JP5030182B2 - Electric deionized liquid production equipment - Google Patents

Electric deionized liquid production equipment Download PDF

Info

Publication number
JP5030182B2
JP5030182B2 JP2009117345A JP2009117345A JP5030182B2 JP 5030182 B2 JP5030182 B2 JP 5030182B2 JP 2009117345 A JP2009117345 A JP 2009117345A JP 2009117345 A JP2009117345 A JP 2009117345A JP 5030182 B2 JP5030182 B2 JP 5030182B2
Authority
JP
Japan
Prior art keywords
liquid
monolith
region
ion exchanger
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009117345A
Other languages
Japanese (ja)
Other versions
JP2010264375A5 (en
JP2010264375A (en
Inventor
洋 井上
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009117345A priority Critical patent/JP5030182B2/en
Publication of JP2010264375A publication Critical patent/JP2010264375A/en
Publication of JP2010264375A5 publication Critical patent/JP2010264375A5/ja
Application granted granted Critical
Publication of JP5030182B2 publication Critical patent/JP5030182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、脱イオン液を用いる半導体製造工業、製薬工業、食品工業、発電所、研究所等の各種の工業あるいは糖液、ジュース、ワイン等の製造等で使用されるイオン交換膜を使用することなく、装置構造を簡略化した電気式脱イオン液製造装置に関するものである。   The present invention uses an ion exchange membrane used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized liquid or manufacturing sugar solution, juice, wine, etc. The present invention relates to an electric deionized liquid production apparatus having a simplified apparatus structure.

特開2006−159064号公報には、イオン交換体が充填された脱塩領域と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する液透過領域と、該脱塩領域と該液透過領域の両側に配設される電極と、被処理液を通液する被処理液流入管と、該液透過領域から透過した液を排出する電極室又は濃縮室と、該脱塩領域から脱塩液を排出する脱塩液流出管と、を少なくとも備えるものであって、該液透過領域には多孔質イオン交換体が装填される電気式脱イオン液製造装置が開示されている。   Japanese Patent Application Laid-Open No. 2006-159064 discloses a desalting region filled with an ion exchanger, and a liquid permeable region through which a part of the liquid to be processed disposed adjacent to the ion exclusion side of the desalting region passes. An electrode disposed on both sides of the desalting region and the liquid permeation region, a treatment liquid inflow pipe through which the treatment liquid flows, and an electrode chamber or a concentration for discharging the liquid permeated from the liquid permeation region A deionizing solution outflow pipe for discharging a desalting solution from the desalting region, wherein the liquid permeable region is loaded with a porous ion exchanger. An apparatus is disclosed.

この電気式脱イオン液製造装置の脱塩領域および液透過領域で使用される有機多孔質イオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/g であり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上のものである。なお、上記の連続気泡構造の有機多孔質イオン交換体の製造方法の詳細は、特開2002−306976号公報に開示されている。この電気式脱イオン液製造装置によれば、イオン交換膜を使用することなく、装置構造を従来のものより更に一層簡略化したものとすることができ、また液透過領域においては、透過する被処理液の希釈効果によりスケールの発生を防止することができる。   The organic porous ion exchanger used in the desalting region and the liquid permeation region of this electric deionizing liquid production apparatus has a continuous macropore and a mesopore having an average diameter of 1-1000 μm in the wall of the macropore. It has a cell structure, has a total pore volume of 1 to 50 ml / g, has ion exchange groups uniformly distributed, and has an ion exchange capacity of 0.5 mg equivalent / g or more of a dry porous body. The details of the method for producing the organic porous ion exchanger having the above-mentioned open cell structure are disclosed in JP-A-2002-306976. According to this electric deionized liquid production apparatus, the structure of the apparatus can be further simplified than the conventional one without using an ion exchange membrane, and the permeation of the permeated film in the liquid permeation region. Generation of scale can be prevented by the dilution effect of the treatment liquid.

特開2006−159064号公報Japanese Patent Laid-Open No. 2006-159064 特開2002−306976号公報JP 2002-306976 A 特開2009−62512号公報JP 2009-62512 A 特開2009−67982号公報JP 2009-67982 A

しかしながら、特開2006−159064号公報や特開2002−306976号公報に記載の有機多孔質イオン交換体は、モノリスの共通の開口(メソポア)が1〜1,000μmと記載されているものの、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水時の圧力損失が大きいという問題があった。また、開口の平均径を20μm近傍のものにすると、全細孔容積もそれに伴い大きくなるため、体積当たりのイオン交換容量が低下し、このため、処理水水質が低下し、かつ消費電力も大きいという問題があった。また、特開2006−159064号公報に記載の電気式脱イオン水製造装置の脱塩室に装填されるモノリスにおいて、連続気泡構造(連続マクロポア)とは異なる新たな構造のモノリスの登場も望まれていた。   However, the organic porous ion exchangers described in JP-A-2006-159064 and JP-A-2002-306976 have a common monolithic opening (mesopore) of 1 to 1,000 μm, For monoliths with a small pore volume of 5 ml / g or less in pore volume, it is necessary to reduce the amount of water droplets in the water-in-oil emulsion, so the common aperture is small, and the average diameter of the aperture is substantially 20 μm or more. Cannot be manufactured. For this reason, there existed a problem that the pressure loss at the time of water flow was large. In addition, when the average diameter of the openings is around 20 μm, the total pore volume also increases accordingly, so that the ion exchange capacity per volume decreases, and thus the quality of treated water and the power consumption increase. There was a problem. In addition, in the monolith loaded in the demineralization chamber of the electric deionized water production apparatus described in Japanese Patent Application Laid-Open No. 2006-159064, the appearance of a monolith having a new structure different from the open cell structure (continuous macropore) is also desired. It was.

