JP2002001345A - Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor - Google Patents

Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor

Info

Publication number
JP2002001345A
JP2002001345A JP2000183640A JP2000183640A JP2002001345A JP 2002001345 A JP2002001345 A JP 2002001345A JP 2000183640 A JP2000183640 A JP 2000183640A JP 2000183640 A JP2000183640 A JP 2000183640A JP 2002001345 A JP2002001345 A JP 2002001345A
Authority
JP
Japan
Prior art keywords
anion
anion exchange
layer
chamber
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000183640A
Other languages
Japanese (ja)
Inventor
Yoshio Sugaya
良雄 菅家
Hiroshi Toda
洋 戸田
Takeshi Komatsu
健 小松
Yukio Matsumura
幸夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000183640A priority Critical patent/JP2002001345A/en
Publication of JP2002001345A publication Critical patent/JP2002001345A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel electrically regenerative apparatus for manufacturing deionized water by which the lowering of performance due to impurities such as a hardness component in water to be treated is prevented and eliminated. SOLUTION: The ion exchanger to be set in a concentrating chamber consists at least two layers different in water permeability, the layer lower in water permeability is arranged on the ion-exchange membrane side, and an anion- exchange group is provided at least on the surface. Consequently, the hardness component is never deposited or accumulated on the surface of the anion- exchange membrane on the anode side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気再生式脱イオ
ン(以下EDIと称する)技術により、脱イオン水を製造
する技術に関する。詳しくは、医薬品製造工業、半導体
製造工業、食料品工業等の各種製造業、又はボイラー水
や研究施設などで用いられる純水もしくは超純水等とい
われる高度に脱イオン化した脱イオン水を効率的に製造
する電気再生式脱イオン水製造方法及び製造装置、並び
にそれに使用するイオン交換体層にに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing deionized water by an electric regeneration type deionization (hereinafter referred to as EDI) technique. In detail, highly deionized deionized water called pure water or ultrapure water used in various manufacturing industries such as pharmaceutical manufacturing industry, semiconductor manufacturing industry, foodstuff industry, or boiler water and research facilities is efficiently used. The present invention relates to a method and an apparatus for producing regenerated deionized water, and an ion exchanger layer used in the method.

【0002】[0002]

【従来の技術】従来、脱イオン水の製造方法としてはイ
オン交換樹脂の充填床に被処理水を流し、不純物イオン
をイオン交換樹脂に吸着させて除去することにより脱イ
オン水を得る方法が一般的である。そして、この方法で
は、交換・吸着能力の低下したイオン交換樹脂は再生す
ることが必要であり、その再生は、通常酸やアルカリを
用いて行われる。その結果、この方法では、面倒な再生
操作と共にそれら酸やアルカリに起因する廃液が排出さ
れるという問題がある。
2. Description of the Related Art Conventionally, as a method for producing deionized water, generally, a method of obtaining deionized water by flowing treated water through a packed bed of ion exchange resin and adsorbing and removing impurity ions on the ion exchange resin is generally used. It is a target. In this method, it is necessary to regenerate the ion-exchange resin having reduced exchange / adsorption ability, and the regeneration is usually performed using an acid or an alkali. As a result, in this method, there is a problem that a waste liquid caused by the acid or alkali is discharged together with a troublesome regeneration operation.

【0003】このため再生の必要のない脱イオン水製造
方法が望まれており、近年、薬液による再生操作が必要
のないEDI法が開発され、実用化されてきている。こ
の方法は、陰イオン交換膜と陽イオン交換膜とを交互に
配置した電気透析槽の脱塩室に陰イオン交換樹脂と陽イ
オン交換樹脂の混合物を入れ、該脱塩室に被処理水を流
すとともに、脱塩室と交互に形成、配置された濃縮室に
濃縮水を流しながら電圧を印加して電気透析を行うもの
であり、それにより脱イオン水を製造すると共にイオン
交換樹脂の再生をも同時に行うものであって、別途イオ
ン交換樹脂の再生を行う必要のない方法である。
[0003] Therefore, a method of producing deionized water that does not require regeneration is desired. In recent years, an EDI method that does not require a regeneration operation using a chemical solution has been developed and put into practical use. In this method, a mixture of an anion exchange resin and a cation exchange resin is placed in a desalting chamber of an electrodialysis tank in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and the water to be treated is placed in the desalting chamber. This is to perform electrodialysis by applying a voltage while flowing concentrated water into the concentrated room, which is formed and arranged alternately with the demineralization room while flowing, thereby producing deionized water and regenerating the ion exchange resin. This is a method which does not need to separately regenerate the ion exchange resin.

【0004】すなわち、従来のEDI法においては、陽
極を備える陽極室と陰極を備える陰極室との間に陽イオ
ン交換膜と陰イオン交換膜を交互に配列させ陽極側がア
ニオン交換膜で区画され陰極側がカチオン交換膜で区画
された脱塩室と陽極側がカチオン交換膜で区画され陰極
側がアニオン交換膜で区画された濃縮室とを形成させた
電気透析槽の脱塩室に陰イオン交換樹脂及び陽イオン交
換樹脂を収容してなる脱イオン水製造装置を使用し、電
圧を印加しながら脱塩室に被処理水を流入させると共
に、濃縮室に被処理水又は処理水の一部を濃縮水として
流入させることにより、被処理水中の不純物イオンを除
去するものである。
That is, in the conventional EDI method, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode is separated. An anion exchange resin and a positive electrode are placed in a desalination chamber of an electrodialysis tank in which a desalination chamber defined by a cation exchange membrane on the side and a concentration chamber defined on the anode side by a cation exchange membrane and the cathode side defined by an anion exchange membrane. Using a deionized water production apparatus containing an ion exchange resin, the treated water flows into the desalination chamber while applying a voltage, and the treated water or a part of the treated water is used as concentrated water in the concentration chamber. By flowing the impurities, impurity ions in the water to be treated are removed.

【0005】この方法によれば、前記したとおり脱イオ
ン水の製造と同時にイオン交換体が連続的に再生される
ため、酸やアルカリ等の薬液による再生工程とその再生
に使用した廃液処理が不要であるという利点を有するも
のではあるが、その際、EDI装置は被処理水中のカル
シウムイオンやマグネシウムイオン等の硬度成分により
次第に電気抵抗が上昇し印加電圧の上昇または電流の低
下を招き、更には脱塩性能の低下により生産される処理
水の比抵抗が低下する問題があった。
According to this method, as described above, since the ion exchanger is continuously regenerated at the same time as the production of deionized water, a regeneration step using a chemical such as an acid or an alkali and a waste liquid treatment used for the regeneration are unnecessary. However, at this time, the EDI device gradually increases the electric resistance due to hardness components such as calcium ions and magnesium ions in the water to be treated, causing an increase in applied voltage or a decrease in current. There is a problem in that the specific resistance of the treated water produced decreases due to a decrease in desalination performance.

【0006】そのため、かかる問題を克服する方法が数
多く既に提案されており、それには、例えばEDI装置
に供給する被処理水を予め逆浸透膜処理を2段行い可及
的に硬度成分を除去した後EDI法の被処理水として供
給する方法(特開平2−40220号公報)や、別途用
意した酸性水生成電解槽で水を電気分解し陽極室で生成
する酸性水をEDI法の濃縮室へ通水する方法(特開平
10−128338号公報)がある。このような方法の
採用によりEDI法の長期性能の安定は図れるが、投資
コストの増大を招き、その結果、他の脱イオン方法との
比較においてEDIシステムの利点が少なくなるという
別の問題が生ずることになる。
[0006] Therefore, many methods for overcoming such a problem have been proposed. For example, water to be supplied to an EDI device is subjected to a reverse osmosis membrane treatment in two stages in advance to remove a hardness component as much as possible. After that, the water is supplied as the water to be treated by the EDI method (Japanese Patent Laid-Open No. 40220/1990), or the acid water generated in the anode chamber by electrolyzing water in a separately prepared acidic water generating electrolytic tank is supplied to the concentration chamber of the EDI method. There is a method of passing water (JP-A-10-128338). By adopting such a method, the long-term performance of the EDI method can be stabilized, but the investment cost is increased, and as a result, there is another problem that the advantage of the EDI system is reduced as compared with other deionization methods. Will be.

【0007】そして、脱塩室に供給する被処理水を間歇
的に弱酸性化し脱塩室内のイオン交換樹脂に強く吸着し
たイオン成分を間歇的に溶出する方法(特開平3−26
390)も提案されているが、間歇処理時、処理水の比
抵抗が低下する問題がある。また、アルカリ金属の塩酸
塩あるいは硫酸塩水溶液を添加し電導度を100〜80
0μS/cmとした液をEDI法の濃縮室へ供給するこ
とによりEDI法において流れる電流を安定化し高純度
の処理水を得る方法(特開平9−24374号)も提案
されているが、その性能の長期安定性については明らか
にされてない。
A method for intermittently weakening the water to be treated supplied to the desalting chamber to intermittently elute the ionic components strongly adsorbed on the ion exchange resin in the desalting chamber (Japanese Patent Laid-Open No. 3-26)
390) has been proposed, but there is a problem in that the resistivity of the treated water decreases during the intermittent treatment. Further, an aqueous solution of an alkali metal hydrochloride or sulfate is added to adjust the conductivity to 100 to 80.
A method has been proposed in which a solution having a concentration of 0 μS / cm is supplied to a concentration chamber of the EDI method to stabilize the current flowing in the EDI method and obtain high-purity treated water (Japanese Patent Application Laid-Open No. 9-24374). No long-term stability has been disclosed.

