WO2006062176A1 - Electric deionized liquid production apparatus and process for producing deionized liquid - Google Patents

Electric deionized liquid production apparatus and process for producing deionized liquid Download PDF

Info

Publication number
WO2006062176A1
WO2006062176A1 PCT/JP2005/022600 JP2005022600W WO2006062176A1 WO 2006062176 A1 WO2006062176 A1 WO 2006062176A1 JP 2005022600 W JP2005022600 W JP 2005022600W WO 2006062176 A1 WO2006062176 A1 WO 2006062176A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
region
desalting
ion exchanger
ion
Prior art date
Application number
PCT/JP2005/022600
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Mizuochi
Koji Yamanaka
Naoyuki Tajima
Hiroshi Inoue
Akira Nakamura
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Publication of WO2006062176A1 publication Critical patent/WO2006062176A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention uses ion exchange membranes used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized liquid or in manufacturing sugar liquid, juice, wine, etc.
  • the present invention relates to an electric deionization liquid production apparatus and a deionization liquid production method with a simplified apparatus structure.
  • a conventional electric deionized liquid production apparatus basically has a mixed ion exchange resin layer of an anion exchange resin and a cation exchange resin as an ion exchanger in a gap formed by a cation exchange membrane and an anion exchange membrane. Filling it into a deionization chamber, allowing the liquid to be processed to pass through the ion exchange resin layer, and applying a direct current to the flow of the liquid to be processed through the ion exchange membrane in the vertical direction, A deionized liquid is produced while electrically removing ions in the liquid to be treated in the concentrated liquid flowing outside the two ion exchange membranes.
  • Japanese Patent Application Laid-Open No. 2000-033 3 4 5 60 discloses a deionization chamber filled with a monolithic organic porous ion exchanger (hereinafter, also simply referred to as “monolith”).
  • monolithic organic porous ion exchanger hereinafter, also simply referred to as “monolith”.
  • the deionized water is removed to remove ionic impurities in the water to produce deionized water, and a DC electric field is applied to the deionized chamber to adsorb to the monolith.
  • the application of the DC electric field is performed in such a way that a number of deionization chambers are arranged in parallel if the ions to be eliminated migrate in the direction opposite to the direction of water flow in the monolith. It is disclosed that the structure of the apparatus can be simplified and material costs, processing costs, and assembly costs can be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 00 3-3 3 4 5 6 0 (Claim 1, Paragraph No. 0 0 3 0)
  • an object of the present invention is to further simplify the structure of the apparatus than the conventional one without using an ion exchange membrane, and to prevent the occurrence of scale, and an apparatus for producing an electric deionized liquid and a deionized liquid. It is to provide a manufacturing method.
  • a desalting region filled with an ion exchanger and a part of the liquid to be processed disposed adjacent to the ion exclusion side of the desalting region are
  • an electro-deionized liquid production system equipped with a permeating liquid permeation area a part of the liquid to be treated introduced into the desalting area is allowed to pass through the liquid permeation area to be electrophoretically excluded. If the structure discharges together with impurities into the electrode chamber or the concentration chamber, the device structure can be further simplified than the conventional one without using an ion exchange membrane.
  • the inventors have found that the generation of scale can be prevented by the diluting effect of the permeate to be treated, and have completed the present invention.
  • the present invention includes a desalting region filled with an ion exchanger, a liquid permeable region through which a part of the liquid to be disposed disposed adjacent to the ion exclusion side of the desalting region, and the desalting region.
  • An electrode disposed on both sides of the salt region and the liquid permeation region, a liquid inflow pipe to be treated for passing the liquid to be treated, an electrode chamber or a concentration chamber for discharging the liquid that has permeated from the liquid permeation region,
  • a desalting solution outlet pipe for discharging desalted solution from the desalting region; and at least a porous ion exchanger in the liquid permeation region.
  • a deionized liquid production apparatus is provided.
  • the present invention also provides a desalting solution by passing a processing solution through a desalting region filled with an ion exchanger and adsorbing and removing ionic impurities in the processing solution.
  • an electric deionization liquid production apparatus that removes adsorbed ionic impurities by electrophoretic application by applying an electric field to the desalting region, at least adjacent to the ion exclusion side of the desalting region A part of the liquid to be treated introduced into the desalting region is allowed to pass through the porous ion exchanger, and is discharged into the electrode chamber or the concentration chamber together with the ionic impurities that are electrophoretically excluded.
  • a method for producing a deionized liquid is provided.
  • the structure of the apparatus can be further simplified than the conventional one without using an ion exchange membrane, In the liquid permeation region, scale can be prevented from being generated due to the dilution effect of the liquid to be treated.
  • FIG. 1 is a schematic diagram showing the structure of an electrical deionized liquid production apparatus according to the first embodiment of the present invention
  • FIG. 2 is an electrical diagram of the second embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the structure of the deionized liquid production apparatus
  • FIG. 3 is a schematic diagram showing the structure of the electric deionized liquid production apparatus of the third embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the structure of an electrical deionized liquid production apparatus according to a fourth embodiment of the present invention, and FIG. 5 shows a desorption used in the electrical deionized liquid production apparatus of FIG.
  • FIG. 6 is a schematic diagram showing the structure of the electrical deionized liquid production apparatus of Example 2, and FIG.
  • FIG. 7 is a diagram illustrating the filling state of the ion region and the liquid permeable region.
  • FIG. It is a figure explaining the filling state of the deionization area
  • the ion exchanger filled in the demineralization zone is not particularly limited, and is filled in the conventional EDI demineralization chamber.
  • Examples of such an ion exchanger include monoliths, granular ion exchange resins, and mixtures of monoliths and granular ion exchange resins.
  • the monolith is an open cell having a mesopore having an average diameter of 1 to 100 ⁇ m, preferably 10 to 100 ⁇ m in the wall of the mac mouth pores connected to each other.
  • the total pore volume is 1 to 50 ml / g, preferably 4 to 20 ml / g, the ion exchange groups are uniformly distributed, and the ion exchange capacity is 0.5 mg equivalent / g dry porous. The thing more than a solid body is mentioned. Further, the flow resistance of the monolith is made smaller than that of the porous ion exchanger loaded in the liquid permeation region. When the porous ion exchanger is a monolith, the average diameter of the mesopore is set to be smaller than the average diameter of the monolith loaded in the desalting region.
  • the liquid permeation region is loaded with a porous ion exchanger, and is disposed adjacent to the ion exclusion side of the desalting region.
  • a porous ion exchanger When a part of the liquid to be treated permeates, it is electrophoretically excluded. This is a region through which ionic impurities are transmitted.
  • the porous ion exchanger loaded in the liquid permeation region is particularly limited as long as it retains its shape, electrophoretically excludes ions, and allows a part of the liquid to be treated to permeate.
  • examples include monoliths, fibrous porous ion exchangers, and particle agglomerated porous ion exchangers. Of these, monoliths have a uniform distribution of ion exchange groups and prompt ion exclusion. Is preferable.
  • fibrous porous ion exchanger examples include, for example, single fibers and woven fabrics and non-woven fabrics that are aggregates of single fibers described in JP-A-5-64726, and radiation graft polymerization to these processed products. And an ion-exchange group introduced and processed and molded.
  • particle agglomerated porous ion exchanger examples include thermoplastic polymers and thermosetting resins described in, for example, JP-A Nos. 10-1 9 2 7 1 6 and 10-1 9 27 17.
  • Polymer mixing point Examples include those obtained by bonding ion-exchange resin particles using a remer or a crosslinkable polymer and then processing and molding.
  • the monolith loaded in the liquid permeation region is the same as the monolith exemplified as the ion exchanger in the desalination region, but no flow rate adjusting means is provided in the permeate flow path as will be described later.
  • the monolith has a smaller mesopore average diameter than the monolith used in the desalination zone. Specifically, the average diameter is 1 to 100 m, preferably 1 to 20 m, in the wall of the macropore and the mac mouth pore that are connected to each other.
  • a monolith having a small average mesopore diameter can be obtained by a method such as increasing the amount of the surfactant added or increasing the agitation during the production.
  • the flow rate adjusting means include a flow rate adjusting valve and an orifice.
  • an ion exchange membrane has been attached to the ion rejection side of the desalting zone.
  • the hardness component concentration in the treated water and the applied current density there is a problem of scale generation on the ion exchange membrane surface on the concentration chamber side. It was.
  • the liquid permeation region of the present invention a part of the liquid to be treated permeates, so that the dilution effect can prevent the generation of scale.
  • the liquid that has passed through the liquid-permeable region flows into the electrode chamber or the concentration chamber as it contains ionic impurities, it is not necessary to supply a separate electrode solution or concentrated solution.
  • the ion-exclusion side is the cathode side of the desalting region when removing the cationic impurities, and the anode side of the desalting region when removing the anionic impurities, and the cationic impurities and the anionic impurities are simultaneously removed. When removing, both the cathode side and the anode side.
  • the flow resistance of the porous ion exchanger loaded in the liquid permeation region is larger than the flow resistance of the ion exchanger charged in the desalting region, but without providing a separate special channel distribution means, This is preferable in that most of the liquid to be treated that has flowed into the desalting area flows out of the desalting area as a deionized liquid from the desalting area, and a part of the liquid to be treated permeates into the liquid permeation area. If flow rate adjusting means is provided in the flow path of the effluent permeated from the liquid permeation region, the flow rate of the permeated liquid and the deionized liquid can be adjusted to a desired ratio by the flow rate adjusting means.
  • the flow resistance of the porous ion exchanger loaded in the liquid permeation region is the same as that of the ion exchanger filled in the desalination region. It may be the same as the fluid flow resistance.
  • a monolith is used for both the desalting region and the liquid permeation region
  • a single monolith processed into a shape extending over the desalting region and the liquid permeation region can be used. This is advantageous in that it is not necessary to separately manufacture the desalination zone monolith and the liquid permeation zone monolith.
  • the flow rate ratio of the permeate passing through the liquid permeation region to the flow rate of the liquid to be treated is, for example, 2 to 30%, preferably 4 to 30%. If this ratio is less than 2%, the diluting effect is reduced and it becomes difficult to prevent the generation of scale, and if it exceeds 30%, it is not preferable because the yield of the desalted solution is reduced.
  • the form in which the liquid permeation region is disposed adjacent to the ion rejection side of the desalting region is not particularly limited, but the form in which the monoliths are disposed adjacent to each other is preferable in terms of quick ion exclusion. .
  • the monoliths are arranged adjacent to each other, the monolith for the arrangement desalting region and the monolith for the liquid permeation region are arranged in close contact with each other in the electric field application direction.
  • the monolith and the ion exchange resin are arranged adjacent to each other, or the mixture of the monolith and the ion exchange resin in the desalination region is a sponge, so the two phases do not mix and the phases are mixed. Can be formed Monkey.
  • the electric deionized liquid production apparatus of the present invention in the case of a gas-on cell or a cation cell, it is arranged adjacent to the side opposite to the ion exclusion side of the desalting region. It may be another liquid permeable region through which a part passes, or a conventional ion exchange membrane. When this liquid permeation region is provided, the liquid that has permeated from this liquid permeation region flows into the electrode chamber or the concentration chamber. This eliminates the need for an ion exchange membrane, thereby simplifying the device structure and reducing the manufacturing cost.
  • an electrode solution or a concentrate is separately supplied to the electrode chamber or the concentration chamber adjacent to the ion exchange membrane, as in the case of the conventional EDI.
  • the porous ion exchanger loaded in the other liquid permeable region include the same porous ion exchangers loaded in the liquid permeable region.
  • FIG. Fig. 1 shows a schematic diagram of a two-cell EDI that uses a cation cell ((A) in the figure) and an anion cell ((B)) to remove anionic impurities in the liquid to be treated.
  • FIG. 1 shows a schematic diagram of a two-cell EDI that uses a cation cell ((A) in the figure) and an anion cell ((B)) to remove anionic impurities in the liquid to be treated.
  • an electric deionized liquid production apparatus 10 is composed of a cation cell 10 a and an anion cell 10 b.
  • the cation cell 10 a is permeated through a weakened thione region 1 a filled with a cation exchanger and a part of the liquid to be treated arranged adjacent to the ion exclusion side (cathode side) of the weakened thione region 1 a.
  • An anode chamber 7 into which the permeated liquid flows and a weak thiol liquid outflow pipe 12 for discharging the weak thiol liquid from the weak thiol region 1a are provided.
  • the cation cell 10 a is a conventional cation cell in which the ion exchange membranes provided on both sides of the desalting chamber are omitted, and a liquid permeable region in which a cation monolith is loaded is attached to the ion exchange membrane part.
  • the cation cell 10 a can be formed from a member having a very simple structure in which the weak thione region 1 a, the liquid permeable region 2 a, the liquid permeable region 3 a, and the electrode can be disposed at predetermined positions.
  • the electrical deionized liquid production system can reduce the parts and assembly costs from this point as well as the possibility of leakage of the liquid to be processed by eliminating the joints, pipes and joints. In addition, the safety of the equipment and the stability of operation can be improved.
  • the flow resistance of the cation monolith forming the liquid permeation region 2 a and the liquid permeation region 3 a is larger than the flow resistance of the cation exchanger filled in the weak thione region 1 a. .
  • the liquid to be treated is allowed to flow from the vicinity of the cathode side of the weakened thione area 1a, and the liquid to be treated is allowed to flow out from the vicinity of the anode side of the weakened thione area 1a almost diagonally to the inlet of the liquid to be treated.
  • the difference between the anion cell 10 b and the cation cell 10 a is that the desalination area is filled with an anion exchanger, and the liquid permeation area 2 b and the liquid permeation area 3 b are filled with an anion monolith,