従って、本発明の目的は、特開2006−159064号公報の電気脱イオン液製造装置のイオン交換膜を省略できるという利点を保持しつつ、モノリスイオン交換体の強度が高く、通水時の圧力損失を低下させることができ、吸着したイオン性不純物の移動を更に速めて吸着イオンの排除を容易にし、処理水水質が良好かつ消費電力が小さい電気式脱イオン液製造装置を提供することにある。   Therefore, the object of the present invention is to maintain the advantage that the ion exchange membrane of the electrodeionization liquid production apparatus disclosed in Japanese Patent Application Laid-Open No. 2006-159064 can be omitted, while the strength of the monolith ion exchanger is high, and the pressure during water flow An object of the present invention is to provide an electric deionized liquid production apparatus that can reduce loss, facilitates the removal of adsorbed ions by further speeding the movement of adsorbed ionic impurities, has good quality of treated water and low power consumption. .

かかる実情において、本発明者らは、鋭意検討を行った結果、特開2003−334560号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下、特定の条件下、ビニルモノマーと架橋剤を有機溶媒中で静置重合すれば、有機多孔質体を構成する骨格表面上に直径2〜20μmの多数の粒子体が固着する又は突起体が形成された複合構造を有するモノリスが得られること、この複合モノリスにイオン交換基を導入した複合モノリスイオン交換体は、イオン交換膜の設置を省略した電気式脱イオン液製造装置の脱塩領域又は透過領域で用いれば、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、モノリスイオン交換体の強度が高く、通水時の圧力損失を低下させることができ、吸着したイオン性不純物の移動を更に速めて吸着イオンの排除を容易にし、処理水水質が良好かつ消費電力が小さいことなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, obtained a monolithic organic porous body (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2003-334560. If the vinyl monomer and the crosslinking agent are allowed to stand and polymerize in an organic solvent under specific conditions in the presence, a large number of particles having a diameter of 2 to 20 μm are fixed on the surface of the skeleton constituting the organic porous body, or a protrusion. A monolith having a composite structure in which an ion exchange group is introduced into the composite monolith is obtained in a desalination region of an electric deionization liquid production apparatus in which the installation of an ion exchange membrane is omitted. Or, if used in the permeation region, the movement of the adsorbed ionic impurities can be accelerated to facilitate the removal of the adsorbed ions, the strength of the monolith ion exchanger is high, and the pressure loss during water flow can be reduced. Can, expediting further movement of adsorbed ionic impurities to facilitate the elimination of adsorbed ions, the treated water quality is found such that the good and the power consumption is small, and have completed the present invention.

すなわち、本発明は、第1イオン交換体が充填された脱塩領域と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、該脱塩領域と該液透過領域の両側に配設される電極と、被処理液を通液する被処理液流入管と、該液透過領域から透過した液を排出する電極室又は濃縮室と、該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、該第1イオン交換体が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であるか、又は該モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂との混合イオン交換体であり、該第2イオン交換体の通水抵抗が、該第1イオン交換体の通水抵抗より大であることを特徴とする電気式脱イオン液製造装置を提供するものである。   That is, the present invention provides a desalting region filled with the first ion exchanger and a second ion exchanger through which a part of the liquid to be treated disposed adjacent to the ion exclusion side of the desalting region passes. A liquid permeation area filled with a liquid, an electrode disposed on both sides of the desalting area and the liquid permeation area, a liquid inflow pipe to be treated for passing the liquid to be treated, and a liquid permeated from the liquid permeation area An electrode chamber or a concentrating chamber for discharging the desalting solution, and a desalting solution outflow pipe for discharging the desalting solution from the desalting region, wherein the first ion exchanger has a continuous skeletal phase and continuous pores An organic porous body composed of phases and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or a size of 4 to 40 μm formed on the skeleton surface of the organic porous body It is a composite structure with a large number of protrusions, and has an average pore diameter of 10 to 150 μm and a total pore volume of 0. A monolithic organic porous ion exchanger having an ion exchange capacity per volume of 0.2 mg equivalent / ml or more in a water-wet state, or the monolithic organic porous ion exchanger It is a mixed ion exchanger with a granular ion exchange resin, and the water resistance of the second ion exchanger is larger than the water resistance of the first ion exchanger. A device is provided.