【0008】さらに、それ以外にも、イオン交換体をE
DI装置の脱塩室に充填するのみでなく濃縮室にも充填
し、それにより電気抵抗を低下させ、電流を安定化して
高純度の処理水を得る方法(WO 98/20972)の
提案や、濃縮室に陰イオン交換性スペーサーネットを装
填する方法(クリーンテクノロジー 1998.10第6
4頁)により電気抵抗が低下でき、その結果硬度成分の
析出も低減されるとの報告があるが、それらも必ずしも
十分なものではない。
Further, besides the above, an ion exchanger is made of E
Proposal of a method (WO 98/20972) of not only filling the desalting chamber of the DI device but also filling the concentrating chamber, thereby lowering the electric resistance and stabilizing the current to obtain high-purity treated water. A method of loading an anion exchangeable spacer net into a concentration chamber (Clean Technology 1998.10 No.6)
(P. 4), it is reported that the electrical resistance can be reduced, and as a result, the precipitation of the hardness component is also reduced, but they are not always sufficient.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来のED
I脱イオン水製造システム及びその後提案された長期安
定化された改善脱イオン水製造方法等が有する前記した
ところの問題を解決する方法に関し、特にはEDI法に
おいて供給する被処理水の硬度成分等の不純物による性
能低下を防止及び解消する新規EDI脱塩システムを提
供することを発明の解決課題、すなわち目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional ED.
The present invention relates to a method for solving the above-mentioned problems of a deionized water production system and a method for producing an improved deionized water having a long-term stability, which has been proposed thereafter, and more particularly to a hardness component of the water to be treated supplied in the EDI method. SUMMARY OF THE INVENTION It is an object of the invention to provide a novel EDI desalination system that prevents and eliminates performance degradation caused by impurities of the invention.

【0010】そして、その課題について更に詳しく述べ
ると、EDI法による従来の脱イオン水製造装置では、
濃縮水が循環使用されていることもあり運転経過と共に
濃縮室に硬度成分が濃縮され、その硬度成分(カルシウ
ム、マグネシウム)イオンが、脱塩室より陰イオン交換
膜を通して移動してきたOHイオン及び炭酸イオンと結
合し水酸化物あるいは炭酸塩となり析出、蓄積すること
により、電気抵抗を上昇させ、良好なイオン交換状態が
損なわれることがあった。
[0010] To describe the problem in more detail, in the conventional deionized water production apparatus by the EDI method,
Since the concentrated water is circulated and used, the hardness components are concentrated in the concentration chamber as the operation proceeds, and the hardness component (calcium and magnesium) ions are transferred from the desalting chamber through the anion exchange membrane to OH ions and carbonates. By binding to ions to form hydroxides or carbonates, which precipitate and accumulate, the electrical resistance is increased and a favorable ion exchange state may be impaired.

【0011】本発明者の研究によると、濃縮室中のNa
イオン、Caイオン、Mgイオン等の陽イオンは電位勾
配により陰イオン交換膜付近に最も多く分布する。一
方、脱塩室内にて水解離反応で発生したOHイオンは陰
イオン交換膜を透過移動し、濃縮室に到達するため陰イ
オン交換膜近傍は高濃度のOHイオンが存在することが
わかった。その結果、濃縮室側の陰イオン交換膜表面及
びその近傍において、Caイオン、Mgイオン等の硬度
成分と、OHイオンや炭酸イオンとが、結合しスケール
析出という現象を生じることが判明した。
According to the study of the present inventors, Na in the concentration chamber
Cations such as ions, Ca ions, and Mg ions are distributed most in the vicinity of the anion exchange membrane due to the potential gradient. On the other hand, it was found that OH ions generated by the water dissociation reaction in the desalting chamber permeate and move through the anion exchange membrane and reach the concentration chamber, so that high concentrations of OH ions exist near the anion exchange membrane. As a result, it was found that on the surface of the anion exchange membrane on the side of the enrichment chamber and in the vicinity thereof, hardness components such as Ca ions and Mg ions, and OH ions and carbonate ions are bonded to cause a phenomenon called scale precipitation.

【0012】本発明は、前記した研究の成果及び判明し
た事実を踏まえてなされたものであり、濃縮室側陰イオ
ン交換膜表面での硬度成分の析出、蓄積を防止し、ED
I装置の電気抵抗の上昇を抑制すると共に製造した脱イ
オン水には純度低下のない、長期的に安定したEDI技
術による脱イオン水製造方法及び製造装置、並びにそれ
に使用するイオン交換体層を提供することを目的とす
る。
The present invention has been made on the basis of the results of the above-mentioned research and the facts that have been found. The present invention prevents the precipitation and accumulation of hardness components on the surface of the anion exchange membrane on the side of the concentration chamber, and provides an ED.
Provided is a method and apparatus for producing deionized water by EDI technology, which suppresses an increase in the electrical resistance of the apparatus I and has a long-term stability without reducing the purity of the produced deionized water, and an ion exchanger layer used therefor. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するための電気再生式脱イオン水製造方法及び製造装
置、並びに濃縮室に収容する水透過性が小さいイオン交
換体層及び大きいイオン交換体層を提供するものであ
り、そのうちの電気再生式脱イオン水製造装置は、陽極
を備える陽極室と、陰極を備える陰極室との間に陽イオ
ン交換膜と陰イオン交換膜を交互に配列させ、陽極側が
陰イオン交換膜で区画され陰極側が陽イオン交換膜で区
画された脱塩室と陽極側が陽イオン交換膜で区画され陰
極側が陰イオン交換膜で区画された濃縮室とを形成させ
た電気透析槽の脱塩室及び濃縮室にイオン交換体を収容
し、両極間に電圧を印加しながら脱塩室に被処理水を供
給して被処理水中の不純物イオンを除去する電気再生式
脱イオン水製造装置において、濃縮室に収容するイオン
交換体は水透過性の異なる少なくとも二層からなり、か
つ水透過性の小さい層は、陰イオン交換膜側に配置さ
れ、少なくとも表面に陰イオン交換基を有するものであ
ることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a method and an apparatus for producing deionized water of the electric regeneration type for solving the above-mentioned problems, an ion exchanger layer having a small water permeability and a large ion contained in a concentration chamber. It provides an exchanger layer, of which the electric regeneration type deionized water production apparatus alternates a cation exchange membrane and an anion exchange membrane between an anode chamber having an anode and a cathode chamber having a cathode. It is arranged and forms a desalination chamber where the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and a concentration chamber where the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. The ion exchanger is accommodated in the desalting chamber and the concentrating chamber of the electrodialysis tank, and the water is supplied to the desalting chamber while applying a voltage between the two electrodes to remove impurities in the water. Type deionized water production equipment In this regard, the ion exchanger accommodated in the concentration chamber is composed of at least two layers having different water permeability, and the layer having a small water permeability is disposed on the anion exchange membrane side, and has an anion exchange group on at least the surface. It is characterized by being.

【0014】そして、電気再生式脱イオン水製造方法
は、前記電気再生式脱イオン水製造装置を使用して脱イ
オン水製造するものであり、また濃縮室に収容する水透
過性の小さい層は、平均粒径10〜600μmの陰イオ
ン交換樹脂からなる厚み100〜8000μmの多孔性
陰イオン交換体層、平均繊維径10〜600μmの陰イ
オン交換繊維からなる厚み50〜8000μmの多孔性
陰イオン交換体層、平均粒径10〜600μmの陽イオ
ン交換樹脂に陰イオン交換性を有する化合物で被覆され
た多孔性イオン交換体層、又は平均繊維径10〜600
陽イオン交換繊維に陰イオン交換性を有する化合物が被
覆された多孔性イオン交換体層からなるものである。
In the method for producing deionized water with electric regeneration, deionized water is produced by using the above-mentioned apparatus for producing deionized water with electric regeneration. A porous anion exchanger layer having an average particle diameter of 10 to 600 µm and comprising an anion exchange resin having a thickness of 100 to 8000 µm; and an anion exchange fiber having an average fiber diameter of 10 to 600 µm and having a thickness of 50 to 8000 µm. Body layer, porous ion-exchange layer coated with a compound having an anion-exchange property on a cation-exchange resin having an average particle diameter of 10 to 600 μm, or an average fiber diameter of 10 to 600
It comprises a porous ion exchanger layer in which a cation exchange fiber is coated with a compound having an anion exchange property.

【0015】さらに、濃縮室に収容する水透過性が大き
いイオン交換体層は、平均粒径300〜10000μm
の陰イオン交換樹脂もしくは陽イオン交換樹脂の単独又
は陰イオン交換樹脂及び陽イオン交換樹脂の混合物から
なる厚み1000〜10000μmの多孔性イオン交換
体層、平均繊維径20〜2000μmの陰イオン交換繊
維もしくは陽イオン交換繊維の単独又は陰イオン交換繊
維及び陽イオン交換繊維の混合物からなる厚み1000
〜10000μmの多孔性イオン交換体層、平均粒径3
00〜1000μmの陽イオン交換樹脂に陰イオン交換
性を有する化合物が被覆処理されている厚み1000〜
10000μmの多孔性イオン交換体層、又は平均繊維
径20〜2000μmの陽イオン交換繊維に陰イオン交
換性を有する化合物が被覆されている厚さ1000〜1
0000μmの多孔性イオン交換体層のいずれかであ
る。
Further, the ion-exchanger layer having high water permeability accommodated in the concentration chamber has an average particle diameter of 300 to 10000 μm.
A porous ion exchanger layer having a thickness of 1000 to 10000 μm, comprising an anion exchange resin or a cation exchange resin alone or a mixture of an anion exchange resin and a cation exchange resin, an anion exchange fiber having an average fiber diameter of 20 to 2000 μm or Thickness 1000 composed of cation exchange fiber alone or a mixture of anion exchange fiber and cation exchange fiber
Porous ion-exchanger layer having a mean particle size of 3 to 10,000 μm
A thickness of 1000 to 1000 μm, in which a cation exchange resin is coated with a compound having an anion exchange property.
A thickness of 1000-1 μm in which a porous ion-exchange layer of 10,000 μm or a cation-exchange fiber having an average fiber diameter of 20-2000 μm is coated with a compound having an anion-exchange property.
Any of a 0000 μm porous ion exchanger layer.

【0016】本発明では、前記した手段を採用すること
により、特に脱塩室に加えて濃縮室にもイオン交換体を
収容し、かつそのイオン交換体が水透過性の異なる少な
くとも二層からなり、しかも水透過性の小さい層が陰イ
オン交換膜側に配置され少なくとも表面に陰イオン交換
基を有するものとせしめることにより、陰イオン交換膜
表面及びその近傍における濃縮室側での硬度成分の析
出、蓄積が防止でき、電気再生式脱イオン水製造用の装
置を長期運転しても電圧上昇が抑制できると共に製造さ
れた脱イオン水の比抵抗も低下することがない。
In the present invention, by employing the above-mentioned means, the ion exchanger is accommodated in the concentrating chamber in addition to the desalting chamber, and the ion exchanger comprises at least two layers having different water permeability. In addition, since a layer having low water permeability is disposed on the side of the anion exchange membrane and has at least an anion exchange group on the surface, the precipitation of the hardness component on the surface of the anion exchange membrane and in the vicinity thereof on the concentration chamber side. In addition, the accumulation can be prevented, and even if the apparatus for producing the electric regeneration type deionized water is operated for a long time, the voltage rise can be suppressed and the specific resistance of the produced deionized water does not decrease.