  • the liquid to be treated was introduced from the vicinity of the anode side of the deanion region 1b, and the treatment liquid was caused to flow out from the vicinity of the cathode side of the deanion region 1b on the diagonal line of the inlet of the liquid to be treated.
  • the weak thione liquid outlet pipe 12 of the cation cell 10a is connected to the liquid inlet pipe 13 to be treated of the anion cell 10b.
  • the anion cell 10 b has a very simple structure.
  • the liquid to be treated is caused to flow from the liquid inlet pipe 11 to the weakening thione region 1a.
  • the liquid to be treated which has flowed into the weak thione region 1a has a flow resistance of the cation monolith forming the liquid permeation region 2a and the liquid permeation region 3a. Since it is larger than the liquid resistance, most of the liquid to be treated flows through the weakened thione region 1a, and a part of it passes through the liquid permeable region 2a and the liquid permeable region 3a.
  • the permeate that has permeated the liquid permeation region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded.
  • the liquid permeation zone 2a a part of the liquid to be treated is always permeating, and scale generation is prevented by the dilution effect.
  • the permeated liquid that has passed through the liquid permeable region 3 a is discharged into the anode chamber 7 as an anolyte.
  • the flow path 17 in the weak force thione region 1a is schematically shown, but the actual flow is also generally similar to this.
  • the liquid to be processed from which the cationic impurities have been removed is caused to flow from the liquid inlet pipe 13 to the de-on region 1 b.
  • the liquid to be treated that has flowed into the deanion region 1 b forms a liquid permeable region 2 b and a liquid permeable region 3 b. Since the liquid flow resistance of the monolith is greater than the liquid flow resistance of the anion exchanger filled in the deionized area 1b, most of the liquid to be treated flows through the deanion area 1b, and part of the liquid is liquid. It passes through the permeation region 2b and the liquid permeation region 3b.
  • the permeated liquid that has passed through the liquid permeable region 2 b is discharged as an anolyte into the anode chamber 7 together with the anionic impurities Y— that are electrophoretically excluded.
  • the liquid permeation region 2b like the cation cell 10a, a part of the liquid to be treated is always permeated, and scale generation is prevented by the dilution effect.
  • the permeated liquid that has permeated through the liquid permeable region 3 b is discharged into the cathode chamber 6 as a catholyte.
  • the flow path 18 in the deanion region 1 b is schematically shown, but the actual flow is also generally similar to this.
  • both the cation cell 1 0 a and the anion cell 1 0 b use an ion exchange membrane at all. Therefore, the device structure can be greatly simplified and the manufacturing cost can be reduced.
  • the generation of scale that could not be avoided by conventional EDI is transmitted. This can be prevented by the dilution effect of the liquid to be treated.
  • FIG. Fig. 2 shows a cation cell 20 a (in the figure, (A)) that removes cationic impurities in the liquid to be treated and an anion cell 20 b (in the figure, (B)) that removes anionic impurities.
  • FIG. 2 shows a schematic diagram of another EDI of the 2-cell type used.
  • FIG. 2 the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 2 differs from FIG.
  • cation cell 20 a has a cation exchange on the anode side of the weakened thione region 1 a.
  • Membrane 5 is provided to prevent liquid permeation between the weakened thione region 1a and the anode chamber 7.
  • a cation exchange membrane 5 is provided on the cathode side of the deanion region 1b. However, there is no permeation of liquid between the deanion region 1 b and the cathode chamber 6.
  • both the caton cell 20 a and the anion cell 20 b are compared with the conventional EDI. Since the ion exchange membrane can be halved, the device structure can be simplified and the manufacturing cost can be reduced. In addition, the liquid permeation region 2 a on the cathode side of the cathode cell 20 a and the liquid permeation region 2 b on the anode side of the anion cell 20 b transmit the generation of scales that could not be avoided by conventional EDI. This can be prevented by the dilution effect of the liquid to be treated.
  • anolyte of the cation cell 20a and the catholyte of the anion cell 20b are the permeate that has permeated from the permeation regions 2a and 2b, a separate liquid feed pump or the like can be omitted.
  • FIG. Fig. 3 is a schematic diagram of a single cell type EDI that simultaneously removes force thionic impurities and anionic impurities.
  • FIG. 3 the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and differences are mainly described. That is, in FIG. 3, the difference from FIG. 1 is that the cell structure is a single-cell cation / anion cell 30. In the desalted region 1c, there are cation exchangers and anion exchangers.
  • the liquid permeation region 2 a on the cathode side of the desalination region 1 c is loaded with a cation monolith, and the liquid permeation region 3 b on the anode side of the desalination region 1 c It is in the point where the anion monolith was loaded.
  • Processed liquid inflow pipe 1 1 Processed into the desalting zone 1 c through the process 1 Since the liquid resistance of the cation monolith and the anion monolith forming the liquid permeation region 2 a and the liquid permeation region 3 b is larger than that of the mixed ion exchanger filled in the desalting region 1 c, Most of the liquid to be treated flows through the desalting region 1c, and part of the solution passes through the liquid permeation region 2a and the liquid permeation region 3b.
  • the permeate that has permeated the liquid permeation region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded. Further, the permeated liquid that has permeated through the liquid permeable region 3 b is discharged into the anode chamber 7 as an anolyte.
  • the flow path 17 in the desalination zone 1 c is schematically shown. The actual flow is also almost the same as this.
  • the ion exchange membrane can be omitted as compared with the conventional EDI, so that the structure of the apparatus can be simplified and the production cost can be reduced. Further, in the liquid permeation region 2 a on the cathode side and the liquid permeation region 3 b on the anode side of the cation / anion cell 30 , the generation of scale, which could not be avoided by conventional EDI, is reduced. This can be prevented by the dilution effect.
  • FIG. 4 is a schematic diagram of EDI in which a plurality of desalting chambers for removing cationic impurities and anionic impurities simultaneously are arranged in parallel.
  • FIG. 4 the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 4 differs from FIG. 1 in that the basic structure of the desalting cell disposed between the electrodes is different.
  • the number of demineralization chambers ld and Id is not limited to this, and may be one or three or more.
  • the liquid to be treated is caused to flow into the desalting areas 1 d and 1 d from the liquid to be treated inflow pipe 1 1.
  • the liquid to be treated that has flowed into the desalting areas 1 d and 1 d is filled with the resistance of the monolith that forms the liquid permeation area 2 a and the liquid permeation area 2 b into the desalination areas 1 d and 1 d.
  • the permeated liquid that has permeated through the liquid permeable region 2 b is discharged into the anode chamber 7 and the concentrating chamber 9 as the anolyte and concentrated liquid together with the anionic impurities Y that are electrophoretically excluded.
  • the liquid permeation region 2a and the liquid permeation region 2b a part of the liquid to be treated is always permeating, and scale generation is prevented by the dilution effect.
  • the flow path 17 in the desalination region 1 d is schematically shown in the figure. The actual flow is almost the same as this.
  • the electric deionization liquid production equipment 40 in parallel with the desalination chamber all four ion exchange membranes used in the conventional EDI can be omitted, so the equipment structure can be simplified and manufactured. Cost can also be reduced.
  • the liquid permeation area 2 a on the cathode side and the liquid permeation area 2 b on the anode side allow the generation of scale that could not be avoided by conventional EDI to be treated. This can be prevented by the dilution effect.
  • the gas was sufficiently substituted with nitrogen, sealed, and allowed to stand for polymerization at 60 ° C for 24 hours.
  • the contents were taken out and Soxhlet extracted with isopropanol for 12 hours to remove unreacted monomers and sorbitan monoleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night.
  • the porous body containing 3.3 mol% of the cross-linking component made of styrene / divinylbenzene copolymer was cut and 7.9 g was sampled, and 90 ml of dichloromethane was added.
  • the internal structure of this porous body had an open-cell structure, and most of the macropores with an average diameter of 30 m overlapped.
  • the average diameter of the mesopore formed by the overlap of the mac mouth pore and the mac mouth pore was determined by the mercury intrusion method, and the mean diameter was 7.8 ⁇ m and the total pore volume was 4. Oml / g. Met.
  • P-Chloromethylstyrene 19.2 instead of styrene 19.2g g was mixed with 1.0 g of dibutenebenzene, 0.3 g of azobisoxy mouth-tolyl and 2.0 g of sorbitan monoleate, and dissolved uniformly.
  • Add the p-chloromethylstyrene / dibutenebenzene / azobisi soptite-tolyl Z sorbitan monooleate mixture to 180 ml pure water (revolution / spinning) using a planetary stirrer (, 1 00 rpm / 3 30 rpm) for 2 minutes to obtain a water-in-oil emulsion.
  • the gas was sufficiently substituted with nitrogen, sealed, and allowed to stand for polymerization at 60 ° C for 24 hours. After the completion of the polymerization, the contents were taken out and extracted with Sopropanol for 12 hours to remove unreacted monomers and sorbitan monoleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night. 6.8 g of a porous material containing 5.0 mol% of a cross-linking component composed of p-chloromethylstyrene Z divinylbenzene copolymer obtained in this manner was cut and collected, and 900 g of tetrahydrofuran was collected.
  • a cation cell 20a as shown in FIG. 5 was first produced. Obtained liquid permeability From the cation monolith for the excess region and the cation monolith for the weak force thione region, in the pure water wet state, the length (H) 50 mm, width (W) 4 Omm, thickness (L 20 mm, two rectangular parallelepiped 2 a, 1 1 a was cut out to obtain a filler that was stacked and filled in the weak thione chamber, and then in the cell container 2 0 1, in order from the cathode chamber (left side in the figure), the cation monolith for liquid permeation region 2 a and Cationic monolith for weakness cation region 1 1 a is closely packed, and cation monolith for weakness thione region 1 1 a is placed in the adjacent space on the anode side of cation exchange resin 1 2 a (Amberlite IR 1 20 B, Rohm and (Ma)
  • the cell container 20 1 has a cation monolith for weakening thione region 1 1 in the figure.
  • Treatment resin outflow pipe 1 2 is placed on the anode side upper surface where exchange resin 1 2 a is located
  • a cathode chamber was formed on the cathode side of the cell container 20 1, and a cathode made of SUS 3 04 was disposed on the outer surface of the cathode chamber, and the cation exchange resin 1 2 a
  • a cation exchange membrane Nafion 350; manufactured by DuPont
  • An anode made of a platinum-coated titanium substrate is placed on the outer surface of the cation exchange membrane.
  • a cation cell 20 a was prepared by providing a take-out port, for the sake of simplicity, the description of the cation exchange membrane, the electrode chamber, and the electrode was omitted in FIG.
  • each of the two rectangular parallelepipeds 2 (H) 5 Omm, width (W) 40 mm, thickness (Lj 20 mm) 2 b and lib were cut out to obtain a filler to be stacked and filled in the deanion chamber, and then into the cell container 20 2, in order from the anode chamber (left side in FIG. 5), the anion monolith for liquid permeation region 2 b and the union monolith for the union region 1 1 b are intimately packed and placed in the adjacent space on the cathode side of the union region monolith for the deanion region 1 1 b.
  • Anion exchange resin 1 2 b (Amberlite IRA 40 2 BL, manufactured by Romand Haas) 80 ml volume was filled.
  • the cell container 20 2 is provided with an inflow pipe 13 for the liquid to be treated (depressurized thione liquid) on the bottom surface where the union area monolith for deanion area 1 1 b is located, and the anion replacement resin 1 2 b is A desalting solution outflow pipe 14 is attached to the upper surface on the cathode side.
  • an anode chamber was formed on the anode side of the cell container 202, and an anode made of a platinum-coated titanium substrate was further arranged on the outer surface of the anode chamber.
  • a cation exchange membrane (Naf ion 350; manufactured by DuPont) is placed in close contact with the cathode side of the anion exchange resin 12 b, and the outer surface of the cation exchange membrane is made of SUS 304.
  • An anion cell 20 b was prepared by disposing a cathode and appropriately providing a nozzle and a lead wire outlet.
  • the resulting cation cell 20 a treated liquid outflow pipe 12 is connected to the gas-on cell 20 b treated liquid inflow pipe 13, and the two electrode chambers are permeated through the other two electrode chambers. A part of the liquid was supplied.
  • the obtained electric deionized liquid production apparatus 20 was continuously supplied at a flow rate of 15 1 / h with water having a conductivity of 1305 to 111 as a liquid to be treated, and a DC current of 2.5 A was applied.
  • a current was applied in series from the thione cell to the anion cell, an operating voltage was 110 V and a treatment liquid having an electrical conductivity of 1 / i S / cm was obtained at a flow rate of 10 / h.
  • the flow rate of the permeate (catholyte) permeated through the force thione cell 20a and the flow rate of the permeate (anolyte) permeated through the gas cell 2Ob were 2.5 1 / h, respectively. .
  • Example 2 Cation and anion using a monolith prepared in the same manner as in Example 1.
  • a simultaneous processing type cell was produced.
  • the liquid permeation region cation monolith and the liquid permeation region anion monolith and the weak force thione region catholyte obtained in Example 1 were used. Cut out a rectangular parallelepiped of length (H) 50 mm, width (W) 40 mm, and thickness (L j 20 mm) in pure water wet state from the union monolith and the union monolith for the weakness thione region.
  • a flow rate adjusting valve 15 was attached to the flow path of the effluent that flowed out, and then a cathode chamber was formed on the cathode side of the cell container 20 3, and a SUS cathode was further arranged on the outer surface of the cathode chamber.
  • an anode chamber is formed on the anode side, and an anode of a platinum-coated titanium substrate is arranged on the outer surface of the anode chamber, and an appropriate nozzle or lead wire outlet is provided to provide an electrical deionized liquid production apparatus.
  • 30 a was prepared Note that, for the sake of simplicity, the description of the electrode chamber and the electrode was omitted in FIG.
  • the apparatus structure can be further simplified than the conventional one, and the generation of scale can be prevented and the method for producing the deionized liquid can be prevented. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An electric deionized liquid production apparatus comprising at least desalting region (1c) filled with an ion exchanger; liquid permeation regions (2a,3b) disposed adjacent to the ion removing sides of the desalting region (1c) and adapted to cause portion of a liquid to be treated to pass therethrough; electrodes (4a,4b) disposed on both sides of the liquid permeation regions and desalting region (1c); liquid to be treated inflow pipe (11) for introducing a liquid to be treated; electrode chambers (6,7) adapted to discharge any liquid having permeated the liquid permeation regions (2a,3b); and desalted liquid outflow pipe (14) for discharging a desalted liquid from the desalting region (1c), wherein the liquid permeation regions (2a,3b) are packed with a porous ion exchanger. Thus, there can be provided an electric deionized liquid production apparatus that without the use of any ion exchange membrane, simplifies the conventional apparatus structure and prevents any occurrence of scale, and provided a relevant process for producing a deionized liquid.