また、本発明は、第1イオン交換体が充填された脱塩領域と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、該脱塩領域と該液透過領域の両側に配設される電極と、被処理液を通液する被処理液流入管と、該液透過領域から透過した液を排出する電極室又は濃縮室と、該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、該第2イオン交換体が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径0.01〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であり、該第1イオン交換体の通水抵抗が、該第2イオン交換体の通水抵抗より小であることを特徴とする電気式脱イオン液製造装置を提供するものである。   The present invention also provides a desalting region filled with the first ion exchanger, and a second ion exchanger through which a part of the liquid to be treated disposed adjacent to the ion exclusion side of the desalting region permeates. A liquid permeation area filled with a liquid, an electrode disposed on both sides of the desalting area and the liquid permeation area, a liquid inflow pipe to be treated for passing the liquid to be treated, and a liquid permeated from the liquid permeation area An electrode chamber or a concentrating chamber for discharging the desalting solution, and a desalting solution outflow pipe for discharging the desalting solution from the desalting region, wherein the second ion exchanger has a continuous skeletal phase and continuous pores. An organic porous body composed of phases and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or a size of 4 to 40 μm formed on the skeleton surface of the organic porous body It is a composite structure with a large number of protrusions, and has an average pore diameter of 0.01 to 150 μm and a total pore volume of 0. A monolithic organic porous ion exchanger having an ion exchange capacity of 0.2 mg equivalent / ml or more per volume in a water-wet state, wherein the water resistance of the first ion exchanger is The present invention provides an apparatus for producing an electrical deionized liquid, which is smaller than the water flow resistance of the second ion exchanger.

また、本発明は、第1イオン交換体が充填された脱塩領域と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、該脱塩領域と該液透過領域の両側に配設される電極と、被処理液を通液する被処理液流入管と、該液透過領域から透過した液を排出する電極室又は濃縮室と、該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、該第1イオン交換体と該第2イオン交換体は同じで、該脱塩領域と該液透過領域は単一のモノリスで形成され、且つ前記液透過領域から透過した流出液の流路に、流量調節手段を配設するものであり、該単一のモノリスが、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン液製造装置を提供するものである。   The present invention also provides a desalting region filled with the first ion exchanger, and a second ion exchanger through which a part of the liquid to be treated disposed adjacent to the ion exclusion side of the desalting region permeates. A liquid permeation area filled with a liquid, an electrode disposed on both sides of the desalting area and the liquid permeation area, a liquid inflow pipe to be treated for passing the liquid to be treated, and a liquid permeated from the liquid permeation area An electrode chamber or a concentrating chamber for discharging the desalting solution, and a desalting solution outflow pipe for discharging the desalting solution from the desalting region, wherein the first ion exchanger and the second ion exchanger are the same The desalting area and the liquid permeation area are formed of a single monolith, and a flow rate adjusting means is disposed in the flow path of the effluent that has permeated from the liquid permeation area. The monolith has an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a diameter of 4 to 4 fixed to the skeleton surface of the organic porous body. A composite structure of a large number of μm particles or a large number of projections having a size of 4 to 40 μm formed on the skeleton surface of the organic porous material, and having an average pore diameter of 10 to 10 in a wet state It is a monolithic organic porous ion exchanger having 150 μm, a total pore volume of 0.5 to 5 ml / g, and an ion exchange capacity of 0.2 mg equivalent / ml or more per volume in a water-wet state. An electrical deionized liquid manufacturing apparatus is provided.

本発明によれば、新規構造のモノリスイオン交換体は、イオン交換膜の設置を省略した電気式脱イオン液製造装置の脱塩領域や透過領域に好適に使用することができる。すなわち、本発明の電気式脱イオン液製造装置は、モノリスイオン交換体の強度が高く、通水時の圧力損失を低下させることができ、吸着したイオン性不純物の移動を更に速めて吸着イオンの排除を容易にし、処理水水質が良好かつ消費電力が小さい。   According to the present invention, the monolithic ion exchanger having a novel structure can be suitably used in a desalting region or a permeation region of an electric deionized liquid production apparatus that omits the installation of an ion exchange membrane. That is, the electric deionized liquid production apparatus of the present invention has high monolithic ion exchanger strength, can reduce pressure loss during water flow, further accelerates the movement of adsorbed ionic impurities, Ease of removal, good quality of treated water and low power consumption.