【0017】本発明において、脱塩室に加えて濃縮室に
もイオン交換体を収容し、かつそのイオン交換体を水透
過性の異なる少なくとも二層からなり、しかも水透過性
の小さい層が陰イオン交換膜側に配置され少なくとも表
面に陰イオン交換基を有するものとせしめることによ
り、硬度成分の析出、蓄積が防止でき硬度成分による電
気抵抗の上昇が抑制できる共に、製造された脱イオン水
の比抵抗が低下せず脱イオン性能の低下も抑制できるこ
との理由あるいは機構等については、十分に解明してい
るわけではないが、本発明者は一応以下のように推測し
ている。
In the present invention, the ion exchanger is accommodated in the concentrating chamber in addition to the desalting chamber, and the ion exchanger is composed of at least two layers having different water permeability, and a layer having a small water permeability is used as a shade. By being disposed on the ion exchange membrane side and having at least an anion exchange group on the surface, precipitation and accumulation of the hardness component can be prevented, and an increase in electrical resistance due to the hardness component can be suppressed, and the produced deionized water can be suppressed. Although the reason why the specific resistance does not decrease and the decrease in the deionization performance can be suppressed, the mechanism and the like have not been sufficiently elucidated, the present inventors presume as follows.

【0018】前述したように、従来のEDI装置におい
ては、陰イオン交換膜の濃縮室側表面はOHイオン濃度
が高く、また電位勾配によりカルシウムイオンやマグネ
シウムイオン濃度も上昇している。その際に、濃縮室に
単にイオン交換体を充填した場合には、脱塩室から陽イ
オン交換膜を透過したカルシウムイオンやマグネシウム
イオン等の硬度成分を含む濃縮液は速やかに陰イオン交
換膜側表面に移動し、高濃度のOHイオンにさらされ、
硬度成分化合物が析出することになる。
As described above, in the conventional EDI apparatus, the surface of the anion exchange membrane on the side of the enrichment chamber has a high OH ion concentration, and the concentration of calcium ions and magnesium ions also increases due to a potential gradient. At this time, if the concentration chamber is simply filled with an ion exchanger, the concentrated liquid containing hardness components such as calcium ions and magnesium ions that have passed through the cation exchange membrane from the desalting chamber is promptly placed on the anion exchange membrane side. Move to the surface, exposed to high concentrations of OH ions,
The hardness component compound will precipitate.

【0019】しかしながら、本発明では、濃縮室にもイ
オン交換体を収容し、そのイオン交換体は水透過性の異
なる少なくとも二層からなり、かつ水透過性の小さい層
が陰イオン交換膜側に配置されると共に少なくとも表面
に陰イオン交換基を有するものとせしめており、その結
果、水透過性の大きな層を移動した硬度成分を多く含む
濃縮液が水透過性の小さい層に到達した後には移動力が
低減し、陰イオン交換膜の濃縮室側表面に流れ込むこと
が防止されると説明できる。
However, according to the present invention, the ion exchanger is also accommodated in the concentration chamber, and the ion exchanger is composed of at least two layers having different water permeability, and a layer having a small water permeability is provided on the anion exchange membrane side. It is arranged and has at least an anion exchange group on the surface, and as a result, after the concentrated liquid containing a large amount of the hardness component that has moved through the layer with high water permeability reaches the layer with low water permeability, It can be explained that the moving force is reduced and it is prevented from flowing into the surface of the anion exchange membrane on the concentration chamber side.

【0020】また、合わせて、水透過性の大きい層から
水透過性の小さい層に到達した硬度成分イオンは、水透
過性の小さい層の表面に形成されている陰イオン交換性
官能基との同種イオン同士による電気的反発により水透
過性の小さい層の表面に侵入し難いことになり、その結
果OHイオンと硬度成分イオンの反応を低減させ、陰イ
オン交換膜の濃縮室側表面における硬度成分化合物の析
出、蓄積が抑制され、電気抵抗や脱イオン性能が安定す
ると説明できる。
In addition, the hardness component ions that have reached the layer having a low water permeability from the layer having a high water permeability are combined with the anion exchange functional groups formed on the surface of the layer having a low water permeability. Due to the electrical repulsion of the same kind of ions, it is difficult to penetrate into the surface of the layer having low water permeability. As a result, the reaction between the OH ion and the hardness component ion is reduced, and the hardness component on the surface of the anion exchange membrane on the concentration chamber side is reduced. It can be explained that the precipitation and accumulation of the compound are suppressed, and the electric resistance and the deionization performance are stabilized.

【0021】以上の説明は、本発明の理解を助けるため
に述べたものであり、かかる説明により本発明が限定さ
れるものではなく、本発明は特許請求の範囲の記載によ
って特定されるものであることは言うまでもない。ま
た、以下に本発明で採用することのできる発明の実施例
の形態について述べるが、本発明はその記載によって限
定されるものではなく、特許請求の範囲の記載によって
特定されるものであることも、前記同様言うまでもな
い。
The above description is provided to facilitate understanding of the present invention, and the present invention is not limited to the description, but is defined by the appended claims. Needless to say, there is. Hereinafter, embodiments of the invention that can be employed in the present invention will be described. However, the present invention is not limited to the description, and may be specified by the description of the claims. Needless to say, the same as above.

【0022】[0022]

【発明の実施の形態】本発明において濃縮室に充填する
イオン交換体は、少なくとも水透過性の異なる2層から
なるものであり、そのうちの水透過性の小さいイオン交
換体層は、少なくとも表面に陰イオン交換基を有し、濃
縮室の陰イオン交換膜側に配置されるものである。ま
た、水透過性の大きなイオン交換体層は、水透過性の小
さいイオン交換体層の陽イオン交換膜側に配置されるも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an ion exchanger packed in a concentration chamber is composed of at least two layers having different water permeability, of which an ion exchanger layer having a small water permeability has at least a surface. It has an anion exchange group and is disposed on the anion exchange membrane side of the concentration chamber. The ion-exchange layer having high water permeability is disposed on the cation exchange membrane side of the ion-exchange layer having low water permeability.

【0023】水透過性の小さいイオン交換体層において
は、圧力35kPaにおける水透過性が1kg・cm-1
-1以上が好ましく、特に10〜50kg・cm-1・h-1
である場合はさらに好ましい。水透過性の大きいイオン
交換体層においては、圧力35kPaにおける水透過性
が10kg・cm-1・h-1以上が好ましく、特に30〜3
00kg・cm-1・h-1である場合はさらに好ましい。
In the ion exchanger layer having low water permeability, the water permeability at a pressure of 35 kPa is 1 kg · cm −1 ·
h -1 or more is preferable, and in particular, 10 to 50 kg · cm −1 · h −1
Is more preferable. In the ion exchanger layer having high water permeability, the water permeability at a pressure of 35 kPa is preferably 10 kg · cm −1 · h −1 or more, and particularly preferably 30 to 3
More preferably, the pressure is 00 kg · cm −1 · h −1 .

【0024】また、水透過性の小さいイオン交換体層と
水透過性の大きいイオン交換体層の水透過性の差は、圧
力35kPaにおける水透過性において5kg・cm-1
-1以上が好ましく、特に10kg・cm-1・h-1である
場合はさらに好ましい。
The difference in water permeability between the ion-exchange layer having a low water permeability and the ion-exchange layer having a high water permeability is 5 kg · cm −1 ··· in the water permeability at a pressure of 35 kPa.
h −1 or more is preferable, and particularly preferably 10 kg · cm −1 · h −1 .

【0025】本発明において濃縮室に収容する水透過性
の小さい層は、表面に陰イオン交換基を有するイオン交
換体からなるものであり、このようなイオン交換体とし
ては、内部まで陰イオン交換性を有するいわゆる陰イオ
ン交換樹脂あるいは陰イオン交換繊維があり、そのほか
のものとしては陽イオン交換樹脂や陽イオン交換繊維の
表面に陰イオン交換官能基を付与したイオン交換体もで
よい。
In the present invention, the layer having low water permeability accommodated in the concentrating chamber is formed of an ion exchanger having an anion exchange group on the surface. There is a so-called anion exchange resin or anion exchange fiber having a property, and other examples thereof include a cation exchange resin and an ion exchanger in which an anion exchange functional group is provided on the surface of the cation exchange fiber.

【0026】前記のような陽イオン交換体の表面に陰イ
オン交換基を付与する方法としては、陰イオン交換基も
しくは陰イオン交換基に変換できるモノマー、オリゴマ
ー溶液またはポリマー溶液を、原料陽イオン交換体表面
に、付着、重合もしくは乾燥等の手段により陰イオン交
換基を陽イオン交換体表面に固定する方法が好ましく使
用される。そのような陰イオン交換基または陰イオン交
換基に変換できるモノマーとしては、エチレンイミン、
ビニルアミン、ビニルピリジン、アリルアミン、クロル
メチルスチレン等が例示され、それらを原料陽イオン交
換体表面に固定化する方法にはラジカル重合や放射線重
合等がある。
As a method for providing an anion exchange group on the surface of the cation exchanger as described above, an anion exchange group or a monomer, oligomer solution or polymer solution which can be converted into an anion exchange group is prepared by using a raw material cation exchange group. A method of fixing an anion exchange group to the surface of the cation exchanger by means such as adhesion, polymerization or drying on the body surface is preferably used. Such anion exchange groups or monomers that can be converted to anion exchange groups include ethyleneimine,
Examples thereof include vinylamine, vinylpyridine, allylamine, chloromethylstyrene, and the like. Methods for immobilizing them on the surface of the raw material cation exchanger include radical polymerization and radiation polymerization.