Description

明細書  Specification
電気式脱ィオン液製造装置及ぴ脱イオン液の製造方法 技術分野  Technical Field of Electric Deionization Liquid Manufacturing Equipment and Deionization Liquid Manufacturing Method
本発明は、脱イオン液を用いる半導体製造工業、製薬工業、食品工業、 発電所、 研究所等の各種の工業あるいは糖液、 ジュース、 ワイン等の製 造等で使用されるイオン交換膜を使用することなく、 装置構造を簡略化 した電気式脱イオン液製造装置及び脱イオン液の製造方法に関するもの である。 背景技術  The present invention uses ion exchange membranes used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized liquid or in manufacturing sugar liquid, juice, wine, etc. The present invention relates to an electric deionization liquid production apparatus and a deionization liquid production method with a simplified apparatus structure. Background art
従来の電気式脱イオン液製造装置は、 基本的には陽イオン交換膜と陰 イオン交換膜で形成される隙間に、 イオン交換体としてァニオン交換樹 脂とカチオン交換樹脂の混合イオン交換樹脂層を充填して脱イオン室と し、 当該イオン交換樹脂層に被処理液を通過させるとともに、 前記両ィ オン交換膜を介して被処理液の流れに対して垂直方向に直流電流を作用 させて、 両ィォン交換膜の外側に流れている濃縮液中に被処理液中のィ オンを電気的に排除しながら脱イオン液を製造するものである。 このよ うな電気式脱イオン液製造装置は、 脱イオン室を多数並列配設し、 各濃 縮室及び電極室に脱塩室とは別の独立した流路を形成する必要があるた め、 装置構造が複雑であり、 製造コストを上昇させる。 .  A conventional electric deionized liquid production apparatus basically has a mixed ion exchange resin layer of an anion exchange resin and a cation exchange resin as an ion exchanger in a gap formed by a cation exchange membrane and an anion exchange membrane. Filling it into a deionization chamber, allowing the liquid to be processed to pass through the ion exchange resin layer, and applying a direct current to the flow of the liquid to be processed through the ion exchange membrane in the vertical direction, A deionized liquid is produced while electrically removing ions in the liquid to be treated in the concentrated liquid flowing outside the two ion exchange membranes. In such an electrical deionized liquid production apparatus, it is necessary to arrange a large number of deionization chambers in parallel, and to form separate flow paths separate from the demineralization chambers in each concentration chamber and electrode chamber. The device structure is complicated and increases the manufacturing cost. .
一方、 特開 2 0 0 3— 3 3 4 5 6 0号公報には、 モノリス状有機多孔 質イオン交換体 (本明細書中、 以下、 単に 「モノリス」 とも言う。 ) を 充填した脱イオン室を有し、 該脱イオン室に通水し、 水中のイオン性不 純物を除去して脱イオン水を製造すると共に、 該脱イオン室に直流電場 を印加して、 該モノ リスに吸着したイオン性不純物を系外に排除する電 気式脱イオン水製造装置において、 該直流電場の印加は、 排除されるィ オンが該モノリス内における通水方向に対して逆向きに泳動するように 行えば、 脱イオン室を多数並列配設する必要がなく、 装置の構造を簡略 化でき、 材料費、 加工費、 組み立て費を軽減させることが開示されてい る。 On the other hand, Japanese Patent Application Laid-Open No. 2000-033 3 4 5 60 discloses a deionization chamber filled with a monolithic organic porous ion exchanger (hereinafter, also simply referred to as “monolith”). The deionized water is removed to remove ionic impurities in the water to produce deionized water, and a DC electric field is applied to the deionized chamber to adsorb to the monolith. Electricity to remove ionic impurities out of the system In the gas deionized water production apparatus, the application of the DC electric field is performed in such a way that a number of deionization chambers are arranged in parallel if the ions to be eliminated migrate in the direction opposite to the direction of water flow in the monolith. It is disclosed that the structure of the apparatus can be simplified and material costs, processing costs, and assembly costs can be reduced.
(特許文献 1 ) 特開 2 0 0 3— 3 3 4 5 6 0号公報 (請求項 1、 段落番 号 0 0 3 0 )  (Patent Document 1) Japanese Patent Laid-Open No. 2 00 3-3 3 4 5 6 0 (Claim 1, Paragraph No. 0 0 3 0)
しかしながら、 近年、 合理化及び製造コス トの更なる低減の要求は止 まることを知らず、 電気式脱イオン液製造装置においても更なる改善が 望まれていた。 なお、 特開 2 0 0 3— 3 3 4 5 6 0号公報の段落番号 0 0 3 0には脱イオン室に充填するモノ リスとして、 モノリスとメソポア の平均径が 1 μ m未満のモノリスを組み合わせて用いることで、 イオン 交換膜を省略することができることが記載されているが、 メソポアの平 均径が 1 μ πι未満のモノリスはイオンは透過するものの、 水はほとんど 透過しないため、 イオン交換膜と同様の作用を奏し、 電極室又は濃縮室 には、 別途、 電極水又は濃縮水を供給する必要があった。 すなわち、 従 来、 脱塩領域におけるイオン交換体のイオン排除側に、 イオン交換膜を 使用することなく、 イオンの透過機能と水の透過機能を有する多孔質ィ オン交換体を設ければ、 装置構造が簡略化できると共に、 スケールの発 生を防止できるという発想は全く無かった。  However, in recent years, without knowing that the demand for rationalization and further reduction in production costs will not stop, further improvements have been desired in the electric deionization liquid production apparatus. In addition, in paragraph number 0 0 30 of Japanese Patent Laid-Open No. 2 03-3-3 3 4 5 60, a monolith having an average diameter of monolith and mesopore of less than 1 μm is used as a monolith filled in the deionization chamber. Although it is described that an ion exchange membrane can be omitted by using in combination, a monolith with an average mesopore diameter of less than 1 μπι can pass ions, but water hardly passes. It had the same effect as the membrane, and it was necessary to supply electrode water or concentrated water separately to the electrode chamber or concentration chamber. That is, conventionally, if a porous ion exchanger having an ion permeation function and a water permeation function is provided on the ion exclusion side of the ion exchanger in the desalination region without using an ion exchange membrane, the device There was no idea that the structure could be simplified and scale could be prevented.
従って、 本発明の目的は、 イオン交換膜を使用することなく、 装置構 造を従来のものより更に一層簡略化すると共に、 スケールの発生を防止 できる電気式脱イオン液製造装置及び脱イオン液の製造方法を提供する ことにある。 発明の開示 かかる実情において、 本発明者らは鋭意検討を行った結果、 イオン交 換体が充填された脱塩領域と、 脱塩領域のイオン排除側に隣接して配設 される被処理液の一部が透過する液透過領域とを備えた電気式脱イオン 液製造装置において、 脱塩領域に導入する被処理液の一部を、 液透過領 域に通過せしめて、 電気泳動的に排除されるイオン性不純物とともに電 極室又は濃縮室に排出する構造とすれば、 イオン交換膜を使用すること なく、 装置構造を従来のものより更に一層簡略化したものとすることが でき、 また液透過領域においては、 透過する被処理液の希釈効果により スケールの発生を防止することができること等を見出し、 本発明を完成 するに至った。 Accordingly, an object of the present invention is to further simplify the structure of the apparatus than the conventional one without using an ion exchange membrane, and to prevent the occurrence of scale, and an apparatus for producing an electric deionized liquid and a deionized liquid. It is to provide a manufacturing method. Disclosure of the invention Under such circumstances, the present inventors have conducted intensive studies, and as a result, a desalting region filled with an ion exchanger and a part of the liquid to be processed disposed adjacent to the ion exclusion side of the desalting region are In an electro-deionized liquid production system equipped with a permeating liquid permeation area, a part of the liquid to be treated introduced into the desalting area is allowed to pass through the liquid permeation area to be electrophoretically excluded. If the structure discharges together with impurities into the electrode chamber or the concentration chamber, the device structure can be further simplified than the conventional one without using an ion exchange membrane. The inventors have found that the generation of scale can be prevented by the diluting effect of the permeate to be treated, and have completed the present invention.
すなわち、 本発明は、 イオン交換体が充填された脱塩領域と、 該脱塩 領域のイオン排除側に隣接して配設される被処理液の一部が透過する液 透過領域と、 該脱塩領域と該液透過領域の両側に配設される電極と、 被 処理液を通液する被処理液流入管と、 該液透過領域から透過した液を排 出する電極室又は濃縮室と、 該脱塩領域から脱塩液を排出する脱塩液流 出管と、 を少なく とも備えるものであって、 該液透過領域には多孔質ィ オン交換体が装填されることを特徴とする電気式脱イオン液製造装置を 提供するものである。  That is, the present invention includes a desalting region filled with an ion exchanger, a liquid permeable region through which a part of the liquid to be disposed disposed adjacent to the ion exclusion side of the desalting region, and the desalting region. An electrode disposed on both sides of the salt region and the liquid permeation region, a liquid inflow pipe to be treated for passing the liquid to be treated, an electrode chamber or a concentration chamber for discharging the liquid that has permeated from the liquid permeation region, A desalting solution outlet pipe for discharging desalted solution from the desalting region; and at least a porous ion exchanger in the liquid permeation region. A deionized liquid production apparatus is provided.
また、 本発明は、 イオン交換体が充填された脱塩領域に被処理液を通 液して、 該被処理液中のイオン性不純物を吸着除去して脱塩液を得、 か つ、 該脱塩領域に電場を印加して、 吸着されたイオン性不純物を、 電気 的泳動により排除する電気式脱イオン液製造装置において、 少なくとも 該脱塩領域のイオン排除側に隣接して配設される多孔質イオン交換体に、 該脱塩領域に導入する被処理液の一部を通過せしめて、 前記電気泳動的 に排除されるイオン性不純物とともに電極室又は濃縮室に排出すること を特徴とする脱イオン液の製造方法を提供するものである。 本発明の電気式脱イオン液製造装置及び脱イオン液の製造方法によれ ば、 イオン交換膜を使用することなく、 装置構造を従来のものより更に —層簡略化したものとすることができ、 また液透過領域においては、 透 過する被処理液の希釈効果によりスケールの発生を防止することができ る。 図面の簡単な説明 The present invention also provides a desalting solution by passing a processing solution through a desalting region filled with an ion exchanger and adsorbing and removing ionic impurities in the processing solution. In an electric deionization liquid production apparatus that removes adsorbed ionic impurities by electrophoretic application by applying an electric field to the desalting region, at least adjacent to the ion exclusion side of the desalting region A part of the liquid to be treated introduced into the desalting region is allowed to pass through the porous ion exchanger, and is discharged into the electrode chamber or the concentration chamber together with the ionic impurities that are electrophoretically excluded. A method for producing a deionized liquid is provided. According to the electric deionization liquid production apparatus and the deionization liquid production method of the present invention, the structure of the apparatus can be further simplified than the conventional one without using an ion exchange membrane, In the liquid permeation region, scale can be prevented from being generated due to the dilution effect of the liquid to be treated. Brief Description of Drawings
第 1図は、 本発明の第 1の実施の形態例の電気式脱イオン液製造装置 の構造を示す模式図であり、 第 2図は、 本発明の第 2の実施の形態例の 電気式脱イオン液製造装置の構造を示す模式図であり、 第 3図は、 本発 明の第 3の実施の形態例の電気式脱ィオン液製造装置の構造を示す模式 図であり、 第 4図は、 本発明の第 4の実施の形態例の電気式脱イオン液 製造装置の構造を示す模式図であり、 第 5図は、 第 2図の電気式脱ィォ ン液製造装置で用いる脱イオン領域及び液透過領域の充填状態を説明す る図であり、 第 6図は、 実施例 2の電気式脱イオン液製造装置の構造を 示す模式図であり、 第 7図は、 第 6図の電気式脱イオン液製造装置で用 いる脱イオン領域及び液透過領域の充填状態を説明する図である。 発明を実施するための最良の形態  FIG. 1 is a schematic diagram showing the structure of an electrical deionized liquid production apparatus according to the first embodiment of the present invention, and FIG. 2 is an electrical diagram of the second embodiment of the present invention. FIG. 3 is a schematic diagram showing the structure of the deionized liquid production apparatus, and FIG. 3 is a schematic diagram showing the structure of the electric deionized liquid production apparatus of the third embodiment of the present invention. FIG. 5 is a schematic diagram showing the structure of an electrical deionized liquid production apparatus according to a fourth embodiment of the present invention, and FIG. 5 shows a desorption used in the electrical deionized liquid production apparatus of FIG. FIG. 6 is a schematic diagram showing the structure of the electrical deionized liquid production apparatus of Example 2, and FIG. 7 is a diagram illustrating the filling state of the ion region and the liquid permeable region. FIG. It is a figure explaining the filling state of the deionization area | region and liquid permeation | transmission area | region used with the electric deionization liquid manufacturing apparatus of this. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の電気式脱イオン液製造装置(以下、単に「E D I」 とも言う。) において、 脱塩領域に充填されるイオン交換体としては、 特に制限され ず、 従来の E D Iの脱塩室に充填されるイオン交換体を用いることがで き、 例えばモノリス、 粒状イオン交換樹脂及びモノリスと粒状イオン交 換樹脂の混合体等が挙げられる。 このうち、 モノリスとしては、 互いに つながつているマク口ポアとマク口ポアの壁内に平均径が 1〜 1 0 0 0 μ m , 好ましくは 1 0〜 1 0 0 μ πιのメソポアを有する連続気泡構造を 有し、全細孔容積が l〜5 0m l /g 、好ましくは 4〜 20m l /gであ り、 イオン交換基が均一に分布され、 イオン交換容量が 0. 5m g当量/ g乾燥多孔質体以上のものが挙げられる。 また、 該モノ リスの通液抵抗 は、 液透過領域に装填される多孔質イオン交換体の通液抵抗より小さく する。 該多孔質イオン交換体がモノリスの場合、 そのメソポアの平均径 を脱塩領域に装填されるモノ リスのメソポア平均径ょり小とする。 これ により、 液透過領域に装填される多孔質イオン交換体に対して通液抵抗 を低減させることが容易であり、 別途の特段の流路分配手段を設けるま でもなく、 被処理液のほとんどを脱塩領域に流すことができる。 モノリ スのその他の物性及ぴその製造方法は、 例えば特開 2 0 0 3— 3 34 5 60号公報に開示されている。 In the electric deionization liquid production apparatus of the present invention (hereinafter also simply referred to as “EDI”), the ion exchanger filled in the demineralization zone is not particularly limited, and is filled in the conventional EDI demineralization chamber. Examples of such an ion exchanger include monoliths, granular ion exchange resins, and mixtures of monoliths and granular ion exchange resins. Among these, the monolith is an open cell having a mesopore having an average diameter of 1 to 100 μm, preferably 10 to 100 μm in the wall of the mac mouth pores connected to each other. Structure And the total pore volume is 1 to 50 ml / g, preferably 4 to 20 ml / g, the ion exchange groups are uniformly distributed, and the ion exchange capacity is 0.5 mg equivalent / g dry porous. The thing more than a solid body is mentioned. Further, the flow resistance of the monolith is made smaller than that of the porous ion exchanger loaded in the liquid permeation region. When the porous ion exchanger is a monolith, the average diameter of the mesopore is set to be smaller than the average diameter of the monolith loaded in the desalting region. As a result, it is easy to reduce the fluid flow resistance with respect to the porous ion exchanger loaded in the liquid permeation region, and most of the liquid to be treated is not required to be provided with a separate special channel distribution means. It can flow to the desalting zone. Other physical properties of monolith and methods for producing the same are disclosed in, for example, Japanese Patent Laid-Open No. 2003-334560.