参考例1で得られたモノリスの倍率100のSEM画像である。4 is a SEM image of a monolith obtained in Reference Example 1 at a magnification of 100. FIG. 参考例1で得られたモノリスの倍率300のSEM画像である。3 is a SEM image of a monolith obtained in Reference Example 1 at a magnification of 300. 参考例1で得られたモノリスの倍率3000のSEM画像である。3 is an SEM image of the monolith obtained in Reference Example 1 at a magnification of 3000. 参考例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms on the surface of the monolith cation exchanger obtained in Reference Example 1. FIG. 参考例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing a distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger obtained in Reference Example 1. FIG. 参考例2で得られたモノリスの倍率100のSEM画像である。10 is a SEM image of a monolith obtained in Reference Example 2 at a magnification of 100. 参考例2で得られたモノリスの倍率600のSEM画像である。6 is an SEM image of a monolith obtained in Reference Example 2 at a magnification of 600. 参考例2で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Reference Example 2 at a magnification of 3000. 参考例3で得られたモノリスの倍率600のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 3 at a magnification of 600. 参考例3で得られたモノリスの倍率3000のSEM画像である。10 is an SEM image of the monolith obtained in Reference Example 3 at a magnification of 3000. 参考例4で得られたモノリスの倍率3000のSEM画像である。10 is a SEM image of the monolith obtained in Reference Example 4 at a magnification of 3000. 参考例5で得られたモノリスの倍率100のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 5 at a magnification of 100. 参考例5で得られたモノリスの倍率3000のSEM画像である。10 is a SEM image of the monolith obtained in Reference Example 5 at a magnification of 3000. 参考例6で得られたモノリスの倍率100のSEM画像である。10 is a SEM image of a monolith obtained in Reference Example 6 at a magnification of 100. 参考例6で得られたモノリスの倍率600のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 6 at a magnification of 600. 参考例6で得られたモノリスの倍率3000のSEM画像である。10 is an SEM image of the monolith obtained in Reference Example 6 at a magnification of 3000. 本発明の第1の実施の形態例の電気式脱イオン液製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrical deionization liquid manufacturing apparatus of the 1st Example of this invention. 本発明の第2の実施の形態例の電気式脱イオン液製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electric deionization liquid manufacturing apparatus of the 2nd Example of this invention. 本発明の第3の実施の形態例の電気式脱イオン液製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrical deionization liquid manufacturing apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施の形態例の電気式脱イオン液製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electric deionization liquid manufacturing apparatus of the 4th Example of this invention. 図18の電気式脱イオン液製造装置で用いる脱イオン領域及び液透過領域の充填状態を説明する図である。It is a figure explaining the filling state of the deionization area | region and liquid permeation | transmission area | region used with the electrical deionization liquid manufacturing apparatus of FIG. 実施例2の電気式脱イオン液製造装置の構造を示す模式図である。FIG. 3 is a schematic diagram showing the structure of an electrical deionized liquid production apparatus of Example 2. 図22の電気式脱イオン液製造装置で用いる脱イオン領域及び液透過領域の充填状態を説明する図である。It is a figure explaining the filling state of the deionization area | region and liquid permeation | transmission area | region used with the electrical deionization liquid manufacturing apparatus of FIG. 突起体の模式的な断面図である。It is typical sectional drawing of a protrusion.

本発明の電気式脱イオン液製造装置(以下、単に「EDI」とも言う。)の基本構造は、第1イオン交換体が充填された脱塩領域と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、該脱塩領域と該液透過領域の両側に配設される電極と、被処理液を通液する被処理液流入管と、該液透過領域から透過した液を排出する電極室又は濃縮室と、該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものである。請求項1係る第1の発明は、第1イオン交換体が複合モノリスイオン交換体であり、請求項2に係る第2の発明は、第2イオン交換体が複合モノリスイオン交換体であり、請求項3に係る第3の発明は、単一モノリスが複合モノリスイオン交換体である。   The basic structure of the electric deionizing liquid production apparatus (hereinafter also simply referred to as “EDI”) of the present invention is a demineralized region filled with the first ion exchanger and adjacent to the ion exclusion side of the demineralized region. A liquid permeable region filled with a second ion exchanger through which a part of the liquid to be treated is disposed, electrodes disposed on both sides of the desalting region and the liquid permeable region, A treatment liquid inflow pipe for passing the liquid, an electrode chamber or a concentration chamber for discharging the liquid permeated from the liquid permeation area, and a desalting liquid outflow pipe for discharging the desalting liquid from the desalination area. Is. In a first aspect of the present invention, the first ion exchanger is a composite monolith ion exchanger, and in a second aspect of the invention according to claim 2, the second ion exchanger is a composite monolith ion exchanger, In a third invention according to Item 3, the single monolith is a composite monolith ion exchanger.

<第1の発明>
第1の発明のEDIにおいて、脱塩領域に充填される第1イオン交換体は、後述する複合モノリスイオン交換体であるか、又は複合モノリスイオン交換体と、粒状イオン交換樹脂との混合イオン交換体である。粒状イオン交換樹脂は、公知のものが使用できる。また、混合イオン交換体の場合、複合モノリスイオン交換体と粒状イオン交換樹脂の混合割合(体積比率)は、1:0.1〜1:10、好ましくは1:0.2〜1:5である。また、第1イオン交換体の通液抵抗は、液透過領域に充填される第2イオン交換体の通液抵抗より小さくする。これにより、液透過領域に装填される第2イオン交換体に対して脱塩領域の通液抵抗を低減させることが容易であり、別途の特段の流路分配手段を設けるまでもなく、脱塩領域に流入した被処理液の大部分が脱塩領域から脱イオン液として脱塩領域から流出し、被処理液の一部が液透過領域に透過する。
<First invention>
In the EDI of the first invention, the first ion exchanger filled in the desalting region is a composite monolith ion exchanger described later, or mixed ion exchange between the composite monolith ion exchanger and the granular ion exchange resin. Is the body. A well-known thing can be used for a granular ion exchange resin. In the case of a mixed ion exchanger, the mixing ratio (volume ratio) of the composite monolith ion exchanger and the granular ion exchange resin is 1: 0.1 to 1:10, preferably 1: 0.2 to 1: 5. is there. In addition, the liquid flow resistance of the first ion exchanger is made smaller than the liquid flow resistance of the second ion exchanger filled in the liquid permeable region. Thereby, it is easy to reduce the flow resistance of the desalting region with respect to the second ion exchanger loaded in the liquid permeation region, and it is not necessary to provide a separate special channel distribution means. Most of the liquid to be treated that flows into the region flows out from the desalting region as a deionized liquid from the desalting region, and a part of the liquid to be treated permeates into the liquid permeation region.

