰極室側流入管
124:陰極室側流出管
131:脱塩室側流入管
132:脱塩室側流出管
141:濃縮室側流入管
142:濃縮室側流出管
A:陽イオン交換体および陰イオン交換体の混合物
a:陽イオン交換体および陰イオン交換体の混合物
1: EDI
2: Anode 3: Anode chamber 4: Cathode 5: Cathode chamber 61: Anion exchange membrane 71: Cation exchange membrane 81: Desalination chamber 91: Concentration chamber 121: Anode chamber side inflow pipe 122: Anode chamber side outflow pipe 123 : Cathode chamber side inflow tube 124: Cathode chamber side outflow tube 131: Desalination chamber side inflow tube 132: Desalination chamber side outflow tube 141: Concentration chamber side inflow tube 142: Concentration chamber side outflow tube A: Cation exchanger and Mixture of anion exchanger a: Mixture of cation exchanger and anion exchanger

Claims (1)

逆浸透膜装置とその後段に配置された電気式脱イオン装置とを利用した純水製造方法において、電気式脱イオン装置として、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室および濃縮室には陽イオン交換体および陰イオン交換体の混合物が収容されて成る電気式脱イオン装置を使用し、上記の各脱塩室の通水方向を上向流とし、上記の各濃縮室への通水方向を下向流することにより、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にし、電気式脱イオン装置に被処理水として供給される逆浸透膜装置の透過水のシリカ濃度を1.5〜3.0mg/Lの範囲とすることを特徴とする純水製造方法。 In a pure water production method using a reverse osmosis membrane device and an electric deionization device disposed at a subsequent stage, an electric deionization device is provided between an anode chamber having an anode and a cathode chamber having a cathode. It consists of multiple sets of desalting chambers and concentrating chambers formed by alternately arranging anion exchange membranes and cation exchange membranes, and the desalting chambers and concentrating chambers contain cation exchangers and anion exchangers. Using an electric deionization apparatus containing the mixture, the water flow direction of each demineralization chamber is an upward flow, and the water flow direction to each concentration chamber is downward flow, The concentration of silica in the permeated water of the reverse osmosis membrane device supplied as treated water to the electric deionization device with the water flow direction of each demineralization chamber and the water flow direction to each concentration chamber as a countercurrent direction Of pure water, characterized in that the range of 1.5 to 3.0 mg / L .
JP2014021037A 2014-02-06 2014-02-06 Pure water production method Active JP6571312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021037A JP6571312B2 (en) 2014-02-06 2014-02-06 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021037A JP6571312B2 (en) 2014-02-06 2014-02-06 Pure water production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018187691A Division JP6627943B2 (en) 2018-10-02 2018-10-02 Pure water production method

Publications (2)

Publication Number Publication Date
JP2015147172A JP2015147172A (en) 2015-08-20
JP6571312B2 true JP6571312B2 (en) 2019-09-04

Family

ID=53891015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021037A Active JP6571312B2 (en) 2014-02-06 2014-02-06 Pure water production method

Country Status (1)

Country Link
JP (1) JP6571312B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003767A (en) * 2019-12-31 2020-04-14 佛山市云米电器科技有限公司 Water filtering and purifying system with water flows flowing in opposite directions and water purifier
JP7019860B1 (en) * 2021-08-27 2022-02-15 岩井ファルマテック株式会社 Purified water supply system
JP7460012B1 (en) 2022-12-26 2024-04-02 栗田工業株式会社 Electrodeionization apparatus and method of operating same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149788A (en) * 1998-10-16 2000-11-21 E-Cell Corporation Method and apparatus for preventing scaling in electrodeionization units
JP2001038359A (en) * 1999-07-28 2001-02-13 Japan Organo Co Ltd Deionized water production and device therefor
JP2001137859A (en) * 1999-11-18 2001-05-22 Nippon Rensui Co Ltd Electric regeneration type pure water production device
JP3864891B2 (en) * 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer
JP3969221B2 (en) * 2002-07-05 2007-09-05 栗田工業株式会社 Method and apparatus for producing deionized water
JP5282860B2 (en) * 2007-05-18 2013-09-04 栗田工業株式会社 Electrodeionization equipment
JP2010201361A (en) * 2009-03-04 2010-09-16 Japan Organo Co Ltd Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5295927B2 (en) * 2009-10-23 2013-09-18 オルガノ株式会社 Electric deionized water production equipment

Also Published As

Publication number Publication date
JP2015147172A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
JP6011655B2 (en) Electrodeionization device and pure water production device
US9393527B2 (en) Membrane separation devices and water treatment plants
JP6728876B2 (en) Electric deionization device and method for producing deionized water
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP3969221B2 (en) Method and apparatus for producing deionized water
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP6571312B2 (en) Pure water production method
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP6627943B2 (en) Pure water production method
JP5145305B2 (en) Electric deionized water production equipment
US20230242400A1 (en) Method for Purifying Hydrogen Peroxide
JP2011088085A (en) Electric deionized water making apparatus
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
US8758624B2 (en) Water treatment process, and membrane separation process and water treatment plant suitable therefor
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP4803649B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP5379025B2 (en) Electric deionized water production equipment
JP2009208046A (en) Apparatus for producing electrodeionization water
JP5098216B2 (en) Electric regenerative pure water production apparatus and pure water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2019177327A (en) Electric deionization device, and method of producing deionized water
JP2011139980A (en) Electric deionized water producing apparatus and method of producing deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6571312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250