液透過領域は、 多孔質イオン交換体が装填されたものであって、 脱塩 領域のイオン排除側に隣接して配設され、 被処理液の一部が透過すると 共に電気泳動的に排除されるイオン性不純物が透過する領域である。 液 透過領域に装填される多孔質イオン交換体としては、 形状を保持し、 電 気泳動的にイオンを排除すると共に、 被処理液の一部を透過せしめるも のであれば、 特に制限されるものではないが、 例えぱモノリス、 繊維状 多孔質イオン交換体及び粒子凝集型多孔質イオン交換体等が挙げられ、 このうち、 モノリスが、 イオン交換基が均一に分布し、 イオン排除がす みやかに行われることから好ましい。  The liquid permeation region is loaded with a porous ion exchanger, and is disposed adjacent to the ion exclusion side of the desalting region. When a part of the liquid to be treated permeates, it is electrophoretically excluded. This is a region through which ionic impurities are transmitted. The porous ion exchanger loaded in the liquid permeation region is particularly limited as long as it retains its shape, electrophoretically excludes ions, and allows a part of the liquid to be treated to permeate. However, examples include monoliths, fibrous porous ion exchangers, and particle agglomerated porous ion exchangers. Of these, monoliths have a uniform distribution of ion exchange groups and prompt ion exclusion. Is preferable.
. 繊維状多孔質イオン交換体としては、 例えば特開平 5— 6472 6号 公報に記載の単繊維や単繊維の集合体である織布及ぴ不織布、 さらにこ れらの加工品に放射線グラフト重合を利用してイオン交換基を導入し、 加工成形したものが挙げられる。 また、 粒子凝集型多孔質イオン交換体 としては、 例えば特開平 1 0— 1 9 2 7 1 6号公報、 特開平 1 0— 1 9 27 1 7号公報に記載の熱可塑性ポリマーと熱硬化性ポリマーの混合ポ リマー、あるいは架橋性ポリマーを用いてイオン交換樹脂粒子を結合し、 加工成形したものが挙げられる。 Examples of the fibrous porous ion exchanger include, for example, single fibers and woven fabrics and non-woven fabrics that are aggregates of single fibers described in JP-A-5-64726, and radiation graft polymerization to these processed products. And an ion-exchange group introduced and processed and molded. Examples of the particle agglomerated porous ion exchanger include thermoplastic polymers and thermosetting resins described in, for example, JP-A Nos. 10-1 9 2 7 1 6 and 10-1 9 27 17. Polymer mixing point Examples include those obtained by bonding ion-exchange resin particles using a remer or a crosslinkable polymer and then processing and molding.
液透過領域に装填されるモノ リスは、 脱塩領域のイオン交換体として 例示されるモノ リスと同様のものであるが、 後述するように、 透過液の 流路に流量調節手段を配設しない場合、 当該モノ リスは、 脱塩領域で使 用されるモノリスに比べて、 メソポアの平均径が小さいものである。 具 体的には互いにつながって'いるマクロポアとマク口ポアの壁内に平均径 が 1 〜 1 0 0 m、 好ましくは 1 〜 2 0 mであって、 脱塩領域で使用 されるモノ リスのメソポアより小さいメソポアを有する連続気泡構造を 有し、 全細孔容積が:!〜 5 O m 1 / g、 好ましくは 1 〜 1 O m l / gであ り、 イオン交換基が均一に分布され、イオン交換容量が 0 . 5 m g当量/ g乾燥多孔質体以上のものが挙げられる。 このようなメソポアの平均径 が小さいモノリスは、 製造する際、 界面活性剤の添加量を多くする、 攪 拌を激しくする等の方法により得ることができる。 流量調節手段として は、 流量調節弁、 オリフィス等が挙げられる。  The monolith loaded in the liquid permeation region is the same as the monolith exemplified as the ion exchanger in the desalination region, but no flow rate adjusting means is provided in the permeate flow path as will be described later. The monolith has a smaller mesopore average diameter than the monolith used in the desalination zone. Specifically, the average diameter is 1 to 100 m, preferably 1 to 20 m, in the wall of the macropore and the mac mouth pore that are connected to each other. It has an open cell structure with a smaller mesopore and a total pore volume of: Up to 5 O m 1 / g, preferably 1 to 1 O ml / g, ion exchange groups are uniformly distributed, and the ion exchange capacity is 0.5 mg equivalent / g or more of a dry porous material. It is done. Such a monolith having a small average mesopore diameter can be obtained by a method such as increasing the amount of the surfactant added or increasing the agitation during the production. Examples of the flow rate adjusting means include a flow rate adjusting valve and an orifice.
従来、脱塩領域のイオン排除側にはイオン交換膜が付設されていた力 被処理水中の硬度成分濃度及ぴ印加する電流密度によっては、 濃縮室側 のイオン交換膜面でのスケール発生が問題となっていた。これに対して、 本発明の液透過領域は、 一部の被処理液が透過するため、 その希釈効果 によりスケールの発生を防止することができる。 また、 液透過領域を透 過した液は、 イオン性不純物を含んでそのまま電極室又は濃縮室に流れ るため、 別途の電極液又は濃縮液を倂給する必要もなくなる。 イオン排 除側は、 カチオン性不純物を排除する場合、 脱塩領域の陰極側であり、 ァニオン性不純物を除去する場合、 脱塩領域の陽極側であり、 カチオン 性不純物及ぴァニオン性不純物を同時に除去する場合、 陰極側と陽極側 の双方である。 液透過領域に装填される多孔質イオン交換体の通液抵抗は、 脱塩領域 に充填されるイオン交換体の通液抵抗より大きいものが、 別途の特段の 流路分配手段を設けることなく、 脱塩領域に流入した被処理液の大部分 が脱塩領域から脱イオン液として脱塩領域から流出し、 被処理液の一部 が液透過領域に透過する点で好ましい。 なお、 液透過領域から透過した 流出液の流路に流量調節手段を配設すれば、 該流量調節手段によって、 透過液と脱イオン液の流量をより所望の割合に調整することができる。 液透過領域から透過した流出液の流路に流量調節手段を配設する場合、 液透過領域に装填される多孔質イオン交換体の通液抵抗は、 脱塩領域に 充填されるイオン交換体の通液抵抗と同じであってもよい。 例えば、 脱 塩領域及び液透過領域共に、 モノリスを使用する場合、 脱塩領域及び液 透過領域に亘る形状に加工された単一モノリスを使用することができる。 これによれば、 脱塩領域用モノリスと液透過領域用モノリスをそれぞれ 個別に製造する必要がない点で都合が良い。 被処理液の流量に対する液 透過領域を透過する透過液の流量比率は、 例えば 2〜3 0 %.、 好ましく は 4〜3 0 %である。 この比率が 2 %未満であると、 希釈効果が低下し スケール発生を防止することが難しくなり、 3 0 %を超えると、 脱塩液 の収量が低下する点で好ましくない。 Conventionally, an ion exchange membrane has been attached to the ion rejection side of the desalting zone. Depending on the hardness component concentration in the treated water and the applied current density, there is a problem of scale generation on the ion exchange membrane surface on the concentration chamber side. It was. On the other hand, in the liquid permeation region of the present invention, a part of the liquid to be treated permeates, so that the dilution effect can prevent the generation of scale. In addition, since the liquid that has passed through the liquid-permeable region flows into the electrode chamber or the concentration chamber as it contains ionic impurities, it is not necessary to supply a separate electrode solution or concentrated solution. The ion-exclusion side is the cathode side of the desalting region when removing the cationic impurities, and the anode side of the desalting region when removing the anionic impurities, and the cationic impurities and the anionic impurities are simultaneously removed. When removing, both the cathode side and the anode side. The flow resistance of the porous ion exchanger loaded in the liquid permeation region is larger than the flow resistance of the ion exchanger charged in the desalting region, but without providing a separate special channel distribution means, This is preferable in that most of the liquid to be treated that has flowed into the desalting area flows out of the desalting area as a deionized liquid from the desalting area, and a part of the liquid to be treated permeates into the liquid permeation area. If flow rate adjusting means is provided in the flow path of the effluent permeated from the liquid permeation region, the flow rate of the permeated liquid and the deionized liquid can be adjusted to a desired ratio by the flow rate adjusting means. When the flow rate adjusting means is disposed in the flow path of the effluent permeated from the liquid permeation region, the flow resistance of the porous ion exchanger loaded in the liquid permeation region is the same as that of the ion exchanger filled in the desalination region. It may be the same as the fluid flow resistance. For example, when a monolith is used for both the desalting region and the liquid permeation region, a single monolith processed into a shape extending over the desalting region and the liquid permeation region can be used. This is advantageous in that it is not necessary to separately manufacture the desalination zone monolith and the liquid permeation zone monolith. The flow rate ratio of the permeate passing through the liquid permeation region to the flow rate of the liquid to be treated is, for example, 2 to 30%, preferably 4 to 30%. If this ratio is less than 2%, the diluting effect is reduced and it becomes difficult to prevent the generation of scale, and if it exceeds 30%, it is not preferable because the yield of the desalted solution is reduced.
脱塩領域のイオン排除側に液透過領域を隣接して配設する形態として は、 特に制限されないが、 モノリス同士が隣接して配設される形態が、 イオン排除が速やかに行われる点で好ましい。 モノリス同士が隣接して 配設される場合、 配設脱塩領域用のモノリスと液透過領域用のモノリス を、電場の印加方向において、その端面同士を密着して配設する。また、 モノ リスとイオン交換樹脂を隣接して配設する形態、 あるいは脱塩領域 におけるモノリスとイオン交換樹脂の混合体は、 モノリスはスポンジ状 であるため、 両者は混ざることなく、 それぞれの相を形成することがで さる。 The form in which the liquid permeation region is disposed adjacent to the ion rejection side of the desalting region is not particularly limited, but the form in which the monoliths are disposed adjacent to each other is preferable in terms of quick ion exclusion. . When the monoliths are arranged adjacent to each other, the monolith for the arrangement desalting region and the monolith for the liquid permeation region are arranged in close contact with each other in the electric field application direction. In addition, the monolith and the ion exchange resin are arranged adjacent to each other, or the mixture of the monolith and the ion exchange resin in the desalination region is a sponge, so the two phases do not mix and the phases are mixed. Can be formed Monkey.
本発明の電気式脱イオン液製造装置において、 ァ-オンセル又はカチ オンセルの場合、 脱塩領域のイオン排除側とは反対側に隣接して配設さ れるものとしては、 被処理液の他の一部が透過する他の液透過領域であ つてもよく、 また従来通りのイオン交換膜であってもよい。 この液透過 領域を配設する場合、 この液透過領域から透過した液は電極室又は濃縮 室に流れ込む。 これにより、 イオン交換膜が全く不要となるため、 装置 構造が簡略化でき、 製造コストを低減することができる。 また、 イオン 交換膜を配設する場合、 従来の E D I と同様に、 該イオン交換膜に隣接 する電極室又は濃縮室には、別途、電極液又は濃縮液を流すことになる。 他の液透過領域に装填される多孔質イオン交換体としては、 前記液透過 領域に装填される多孔質イオン交換体と同様のものが挙げられる。  In the electric deionized liquid production apparatus of the present invention, in the case of a gas-on cell or a cation cell, it is arranged adjacent to the side opposite to the ion exclusion side of the desalting region. It may be another liquid permeable region through which a part passes, or a conventional ion exchange membrane. When this liquid permeation region is provided, the liquid that has permeated from this liquid permeation region flows into the electrode chamber or the concentration chamber. This eliminates the need for an ion exchange membrane, thereby simplifying the device structure and reducing the manufacturing cost. Further, when an ion exchange membrane is provided, an electrode solution or a concentrate is separately supplied to the electrode chamber or the concentration chamber adjacent to the ion exchange membrane, as in the case of the conventional EDI. Examples of the porous ion exchanger loaded in the other liquid permeable region include the same porous ion exchangers loaded in the liquid permeable region.
次に、 本発明の第 1の実施の形態における電気式脱イオン液製造装置 の一例を第 1図を参照して説明する。 第 1図は被処理液中のカチオン性 不純物を除去するカチオンセル (図中、 ( A ) ) とァニオン性不純物を 除去するァニオンセル (図中、 (B ) ) を用いる 2セルタイプの E D I の模式図である。  Next, an example of the electric deionized liquid production apparatus according to the first embodiment of the present invention will be described with reference to FIG. Fig. 1 shows a schematic diagram of a two-cell EDI that uses a cation cell ((A) in the figure) and an anion cell ((B)) to remove anionic impurities in the liquid to be treated. FIG.
第 1図中、 電気式脱イオン液製造装置 1 0は、 カチオンセル 1 0 aと ァニオンセル 1 0 bからなる。 カチオンセル 1 0 aは、 カチオン交換体 が充填された脱力チオン領域 1 aと、 脱力チオン領域 1 aのイオン排除 側 (陰極側) に隣接して配設される被処理液の一部が透過する液透過領 域 2 aと、 脱力チオン領域 1 aの陽極側に隣接して配設される被処理液 の他の一部が透過する液透過領域 3 a と、 脱力チオン領域 1 a、 液透過 領域 2 a及び液透過領域 3 aの両側に配設される陽極 4 a、陰極 4 bと、 脱力チオン領域 1 aに被処理液を通液する被処理液流入管 1 1と、 液透 過領域 2 aから透過した液が流入する陰極室 6と、 液透過領域 3 aから 透過した液が流入する陽極室 7と、 脱力チオン領域 1 aから脱力チオン 液を排出する脱力チオン液流出管 1 2とを備える。 In FIG. 1, an electric deionized liquid production apparatus 10 is composed of a cation cell 10 a and an anion cell 10 b. The cation cell 10 a is permeated through a weakened thione region 1 a filled with a cation exchanger and a part of the liquid to be treated arranged adjacent to the ion exclusion side (cathode side) of the weakened thione region 1 a. Liquid permeation region 2a, liquid permeation region 3a through which another part of the liquid to be treated disposed adjacent to the anode side of the weakening thione region 1a, and weakness thione region 1a, liquid An anode 4 a and a cathode 4 b disposed on both sides of the permeation region 2 a and the liquid permeation region 3 a, a treatment liquid inflow pipe 11 for passing the treatment liquid to the weakening thione region 1 a, and a liquid permeation The cathode chamber 6 into which the liquid transmitted from the excess region 2a flows, and the liquid transmission region 3a An anode chamber 7 into which the permeated liquid flows and a weak thiol liquid outflow pipe 12 for discharging the weak thiol liquid from the weak thiol region 1a are provided.
カチオンセル 1 0 aは、 従来のカチオンセルにおいて、 脱塩室両側に 付設されるイオン交換膜を省略し、 該イオン交換膜部分にカチオンモノ リスが装填された液透過領域を付設したものである。 従って、 カチオン セル 1 0 aは、 脱力チオン領域 1 a、 液透過領域 2 a及ぴ液透過領域 3 a、 電極を所定の位置に配設できる極めて簡易な構造の部材から形成す ることができ、 イオン交換膜による隔離によって脱塩室、 濃縮室及ぴ電 極室を形成するため、 複雑な構造の枠体を多数積層する従来の電気式脱 イオン液製造装置に比して、 部材費、 組立費を格段に削減することがで きる。 更に本例の電気式脱イオン液製造装置では、 液透過領域 2 a及び 液透過領域 3 aより透過した液が濃縮液又は電極液となるため、 従来の 電気式脱イオン液製造装置のように該液の流入経路を被処理液流入経路 とは別個に設ける必要がない。 従って、 本例の電気式脱イオン液製造装 置では、 この点からも部材費、 組立費を低減できると共に、 継ぎ手、 配 管、 部材接合部の削除から、 被処理液漏洩の可能性を低減し、 装置の安 全性や、 運転の安定性を向上させることができる。  The cation cell 10 a is a conventional cation cell in which the ion exchange membranes provided on both sides of the desalting chamber are omitted, and a liquid permeable region in which a cation monolith is loaded is attached to the ion exchange membrane part. . Accordingly, the cation cell 10 a can be formed from a member having a very simple structure in which the weak thione region 1 a, the liquid permeable region 2 a, the liquid permeable region 3 a, and the electrode can be disposed at predetermined positions. In order to form a desalination chamber, a concentration chamber and an electrode chamber by isolation with an ion exchange membrane, compared to conventional electric deionization liquid production equipment that stacks a large number of frames of complicated structure, Assembly costs can be significantly reduced. Furthermore, in the electric deionized liquid production apparatus of this example, the liquid that has permeated through the liquid permeation region 2a and the liquid permeation region 3a becomes a concentrated liquid or an electrode liquid. It is not necessary to provide the liquid inflow path separately from the liquid inflow path to be treated. Therefore, in this example, the electrical deionized liquid production system can reduce the parts and assembly costs from this point as well as the possibility of leakage of the liquid to be processed by eliminating the joints, pipes and joints. In addition, the safety of the equipment and the stability of operation can be improved.