【0027】また、ポリエチレンイミン、ポリアリルア
ミン、ポリアミジン、ヘキサメチレジアミン−エピクロ
ロヒドリン重縮合物、ジシアンジアミド−ホルマリン重
縮合物、グアニジン−ホルマリン重縮合物、ポリビニル
ベンジルトリメチルアンモニウムクロリド、ポリ(4−
ビニルピリジン)、ポリ(2−ビニルピリジン)、ポリ
(ジメチルアミノエチルアクリレート)、ポリ(ジメチ
ルアミノエチルメタクリレート)、ポリ(1−ビニルイ
ミダゾール)、ポリ(2−ビニルピラジン)、ポリ(4
−ブテニルピリジン)、ポリ(N,N−ジメチルアクリ
ルアミド)、ポリ(N,N−ジメチルアミノプロピルア
クリルアミド)またはそれらの塩を含有する水溶性ポリ
マーを使用する方法もある。
Also, polyethyleneimine, polyallylamine, polyamidine, hexamethylenediamine-epichlorohydrin polycondensate, dicyandiamide-formalin polycondensate, guanidine-formalin polycondensate, polyvinylbenzyltrimethylammonium chloride, poly (4-
Vinylpyridine), poly (2-vinylpyridine), poly (dimethylaminoethyl acrylate), poly (dimethylaminoethyl methacrylate), poly (1-vinylimidazole), poly (2-vinylpyrazine), poly (4
-Butenylpyridine), poly (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide) or a water-soluble polymer containing a salt thereof.

【0028】それらを原料陽イオン交換体表面に固定化
する方法には、原料陽イオン交換体に付着後加熱処理す
る方法、ポリマー中の反応サイト例えば窒素原子に結合
した活性水素を利用しホルマリン、エピクロロヒドリン
もしくはアルキレンジハライドと反応させ不溶化する方
法、または上記水溶性カチオンポリマー単位を含有する
水に不溶なコポリマーの有機溶媒溶液もしくはアミノ化
ポリスルホン系ポリマーの有機溶媒溶液を陽イオン交換
体表面に付着した後加熱処理により固定化する方法が挙
げられる。かかる陰イオン交換性官能基形成ための陽イ
オン交換体への被覆処理は、濃縮室に収納する前でも、
濃縮室に収納した後でも実施できる。
The method of immobilizing them on the surface of the raw material cation exchanger includes a method of heating after attaching to the raw material cation exchanger, a method of using formalin, a reactive site in the polymer, for example, using active hydrogen bonded to a nitrogen atom. A method of insolubilizing by reacting with epichlorohydrin or an alkylene dihalide, or a method of preparing an organic solvent solution of a water-insoluble copolymer containing the above water-soluble cationic polymer unit or an organic solvent solution of an aminated polysulfone-based polymer on the surface of a cation exchanger. And then fixation by heat treatment. Such a coating treatment on the cation exchanger for forming an anion-exchange functional group, even before being stored in the concentration chamber,
It can be carried out even after storing in the concentration room.

【0029】上述した濃縮室の陰イオン交換膜側に設置
される表面に陰イオン交換基を有する水透過性の小さい
層は、水透過性の大きな層と比較し、空隙率が同じか小
さくし、その空隙の最大孔径が、水透過性の大きな層の
空隙の最大孔径の2/3以下とするのがよく、このよう
にすることで硬度成分の析出、蓄積を防止する等の本発
明の所定性能を達成させることができる。
The water-permeable layer having an anion-exchange group on the surface provided on the anion-exchange membrane side of the above-mentioned concentrating chamber has the same or smaller porosity than the layer having a large water-permeable property. The maximum pore size of the pores is preferably not more than 2/3 of the maximum pore size of the pores of the layer having a large water permeability, whereby the precipitation and accumulation of the hardness component can be prevented. A predetermined performance can be achieved.

【0030】その際、空隙率が大きい場合は硬度成分を
含む濃縮液が水透過性の小さい層を貫流し、その結果陰
イオン交換膜表面における硬度成分濃度が上昇し硬度成
分が析出しやすくなり好ましくなく、そのためイオン交
換体は間隙率が10〜50容積%で濃縮室に充填される
のがよい。その理由は、水が透過するイオン交換体の間
隙率が50容量%以上では電気伝導度が高いイオン交換
体の容量率が低下する結果濃縮室の電気抵抗が増加し、
また硬度成分の析出防止能が低下するので、間隙率は1
0〜50容積%、好ましくは15〜40容積%になるよ
うに充填する。
At this time, when the porosity is large, the concentrated solution containing the hardness component flows through the layer having low water permeability, and as a result, the concentration of the hardness component on the surface of the anion exchange membrane increases, and the hardness component is easily precipitated. Unfavorably, the ion exchanger is therefore preferably filled in the enrichment chamber with a porosity of 10 to 50% by volume. The reason is that, when the porosity of the ion exchanger through which water permeates is 50% by volume or more, the capacity ratio of the ion exchanger having high electric conductivity is reduced, so that the electric resistance of the concentrating chamber increases,
Further, since the ability to prevent precipitation of the hardness component is reduced, the porosity is 1
The filling is performed so as to be 0 to 50% by volume, preferably 15 to 40% by volume.

【0031】また、水透過性の小さい層の空隙の最大孔
径は、水透過性の大きな層のそれの2/3以上では硬度
成分を含む濃縮液が貫流しやすくなることに加え、表面
に形成されている陰イオン交換基による多価陽イオンへ
の電気反発効果が小さくなって多価陽イオンが透過しや
すくなり好ましくなく、そのため水透過性の大きな層の
最大孔径の2/3以下、好ましくは1/2以下がよい。
The maximum pore size of the pores of the layer having a low water permeability is not less than 2/3 that of the layer having a high water permeability, since the concentrated liquid containing the hardness component easily flows through the layer, The electric repulsion effect on the polyvalent cation due to the anion exchange group is small and the polyvalent cation is easily permeated, which is not preferable. Therefore, the maximum pore size of the water-permeable layer is preferably 2/3 or less. Is preferably 以下 or less.

【0032】その空隙の具体的孔径については、最大孔
径が200μm以下が好ましい。水透過性の小さい層の
イオン交換体の間隙の最大孔径が200μm以上では、
濃縮液中の多価カチオンが、陰イオン交換膜面に供給さ
れ易すくなり、硬度成分の析出防止能が低下するので2
00μm以下、好ましくは100μm以下とするのがよ
い。なお、本発明におけるイオン交換体の最大孔径と
は、ASTM F−316に記載されているバブルポイ
ント法により求められるものである。
As for the specific pore size of the void, the maximum pore size is preferably 200 μm or less. When the maximum pore diameter of the gap of the ion exchanger of the layer having a small water permeability is 200 μm or more,
The polyvalent cations in the concentrated solution are more easily supplied to the anion exchange membrane surface, and the ability to prevent the precipitation of the hardness component is reduced.
It is good to be 00 μm or less, preferably 100 μm or less. The maximum pore diameter of the ion exchanger in the present invention is determined by the bubble point method described in ASTM F-316.

【0033】そのような濃縮室に収容する表面に陰イオ
ン交換基を有する水透過性の小さい層としては、水透過
性の大きな層の最大孔の2/3以下である平均粒径10
〜600μmの陰イオン交換樹脂からなる厚み100〜
8000μmの多孔性陰イオン交換体層、平均繊維径1
0〜600μmの陰イオン交換繊維からなる厚み50〜
8000μmの多孔性陰イオン交換体層、平均粒径10
〜600μmの陽イオン交換樹脂に陰イオン交換性を有
する化合物が被覆されている多孔性イオン交換体層又は
平均繊維径10〜600μmの陽イオン交換繊維に陰イ
オン交換性を有する化合物が被覆されている多孔性イオ
ン交換体層が例示される。
The layer having a small water permeability having an anion exchange group on the surface accommodated in such a concentrating chamber may have an average particle diameter of not more than 2/3 of the maximum pore size of the layer having a large water permeability.
Thickness of 100 to 600 μm made of anion exchange resin
8000 μm porous anion exchanger layer, average fiber diameter 1
A thickness of 50 to 600 μm comprising anion exchange fibers of 0 to 600 μm
8000 μm porous anion exchanger layer, average particle size 10
A porous ion-exchanger layer in which a compound having an anion exchange property is coated on a cation exchange resin having a thickness of ~ 600 μm or a compound having an anion exchange property is coated on a cation exchange fiber having an average fiber diameter of 10 to 600 μm. A porous ion exchanger layer is exemplified.

【0034】本発明において濃縮室に収容する水透過性
の大きなイオン交換体層、すなわち表面に陰イオン交換
基を有する透過性の小さいイオン交換体層の陽イオン交
換膜側に設置するイオン交換体層としては、濃縮室に必
要量の液を供給できるように、圧力35kPaにおける
水透過性が10kg・cm-1・h-1以上であれば、何ら制
限なく使用でき、それには陽イオン交換樹脂、陰イオン
交換樹脂、陽イオン交換繊維、陰イオン交換繊維、イオ
ン交換基を導入したネット(網)状体、あるいは陽イオ
ン交換体の表面に陰イオン交換性を付与した樹脂、繊
維、ネットが例示される。
In the present invention, an ion exchanger placed on the cation exchange membrane side of a highly water-permeable ion exchanger layer accommodated in a concentration chamber, ie, a low-permeable ion exchanger layer having an anion exchange group on its surface. The layer can be used without any limitation as long as the water permeability at a pressure of 35 kPa is 10 kg · cm −1 · h −1 or more so that a required amount of liquid can be supplied to the concentration chamber. , Anion exchange resin, cation exchange fiber, anion exchange fiber, net (net) -like body into which ion exchange group is introduced, or resin, fiber, net with anion exchange property on the surface of cation exchanger Is exemplified.

【0035】前記した濃縮室に収容する圧力35kPa
における水透過性が10kg・cm- 1・h-1以上で、水透
過性の小さい層の陽イオン交換膜側に設置されるイオン
交換体層としては、より具体的に説明すると、平均粒径
300〜10000μmの陰イオン交換樹脂もしくは陽
イオン交換樹脂の単独又は陰イオン交換樹脂及び陽イオ
ン交換樹脂の混合物からなる厚み1000〜10000
μmの多孔性イオン交換体層がある。
The pressure accommodated in the above-mentioned concentration chamber is 35 kPa
Water permeability in the 10 kg · cm - at 1 · h -1 or more, the ion exchanger layer is disposed on the cation exchange membrane side of the water permeable small layer, More specifically, the average particle size Anion-exchange resin or cation-exchange resin having a thickness of 300 to 10,000 μm alone or a mixture of anion-exchange resin and cation-exchange resin in a thickness of 1,000 to 10,000
There is a μm porous ion exchanger layer.