液透過領域は、第2イオン交換体が装填されたものであって、脱塩領域のイオン排除側に隣接して配設され、被処理液の一部が透過すると共に電気泳動的に排除されるイオン性不純物が透過する領域である。液透過領域に装填される第2イオン交換体としては、例えば連続気泡構造のモノリス、繊維状多孔質イオン交換体及び粒子凝集型多孔質イオン交換体等が挙げられ、このうち、連続気泡構造のモノリスが、イオン交換基が均一に分布し、イオン排除がすみやかに行われることから好ましい。   The liquid permeation region is loaded with the second ion exchanger, and is disposed adjacent to the ion rejection side of the desalting region, so that a part of the liquid to be treated permeates and is electrophoretically excluded. This is a region through which ionic impurities are transmitted. Examples of the second ion exchanger loaded in the liquid permeation region include a monolith having an open cell structure, a fibrous porous ion exchanger, a particle agglomerated porous ion exchanger, and the like. Monoliths are preferred because the ion exchange groups are uniformly distributed and ion exclusion is performed promptly.

第2イオン交換体である連続気泡構造のモノリスとしては、油中水滴型エマルジョンから製造される公知のものが使用でき、例えばマクロポアとマクロポアの壁内に平均径が1〜20μm、好適には1μm以上、10μm未満の共通の開口(メソポア)を有し、全細孔容積が1〜50mlであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上である3次元網目構造を有する有機多孔質イオン交換体が挙げられる。このような連続気泡構造のモノリスであれば、流路を形成する開口が第1イオン交換体のモノリスの開口より小さく、通液抵抗が高くなる。このような連続気泡構造のモノリス及びその製造方法は、例えば特開2003−334560号公報に開示されている。特開2003−334560号公報のモノリスにおいて、メソポアの平均径が小さいモノリスは、製造する際、界面活性剤の添加量を多くする、攪拌を激しくする等の方法により得ることができる。また、繊維状多孔質イオン交換体及び粒子凝集型多孔質イオン交換体もそれぞれ公知のものが使用できる。   As the monolith having an open-cell structure as the second ion exchanger, a known one produced from a water-in-oil emulsion can be used. For example, the average diameter is 1 to 20 μm, preferably 1 μm in the wall of the macropore and the macropore. Above, having a common opening (mesopore) of less than 10 μm, total pore volume of 1 to 50 ml, ion exchange groups are uniformly distributed, ion exchange capacity is 0.5 mg equivalent / g dry porous body or more And an organic porous ion exchanger having a three-dimensional network structure. In such a monolith having an open cell structure, the opening forming the flow path is smaller than the opening of the monolith of the first ion exchanger, and the liquid flow resistance becomes high. Such a monolith having an open cell structure and a method for producing the same are disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-334560. In the monolith disclosed in Japanese Patent Application Laid-Open No. 2003-334560, a monolith having a small mesopore average diameter can be obtained by a method such as increasing the amount of the surfactant added or increasing the agitation during the production. Moreover, a well-known thing can also be used for a fibrous porous ion exchanger and a particle aggregation type porous ion exchanger, respectively.

第1の発明においては、透過液の流路に流量調節手段を設置しても、設置しなくともよい。流量調節手段を設置すれば、第1イオン交換体の通液抵抗を、液透過領域に充填される第2イオン交換体の通液抵抗より確実に小さくすることがきる。また、透過液と脱イオン液の流量をより所望の割合に調整することができる。被処理液の流量に対する液透過領域を透過する透過液の流量比率は、例えば2〜30%、好ましくは4〜30%である。この比率が2%未満であると、希釈効果が低下しスケール発生を防止することが難しくなり、30%を超えると、脱塩液の収量が低下する点で好ましくない。流量調節手段としては、流量調節弁、アリフィス等が挙げられる。   In the first invention, the flow rate adjusting means may or may not be installed in the permeate flow path. If the flow rate adjusting means is installed, the liquid flow resistance of the first ion exchanger can be surely made smaller than the liquid flow resistance of the second ion exchanger filled in the liquid permeation region. Further, the flow rates of the permeate and deionized liquid can be adjusted to a desired ratio. The flow rate ratio of the permeate passing through the liquid permeation region to the flow rate of the liquid to be processed is, for example, 2 to 30%, preferably 4 to 30%. If this ratio is less than 2%, it becomes difficult to prevent the occurrence of scale by reducing the dilution effect, and if it exceeds 30%, it is not preferable in that the yield of the desalted solution is reduced. Examples of the flow rate adjusting means include a flow rate adjusting valve, Arifis and the like.