カチオンセル 1 0 aにおいて、 液透過領域 2 a及び液透過領域 3 aを 形成するカチオンモノリスの通液抵抗は、 脱力チオン領域 1 aに充填さ れるカチオン交換体の通液抵抗より大きく してある。 被処理液は、 脱力 チオン領域 1 aの陰極側近傍から流入させ、 処理液は、 被処理液の流入 口のほぼ対角線上の脱力チォン領域 1 aの陽極側近傍から流出させるこ とが、 排除されるイオンの流れ方向と脱力チオン領域 1 aにおける被処 理液の流れ方向が逆方向となり、 カチオン交換体を有効に利用し、 且つ カチオン性不純物 X +のリークが無い処理液が得られる点で好ましい。 . 第 1図 (B ) のァ-オンセル 1 0 bにおいて、 第 1図 (A ) のカチォ ンセル 1 0 aと同一構成要素には同一符号を付して、その説明を省略し、 異なる点について説明する。 すなわち、 ァニオンセル 1 0 bにおいて、 カチオンセル 1 0 aと異なる点は、脱塩領域にァニオン交換体を充填し、 液透過領域 2 b及び液透過領域 3 bにはァニオンモノリスを装填した点、 被処理液は脱ァニオン領域 1 bの陽極側近傍から流入させ、 処理液は、 被処理液の流入口のほぼ対角線上の脱ァニオン領域 1 bの陰極側近傍か ら流出させた点である。 そして、 カチオンセル 1 0 aの脱力チオン液流 出管 1 2とァニオンセル 1 0 bの被処理液流入管 1 3を連結している。 ァニオンセル 1 0 bもカチオンセル 1 0 a同様、 極めて簡易な構造であ る。 In the cation cell 10 a, the flow resistance of the cation monolith forming the liquid permeation region 2 a and the liquid permeation region 3 a is larger than the flow resistance of the cation exchanger filled in the weak thione region 1 a. . The liquid to be treated is allowed to flow from the vicinity of the cathode side of the weakened thione area 1a, and the liquid to be treated is allowed to flow out from the vicinity of the anode side of the weakened thione area 1a almost diagonally to the inlet of the liquid to be treated. The flow direction of the ions to be treated and the flow direction of the liquid to be treated in the weak thione region 1a are reversed, and a treatment liquid that effectively uses the cation exchanger and does not leak cationic impurities X + can be obtained. Is preferable. In the key cell 10 b of FIG. 1 (B), the cut-off of FIG. The same constituent elements as those of the cancel 10 a are denoted by the same reference numerals, description thereof is omitted, and different points will be described. That is, the difference between the anion cell 10 b and the cation cell 10 a is that the desalination area is filled with an anion exchanger, and the liquid permeation area 2 b and the liquid permeation area 3 b are filled with an anion monolith, The liquid to be treated was introduced from the vicinity of the anode side of the deanion region 1b, and the treatment liquid was caused to flow out from the vicinity of the cathode side of the deanion region 1b on the diagonal line of the inlet of the liquid to be treated. The weak thione liquid outlet pipe 12 of the cation cell 10a is connected to the liquid inlet pipe 13 to be treated of the anion cell 10b. Like the cation cell 10 a, the anion cell 10 b has a very simple structure.
次に、 電気式脱イオン液製造装置 1 0を用いた脱塩液の製造方法につ いて説明する。 被処理液を被処理液流入管 1 1から脱力チオン領域 1 a に流入させる。 脱力チオン領域 1 aに流入した被処理液は、 液透過領域 2 a及び液透過領域 3 aを形成するカチオンモノ リスの通液抵抗が、 脱 カチオン領域 1 aに充填されるカチオン交換体の通液抵抗より大きいた め、 被処理液の大部分が脱力チオン領域 1 aを流通し、 その一部が液透 過領域 2 a及ぴ液透過領域 3 aを透過する。 液透過領域 2 aを透過した 透過液は、 電気泳動的に排除されるカチオン性不純物 X +とともに陰極 室 6に陰極液として排出される。 液透過領域 2 aにおいては、 常に被処 理液の一部が透過しており、 希釈効果によりスケール発生を防止する。 また、 液透過領域 3 aを透過した透過液は、 陽極室 7に陽極液として排 出される。 図中、 脱力チオン領域 1 aにおける流路 1 7は模式的に示し たものであるが、 実際の流れも、 概ねこのような流れとなる。  Next, a method for producing a desalted liquid using the electric deionized liquid producing apparatus 10 will be described. The liquid to be treated is caused to flow from the liquid inlet pipe 11 to the weakening thione region 1a. The liquid to be treated which has flowed into the weak thione region 1a has a flow resistance of the cation monolith forming the liquid permeation region 2a and the liquid permeation region 3a. Since it is larger than the liquid resistance, most of the liquid to be treated flows through the weakened thione region 1a, and a part of it passes through the liquid permeable region 2a and the liquid permeable region 3a. The permeate that has permeated the liquid permeation region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded. In the liquid permeation zone 2a, a part of the liquid to be treated is always permeating, and scale generation is prevented by the dilution effect. Further, the permeated liquid that has passed through the liquid permeable region 3 a is discharged into the anode chamber 7 as an anolyte. In the figure, the flow path 17 in the weak force thione region 1a is schematically shown, but the actual flow is also generally similar to this.
次いで、 カチオン性不純物が除去された被処理液を被処理液流入管 1 3から脱ァ-オン領域 1 bに流入させる。 脱ァニオン領域 1 bに流入し た被処理液は、 液透過領域 2 b及び液透過領域 3 bを形成するァ-オン モノリスの通液抵抗が、 脱ァ-オン領域 1 bに充填されるァニオン交換 体の通液抵抗より大きいため、 被処理液の大部分が脱ァニオン領域 1 b を流通し、 その一部が液透過領域 2 b及ぴ液透過領域 3 bを透過する。 液透過領域 2 bを透過した透過液は、 電気泳動的に排除されるァニオン 性不純物 Y—とともに陽極室 7に陽極液として排出される。 液透過領域 2 bにおいては、 カチオンセル 1 0 aと同様、 常に被処理液の一部が透 過しており、 希釈効果によりスケール発生を防止する。 また、 液透過領 域 3 bを透過した透過液は、陰極室 6に陰極液として排出される。図中、 脱ァニオン領域 1 bにおける流路 1 8は模式的に示したものであるが、 実際の流れも、 概ねこのような流れとなる。 Next, the liquid to be processed from which the cationic impurities have been removed is caused to flow from the liquid inlet pipe 13 to the de-on region 1 b. The liquid to be treated that has flowed into the deanion region 1 b forms a liquid permeable region 2 b and a liquid permeable region 3 b. Since the liquid flow resistance of the monolith is greater than the liquid flow resistance of the anion exchanger filled in the deionized area 1b, most of the liquid to be treated flows through the deanion area 1b, and part of the liquid is liquid. It passes through the permeation region 2b and the liquid permeation region 3b. The permeated liquid that has passed through the liquid permeable region 2 b is discharged as an anolyte into the anode chamber 7 together with the anionic impurities Y— that are electrophoretically excluded. In the liquid permeation region 2b, like the cation cell 10a, a part of the liquid to be treated is always permeated, and scale generation is prevented by the dilution effect. Further, the permeated liquid that has permeated through the liquid permeable region 3 b is discharged into the cathode chamber 6 as a catholyte. In the figure, the flow path 18 in the deanion region 1 b is schematically shown, but the actual flow is also generally similar to this.
カチオンセル 1 0 a とァニオンセル 1 0 bからなる 2セルタイプの電 気式脱イオン液製造装置 1 0によれば、 カチオンセル 1 0 a及ぴァニォ ンセル 1 0 b共に、 イオン交換膜を全く使用していないため、 装置構造 が極めて簡略化でき、 製作コストも低減できる。 また、 カチオンセル 1 0 aの陰極側の液透過領域 2 a及びァニオンセル 1 0 bの陽極側の液透 過領域 2 bにおいては、 従来の E D Iでは避けることができなかったス ケール発生を、 透過する被処理液の希釈効果により防止することができ る。  According to the two-cell type electric deionizing liquid production equipment 10 consisting of a cation cell 10 0 a and an anion cell 10 0 b, both the cation cell 1 0 a and the anion cell 1 0 b use an ion exchange membrane at all. Therefore, the device structure can be greatly simplified and the manufacturing cost can be reduced. In addition, in the liquid permeation region 2a on the cathode side of the cation cell 10a and the liquid permeation region 2b on the anode side of the anion cell 10b, the generation of scale that could not be avoided by conventional EDI is transmitted. This can be prevented by the dilution effect of the liquid to be treated.
次に、 本発明の第 2の実施の形態における電気式脱イオン液製造装置 の一例を第 2図を参照して説明する。 第 2図は被処理液中のカチオン性 不純物を除去するカチオンセル 2 0 a (図中、 (A) ) とァニオン性不 純物を除去するァニオンセル 2 0 b (図中、 (B ) ) を用いる 2セルタ イブの他の E D Iの模式図である。 第 2図において、 第 1図と同一構成 要素には同一符号を付して、 その説明を省略し、 異なる点について主に 説明する。 すなわち、 第 2図において、 第 1図と異なる点は、 カチオン セル 2 0 aにおいて、 脱力チオン領域 1 aの陽極側には、 カチオン交換 膜 5を付設し、 脱力チオン領域 1 aと陽極室 7間に液の透過がないよう にした点、 ァニオンセル 2 0 bにおいて、 脱ァニオン領域 1 bの陰極側 には、 カチオン交換膜 5を付設し、 脱ァニオン領域 1 bと陰極室 6間に 液の透過がないようにした点にある。 Next, an example of an electrical deionized liquid production apparatus according to the second embodiment of the present invention will be described with reference to FIG. Fig. 2 shows a cation cell 20 a (in the figure, (A)) that removes cationic impurities in the liquid to be treated and an anion cell 20 b (in the figure, (B)) that removes anionic impurities. It is a schematic diagram of another EDI of the 2-cell type used. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 2 differs from FIG. 1 in that the cation cell 20 a has a cation exchange on the anode side of the weakened thione region 1 a. Membrane 5 is provided to prevent liquid permeation between the weakened thione region 1a and the anode chamber 7. In the anion cell 20b, a cation exchange membrane 5 is provided on the cathode side of the deanion region 1b. However, there is no permeation of liquid between the deanion region 1 b and the cathode chamber 6.
カチオンセル 2 0 a とァニオンセル 2 0 bからなる 2セルタイプの電 気式脱イオン液製造装置 2 0によれば、 従来の E D Iに比べて、 カチォ ンセル 2 0 a及ぴァニオンセル 2 0 b共に、 イオン交換膜を半減できる ため、 装置構造が簡略化でき、 製作コストも低減できる。 また、 カチォ ンセル 2 0 aの陰極側の液透過領域 2 a及びァニオンセル 2 0 bの陽極 側の液透過領域 2 bにおいては、 従来の E D Iでは避けることができな かったスケール発生を、 透過する被処理液の希釈効果により防止するこ とができる。 また、 カチオンセル 2 0 aの陽極液及びァニオンセル 2 0 bの陰極液は、 透過領域 2 a、 2 bから透過した透過液を用いれば、 別 途の送液ポンプ等が省略できる。  According to the two-cell type electric deionizing liquid manufacturing apparatus 20 comprising a cation cell 20 a and an anion cell 20 b, both the caton cell 20 a and the anion cell 20 b are compared with the conventional EDI. Since the ion exchange membrane can be halved, the device structure can be simplified and the manufacturing cost can be reduced. In addition, the liquid permeation region 2 a on the cathode side of the cathode cell 20 a and the liquid permeation region 2 b on the anode side of the anion cell 20 b transmit the generation of scales that could not be avoided by conventional EDI. This can be prevented by the dilution effect of the liquid to be treated. Further, if the anolyte of the cation cell 20a and the catholyte of the anion cell 20b are the permeate that has permeated from the permeation regions 2a and 2b, a separate liquid feed pump or the like can be omitted.
次に、 本発明の第 3の実施の形態における電気式脱イオン液製造装置 の一例を第 3図を参照して説明する。 第 3図は力チオン性不純物とァニ オン性不純物を同時に除去する 1セルタイプの E D Iの模式図である。 第 3図において、 第 1図と同一構成要素には同一符号を付して、 その説 明を省略し、 異なる点について主に説明する。 すなわち、 第 3図におい て、 第 1図と異なる点は、 セル構造を、 単一セル構造のカチオン/ァニォ ンセル 3 0とした点、 脱塩領域 1 cにはカチオン交換体とァニオン交換 体の混合イオン交換体を充填した点、 脱塩領域 1 cの陰極側の液透過領 域 2 aには、 カチオンモノリスを装填し、 脱塩領域 1 cの陽極側の液透 過領域 3 bには、 ァニオンモノリスを装填した点にある。  Next, an example of an electrical deionized liquid production apparatus according to the third embodiment of the present invention will be described with reference to FIG. Fig. 3 is a schematic diagram of a single cell type EDI that simultaneously removes force thionic impurities and anionic impurities. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and differences are mainly described. That is, in FIG. 3, the difference from FIG. 1 is that the cell structure is a single-cell cation / anion cell 30. In the desalted region 1c, there are cation exchangers and anion exchangers. At the point where the mixed ion exchanger is filled, the liquid permeation region 2 a on the cathode side of the desalination region 1 c is loaded with a cation monolith, and the liquid permeation region 3 b on the anode side of the desalination region 1 c It is in the point where the anion monolith was loaded.
次に、カチオン/ァニオンセル 3 0を用いた脱塩液の製造方法について 説明する。 被処理液流入管 1 1を通って脱塩領域 1 cに流入した被処理 液は、 液透過領域 2 a及び液透過領域 3 bを形成するカチオンモノリス 及びァニオンモノ リスの通液抵抗が、 脱塩領域 1 cに充填される混合ィ オン交換体の通液抵抗より大きいため、 被処理液の大部分が脱塩領域 1 cを流通し、その一部が液透過領域 2 a及ぴ液透過領域 3 bを透過する。 液透過領域 2 aを透過した透過液は、 電気泳動的に排除されるカチオン 性不純物 X +とともに陰極室 6に陰極液として排出される。 また、 液透 過領域 3 bを透過した透過液は、 陽極室 7に陽極液として排出される。 液透過領域 2 a及ぴ液透過領域 3 bにおいては、 常に被処理液の一部が 透過しており、 希釈効果によりスケール発生を防止する。 図中、 脱塩領 域 1 cにおける流路 1 7は模式的に示したものである力 実際の流れも、 概ねこのような流れとなる。 Next, a method for producing a desalting solution using the cation / anion cell 30 will be described. Processed liquid inflow pipe 1 1 Processed into the desalting zone 1 c through the process 1 Since the liquid resistance of the cation monolith and the anion monolith forming the liquid permeation region 2 a and the liquid permeation region 3 b is larger than that of the mixed ion exchanger filled in the desalting region 1 c, Most of the liquid to be treated flows through the desalting region 1c, and part of the solution passes through the liquid permeation region 2a and the liquid permeation region 3b. The permeate that has permeated the liquid permeation region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded. Further, the permeated liquid that has permeated through the liquid permeable region 3 b is discharged into the anode chamber 7 as an anolyte. In the liquid permeation area 2a and the liquid permeation area 3b, a part of the liquid to be treated always permeates, and the dilution effect prevents the generation of scale. In the figure, the flow path 17 in the desalination zone 1 c is schematically shown. The actual flow is also almost the same as this.
1セルタイプの電気式脱イオン液製造装置 3 0によれば、 従来の E D Iに比べて、 イオン交換膜を省略することができるため、 装置構造が簡 略化でき、製作コストも低減できる。 また、 カチオン/ァニオンセル3 0 の陰極側の液透過領域 2 a及ぴ陽極側の液透過領域 3 bにおいては、 従 来の E D Iでは避けることができなかったスケール発生を、 透過する被 処理液の希釈効果により防止することができる。 According to the one-cell type electric deionized liquid production apparatus 30, the ion exchange membrane can be omitted as compared with the conventional EDI, so that the structure of the apparatus can be simplified and the production cost can be reduced. Further, in the liquid permeation region 2 a on the cathode side and the liquid permeation region 3 b on the anode side of the cation / anion cell 30 , the generation of scale, which could not be avoided by conventional EDI, is reduced. This can be prevented by the dilution effect.