【0036】また、別の形態としては、平均繊維径20
〜2000μmの陰イオン交換繊維もしくは陽イオン交
換繊維の単独又は陰イオン交換繊維及び陽イオン交換繊
維の混合物からなる厚み1000〜10000μmの多
孔性イオン交換体層がある。このような多孔性イオン交
換体層の具体例としては繊維径200〜2000μmの
厚み400〜4000μmのオレフィン系ネットにイオ
ン交換基を導入し、それらを1層あるいは多層に設置し
た厚み400〜10000μmネット状イオン交換体層
がある。
In another form, the average fiber diameter is 20
There is a porous ion exchanger layer having a thickness of 1000 to 10000 [mu] m consisting of an anion exchange fiber or a cation exchange fiber alone or a mixture of anion exchange fiber and a cation exchange fiber. As a specific example of such a porous ion exchanger layer, an ion exchange group is introduced into an olefin-based net having a fiber diameter of 200 to 2000 μm and a thickness of 400 to 4000 μm, and a 400 to 10,000 μm net obtained by installing them in one layer or multiple layers. There is a state ion exchanger layer.

【0037】さらには、イオン交換体層が陽イオン交換
体の場合、その表面を陰イオン交換性を有する化合物で
被覆処理したイオン交換体層が好ましく使用できる。そ
の際には、平均粒径300〜1000μmの陽イオン交
換樹脂又は平均繊維径20〜2000μmの陽イオン交
換繊維に陰イオン交換性を有する化合物が被覆された厚
み1000〜10000μmの多孔性イオン交換体層と
するのがよい。
When the ion exchanger layer is a cation exchanger, an ion exchanger layer whose surface is coated with a compound having an anion exchange property can be preferably used. In this case, a cation exchange resin having an average particle diameter of 300 to 1000 μm or a cation exchange fiber having an average fiber diameter of 20 to 2000 μm is coated with a compound having an anion exchange property. It is good to make a layer.

【0038】そして、水透過性の小さい層と、水透過性
の大きな層の両層の濃縮室への充填については、湿潤粒
状物を濃縮室に万遍なく詰めるか、湿潤時の容積を濃縮
室容積の1.0〜1.5倍と見込んだ上で、半乾燥ある
いは乾燥粒状品を濃縮室に収納し、水を供給して膨潤さ
せて濃縮室全体に充満するように充填することで達成で
きる。また予めイオン交換体とバインダーで濃縮室に収
納しやすい形状に成形した水を透過する間隙を有するイ
オン交換体成形体も好ましく使用される。
[0038] Regarding the filling of the two layers, a layer having a low water permeability and a layer having a high water permeability, into the concentration chamber, the wet granules are evenly packed in the concentration chamber, or the volume when wet is concentrated. The semi-dried or dried granules are stored in a concentration chamber on the assumption that the volume is 1.0 to 1.5 times the chamber volume, and water is supplied to swell to fill the entire concentration chamber. Can be achieved. In addition, an ion exchanger molded body having a water-permeable gap, which is previously formed into a shape that can be easily stored in a concentration chamber with an ion exchanger and a binder, is also preferably used.

【0039】濃縮室に充填した水透過性の小さい層が、
陽イオン交換樹脂あるいは陽イオン交換繊維等の場合に
おいて、その表面に陰イオン交換性薄層が予め被覆され
ていない場合には、少なくとも硬度成分を有する供給水
を脱塩処理する前に、濃縮室に陰イオン交換性化合物を
含む液を供給しEDI装置内で処理することで、水透過
性の小さい層の表面に陰イオン交換基を形成することが
できる。
The water-permeable small layer filled in the concentration chamber is
In the case of a cation exchange resin or a cation exchange fiber, if the surface is not previously coated with a thin anion exchangeable layer, at least a desalination treatment of the feed water having a hardness component is carried out. By supplying a liquid containing an anion-exchange compound to the layer and treating it in an EDI apparatus, an anion-exchange group can be formed on the surface of the layer having low water permeability.

【0040】前記した水透過性の小さい層と水透過性の
大きな層の両層を濃縮室に充填した本発明の電気再生式
脱イオン水製造装置の一般的な構成は、以下の通りであ
る。すなわち、陽極を備える陽極室と陰極を備える陰極
室との間に、複数枚の陽イオン交換膜と陰イオン交換膜
とを交互に配列して、陽極側が陰イオン交換膜で区画さ
れ、陰極側が陽イオン交換膜で区画された陽イオン交換
体と陰イオン交換体が充填された脱塩室と、陽極側が陽
イオン交換膜で区画され、陰極側が陰イオン交換膜で区
画され、陰イオン交換膜側に水透過性の小さい表面に陰
イオン交換基を有するイオン交換体層及び陽イオン交換
膜側に水透過性の大きなイオン交換体層が充填された濃
縮室とを交互に、1〜300組程度直列に配置する。こ
のように構成したEDI水製造装置の脱塩室には被処理
水を流し、濃縮室には濃縮された塩類を排出するための
水を流しながら、電流を流すことにより脱塩を行うこと
ができる。各ユニットセルには、脱塩室において水解離
が生じる2〜10V程度の電圧を印加することができ
る。
The general configuration of the electro-regeneration type deionized water producing apparatus of the present invention in which both the low water permeable layer and the high water permeable layer are filled in a concentration chamber is as follows. . That is, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and the anode side is partitioned by the anion exchange membrane, and the cathode side is provided. A desalting chamber filled with a cation exchanger and an anion exchanger partitioned by a cation exchange membrane, an anode side partitioned by a cation exchange membrane, and a cathode side partitioned by an anion exchange membrane; 1 to 300 sets alternately include an ion exchanger layer having an anion exchange group on the surface with a small water permeability on the side and a concentration chamber filled with a water permeable ion exchanger layer on the cation exchange membrane side. Arrange them in series. It is possible to carry out desalination by flowing an electric current while flowing the water to be treated into the desalting chamber and flowing the water for discharging the concentrated salts into the concentrating chamber of the EDI water producing apparatus thus configured. it can. A voltage of about 2 to 10 V at which water dissociation occurs in the desalting chamber can be applied to each unit cell.

【0041】本発明のEDI水製造装置に使用する濃縮
室に充填するイオン交換体以外の部材、すなわち陰イオ
ン交換膜、陽イオン交換膜、脱塩室に充填する陰イオン
交換体及び陽イオン交換体は、特に制限なく使用するこ
とができる。例えば脱塩室に充填されるイオン交換体と
しては、陰及び陽イオン交換樹脂の混合体、陰イオン交
換樹脂層と陽イオン交換樹脂層を交互に被処理水の流れ
方向に多段に積み重ねたレイヤー構造体、陰イオン交換
樹脂相と陽イオン交換樹脂相とがモザイク模様、格子模
様もしくは一方のイオン交換樹脂層が連続した海相で多
方のイオン交換樹脂相が海相に点在する島相の充填体が
例示される。また、粒状以外の形態としてはイオン交換
繊維とイオン交換樹脂との混合体、陰及び陽イオン交換
繊維の混合体及びイオン交換体と導電性体との複合体な
どが挙げられる。
Members other than the ion exchanger packed in the concentration chamber used in the EDI water producing apparatus of the present invention, that is, anion exchange membrane, cation exchange membrane, anion exchanger packed in the desalination chamber and cation exchange The body can be used without any particular restrictions. For example, as the ion exchanger filled in the desalting chamber, a mixture of an anion and a cation exchange resin, a layer in which an anion exchange resin layer and a cation exchange resin layer are alternately stacked in a multi-stage in the flow direction of the water to be treated. The structure, an anion exchange resin phase and a cation exchange resin phase are in a mosaic pattern, a lattice pattern, or a sea phase in which one of the ion exchange resin layers is continuous and an island phase in which various ion exchange resin phases are scattered in the sea phase. A packing body is illustrated. Examples of forms other than the granular form include a mixture of an ion exchange fiber and an ion exchange resin, a mixture of anion and cation exchange fibers, and a composite of an ion exchanger and a conductor.

【0042】[0042]

【実施例】次いで、本発明について、実施例及び濃縮室
に充填するイオン交換体の製造例等に基づき更に詳細に
説明するが、本発明はこれら実施例及び製造例等により
何等限定されるものではなく、特許請求の範囲に基づい
て特定されるものであることは勿論である。
Next, the present invention will be described in more detail with reference to examples and examples of the production of ion exchangers to be filled in the concentration chamber. However, the present invention is not limited to these examples and production examples. Rather, it is, of course, specified based on the claims.

【0043】[製造例1]濃縮室に充填する水透過性の異
なる2層のイオン交換単層を以下のように作成した。平
均粒径が550μmの強塩基性(Cl型)陰イオン交換
樹脂(三菱化学社製、商品名:ダイヤイオンSA−10
A)を365μmの篩で、365μm以下の粒径と36
5μm以上の粒径に2分した。ついで篩い分けした各樹
脂97質量%と線状低密度ポリエチレン(ダウケミカル
社製、商品名アフィニティSM−1300)3質量%を
120〜130℃で混練りした。
[Production Example 1] Two ion-exchange monolayers having different water permeability to be filled in a concentration chamber were prepared as follows. Strongly basic (Cl type) anion exchange resin having an average particle size of 550 μm (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SA-10)
A) is passed through a 365 μm sieve with a particle size of
The mixture was divided into particles having a particle size of 5 μm or more for 2 minutes. Then, 97% by mass of each sieved resin and 3% by mass of linear low density polyethylene (manufactured by Dow Chemical Company, Affinity SM-1300) were kneaded at 120 to 130 ° C.

【0044】得られた混練り物を平板プレス130℃で
熱成形し、平均粒径600μmの樹脂からなる厚さ4m
mの陰イオン交換成形体(1)と平均粒径300μmの
樹脂からなる厚さ2mmの陰イオン交換成形体(2)を
作成した。陰イオン交換成形体(1)は、水透過性が3
5kPaにおいて130kg・cm-1・h-1、間隙の最大
孔径は220μmであった。一方、陰イオン交換成形体
(2)の水透過性は20kg・cm-1・h-1、間隙の最大
孔径は50μmであった。
The obtained kneaded material is thermoformed at 130 ° C. in a flat plate press, and is made of a resin having an average particle diameter of 600 μm and a thickness of 4 m.
An anion exchange molded article (2) having a thickness of 2 mm and comprising an anion exchange molded article (1) having an average particle size of 300 m and a resin having an average particle diameter of 300 μm was prepared. The anion exchange molded article (1) has a water permeability of 3
At 5 kPa, the pressure was 130 kg · cm −1 · h −1 and the maximum pore diameter of the gap was 220 μm. On the other hand, the water permeability of the anion exchange molded article (2) was 20 kg · cm −1 · h −1 , and the maximum pore diameter of the gap was 50 μm.