脱塩領域のイオン排除側に液透過領域を隣接して配設する形態としては、特に制限されないが、モノリス同士が隣接して配設される形態が、イオン排除が速やかに行われる点で好ましい。モノリス同士が隣接して配設される場合、脱塩領域用のモノリスと液透過領域用のモノリスを、電場の印加方向において、その端面同士を密着して配設する。また、脱塩領域におけるモノリスとイオン交換樹脂の混合体は、モノリスはスポンジ状であるため、両者は混ざることなく、それぞれの相を形成することができる。   The form in which the liquid permeation region is disposed adjacent to the ion rejection side of the desalting region is not particularly limited, but the form in which the monoliths are disposed adjacent to each other is preferable in terms of quick ion exclusion. . When the monoliths are disposed adjacent to each other, the monolith for the desalting region and the monolith for the liquid permeation region are disposed in close contact with each other in the electric field application direction. Moreover, since the monolith and the ion exchange resin mixture in the desalting region are sponge-like, they can form respective phases without being mixed.

第1の発明において、アニオンセル又はカチオンセルの場合、脱塩領域のイオン排除側とは反対側に隣接して配設されるものとしては、被処理液の他の一部が透過する他の液透過領域と同じ構造のものであってもよく、また従来通りのイオン交換膜であってもよい。この液透過領域を配設する場合、この液透過領域から透過した液は電極室又は濃縮室に流れ込む。これにより、イオン交換膜が全く不要となるため、装置構造が簡略化でき、製造コストを低減することができる。また、イオン交換膜を配設する場合、従来のEDIと同様に、該イオン交換膜に隣接する電極室又は濃縮室には、別途、電極液又は濃縮液を流すことになる。他の液透過領域に装填されるイオン交換体としては、前記液透過領域に装填される第2イオン交換体と同様のものが挙げられる。   In the first invention, in the case of an anion cell or a cation cell, it is disposed adjacent to the side opposite to the ion exclusion side of the desalting region. It may have the same structure as the liquid permeable region, or may be a conventional ion exchange membrane. When this liquid permeable region is provided, the liquid that has permeated from this liquid permeable region flows into the electrode chamber or the concentration chamber. Thereby, since an ion exchange membrane becomes completely unnecessary, the device structure can be simplified and the manufacturing cost can be reduced. Further, when an ion exchange membrane is provided, an electrode solution or a concentrated solution is separately supplied to an electrode chamber or a concentrating chamber adjacent to the ion exchange membrane, similarly to the conventional EDI. Examples of the ion exchanger loaded in the other liquid permeable region include the same ion exchanger as the second ion exchanger loaded in the liquid permeable region.

<第2の発明>
次に、第2の発明について、第1の発明と異なる点について主に説明する。第2の発明のEDIにおいて、透過領域に充填される第2イオン交換体は、複合モノリスイオン交換体である。また、第2イオン交換体の通液抵抗は、脱塩領域に充填される第1イオン交換体の通液抵抗より大きくする。これにより、液透過領域に装填される第2イオン交換体に対して脱塩領域の通液抵抗を低減させることが容易であり、別途の特段の流路分配手段を設けるまでもなく、被処理液のほとんどを脱塩領域に流すことができる。
<Second invention>
Next, the second invention will be described mainly with respect to differences from the first invention. In the EDI of the second invention, the second ion exchanger filled in the transmission region is a composite monolith ion exchanger. Further, the flow resistance of the second ion exchanger is made larger than that of the first ion exchanger filled in the desalting region. As a result, it is easy to reduce the flow resistance of the desalting region with respect to the second ion exchanger loaded in the liquid permeation region, and it is not necessary to provide a separate special channel distribution means. Most of the liquid can flow to the desalting zone.

第2の発明のEDIにおいて、脱塩領域で使用される第1イオン交換体は、粒状イオン交換樹脂、又は粒状イオン交換樹脂と複合モノリスイオン交換体の混合イオン交換体である。粒状イオン交換樹脂は公知のものが使用できる。混合イオン交換体の場合、複合モノリスイオン交換体と粒状イオン交換樹脂の混合割合(体積比率)は、1:0.1〜1:10、好ましくは1:0.2〜1:5である。また、第1イオン交換体の通液抵抗は、液透過領域に充填される第2イオン交換体の通液抵抗より小さくする。これにより、液透過領域に装填される第2イオン交換体に対して通液抵抗を低減させることが容易であり、別途の特段の流路分配手段を設けるまでもなく、被処理液のほとんどを脱塩領域に流すことができる。   In the EDI of the second invention, the first ion exchanger used in the desalting region is a granular ion exchange resin or a mixed ion exchanger of a granular ion exchange resin and a composite monolith ion exchanger. A well-known thing can be used for a granular ion exchange resin. In the case of a mixed ion exchanger, the mixing ratio (volume ratio) of the composite monolith ion exchanger and the granular ion exchange resin is 1: 0.1 to 1:10, preferably 1: 0.2 to 1: 5. In addition, the liquid flow resistance of the first ion exchanger is made smaller than the liquid flow resistance of the second ion exchanger filled in the liquid permeable region. As a result, it is easy to reduce the liquid flow resistance with respect to the second ion exchanger loaded in the liquid permeation region, and it is not necessary to provide a separate special channel distribution means, and most of the liquid to be processed is It can flow to the desalting zone.

第2の発明においては、透過液の流路に流量調節手段を設置しても、設置しなくともよい。流量調節手段を設置すれば、第1の発明と同様に、第1イオン交換体の通液抵抗を、液透過領域に充填される第2イオン交換体の通液抵抗より確実に小さくすることがきる。   In the second invention, the flow rate adjusting means may or may not be installed in the permeate flow path. If the flow rate adjusting means is installed, the flow resistance of the first ion exchanger can be surely made smaller than the flow resistance of the second ion exchanger filled in the liquid permeation region, as in the first invention. wear.