次に、 本発明の第 4の実施の形態における電気式脱イオン液製造装置 の一例を第 4図を参照して説明する。 第 4図はカチオン性不純物とァニ オン性不純物を同時に除去する脱塩室を複数個に並列配置した E D Iの 模式図である。 第 4図において、 第 1図と同一構成要素には同一符号を 付して、その説明を省略し、異なる点について主に説明する。すなわち、 第 4図において、 第 1図と異なる点は、 電極間に配設される脱塩セルの 基本構造が相違する点にある。すなわち、陽極室 7と陰極室 6との間に、 陽極側が液透過領域であるァニオンモノ リス 2 bで区画され陰極側が液 透過領域であるカチオンモノリス 2 aで区画された脱塩室 1 d、 1 dと、 陽極側が液透過領域であるカチオンモノ リスで区画され陰極側が液透過 領域であるァニオンモノリスで区画された濃縮室を有する E D Iである。 電気式脱イオン液製造装置 4 0において、 脱塩室 l d、 I dの設置個数 はこれに限定されず、 1個でも、 3個以上であってもよい。 Next, an example of an electrical deionized liquid production apparatus according to the fourth embodiment of the present invention will be described with reference to FIG. Fig. 4 is a schematic diagram of EDI in which a plurality of desalting chambers for removing cationic impurities and anionic impurities simultaneously are arranged in parallel. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 4 differs from FIG. 1 in that the basic structure of the desalting cell disposed between the electrodes is different. That is, between the anode chamber 7 and the cathode chamber 6, a desalination chamber 1d, 1 partitioned by an anion monolith 2b whose anode side is a liquid permeable region and a cationic monolith 2a whose cathode side is a liquid permeable region d and It is an EDI having a concentrating chamber with the anode side partitioned by a cation monolith which is a liquid permeable region and the cathode side partitioned by an anion monolith which is a liquid permeable region. In the electric deionized liquid production apparatus 40, the number of demineralization chambers ld and Id is not limited to this, and may be one or three or more.
次に、 電気式脱イオン液製造装置 4 0を用いた脱塩液の製造方法につ いて説明する。 被処理液を被処理液流入管 1 1から脱塩領域 1 d、 1 d に流入させる。 脱塩領域 1 d、 1 dに流入した被処理液は、 液透過領域 2 a及ぴ液透過領域 2 bを形成するモノリスの通液抵抗が、 脱塩領域 1 d、 1 dに充填される混合イオン交換体の通液抵抗より大きいため、 被 処理液の大部分が脱塩領域 1 d、 1 dを流通し、 その一部が液透過領域 2 a及び液透過領域 2 bを透過する。 液透過領域 2 aを透過した透過液 は、 電気泳動的に排除されるカチオン性不純物 X +とともに陰極室 6及 び濃縮室 9に陰極液及び濃縮液として排出される。 また、 液透過領域 2 bを透過した透過液は、 電気泳動的に排除されるァニオン性不純物 Y一 とともに陽極室 7及び濃縮室 9に陽極液及び濃縮液として排出される。 液透過領域 2 a及び液透過領域 2 bにおいては、 常に被処理液の一部が 透過しており、 希釈効果によりスケール発生を防止する。 図中、 脱塩領 域 1 dにおける流路 1 7は模式的に示したものである力 実際の流れも、 概ねこのような流れとなる。  Next, a method for producing a desalting solution using the electric deionizing solution production apparatus 40 will be described. The liquid to be treated is caused to flow into the desalting areas 1 d and 1 d from the liquid to be treated inflow pipe 1 1. The liquid to be treated that has flowed into the desalting areas 1 d and 1 d is filled with the resistance of the monolith that forms the liquid permeation area 2 a and the liquid permeation area 2 b into the desalination areas 1 d and 1 d. Since it is larger than the liquid flow resistance of the mixed ion exchanger, most of the liquid to be treated flows through the desalting regions 1 d and 1 d, and a part thereof passes through the liquid permeation region 2 a and the liquid permeation region 2 b. The permeate that has permeated the liquid permeation region 2 a is discharged as a catholyte and a concentrate into the cathode chamber 6 and the concentration chamber 9 together with the cationic impurities X + that are electrophoretically excluded. Further, the permeated liquid that has permeated through the liquid permeable region 2 b is discharged into the anode chamber 7 and the concentrating chamber 9 as the anolyte and concentrated liquid together with the anionic impurities Y that are electrophoretically excluded. In the liquid permeation region 2a and the liquid permeation region 2b, a part of the liquid to be treated is always permeating, and scale generation is prevented by the dilution effect. In the figure, the flow path 17 in the desalination region 1 d is schematically shown in the figure. The actual flow is almost the same as this.
脱塩室並列配置の電気式脱イオン液製造装置 4 0によれば、 従来の E D Iにおいて 4枚使用していたイオン交換膜を全て省略することができ るため、 装置構造が簡略化でき、 製作コストも低減できる。 また、 脱塩 領域 1 d、 I dの陰極側の液透過領域 2 a及び陽極側の液透過領域 2 b においては、 従来の E D Iでは避けることができなかったスケール発生 を、 透過する被処理液の希釈効果により防止することができる。  According to the electric deionization liquid production equipment 40 in parallel with the desalination chamber, all four ion exchange membranes used in the conventional EDI can be omitted, so the equipment structure can be simplified and manufactured. Cost can also be reduced. In addition, in the desalting areas 1 d and I d, the liquid permeation area 2 a on the cathode side and the liquid permeation area 2 b on the anode side allow the generation of scale that could not be avoided by conventional EDI to be treated. This can be prevented by the dilution effect.
次に、 実施例を挙げて、 本発明を更に具体的に説明するが、 これは単 に例示であつて本発明を制限するものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
(液透過領域用カチオンモノ リスの製造)  (Manufacture of cation monolith for liquid permeation region)
スチレン 4 6. 3 g、 ジビュルベンゼン 2. 4 g、 ァゾビスィソプチ ロニトリル 0. 3 g及ぴソルビタンモノォレエート 3. l gを混合し、 均一に溶解させた。 次に、 当該スチレン ジビュルベンゼン/ァゾビス ィソブチロニトリル /ソルビタシモノォレエ一ト混合物を 1 8 0 m 1の 純水に添加し、 遊星式攪拌装置を用いて (公転 Z自転) = ( 1 8 0 0 r p m/ 6 0 0 r p m) で 5分間攪拌し、 油中水滴型ェマルジョンを得た。 乳化終了後、 窒素で十分置換した後密封し、 静置下 6 0°Cで 24時間重 合させた。 重合終了後、 内容物を取り出し、 イソプロパノールで 1 2時 間ソックスレー抽出し、 未反応モノマーとソルビタンモノォレエートを 除去した。 その後、 8 5 °Cで一昼夜減圧乾燥した。 このようにして得ら れたスチレン/ジビュルベンゼン共重合体よりなる架橋成分を 3. 3モ ル%含有した多孔質体を切断して 1 6. 6 g採取し、 これにジクロロメ タン 9 0 0 m lを加え、 3 5 °Cで 1時間加熱した後、 0°Cまで氷冷し、 クロロスルホン酸 8 8. O gを徐々に加え、 クロロスルホン酸添加終了 後、 昇温して 3 5 °Cで 2 4時間反応させた。 その後、 メタノールで反応 物を洗浄し、 水洗して多孔質陽イオン交換体を得た。 この多孔質体のィ オン交換容量は、 乾燥多孔質体換算で 4. 5 m g当量/ gであり、 E P MAを用いた硫黄原子のマツビングにより、 スルホン酸基が多孔質体に 均一に導入されていることを確認した。 また、 S EM観察の結果、 この 多孔質体 (液透過領域用カチオンモノリス) の内部構造は、 連続気泡構 造を有しており、 平均径 3 0. 0 m のマクロポアの大部分が重なり合 レ、、 マクロポアとマクロポアの重なりで形成されるメソポアの直径の平 均値を水銀圧入法で求めたところ、 直径の平均値は 8. 5 ί η!、 全細孔 容積は、 2. 7m l /gであった。 46.3 g of styrene, 2.4 g of dibutenebenzene, 0.3 g of azobissoptironitrile and 3. lg of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene dibutenebenzene / azobisisobutyronitrile / sorbitaci monoleate mixture is added to 1800 m 1 of pure water, and (revolution Z rotation) = ( The mixture was stirred at 1800 rpm / 600 rpm for 5 minutes to obtain a water-in-oil emulsion. After completion of emulsification, the mixture was sufficiently substituted with nitrogen, sealed, and allowed to stand for 24 hours at 60 ° C. After completion of the polymerization, the contents were taken out and subjected to Soxhlet extraction with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night. The obtained porous material containing 3.3 mol% of a crosslinking component composed of a styrene / dibutylbenzene copolymer was cut to obtain 16.6 g, and dichloromethane 9 0 Add 0 ml, heat at 35 ° C for 1 hour, cool to 0 ° C with ice, gradually add 8 8. O g of chlorosulfonic acid, and after adding chlorosulfonic acid, raise the temperature to 3 5 The reaction was allowed to proceed for 24 hours at ° C. Thereafter, the reaction product was washed with methanol and washed with water to obtain a porous cation exchanger. The ion exchange capacity of this porous material is 4.5 mg equivalent / g in terms of dry porous material, and sulfonic acid groups are uniformly introduced into the porous material by mating sulfur atoms using EP MA. Confirmed that. As a result of SEM observation, the internal structure of this porous material (cationic monolith for liquid permeation region) has an open-cell structure, and most of the macropores with an average diameter of 30.0 m overlap. When the average value of the diameter of the mesopore formed by the overlap of the macropore and the macropore was determined by the mercury intrusion method, the average diameter was 8.5 ί η! The whole pore The volume was 2.7 ml / g.
(脱力チオン領域用カチオンモノ リスの製造)  (Manufacture of cationic monolith for weak thione region)
スチレン 1 9. 2 g、 ジビニルベンゼン 1. 0 g、 ァゾビスイソプチ ロニト リル 0. 3 g及ぴソルビタンモノォレエート 1 · l gを混合し、 均一に溶解させた。 次に、 当該スチレン Zジビニルベンゼン/ァゾビス ィソブチロニトリル/ソノレビタンモノォレエ一ト混合物を 1 8 0 mlの純 水に添加し、 遊星式攪拌装置を用いて (公転ノ自転) = (1 0 00 r p m /3 30 r p m) で 2分間攪拌し、 油中水滴型ェマルジヨンを得た。 乳 化終了後、 窒素で十分置換した後密封し、 静置下 6 0°Cで 24時間重合 させた。 重合終了後、 内容物を取り出し、 イソプロパノールで 1 2時間 ソックスレー抽出して未反応モノマーとソルビタンモノォレエ一トを除 去した。 その後、 8 5 °Cで一昼夜減圧乾燥した。 このようにして得られ たスチレン/ジビニルベンゼン共重合体よりなる架橋成分を 3 · 3モ ル%含有した多孔質体を切断して 7. 9 g採取し、 ジクロロメタン 9 0 0m lを加え、 3 5°Cで 1時間加熱した後、 0°Cまで氷冷し、 クロロスル ホン酸 4 2. 0 gを徐々に加え、 クロロスルホン酸添加終了後昇温して 3 5 °Cで 24時間反応させた。 その後、 メタノールで反応物を洗浄し、 水洗して多孔質陽イオン交換体を得た。 この多孔質体のイオン交換容量 は、 乾燥多孔質体換算で 4. 6mg当量/ gであった。 また、 S EM観 察の結果、 この多孔質体の内部構造は、 連続気泡構造を有しており、 平 均径 1 0 0 / m のマクロポアの大部分が重なり合った構造を有してい た。 マク口ポアとマクロポアの重なりで形成されるメソポアの直径の平 均値を水銀圧入法で求めたところ、 直径の平均値は 2 9. 0 ^πι、 全細 孔容積は、 8. 6m l /gであった。  19.2 g of styrene, 1.0 g of divinylbenzene, 0.3 g of azobisisobutylonitrile and 1 · l g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene Z divinylbenzene / azobisisobutyronitrile / sonolebitan monooleate mixture was added to 180 ml of pure water, and (revolution rotation) = (1 The mixture was stirred for 2 minutes at 0 00 rpm / 3 30 rpm) to obtain a water-in-oil emulsion. After completion of the emulsification, the gas was sufficiently substituted with nitrogen, sealed, and allowed to stand for polymerization at 60 ° C for 24 hours. After completion of the polymerization, the contents were taken out and Soxhlet extracted with isopropanol for 12 hours to remove unreacted monomers and sorbitan monoleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night. The porous body containing 3.3 mol% of the cross-linking component made of styrene / divinylbenzene copolymer was cut and 7.9 g was sampled, and 90 ml of dichloromethane was added. 3 After heating at 5 ° C for 1 hour, ice-cool to 0 ° C, slowly add 42.0 g of chlorosulfonic acid, warm up after addition of chlorosulfonic acid, and react at 35 ° C for 24 hours. It was. Thereafter, the reaction product was washed with methanol and washed with water to obtain a porous cation exchanger. The ion exchange capacity of this porous material was 4.6 mg equivalent / g in terms of dry porous material. As a result of SEM observation, the internal structure of the porous body had an open-cell structure, and most of the macropores with an average diameter of 100 / m overlapped. The average diameter of the mesopores formed by the overlap of the mac mouth pores and the macropores was determined by the mercury intrusion method, and the average diameter was 29.0 ^ πι, and the total pore volume was 8.6 ml / g.
(液透過領域用ァニオンモノ リスの製造)  (Manufacture of anion monolith for liquid permeation area)
スチレン 4 6. 3 gの代わりに、 p—クロロメチノレスチレン 2 7 · 4 gを用い、ジビュルベンゼン 1. 6 g、ァゾビスィソプチ口 -トリル 0. 3 g、ソルビタンモノォレエート 2. 0 gを混合し、均一に溶解させた。 次に、 当該 p—クロロメチルスチレン Zジビエルべンゼン /ァゾビスィ ソプチロニトリル Zソルビタンモノォレエート混合物を 1 80m lの純 水に添加し、 遊星式攪拌装置を用いて (公転 Z自転) = (1 800 r pm /600 r pm) で 5分間攪拌し、 油中水滴型ェマルジョンを得た。 乳 化終了後、 窒素で十分置換した後密封し、 静置下 60°Cで 24時間重合 させた。 重合終了後、 内容物を取り出し、 イソプロパノールで 1 2時間 ソックスレー抽出して未反応モノマーとソルビタンモノォレエートを除 去した。 その後、 8 5 °Cで一昼夜減圧乾燥した。 このようにして得られ た p _クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋 成分を 5. 0モル%含有した多孔質体を切断して 10. 7 g採取し、 テ トラヒ ドロフラン 900 gを加え 60°Cで 1時間加熱した後、 室温まで 冷却し、 トリメチルァミン (30%) 水溶液 58. 8 gを徐々に加え、 トリメチルァミン水溶液添加終了後昇温して 60°Cで 6時間反応させた。 反応終了後、 多孔質体を取り出し、 メタノールで洗浄後水洗し、 乾燥し て多孔質陰イオン交換体を得た。 この多孔質体のイオン交換容量は、 乾 燥多孔質体換算で 3. 6mg当量 Zgであり、 S IMSにより、 トリメ チルアンモニゥム基が多孔質体に均一に導入されていることを確認した。 また、 S EM観察の結果、 この多孔質体の内部構造は、 連続気泡構造を 有しており、 平均径 30 mのマクロポアの大部分が重なり合った構造 を有していた。 マク口ポアとマク口ポアの重なりで形成されるメソポア の直径の平均値を水銀圧入法で求めたところ、 直径の平均値は 7. 8 μ m、 全細孔容積は 4. Om l /gであった。 Styrene 4 6.3 g instead of p-chloromethylol styrene 2 7 · 4 Using g, 1.6 g of dibutenebenzene, 0.3 g of azobissopuchi-tolyl, and 2.0 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the p-chloromethylstyrene Z dibierbensen / azobisi soptyronitrile Z sorbitan monooleate mixture was added to 1 80 ml of pure water, and (revolution Z rotation) = (1 800 r pm / 600 r pm) for 5 minutes to obtain a water-in-oil emulsion. After completion of the emulsification, it was sufficiently substituted with nitrogen, sealed, and allowed to stand for polymerization at 60 ° C for 24 hours. After the polymerization was completed, the contents were taken out and Soxhlet extracted with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night. The porous body containing 5.0 mol% of the cross-linking component consisting of p_chloromethylstyrene / divinylbenzene copolymer obtained in this way was cut to obtain 10.7 g, and 900 g of tetrahydrofuran was collected. After heating at 60 ° C for 1 hour, cool to room temperature, gradually add 58.8 g of trimethylamine (30%) aqueous solution, heat up after addition of trimethylamine aqueous solution, and heat at 60 ° C for 6 hours. Reacted. After completion of the reaction, the porous body was taken out, washed with methanol, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 3.6 mg equivalent Zg in terms of dry porous material, and it was confirmed by S IMS that trimethylammonium groups were uniformly introduced into the porous material. As a result of SEM observation, the internal structure of this porous body had an open-cell structure, and most of the macropores with an average diameter of 30 m overlapped. The average diameter of the mesopore formed by the overlap of the mac mouth pore and the mac mouth pore was determined by the mercury intrusion method, and the mean diameter was 7.8 μm and the total pore volume was 4. Oml / g. Met.