【0045】[製造例2]濃縮室に充填する水透過性の異
なる2層のイオン交換単層に関し、平均粒径が550μ
mの強塩基性(Cl型)陰イオン交換樹脂(三菱化学社
製、商品名:ダイヤイオンSA−10A)の代わりに平
均粒径600μmの強酸性(Na型)陽イオン交換樹脂
(三菱化学社製、商品名:ダイヤイオンSK−1B)に変
えた以外製造例1と同様に作成し、平均粒径650μm
の樹脂からなる厚さ4mmの陽イオン交換体成形体
(1)と平均粒径300μmの樹脂からなる厚さ2mm
の陽イオン交換体成形体(2)を作成した。陽イオン交
換成形体(1)は、水透過性が圧力35kPaにおいて
150kg・cm-1・h-1、間隙の平均孔径は250μm
であった。一方、陽イオン交換成形体(2)の水透過性
は25kg・cm-1・h-1、間隙の平均孔径は60μmで
あった。
[Production Example 2] Two ion exchange monolayers having different water permeability filled in a concentration chamber had an average particle size of 550 μm.
m strong basic (Cl type) anion exchange resin (trade name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) instead of a strongly acidic (Na type) cation exchange resin having an average particle size of 600 μm
(Manufactured by Mitsubishi Chemical Corporation, trade name: DIAION SK-1B), except that the average particle diameter was 650 μm.
4 mm thick cation exchanger compact (1) made of resin and 2 mm thick made of resin having an average particle size of 300 μm
(2) was prepared. The cation exchange molded body (1) has a water permeability of 150 kg · cm −1 · h −1 at a pressure of 35 kPa and an average pore diameter of the gap of 250 μm.
Met. On the other hand, the water permeability of the cation exchange molded product (2) was 25 kg · cm −1 · h −1 , and the average pore diameter of the gap was 60 μm.

【0046】次に、特開平2−211257号公報にし
たがい作成した陰イオン交換容量2.0ミリ当量/gの
ポリスルホンブロック共重体を100ppm含有するジ
メチルホルムアミド溶液に、前記した陽イオン交換成形
体(2)を浸漬し、次いで80℃で乾燥し、表面に陰イ
オン交換体層を有するイオン交換成形体(3)を作成し
た。水透過性は圧力35kPaにおいて、23kg・c
-1・h-1、間隙の平均孔径は55μmであった。
Next, the above-mentioned cation-exchange molded product was added to a dimethylformamide solution containing 100 ppm of a polysulfone block copolymer having an anion exchange capacity of 2.0 meq / g and prepared according to JP-A-2-21257. 2) was immersed and then dried at 80 ° C. to prepare an ion exchange molded product (3) having an anion exchanger layer on the surface. Water permeability is 23 kg · c at a pressure of 35 kPa.
m −1 · h −1 , and the average pore diameter of the gap was 55 μm.

【0047】[製造例3]EDI水製造装置に装着する各
部材を以下の様に作製した。低密度ポリエチレン70重
量%とエチレン−プロピレン−ジエンゴム30質量%と
をラボプラストミルで150℃、30分混合混練し得ら
れた混合物からなるバインダーポリマーと、強塩基性陰
イオン交換樹脂(三菱化学製ダイヤイオンSA−10
A)の乾燥粉砕品(平均粒径50μm)とを、混合比4
0/60(質量比)で混合し、ラボプラストミルで13
0℃、50rpm、20分混練した。
[Production Example 3] Each member to be mounted on the EDI water production apparatus was produced as follows. A binder polymer consisting of a mixture obtained by mixing and kneading 70% by weight of low-density polyethylene and 30% by weight of ethylene-propylene-diene rubber with a Labo Plastomill at 150 ° C. for 30 minutes, and a strongly basic anion exchange resin (manufactured by Mitsubishi Chemical Corporation) Diaion SA-10
A) The dry pulverized product (A) (average particle size: 50 μm) was mixed at a mixing ratio of 4
0/60 (mass ratio).
Kneading was performed at 0 ° C. and 50 rpm for 20 minutes.

【0048】得られた混練物を平板プレスにより160
℃で、加熱溶融プレスし、厚さ500μmの陰イオン交
換膜1を調製した。さらに、陰イオン交換膜と対になる
陽イオン交換膜は、強酸性陽イオン交換樹脂(三菱化学
製ダイヤイオンSK−1B)を使用した以外は製造例3
の陰イオン交換膜1と同様にして厚さ500μmの陽イ
オン交換膜1を調製した。
The obtained kneaded material was 160
The resulting mixture was heated and melt-pressed at 0 ° C. to prepare an anion exchange membrane 1 having a thickness of 500 μm. Further, the cation exchange membrane paired with the anion exchange membrane was manufactured in Production Example 3 except that a strongly acidic cation exchange resin (Diaion SK-1B manufactured by Mitsubishi Chemical Corporation) was used.
A cation exchange membrane 1 having a thickness of 500 μm was prepared in the same manner as in the case of the anion exchange membrane 1.

【0049】また、脱塩室に充填するイオン交換体につ
いては、カチオン交換樹脂、アニオン交換樹脂及びバイ
ンダーを混合して板状に成型加工し厚み6mmのイオン
交換成形体(4)を調製した。両イオン交換樹脂には、
平均粒径が600μm、イオン交換容量が4.5ミリ当
量/g乾燥樹脂のスルホン酸酸型(H型)陽イオン交換
樹脂(三菱化学社製、商品名:ダイヤイオンSKー1
B)及び平均粒径が550μm、イオン交換容量が3.
5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(OH
型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤ
イオンSAー10A)を用い、イオン交換容量比が50
/50となるようにした。
As for the ion exchanger to be charged into the desalting chamber, a cation exchange resin, an anion exchange resin and a binder were mixed and molded into a plate to prepare an ion exchange molded article (4) having a thickness of 6 mm. For both ion exchange resins,
A sulfonic acid type (H type) cation exchange resin having an average particle size of 600 μm and an ion exchange capacity of 4.5 meq / g dry resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SK-1)
B) and an average particle size of 550 μm and an ion exchange capacity of 3.
5 meq / g dry resin quaternary ammonium salt type (OH
Type) Anion exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: DIAION SA-10A) having an ion exchange capacity ratio of 50
/ 50.

【0050】[実施例1]前記のように調製した陰イオン
交換膜1と陽イオン交換膜1を交互に配置し、イオン交
換成形体(4)を収納した脱塩室及び製造例1で作製し
た厚み4mm、最大孔径220μmの陰イオン交換成形
体(1)を陽イオン交換膜側に、また厚さ2mm、最大
孔径50μm陰イオン交換成形体(2)を陰イオン交換
膜に接するよう収納した濃縮室を、それぞれ室枠(ポリ
プロピレン製)を介して締め付けたフィルタープレス型
透析槽からなる有効面積507cm2〔横(=室枠幅)
13cm、縦(=脱塩長)39cm〕×3対の電気透析
槽を構成した。
[Example 1] An anion exchange membrane 1 and a cation exchange membrane 1 prepared as described above were alternately arranged, and were produced in a desalination chamber containing an ion exchange molded body (4) and in Production Example 1. The anion exchange molded article (1) having a thickness of 4 mm and a maximum pore diameter of 220 μm was accommodated in the cation exchange membrane side, and the anion exchange molded article (2) having a thickness of 2 mm and a maximum pore diameter of 50 μm was accommodated in contact with the anion exchange membrane. An effective area of 507 cm 2 consisting of a filter press type dialysis tank in which the concentrating chamber is fastened via a chamber frame (made of polypropylene) [width (= chamber frame width)
13 cm, vertical (= desalting length) 39 cm] × 3 pairs of electrodialysis tanks.

【0051】この電気透析槽を具備するEDI水製造装
置を用いて、工業用水を砂ろ過後、逆浸透膜装置1段で
処理した表1に示す被処理水を脱塩室へ供給しつつ電流
を印加し表2に示す条件で連続1000時間運転し、電
圧変化及び脱イオン水比抵抗の安定性を調べた。結果
は、初期及び1000時間運転後の印加電圧及び脱イオ
ン水の比抵抗を以って表3に示した。
Using an EDI water producing apparatus equipped with this electrodialysis tank, industrial water was subjected to sand filtration, and then the treated water shown in Table 1 treated in one stage of the reverse osmosis membrane apparatus was supplied to the desalination chamber while supplying current to the desalting chamber. , And operated continuously for 1000 hours under the conditions shown in Table 2 to examine the voltage change and the stability of the deionized water specific resistance. The results are shown in Table 3 with the applied voltage and the specific resistance of deionized water at the initial stage and after 1000 hours of operation.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[実施例2]実施例1における濃縮室に収納
した陰イオン交換成形体(1)の代わりに製造例2の陽
イオン交換成形体(1)を、また陰イオン交換成形体
(2)の代わりに表面に陰イオン交換基を有するイオン
交換成形体(3)を使用した以外は、実施例1と同様に
して脱イオン試験を行い、結果を表3に示した。
Example 2 Instead of the anion exchange molded article (1) housed in the concentration chamber in Example 1, the cation exchange molded article (1) of Production Example 2 and the anion exchange molded article (2) ) Was replaced with an ion-exchange molded article (3) having an anion-exchange group on the surface, and a deionization test was performed in the same manner as in Example 1. The results are shown in Table 3.

【0056】[実施例3]実施例2における表面に陰イオ
ン交換基を有するイオン交換成形体(3)の代わりに繊維
状陰イオン交換ろ紙(東レ社製 IONEX TIN−
100H10P、最大孔径40μm、厚み2mm)を使
用した以外は実施例2と同様にして脱イオン試験を行
い、結果を表3に示した。
Example 3 Instead of the ion-exchange molded product (3) having an anion-exchange group on the surface in Example 2, a fibrous anion-exchange filter paper (IONEX TIN- manufactured by Toray Industries, Inc.) was used.
A deionization test was performed in the same manner as in Example 2 except that 100H10P, a maximum pore diameter of 40 μm, and a thickness of 2 mm) were used, and the results are shown in Table 3.