(脱ァ二オン領域用ァニオンモノリスの製造)  (Manufacture of anion monoliths for detachment areas)
スチレン 1 9. 2 gの代わりに、 p—クロロメチルスチレン 1 9. 2 gを用い、ジビュルベンゼン 1. 0 g、ァゾビスィソブチ口 -トリル 0. 3 g、 ソルビタンモノォレエ一ト 2. 0 gを混合し、均一に溶解させた。 次に、 当該 p—クロロメチルスチレン/ジビュルベンゼン/ァゾビスィ ソプチ口 -トリル Zソルビタンモノォレエート混合物を 1 8 0m lの純 水に添加し、 遊星式攪拌装置を用いて (公転/自転) = (,1 0 00 r pm /3 30 r p m) で 2分間攪拌し、 油中水滴型ェマルジヨ ンを得た。 乳 化終了後、 窒素で十分置換した後密封し、 静置下 6 0°Cで 24時間重合 させた。 重合終了後、 内容物を取り出し、 イソプロパノールで 1 2時間 ソックスレ一抽出して未反応モノマーとソルビタンモノォレエ一トを除 去した。 その後、 8 5 °Cで一昼夜減圧乾燥した。 このようにして得られ た p—クロロメチルスチレン Zジビニルベンゼン共重合体よりなる架橋 成分を 5. 0モル%含有した多孔質体を切断して 6. 8 g採取し、 これ にテトラヒ ドロフラン 900 gを加え 6 0°Cで 1時間加熱した後、 室温 まで冷却し、 トリメチルァミン (3 0%) 水溶液 4 3. l gを徐々に加 え、 トリメチルァミン水溶液添加終了後昇温して 6 0°Cで 6時間反応さ せた。 反応終了後、 多孔質体を取り出し、 メタノールで洗浄後水洗し、 乾燥して多孔質陰イオン交換体を得た。 この多孔質体のイオン交換容量 は、 乾燥多孔質体換算で 3. 7m g当量 Zgであった。 また、 S EM観 察の結果、 この多孔質体の内部構造は、 連続気泡構造を有しており、 平 均径 70 xm のマクロポアの大部分が重なり合った構造を有していた。 マク口ポアとマク口ポアの重なりで形成されるメソポアの直径の平均値 を水銀圧入法で求めたところ、 直径の平均値は 2 1. 0 μ m, 全細孔容 積は 8. 4m l /gであった。 P-Chloromethylstyrene 19.2 instead of styrene 19.2g g was mixed with 1.0 g of dibutenebenzene, 0.3 g of azobisoxy mouth-tolyl and 2.0 g of sorbitan monoleate, and dissolved uniformly. Next, add the p-chloromethylstyrene / dibutenebenzene / azobisi soptite-tolyl Z sorbitan monooleate mixture to 180 ml pure water (revolution / spinning) using a planetary stirrer = (, 1 00 rpm / 3 30 rpm) for 2 minutes to obtain a water-in-oil emulsion. After completion of the emulsification, the gas was sufficiently substituted with nitrogen, sealed, and allowed to stand for polymerization at 60 ° C for 24 hours. After the completion of the polymerization, the contents were taken out and extracted with Sopropanol for 12 hours to remove unreacted monomers and sorbitan monoleate. Thereafter, it was dried under reduced pressure at 85 ° C. for a whole day and night. 6.8 g of a porous material containing 5.0 mol% of a cross-linking component composed of p-chloromethylstyrene Z divinylbenzene copolymer obtained in this manner was cut and collected, and 900 g of tetrahydrofuran was collected. After heating at 60 ° C for 1 hour, cool to room temperature, gradually add trimethylamine (30%) aqueous solution 4 3. lg, and after adding the trimethylamine aqueous solution, raise the temperature to 60 ° C. The reaction was performed at ° C for 6 hours. After completion of the reaction, the porous body was taken out, washed with methanol, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 3.7 mg equivalent Zg in terms of dry porous material. As a result of SEM observation, the internal structure of this porous body had an open-cell structure, and most of the macropores with an average diameter of 70 xm overlapped. When the average value of the diameter of the mesopore formed by the overlap of the mac mouth pore was determined by the mercury intrusion method, the mean diameter was 2 1.0 μm and the total pore volume was 8.4 ml. / g.
(カチオンセルの作製)  (Preparation of cation cell)
第 2図に示すような電気式脱イオン液製造装置 20を作製するため、 第 5図に示すようなカチオンセル 20 aを先ず作製した。 得られた液透 過領域用カチオンモノリス及ぴ脱力チオン領域用カチオンモノリスから、 純水湿潤状態でそれぞれ縦 (H) 5 0 mm,横 (W) 4 Omm、厚さ (L 20 mmの 2個の直方体 2 a、 1 1 aを切り出して脱力チオン室に 積層充填する充填材を得た。 次いで、 セル容器 2 0 1内に、 陰極室 (図 中、 左側) から順に、 液透過領域用カチオンモノ リス 2 a及び脱力チォ ン領域用カチオンモノリス 1 1 aを密着して装填し、 脱力チオン領域用 カチオンモノリス 1 1 aの陽極側の隣接空間にカチオン交換樹脂 1 2 a (アンバーライ ト I R 1 20 B、 ロームアンドハース社製) 80 m 1容 量を充填した。 セル容器 20 1には、 図中、 脱力チオン領域用カチオン モノリス 1 1 aが位置する底面に被処理液流入管 1 1が付設され、 カチ オン交換樹脂 1 2 aが位置する陽極側の上面に処理液流出管 1 2が付設 されている。 次いで、 セル容器 2 0 1の陰極側には陰極室を形成し、 更 に陰極室の外側面に SUS 3 04製の陰極を配置した。 また、 カチオン 交換樹脂 1 2 aの陽極側に陽イオン交換膜(Nafion 350;デュポン社製) を密着して配設し、 更に、 陽イオン交換膜の外側面に白金被膜チタン基 板からなる陽極を配置し、 適宜ノズルやリード線取り出し口を設けて、 カチオンセル 2 0 aを作製した。 なお、 簡略化のため、 第 5図中、 陽ィ オン交換膜、 電極室及び電極の記載を省略した。 In order to produce the electric deionized liquid production apparatus 20 as shown in FIG. 2, a cation cell 20a as shown in FIG. 5 was first produced. Obtained liquid permeability From the cation monolith for the excess region and the cation monolith for the weak force thione region, in the pure water wet state, the length (H) 50 mm, width (W) 4 Omm, thickness (L 20 mm, two rectangular parallelepiped 2 a, 1 1 a was cut out to obtain a filler that was stacked and filled in the weak thione chamber, and then in the cell container 2 0 1, in order from the cathode chamber (left side in the figure), the cation monolith for liquid permeation region 2 a and Cationic monolith for weakness cation region 1 1 a is closely packed, and cation monolith for weakness thione region 1 1 a is placed in the adjacent space on the anode side of cation exchange resin 1 2 a (Amberlite IR 1 20 B, Rohm and (Made by Haas) Filled with a volume of 80 m 1. The cell container 20 1 has a cation monolith for weakening thione region 1 1 in the figure. Treatment resin outflow pipe 1 2 is placed on the anode side upper surface where exchange resin 1 2 a is located Next, a cathode chamber was formed on the cathode side of the cell container 20 1, and a cathode made of SUS 3 04 was disposed on the outer surface of the cathode chamber, and the cation exchange resin 1 2 a A cation exchange membrane (Nafion 350; manufactured by DuPont) is placed in close contact with the anode side, and an anode made of a platinum-coated titanium substrate is placed on the outer surface of the cation exchange membrane. A cation cell 20 a was prepared by providing a take-out port, for the sake of simplicity, the description of the cation exchange membrane, the electrode chamber, and the electrode was omitted in FIG.
(ァニオンセルの作製)  (Preparation of anion cell)
得られた液透過領域用ァニオンモノ リス及び脱ァニオン領域用ァニォ ンモノリスから、 純水湿潤状態でそれぞれ縦 (H) 5 Omm, 横 (W) 40 mm、 厚さ (Lj 2 0mmの 2個の直方体 2 b、 l i bを切り出 して脱ァニオン室に積層充填する充填材を得た。 次いで、 セル容器 2 0 2内に、 陽極室 (第 5図中、 左側) から順に、 液透過領域用ァニオンモ ノリス 2 b及ぴ脱ァ二オン領域用ァニオンモノリス 1 1 bを密着して装 填し、 脱ァニオン領域用ァユオンモノリス 1 1 bの陰極側の隣接空間に ァニオン交換樹脂 1 2 b (アンバーライ ト I R A 4 0 2 B L、 ロームァ ンドハース社製) 8 0 m l容量を充填した。セル容器 2 0 2には、図中、 脱ァニオン領域用ァユオンモノ リ ス 1 1 bが位置する底面に被処理液 (脱力チオン液) 流入管 1 3が付設され、 ァニオン交換樹脂 1 2 bが位 置する陰極側の上面に脱塩液流出管 1 4が付設されている。 次いで、 セ ル容器 2 0 2の陽極側には陽極室を形成し、 更に陽極室の外側面に白金 被膜チタン基板からなる陽極を配置した。 また、 ァニオン交^樹脂 1 2 bの陰極側に陽イオン交換膜 (Naf ion 350;デュポン社製) を密着して 配設し、 更に、 陽イオン交換膜の外側面に S U S 3 0 4製の陰極を配置 し、 適宜ノズルやリード線取り出し口を設けて、 ァニオンセル 2 0 bを 作製した。 From the obtained anion monolith for the liquid permeation region and the anion monolith for the deanion region, in a pure water wet state, each of the two rectangular parallelepipeds 2 (H) 5 Omm, width (W) 40 mm, thickness (Lj 20 mm) 2 b and lib were cut out to obtain a filler to be stacked and filled in the deanion chamber, and then into the cell container 20 2, in order from the anode chamber (left side in FIG. 5), the anion monolith for liquid permeation region 2 b and the union monolith for the union region 1 1 b are intimately packed and placed in the adjacent space on the cathode side of the union region monolith for the deanion region 1 1 b. Anion exchange resin 1 2 b (Amberlite IRA 40 2 BL, manufactured by Romand Haas) 80 ml volume was filled. The cell container 20 2 is provided with an inflow pipe 13 for the liquid to be treated (depressurized thione liquid) on the bottom surface where the union area monolith for deanion area 1 1 b is located, and the anion replacement resin 1 2 b is A desalting solution outflow pipe 14 is attached to the upper surface on the cathode side. Next, an anode chamber was formed on the anode side of the cell container 202, and an anode made of a platinum-coated titanium substrate was further arranged on the outer surface of the anode chamber. In addition, a cation exchange membrane (Naf ion 350; manufactured by DuPont) is placed in close contact with the cathode side of the anion exchange resin 12 b, and the outer surface of the cation exchange membrane is made of SUS 304. An anion cell 20 b was prepared by disposing a cathode and appropriately providing a nozzle and a lead wire outlet.
(電気式脱ィオン液製造装置 2 0の作製)  (Production of electric deionization liquid production equipment 20)
得られたカチオンセル 2 0 aの処理液流出管 1 2とァ-オンセル 2 0 bの被処理液流入管 1 3を接続し、 2つの電極室には他の 2つの電極室 に透過した透過液の一部をそれぞれ供給するようにした。  The resulting cation cell 20 a treated liquid outflow pipe 12 is connected to the gas-on cell 20 b treated liquid inflow pipe 13, and the two electrode chambers are permeated through the other two electrode chambers. A part of the liquid was supplied.
, (脱イオン液の製造) , (Manufacture of deionized liquid)
得られた電気式脱イオン液製造装置 2 0に、 導電率 1 3 0 5ん111の水 を被処理液として流速 1 5 1 / hで連続通液し、 2 . 5 Aの直流電流を力 チオンセルからァニオンセルへ直列で通電したところ、 操作電圧は 1 1 0 Vで、 導電率 1 /i S/cmの処理液が流速 1 0 1 / hで得られた。 なお、 力 チオンセル 2 0 aで透過した透過液 (陰極液) の流速及びァ-オンセル 2 O bで透過した透過液 (陽極液) の流速はそれぞれ、 2 . 5 1 / hであ つた。 .  The obtained electric deionized liquid production apparatus 20 was continuously supplied at a flow rate of 15 1 / h with water having a conductivity of 1305 to 111 as a liquid to be treated, and a DC current of 2.5 A was applied. When a current was applied in series from the thione cell to the anion cell, an operating voltage was 110 V and a treatment liquid having an electrical conductivity of 1 / i S / cm was obtained at a flow rate of 10 / h. The flow rate of the permeate (catholyte) permeated through the force thione cell 20a and the flow rate of the permeate (anolyte) permeated through the gas cell 2Ob were 2.5 1 / h, respectively. .
(実施例 2 )  (Example 2)
(ァニオン及びカチオン同時処理型セルの作製)  (Preparation of anion and cation simultaneous treatment type cell)
実施例 1と同様に作製されたモノリスを用いてカチオン及ぴァニオン 同時処理型セルを作製した。 第 6図に示すような電気式脱イオン液製造 装置 3 0 aを作製するため、 実施例 1で得られた液透過領域用カチオン モノリス及ぴ液透過領域用ァニオンモノリスと脱力チオン領域用カチォ ンモノリス及ぴ脱力チオン領域用ァニオンモノリスから、 純水湿潤状態 でそれぞれ縦 (H) 5 0 mm、 横 (W) 4 0 mm、 厚さ (L j 2 0 m mの直方体を切り出して、 脱力チオン室に積層充填する液透過領域用力 チオンモノリス 2 a、 脱力チオン領域用カチオンモノリス 1 1 a、 脱ァ 二オン領域用ァニオンモノリス 1 1 b、 液透過領域用ァニオンモノリス 3 bとした。 次いで、 第 7図に示すようなセル容器 2 0 3内に、 陰極室 (図中、 左側) から 2 a、 l l a、 l i b , 3 bの順に密着して装填し た。 図中、 脱力チオン領域用カチオンモノリス 1 1 aが位置する底面に 被処理液流出管 1 1が付設され、 脱ァニオン領域用ァニオンモノ リス 1 1 bが位置する陽極側の上面に処理液流出管 1 4を付設した。 また、 第 7図に示すように液透過領域 2 a、 3 bから流出した流出液の流路に流 量調整弁 1 5を付設した。 次いで、 セル容器 2 0 3の陰極側には陰極室 を形成し、 更に陰極室の外側面に S U S製の陰極を配置した。 また、 陽 極側には陽極室を形成し、 更に陽極室の外側面には白金被覆チタン基板 の陽極を配置し、 適宜ノズルやリード線取り出し口を設けて、 電気式脱 イオン液製造装置 3 0 aを作製した。 なお、 簡略化のため、 第 7図中、 電極室及び電極の記載を省略した。 Cation and anion using a monolith prepared in the same manner as in Example 1. A simultaneous processing type cell was produced. In order to produce an electric deionized liquid production apparatus 30a as shown in Fig. 6, the liquid permeation region cation monolith and the liquid permeation region anion monolith and the weak force thione region catholyte obtained in Example 1 were used. Cut out a rectangular parallelepiped of length (H) 50 mm, width (W) 40 mm, and thickness (L j 20 mm) in pure water wet state from the union monolith and the union monolith for the weakness thione region. The liquid permeation zone force thione monolith 2a, the weak force thione zone cation monolith 1 1a, the deionized 2-on zone anion monolith 1 1b, and the liquid permeation zone anion monolith 3b. In the cell container 20 3 as shown in Fig. 7, the cathode chamber (left side in the figure) was loaded in close contact with 2a, lla, lib, 3b in this order. Cation monolith 1 1 Outflow pipe to be treated 1 1 is attached, and the treatment liquid outflow pipe 1 4 is attached to the upper surface on the anode side where the anion monolith 1 1 b is located, and from the liquid permeation areas 2 a and 3 b as shown in FIG. A flow rate adjusting valve 15 was attached to the flow path of the effluent that flowed out, and then a cathode chamber was formed on the cathode side of the cell container 20 3, and a SUS cathode was further arranged on the outer surface of the cathode chamber. In addition, an anode chamber is formed on the anode side, and an anode of a platinum-coated titanium substrate is arranged on the outer surface of the anode chamber, and an appropriate nozzle or lead wire outlet is provided to provide an electrical deionized liquid production apparatus. 30 a was prepared Note that, for the sake of simplicity, the description of the electrode chamber and the electrode was omitted in FIG.
(脱イオン液の製造)  (Manufacture of deionized liquid)
得られた電気式脱イオン液製造装置 30 aに、 導電率 130 μ SZc mの水を被処理液として 1 5 L/hで連続通液し、 流量調節弁 1 5で液 透過領域用カチオンモノ リス 2 aと液透過領域用ァニオンモノ リス 3 b を透過した陰極液及ぴ陽極液の流速をそれぞれ 2 L/hとし、 2. 5 A の直流電源を通電したところ、 操作電圧は 1 0 0 Vで、 導電率 1 μ S/ c mの処理液が流速 1 1 L / hで得られた。 産業上の利用可能性 Water with a conductivity of 130 μSZcm was continuously passed at 15 L / h as the liquid to be processed into the obtained electrical deionized liquid production apparatus 30a, and the cation monolith for the liquid permeation region was flown through the flow control valve 15. When the flow rate of the catholyte and anolyte that passed through squirrel 2a and liquid anion monolith 3b was 2 L / h respectively, and a 2.5 A DC power supply was applied, the operating voltage was 1 0 0 V With conductivity 1 μS / A cm treatment solution was obtained at a flow rate of 11 L / h. Industrial applicability
本発明によれば、 イオン交換膜を使用することなく、 装置構造を従来 のものより更に一層簡略化すると共に、 スケールの発生を防止できる電 気式脱イオン液製造装置及び脱イオン液の製造方法を提供することがで さる。  According to the present invention, without using an ion exchange membrane, the apparatus structure can be further simplified than the conventional one, and the generation of scale can be prevented and the method for producing the deionized liquid can be prevented. Can be provided.