【0057】[比較例1]実施例2における陽イオン交換
成形体(1)を陰イオン交換膜側に、また表面に陰イオ
ン交換基を有するイオン交換成形体(3)を陽イオン交
換膜側に配置して、実施例2とは濃縮室内のイオン交換
体の配置を逆にした以外は、実施例2と同様にして脱イ
オン試験を行い、結果を表3に示した。
Comparative Example 1 The cation exchange molded article (1) in Example 2 was placed on the anion exchange membrane side, and the ion exchange molded article (3) having an anion exchange group on the surface was placed on the cation exchange membrane side. And a deionization test was conducted in the same manner as in Example 2 except that the arrangement of the ion exchanger in the concentration chamber was reversed from that in Example 2. The results are shown in Table 3.

【0058】[比較例2]実施例2における表面に陰イオ
ン交換基を有するイオン交換成形体(3)の代わりに陰
イオン交換基を付与する前の陽イオン交換成形体(2)
を使用した以外は、実施例2と同様にして脱イオン試験
を行い、結果を表3に示した。
[Comparative Example 2] Instead of the ion-exchange molded article (3) having an anion-exchange group on its surface in Example 2, a cation-exchange molded article (2) before an anion-exchange group was provided.
A deionization test was carried out in the same manner as in Example 2 except that was used, and the results are shown in Table 3.

【0059】以上の実施例及び比較例の結果を示す表3
から明らかなように、濃縮室の陰イオン交換膜側に、表
面に陰イオン交換基を有する水透過性の小さい層を、陽
イオン交換膜側に水透過性の大きな層を設置することに
より、電圧が低く安定し、かつ脱イオン水の比抵抗が高
く安定していることがわかる。
Table 3 showing the results of the above Examples and Comparative Examples
As is clear from, by installing a water-permeable small layer having an anion exchange group on the surface on the anion exchange membrane side of the concentration chamber and a water-permeable large layer on the cation exchange membrane side, It can be seen that the voltage is low and stable, and the specific resistance of deionized water is high and stable.

【0060】[0060]

【発明の効果】本発明によれば、濃縮室に収容するイオ
ン交換体が水透過性の異なる少なくとも二層からなり、
表面に陰イオン交換基を少なくとも有する水透過性の小
さい層を陰イオン交換膜側に設置することにより、陰イ
オン交換膜の濃縮室側での硬度成分の析出、蓄積が防止
でき、EDI水製造装置を長期運転しても、電圧上昇が
起こることがなく、かつ脱イオン水の比抵抗の低下もな
い。
According to the present invention, the ion exchanger accommodated in the concentration chamber comprises at least two layers having different water permeability,
By installing a water-permeable layer having at least anion-exchange groups on the surface on the side of the anion-exchange membrane, it is possible to prevent the precipitation and accumulation of hardness components on the side of the anion-exchange membrane in the concentration chamber, and to produce EDI water. Even if the apparatus is operated for a long time, there is no increase in voltage and there is no decrease in the specific resistance of deionized water.

フロントページの続き (72)発明者 小松 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会内 (72)発明者 松村 幸夫 千葉県市原市五井海岸10番地 旭硝子株式 会社内 Fターム(参考) 4D006 GA17 KB01 KB11 MA03 MA13 MA14 MC09X MC22X MC68X NA50 NA62 NA65 PB06 PC02 4D025 AA04 AB19 BA08 BA13 BA25 BA28 DA05 DA06 4D061 DA03 DB13 EA09 EB01 EB04 EB13 EB17 EB19 EB22 FA09Continued on the front page (72) Inventor Takeshi Ken Komatsu 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Asahi Glass Co., Ltd. (72) Inventor Yukio Matsumura 10 Goi Kaigan, Ichihara-shi, Chiba Prefecture Asahi Glass Co., Ltd. F-term (reference) 4D006 GA17 KB01 KB11 MA03 MA13 MA14 MC09X MC22X MC68X NA50 NA62 NA65 PB06 PC02 4D025 AA04 AB19 BA08 BA13 BA25 BA28 DA05 DA06 4D061 DA03 DB13 EA09 EB01 EB04 EB13 EB17 EB19 EB22 FA09

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 陽極を備える陽極室と、陰極を備える陰
極室との間に陽イオン交換膜と陰イオン交換膜を交互に
配列させ、陽極側が陰イオン交換膜で区画され陰極側が
陽イオン交換膜で区画された脱塩室と陽極側が陽イオン
交換膜で区画され陰極側が陰イオン交換膜で区画された
濃縮室とを形成させた電気透析槽の脱塩室及び濃縮室に
イオン交換体を収容し、両極間に電圧を印加しながら脱
塩室に被処理水を供給して被処理水中の不純物イオンを
除去する電気再生式脱イオン水製造装置において、濃縮
室に収容するイオン交換体は水透過性の異なる少なくと
も二層からなり、かつ水透過性の小さい層は、陰イオン
交換膜側に配置され、少なくとも表面に陰イオン交換基
を有するものであることを特徴とする電気再生式脱イオ
ン水製造装置。
A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode side is cation exchange membrane. An ion exchanger is provided in a desalination chamber and a concentration chamber of an electrodialysis tank which has a desalination chamber partitioned by a membrane and a concentration chamber partitioned by a cation exchange membrane on the anode side and a cathode side partitioned by an anion exchange membrane. In the electric regeneration type deionized water producing apparatus that accommodates and supplies the water to be treated to the desalination chamber while applying a voltage between the two poles to remove impurity ions in the water to be treated, the ion exchanger accommodated in the enrichment chamber is The layer comprising at least two layers having different water permeability and having a low water permeability is disposed on the anion exchange membrane side and has an anion exchange group on at least the surface thereof. Ion water production equipment.
【請求項2】 濃縮室に収容する水透過性が大きいイオ
ン交換体層は、圧力35kPaにおける水透過性が10
kg・cm-1・h-1以上である請求項1に記載の電気再生
式脱イオン水製造装置。
2. An ion exchanger layer having high water permeability accommodated in a concentration chamber has a water permeability of 10 at a pressure of 35 kPa.
2. The electric regeneration type deionized water production apparatus according to claim 1, wherein the pressure is not less than kg · cm −1 · h −1 .
【請求項3】 濃縮室に収容する水透過性の小さい層の
空隙の最大孔径は、水透過性が大きいイオン交換体層の
空隙の最大孔径の2/3以下である請求項1又は2に記
載の電気再生式脱イオン水製造装置。
3. The method according to claim 1, wherein the maximum pore size of the pores of the layer having low water permeability accommodated in the concentration chamber is not more than 2/3 of the maximum pore size of the pores of the ion exchanger layer having high water permeability. The electric regeneration type deionized water producing apparatus according to the above.
【請求項4】 濃縮室に収容する水透過性の小さい層
は、平均粒径10〜600μmの陰イオン交換樹脂から
なる厚み100〜8000μmの多孔性陰イオン交換体
層、平均繊維径10〜600μmの陰イオン交換繊維か
らなる厚み50〜8000μmの多孔性陰イオン交換体
層、平均粒径10〜600μmの陽イオン交換樹脂に陰
イオン交換性を有する化合物で被覆された多孔性イオン
交換体層、又は平均繊維径10〜600μmの陽イオン
交換繊維に陰イオン交換性を有する化合物が被覆された
多孔性イオン交換体層である請求項1、2又は3に記載
の電気再生式脱イオン水製造装置。
4. A layer having a small water permeability accommodated in a concentration chamber is a porous anion exchanger layer having a thickness of 100 to 8000 μm and comprising an anion exchange resin having an average particle diameter of 10 to 600 μm, and an average fiber diameter of 10 to 600 μm. A porous anion exchanger layer having a thickness of 50 to 8000 μm comprising an anion exchange fiber, a cation exchange resin having an average particle diameter of 10 to 600 μm, and a porous ion exchanger layer coated with a compound having an anion exchange property, 4. An electro-regeneration type deionized water producing apparatus according to claim 1, wherein the porous ion exchanger layer is a cation exchange fiber having an average fiber diameter of 10 to 600 [mu] m coated with a compound having an anion exchange property. .
【請求項5】 濃縮室に収容する水透過性が大きいイオ
ン交換体層は、平均粒径300〜10000μmの陰イ
オン交換樹脂もしくは陽イオン交換樹脂の単独又は陰イ
オン交換樹脂及び陽イオン交換樹脂の混合物からなる厚
み1000〜10000μmの多孔性イオン交換体層、
平均繊維径20〜2000μmの陰イオン交換繊維もし
くは陽イオン交換繊維の単独又は陰イオン交換繊維及び
陽イオン交換繊維の混合物からなる厚み1000〜10
000μmの多孔性イオン交換体層、平均粒径300〜
1000μmの陽イオン交換樹脂に陰イオン交換性を有
する化合物で被覆処理されている厚み1000〜100
00μmの多孔性イオン交換体層、又は平均繊維径20
〜2000μmの陽イオン交換繊維に陰イオン交換性を
有する化合物が被覆されている厚さ1000〜1000
0μmの多孔性イオン交換体層である請求項1、2又は
3に記載の電気再生式脱イオン水製造装置。
5. The ion-exchanger layer having a high water permeability accommodated in the concentration chamber may be made of an anion-exchange resin or a cation-exchange resin having an average particle diameter of 300 to 10,000 μm alone or an anion-exchange resin and a cation-exchange resin. A porous ion exchanger layer having a thickness of 1000 to 10000 μm comprising a mixture,
Anion-exchange fiber or cation-exchange fiber having an average fiber diameter of 20 to 2000 μm, or a thickness of 1000 to 10 consisting of a mixture of anion-exchange fiber and cation-exchange fiber alone
000 μm porous ion exchanger layer, average particle size 300 to
A thickness of 1000 to 100 in which a cation exchange resin having a thickness of 1000 μm is coated with a compound having an anion exchange property.
00 μm porous ion exchanger layer or average fiber diameter 20
Thickness of 1000 to 1000 in which a compound having an anion exchange property is coated on a cation exchange fiber of 20002000 μm
The electric regeneration type deionized water producing apparatus according to claim 1, 2 or 3, which is a porous ion exchanger layer having a thickness of 0 µm.
【請求項6】脱塩室に供給する被処理水が、電導度1〜
200μS/cmで硬度成分が炭酸カルシウム換算で1
0〜2000ppbである請求項1ないし5のいずれか
1項に記載の電気再生式脱イオン水製造装置。
6. The water to be supplied to the desalting chamber has an electric conductivity of 1 to 5.
At 200 μS / cm, the hardness component is 1 in terms of calcium carbonate.
The electric regeneration type deionized water producing apparatus according to any one of claims 1 to 5, wherein the apparatus has a pressure of 0 to 2000 ppb.
【請求項7】 平均粒径10〜600μmの陰イオン交
換樹脂からなる厚み100〜8000μmの多孔性陰イ
オン交換体層、平均繊維径10〜600μmの陰イオン
交換繊維からなる厚み50〜8000μmの多孔性陰イ
オン交換体層、平均粒径10〜600μmの陽イオン交
換樹脂に陰イオン交換性を有する化合物で被覆された多
孔性イオン交換体層、又は平均繊維径10〜600μm
の陽イオン交換繊維に陰イオン交換性を有する化合物が
被覆された多孔性イオン交換体層からなる、電気再生式
脱イオン水製造装置の濃縮室において陰イオン交換膜側
に配置される少なくとも表面に陰イオン交換基を有する
水透過性の小さいイオン交換体層。
7. A porous anion exchanger layer having a thickness of 100 to 8000 μm and comprising an anion exchange resin having an average particle diameter of 10 to 600 μm, and a porous layer having a thickness of 50 to 8000 μm and comprising anion exchange fibers having an average fiber diameter of 10 to 600 μm. Porous anion exchanger layer, a porous ion exchanger layer in which a cation exchange resin having an average particle diameter of 10 to 600 μm is coated with a compound having an anion exchange property, or an average fiber diameter of 10 to 600 μm
A cation exchange fiber comprising a porous ion exchanger layer coated with a compound having an anion exchange property, at least a surface disposed on the anion exchange membrane side in a concentration chamber of an electro-regeneration type deionized water production apparatus. An ion exchanger layer having a small water permeability and having an anion exchange group.
【請求項8】 平均粒径300〜10000μmの陰イ
オン交換樹脂もしくは陽イオン交換樹脂の単独又は陰イ
オン交換樹脂及び陽イオン交換樹脂の混合物からなる厚
み1000〜10000μmの多孔性イオン交換体層、
平均繊維径20〜2000μmの陰イオン交換繊維もし
くは陽イオン交換繊維の単独又は陰イオン交換繊維及び
陽イオン交換繊維の混合物からなる厚み1000〜10
000μmの多孔性イオン交換体層、平均粒径300〜
1000μmの陽イオン交換樹脂に陰イオン交換性を有
する化合物が被覆処理されている厚み1000〜100
00μmの多孔性イオン交換体層、又は平均繊維径20
〜2000μmの陽イオン交換繊維に陰イオン交換性を
有する化合物が被覆されている厚さ1000〜1000
0μmの多孔性イオン交換体層のいずれかである電気再
生式脱イオン水製造装置の濃縮室における水透過性の小
さいイオン交換体層の陽イオン交換膜側に配置される水
透過性が大きいイオン交換体層。
8. A porous ion-exchanger layer having a thickness of 1,000 to 10,000 μm comprising an anion exchange resin or a cation exchange resin having an average particle diameter of 300 to 10,000 μm alone or a mixture of an anion exchange resin and a cation exchange resin.
Anion-exchange fiber or cation-exchange fiber having an average fiber diameter of 20 to 2000 μm, or a thickness of 1000 to 10 consisting of a mixture of anion-exchange fiber and cation-exchange fiber alone
000 μm porous ion exchanger layer, average particle size 300 to
Thickness 1000 to 100 in which a compound having an anion exchange property is coated on a 1000 μm cation exchange resin
00 μm porous ion exchanger layer or average fiber diameter 20
Thickness of 1000 to 1000 in which a compound having an anion exchange property is coated on a cation exchange fiber of 20002000 μm
Ions having high water permeability, which are disposed on the cation exchange membrane side of the ion exchanger layer having low water permeability in the concentration chamber of the electro-regeneration type deionized water production apparatus which is one of the porous ion exchanger layers of 0 μm. Exchanger layer.
【請求項9】 陽極を備える陽極室と、陰極を備える陰
極室との間に陽イオン交換膜と陰イオン交換膜を交互に
配列させ、陽極側が陰イオン交換膜で区画され陰極側が
陽イオン交換膜で区画された脱塩室と陽極側が陽イオン
交換膜で区画され陰極側が陰イオン交換膜で区画された
濃縮室とを形成させた電気透析槽の脱塩室及び濃縮室に
イオン交換体を収容し、両極間に電圧を印加しながら脱
塩室に被処理水を供給し被処理水中の不純物イオンを除
去する電気再生式脱イオン水製造方法において、濃縮室
に収容するイオン交換体が、水透過性の異なる少なくと
も二層からなり、少なくとも表面に陰イオン交換基を有
する水透過性の小さい層が、陰イオン交換膜側に配置さ
れていることを特徴とする電気再生式脱イオン水製造方
法。
9. A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode side is cation exchange membrane. An ion exchanger is provided in a desalination chamber and a concentration chamber of an electrodialysis tank which has a desalination chamber partitioned by a membrane and a concentration chamber partitioned by a cation exchange membrane on the anode side and a cathode side partitioned by an anion exchange membrane. In the electric regeneration type deionized water production method of supplying the water to be treated to the desalination chamber while removing the impurity ions in the water to be treated while applying a voltage between the two poles, the ion exchanger accommodated in the enrichment chamber, Electroregenerating deionized water production, characterized in that at least two layers having different water permeability and at least a layer having a small water permeability having an anion exchange group on the surface are arranged on the anion exchange membrane side. Method.
JP2000183640A 2000-06-19 2000-06-19 Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor Pending JP2002001345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183640A JP2002001345A (en) 2000-06-19 2000-06-19 Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183640A JP2002001345A (en) 2000-06-19 2000-06-19 Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor

Publications (1)

Publication Number Publication Date
JP2002001345A true JP2002001345A (en) 2002-01-08

Family

ID=18684196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183640A Pending JP2002001345A (en) 2000-06-19 2000-06-19 Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor

Country Status (1)

Country Link
JP (1) JP2002001345A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
WO2006062176A1 (en) * 2004-12-06 2006-06-15 Organo Corporation Electric deionized liquid production apparatus and process for producing deionized liquid
JP2009160554A (en) * 2008-01-09 2009-07-23 Japan Organo Co Ltd Supply water feed facility in power-station
JP2011144166A (en) * 2009-12-14 2011-07-28 Shunkosha:Kk Potable water
WO2011152226A1 (en) 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
WO2018159723A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Filter
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
JP2019177327A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Electric deionization device, and method of producing deionized water
JP2020078772A (en) * 2018-11-12 2020-05-28 栗田工業株式会社 Electrodeionization device and method for producing deionized water using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
WO2006062176A1 (en) * 2004-12-06 2006-06-15 Organo Corporation Electric deionized liquid production apparatus and process for producing deionized liquid
JP2006159064A (en) * 2004-12-06 2006-06-22 Japan Organo Co Ltd Electric deionized liquid production apparatus and method for producing deionized liquid
JP2009160554A (en) * 2008-01-09 2009-07-23 Japan Organo Co Ltd Supply water feed facility in power-station
JP2011144166A (en) * 2009-12-14 2011-07-28 Shunkosha:Kk Potable water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
US8871073B2 (en) 2010-06-03 2014-10-28 Organo Corporation Electrodeionization apparatus for producing deionized water
WO2011152226A1 (en) 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
US10252218B2 (en) 2015-02-17 2019-04-09 Kurita Water Industries Ltd. Electrodeionization device and pure-water production system
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
WO2016133041A1 (en) * 2015-02-17 2016-08-25 栗田工業株式会社 Electrodeionization device and pure water production device
KR20170117365A (en) 2015-02-17 2017-10-23 쿠리타 고교 가부시키가이샤 Electrodeionization device and pure water production device
WO2018159723A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Filter
US10662083B2 (en) 2017-02-28 2020-05-26 Toray Industries Filter
CN110312559A (en) * 2017-02-28 2019-10-08 东丽株式会社 Filter
JP7020404B2 (en) 2017-02-28 2022-02-16 東レ株式会社 filter
JPWO2018159723A1 (en) * 2017-02-28 2019-12-19 東レ株式会社 filter
CN110312559B (en) * 2017-02-28 2021-06-08 东丽株式会社 Filter
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
JPWO2018235366A1 (en) * 2017-06-23 2020-04-23 栗田工業株式会社 Control method and design method of electric deionization apparatus
CN110612154A (en) * 2017-06-23 2019-12-24 栗田工业株式会社 Control method and design method of electrodeionization device
JP2019177327A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Electric deionization device, and method of producing deionized water
JP2020078772A (en) * 2018-11-12 2020-05-28 栗田工業株式会社 Electrodeionization device and method for producing deionized water using the same
JP7275536B2 (en) 2018-11-12 2023-05-18 栗田工業株式会社 Electrodeionization apparatus and method for producing deionized water using the same

Similar Documents

Publication Publication Date Title
US6471867B2 (en) Electro-regenerating type apparatus for producing deionized water
KR100980989B1 (en) Electric deionized water-producing apparatus
CA2358935C (en) Electrodeionization apparatus and method
EP0892677B1 (en) Electrodeionization apparatus and method
CA2325403C (en) Electrical deionization apparatus
EP1577268B1 (en) Electric demineralizer
JP2011505241A (en) System and method for water treatment
CN1537078A (en) Electric demineralizer
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP3947829B2 (en) Deionized water production equipment
JP2002001345A (en) Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP2008055388A (en) Electric deionized water making apparatus and its operation method
JP4049170B2 (en) Method for producing deionized water production apparatus
JP2003190820A (en) Electric demineralizing apparatus
JP7224994B2 (en) Electrodeionized water production device and deionized water production method
JP2001314866A (en) Method and device for preparing deionized water
JP2008132492A (en) Electric demineralizer
JP2001225078A (en) Electric regeneration type deionized water making apparatus and deionized water making method using the same
JP2001049009A (en) Heterogeneous multi-layered ion exchange film, method and device for manufacturing deionized water using the same
JP2003190821A (en) Electric demineralizing apparatus
WO2003055604A1 (en) Electric demineralization apparatus
JP3979890B2 (en) Operation method for producing deionized water
JP7077172B2 (en) Electric deionized water production equipment
JP2003190963A (en) Ion exchanger and electric demineralizer
CN116507402A (en) Electrodeionization arrangement for enhanced removal of weakly ionized species