Claims

請求の範囲 The scope of the claims
1. イオン交換体が充填された脱塩領域と、 1. a desalting zone filled with an ion exchanger;
該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透 過する液透過領域と、  A liquid permeable region through which a part of the liquid to be treated is disposed adjacent to the ion exclusion side of the desalting region;
該脱塩領域と該液透過領域の両側に配設される電極と、  Electrodes disposed on both sides of the desalting region and the liquid-permeable region;
被処理液を通液する被処理液流入管と、  A treatment liquid inlet pipe for passing the treatment liquid;
該液透過領域から透過した液を排出する電極室又は濃縮室と、 該脱塩領域から脱塩液を排出する脱塩液流出管と、 を少なく とも備え るものであって、 該液透過領域には多孔質イオン交換体が装填されるこ とを特徴とする電気式脱ィオン液製造装置。  An electrode chamber or a concentrating chamber for discharging the liquid permeated from the liquid permeation region, and a desalting liquid outflow pipe for discharging the desalted liquid from the desalting region. Is equipped with a porous ion exchanger.
2. 前記多孔質イオン交換体の通液抵抗が、 該脱塩領域に充填されるィ オン交換体の通液抵抗より大きいことを特徴とする請求項 1記載の電気 式脱イオン液製造装置。  2. The apparatus for producing an electrical deionized liquid according to claim 1, wherein the flow resistance of the porous ion exchanger is larger than the resistance of the ion exchanger filled in the desalting region.
3. 前記多孔質イオン交換体は、 互いにつながっているマクロポアとマ ク口ポアの壁内に平均径が l〜 1 00 / mのメソポアを有する連続気泡 構造を有し、全細孔容積が 1〜 5 Om 1 / gであり、イオン交換基が均一 に分布され、イオン交換容量が 0. 5m g当量/ g乾燥多孔質体以上であ るモノリス状有機多孔質イオン交換体であることを特徴とする請求項 1 又は 2に記載の電気式脱イオン液製造装置。  3. The porous ion exchanger has an open cell structure with mesopores having an average diameter of 1 to 100 / m in the walls of macropores and macropores connected to each other, and the total pore volume is 1 It is a monolithic organic porous ion exchanger that has an ion exchange group of uniformly distributed and an ion exchange capacity of 0.5 mg equivalent / g or more of a dry porous material. The electric deionized liquid production apparatus according to claim 1 or 2.
4. 前記脱塩領域に充填されるイオン交換体は、 一部又は全部が、 互い につながっているマク口ポアとマク口ポアの壁内に平均径が 1〜 1 00 0 μηιであって、 且つ該液透過領域に装填されるモノリス状有機多孔質 イオン交換体のメソポアの平均径ょり大きいメソポアを有する連続気泡 構造を有し、全細孔容積が 1〜5 Om 1 / gであり、イオン交換基が均一 に分布され、イオン交換容量が 0. 5mg当量/ g乾燥多孔質体以上のモ ノリス状有機多孔質イオン交換体であることを特徴とする請求項 3記載 の電気式脱イオン液製造装置。 4. The ion exchanger filled in the desalting region is partly or wholly connected to each other and has an average diameter of 1 to 1000 μηι in the wall of the mac mouth pore and the mac mouth pore, And the monolithic organic porous ion-exchanger mesopore loaded in the liquid permeation region has an open cell structure having a mesopore larger than the average diameter, and has a total pore volume of 1 to 5 Om 1 / g, The ion exchange groups are uniformly distributed, and the ion exchange capacity is 0.5 mg equivalent / g dry porous material or more. 4. The apparatus for producing an electrical deionized liquid according to claim 3, wherein the apparatus is a Norris organic porous ion exchanger.
5 . 前記液透過領域から透過した流出液の流路の一部又は全部に、 流量 調節手段を配設することを特徴とする請求項 1〜 4のいずれか 1項記載 の電気式脱イオン液製造装置。  5. The electric deionized liquid according to any one of claims 1 to 4, wherein a flow rate adjusting means is disposed in a part or all of the flow path of the effluent permeated from the liquid permeable region. Manufacturing equipment.
6 . イオン交換体が充填された脱塩領域に被処理液を通液して、 該被処 理液中のイオン性不純物を吸着.除去して脱塩液を得、 かつ、 該脱塩領域 に電場を印加して、 吸着されたイオン性不純物を、 電気的泳動により排 除する電気式脱イオン液製造装置において、 少なく とも該脱塩領域のィ オン排除側に隣接して配設される多孔質イオン交換体に、 該脱塩領域に 導入する被処理液の一部を通過せしめて、 前記電気泳動的に排除される イオン性不純物とともに電極室又は濃縮室に排出することを特徴とする 脱イオン液の製造方法。  6. A solution to be treated is passed through a desalting zone filled with an ion exchanger to adsorb and remove ionic impurities in the treating solution to obtain a desalting solution, and the desalting zone In an electric deionization liquid production apparatus that removes adsorbed ionic impurities by electrophoretic application by applying an electric field to the deionization region, it is arranged adjacent to at least the ion exclusion side of the desalting region A part of the liquid to be treated introduced into the desalting region is passed through a porous ion exchanger, and discharged to the electrode chamber or the concentration chamber together with the ionic impurities that are electrophoretically excluded. A method for producing a deionized liquid.
7 . 前記多孔質イオン交換体の通液抵抗が、 該脱塩領域に充填されるィ オン交換体の通液抵抗より大きいことを特徴とする請求項 6記載の脱ィ オン液の製造方法。  7. The method for producing a deionized liquid according to claim 6, wherein the flow resistance of the porous ion exchanger is larger than the resistance of the ion exchanger filled in the desalting region.
8 . 前記多孔質イオン交換体は、 互いにつながっているマクロポアとマ ク口ポアの壁内に平均径が 1〜 1 .0 0 μ mのメソポアを有する連続気泡 構造を有し、全細孔容積が 1〜5 O m 1 / gであり、イオン交換基が均一 に分布され、イオン交換容量が 0 . 5 m g当量/ g乾燥多孔質体以上であ るモノリス状有機多孔質イオン交換体であることを特徴とする請求項 6 又は 7に記載の脱イオン液の製造方法。  8. The porous ion exchanger has an open cell structure with mesopores having an average diameter of 1 to 1.0 μm in the walls of macropores and macropores connected to each other, and has a total pore volume. Is a monolithic organic porous ion exchanger in which the ion exchange group is uniformly distributed and the ion exchange capacity is 0.5 mg equivalent / g or more of the dry porous body. The method for producing a deionized liquid according to claim 6 or 7, wherein:
PCT/JP2005/022600 2004-12-06 2005-12-02 Electric deionized liquid production apparatus and process for producing deionized liquid WO2006062176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-352532 2004-12-06
JP2004352532A JP4721323B2 (en) 2004-12-06 2004-12-06 Electric deionized liquid production apparatus and deionized liquid production method

Publications (1)

Publication Number Publication Date
WO2006062176A1 true WO2006062176A1 (en) 2006-06-15

Family

ID=36577998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022600 WO2006062176A1 (en) 2004-12-06 2005-12-02 Electric deionized liquid production apparatus and process for producing deionized liquid

Country Status (3)

Country Link
JP (1) JP4721323B2 (en)
TW (1) TW200628412A (en)
WO (1) WO2006062176A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208523A1 (en) 2008-12-31 2010-07-21 Millipore Corporation Electrodeionization method and device with hydrodynamic flow splitting
WO2012082239A1 (en) * 2010-12-14 2012-06-21 General Electric Company Ion exchange deionization apparatus with electrical regeneration
KR20140074896A (en) * 2011-09-16 2014-06-18 제너럴 일렉트릭 캄파니 Electrodialysis method and apparatus for passivating scaling species

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019470B2 (en) * 2007-06-12 2012-09-05 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5383310B2 (en) * 2009-05-13 2014-01-08 オルガノ株式会社 Deionization module and electric deionized water production apparatus
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP5431197B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Electric deionized liquid production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225078A (en) * 1999-12-10 2001-08-21 Asahi Glass Co Ltd Electric regeneration type deionized water making apparatus and deionized water making method using the same
JP2002001345A (en) * 2000-06-19 2002-01-08 Asahi Glass Co Ltd Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
WO2002083770A1 (en) * 2001-04-13 2002-10-24 Organo Corporation Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion- exchanger, and electric deionized water manufacturing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149762A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Ion exchange membrane and electric deionized water production device using the same
JP3773190B2 (en) * 2002-05-15 2006-05-10 オルガノ株式会社 Electric deionized water production equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225078A (en) * 1999-12-10 2001-08-21 Asahi Glass Co Ltd Electric regeneration type deionized water making apparatus and deionized water making method using the same
JP2002001345A (en) * 2000-06-19 2002-01-08 Asahi Glass Co Ltd Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
WO2002083770A1 (en) * 2001-04-13 2002-10-24 Organo Corporation Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion- exchanger, and electric deionized water manufacturing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208523A1 (en) 2008-12-31 2010-07-21 Millipore Corporation Electrodeionization method and device with hydrodynamic flow splitting
US8313630B2 (en) 2008-12-31 2012-11-20 Emd Millipore Corporation Electrodeionization device with hydrodynamic flow splitting
CN101898090B (en) * 2008-12-31 2013-03-20 Emd密理博公司 Electrodeionization method and device with hydrodynamic flow splitting
US8652315B2 (en) 2008-12-31 2014-02-18 Emd Millipore Corporation Electrodeionization method and device with hydrodynamic flow splitting
WO2012082239A1 (en) * 2010-12-14 2012-06-21 General Electric Company Ion exchange deionization apparatus with electrical regeneration
US8496797B2 (en) 2010-12-14 2013-07-30 General Electric Company Electrical deionization apparatus
CN103249485A (en) * 2010-12-14 2013-08-14 通用电气公司 Ion exchange deionization apparatus with electrical regeneration
AU2011341667B2 (en) * 2010-12-14 2016-10-06 Bl Technologies, Inc. Ion exchange deionization apparatus with electrical regeneration
KR101838770B1 (en) 2010-12-14 2018-03-14 제너럴 일렉트릭 캄파니 Ion exchange deionization apparatus with electrical regeneration
KR20140074896A (en) * 2011-09-16 2014-06-18 제너럴 일렉트릭 캄파니 Electrodialysis method and apparatus for passivating scaling species
KR101892787B1 (en) 2011-09-16 2018-08-28 제너럴 일렉트릭 캄파니 Electrodialysis method and apparatus for passivating scaling species

Also Published As

Publication number Publication date
JP4721323B2 (en) 2011-07-13
TW200628412A (en) 2006-08-16
JP2006159064A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2006062176A1 (en) Electric deionized liquid production apparatus and process for producing deionized liquid
EP1364709B1 (en) Electrodeionization deionized water producing apparatus
EP0984998B1 (en) Bipolar membranes with fluid distribution passages
JP4453982B2 (en) Method for producing composite porous ion exchanger
JP3163188U (en) Apparatus and method for acid and base production
EP1069079B1 (en) Electric deionization apparatus
JP2002535128A (en) Electrodeionizer and electrodeionization method
WO2003097536A1 (en) Electric demineralizer
JP2002527238A5 (en)
WO2004108606A1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JP4672601B2 (en) Deionized water production equipment
JP2008055388A (en) Electric deionized water making apparatus and its operation method
US9550687B2 (en) Electrodeionization module and apparatus
JP4049170B2 (en) Method for producing deionized water production apparatus
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP2002001345A (en) Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP4107750B2 (en) Desalination chamber structure and electric deionized liquid production apparatus
WO2014206381A1 (en) The asymmetric ion-exchange membrane and use thereof
US20080308482A1 (en) Electric Deionized Water Production Apparatus
CA2957963C (en) Methods and systems for providing inlets and outlets to cell pairs in an electrochemical separation device
JPH10192717A (en) Porous ion exchanger and production of demineralized water
IL302180A (en) Electrodeionization configuration for enhanced removal of weakly ionized species
JPH0221855B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814420

Country of ref document: EP

Kind code of ref document: A1