次に、第3の発明について、第1の発明と異なる点について主に説明する。すなわち、第3の発明は、第1イオン交換体と第2イオン交換体が同じ、すなわち脱塩領域と液透過領域は単一の複合モノリスイオン交換体で形成され、且つ液透過領域から透過した流出液の流路に、流量調節手段を配設するものである。これによれば、脱塩領域用モノリスと液透過領域用モノリスをそれぞれ個別に製造する必要がない点で都合が良い。単一のモノリスは、複合モノリスイオン交換体である。第3の発明において、流量調節手段がないと、液透過領域に流れる流量が多くなり、脱塩液の収量が低下してしまう。また、被処理液の流量に対する液透過領域を透過する透過液の流量比率は、第1の発明と同様でよい。流量調節手段としては、流量調節弁、アリフィス等が挙げられる。   Next, regarding the third invention, differences from the first invention will be mainly described. That is, in the third invention, the first ion exchanger and the second ion exchanger are the same, that is, the desalting region and the liquid permeation region are formed of a single composite monolith ion exchanger and permeate from the liquid permeation region. A flow rate adjusting means is disposed in the flow path of the effluent. This is advantageous in that it is not necessary to separately manufacture the desalination zone monolith and the liquid permeation zone monolith. A single monolith is a composite monolith ion exchanger. In the third invention, if there is no flow rate adjusting means, the flow rate flowing in the liquid permeation region increases, and the yield of the desalted liquid is reduced. Further, the flow rate ratio of the permeated liquid that permeates the liquid permeation region to the flow rate of the liquid to be processed may be the same as in the first invention. Examples of the flow rate adjusting means include a flow rate adjusting valve, Arifis and the like.

次に、本発明のEDIで使用される複合構造のモノリス状有機多孔質イオン交換体について説明する。複合モノリスイオン交換体の説明において、「モノリス状有機多孔質体」を単に「複合モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「複合モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   Next, the monolithic organic porous ion exchanger having a composite structure used in the EDI of the present invention will be described. In the description of the composite monolithic ion exchanger, “monolithic organic porous body” is simply “composite monolith”, “monolithic organic porous ion exchanger” is simply “composite monolithic ion exchanger”, and “monolithic The “organic porous intermediate” is also simply referred to as “monolith intermediate”.

<複合モノリスイオン交換体の説明>
複合モノリスイオン交換体は、複合モノリスにイオン交換基を導入することで得られるものであり、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体との複合構造体であるか、又は連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布している。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
<Description of composite monolith ion exchanger>
A composite monolith ion exchanger is obtained by introducing an ion exchange group into a composite monolith, and is fixed to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and the skeleton surface of the organic porous body. An organic porous body consisting of a continuous skeleton phase and a continuous pore phase, and a size formed on the skeleton surface of the organic porous body. A composite structure with a large number of protrusions having a thickness of 4 to 40 μm, and having an average pore diameter of 10 to 150 μm and a total pore volume of 0.5 to 5 ml / g in a water wet state, The ion exchange capacity per volume is 0.2 mg equivalent / ml or more, and the ion exchange groups are uniformly distributed in the composite structure. In the present specification, “particle bodies” and “projections” may be collectively referred to as “particle bodies”.

有機多孔質体の連続骨格相と連続空孔相(乾燥体)は、SEM画像により観察することができる。有機多孔質体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。有機多孔質体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。   The continuous skeleton phase and the continuous pore phase (dried body) of the organic porous body can be observed by an SEM image. Examples of the basic structure of the organic porous material include a continuous macropore structure and a co-continuous structure. The skeletal phase of the organic porous material appears as a columnar continuum, a concave wall continuum, or a composite thereof, and has a shape that is clearly different from a particle shape or a protrusion shape.

有機多孔質体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体(以下、「第1の有機多孔質イオン交換体」とも言う。)及び水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第2の有機多孔質イオン交換体」とも言う。)が挙げられる。   As a preferable structure of the organic porous body, a continuous macropore structure (hereinafter referred to as “first organic porous ion”) in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 30 to 150 μm in a wet state. And a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state, and three-dimensional continuous having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. A co-continuous structure (hereinafter, also referred to as “second organic porous ion exchanger”).

第1の有機多孔質イオン交換体の場合、脱塩領域使用及び単一モノリス使用のものは、有機多孔質体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口(メソポア)となる連続マクロポア構造体である。複合モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、複合モノリス全体が膨潤するため、乾燥状態の複合モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。   In the case of the first organic porous ion exchanger, in the case of using a desalting region and using a single monolith, the organic porous body has bubble-like macropores overlapped with each other, and the overlapping portion is in a wet state with an average diameter of 30. It is a continuous macropore structure which becomes an opening (mesopore) of ˜150 μm. The average diameter of the opening of the composite monolith ion exchanger is larger than the average diameter of the opening of the composite monolith in a dry state because the entire composite monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of water flow is increased, which is not preferable. If the average diameter of the openings is too large, contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable.

なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態の複合モノリスの空孔又は開口の平均直径及び乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、水銀圧入法により測定される値である。また、本発明では、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy1(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔又は開口の平均直径がz1(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔又は開口の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔又は開口の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。   In the present invention, the average diameter of the openings of the dry monolith intermediate, the average diameter of the pores or openings of the dry composite monolith, and the average diameter of the holes or openings of the dry composite monolith ion exchanger are: It is a value measured by the mercury intrusion method. In the present invention, the average diameter of the pores or openings of the composite monolith ion exchanger in the wet state is calculated by multiplying the average diameter of the pores or openings of the composite monolith ion exchanger in the dry state by the swelling rate. Value. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x1 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. And y1 (mm), and the average diameter of the pores or openings when the dry monolithic ion exchanger is measured by mercury porosimetry is z1 (μm) The average diameter (μm) of the holes or openings of the exchanger is calculated by the following formula “average diameter of holes or openings (μm) = z1 × (x1 / y1) of the composite monolith ion exchanger in a water-wet state”. The Also, the average diameter of the pores or openings of the dry composite monolith before introduction of the ion exchange group, and the water-wetting composite monolith ion relative to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith When the swelling ratio of the exchanger is known, the average diameter of the pores or openings of the composite monolith in the dry state is multiplied by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water wet state. You can also.

第2の有機多孔質体イオン交換体の場合、有機多孔質体は、脱塩領域使用及び単一モノリス使用のものは、水湿潤状態で平均直径(太さ)が1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは10〜90μmの三次元的に連続した空孔を有する共連続構造である。三次元的に連続した空孔の直径が10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と複合モノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となるため好ましくない。   In the case of the second organic porous material ion exchanger, the organic porous material using a desalted region and a single monolith is a three-dimensional one having an average diameter (thickness) of 1 to 60 μm in a wet state. And a co-continuous structure having three-dimensionally continuous pores having an average diameter of 10 to 100 μm, preferably 10 to 90 μm in a water-wet state between the skeletons. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss during fluid permeation increases, which is not preferable. If the diameter exceeds 100 μm, contact between the water to be treated and the composite monolith ion exchanger is not preferable. As a result, the ion exchange characteristics become non-uniform, which is not preferable.

上記共連続構造の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態の複合モノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy2(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、複合モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「複合モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記共連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy3(mm)であり、この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの骨格の平均太さ、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの骨格の平均太さに、膨潤率を乗じて、複合モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、共連続構造を形成する骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the co-continuous structure pores in the water-wet state is a value calculated by multiplying the average diameter of the pores of the composite monolith ion exchanger in the dry state measured by a known mercury intrusion method and the swelling ratio. It is. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x2 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y2 (mm), and the average diameter of the pores when the dried monolithic ion exchanger is measured by mercury porosimetry is z2 (μm), the pores of the composite monolith ion exchanger The average diameter (μm) in the water-wet state is calculated by the following formula: “Average diameter (μm) of the pores of the composite monolith ion exchanger in the water-wet state = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dry composite monolith before introduction of the ion exchange group, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith Can be calculated by multiplying the average diameter of the pores of the composite monolith in the dry state by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water-wet state. The average thickness of the skeleton of the co-continuous structure in the wet state is determined by performing SEM observation of the composite monolith ion exchanger in the dry state at least three times and measuring the thickness of the skeleton in the obtained image. The average value is calculated by multiplying the swelling ratio. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x3 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Y3 (mm), SEM observation of this dried composite monolith ion exchanger was performed at least three times, the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state” (Μm) = z3 × (x3 / y3) ”. Further, the average thickness of the skeleton of the dry composite monolith before the introduction of the ion exchange groups, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange groups are introduced into the dry composite monolith Can be calculated by multiplying the average thickness of the skeleton of the composite monolith in the dry state by the swell ratio to the water-wet state of the skeleton of the composite monolith ion exchanger. The skeleton forming the co-continuous structure is rod-shaped and has a circular cross-sectional shape, but may have a cross-section with different diameters such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、三次元的に連続した骨格の平均直径が1μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、60μmを超えると、脱イオン特性の均一性が失われるため好ましくない。   Further, if the average diameter of the three-dimensionally continuous skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 60 μm, the uniformity of deionization characteristics is lost. Absent.

脱塩領域に用いる複合モノリスイオン交換体の水湿潤状態での孔の平均直径の好ましい値は10〜120μmである。複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は30〜120μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜90μmである。   A preferable value of the average diameter of the pores in the wet state of the composite monolith ion exchanger used in the desalting region is 10 to 120 μm. When the organic porous body constituting the composite monolith ion exchanger is the first organic porous body, the preferred pore diameter of the composite monolith ion exchanger is 30 to 120 μm, and the organic porous body constituting the composite monolith ion exchanger In the case of the second organic porous body, a preferable value of the pore diameter of the composite monolith ion exchanger is 10 to 90 μm.

液透過領域に用いる場合、複合モノリスイオン交換体の水湿潤状態での孔の平均直径は、0.01〜150μm、好ましくは0.1〜150μm、特に好ましくは0.1〜50μmである。また、液透過領域に用いる場合であって、複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の開口径は、0.01〜150μm、好ましくは0.1〜150μm、特に好ましくは0.1〜50μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の空孔径は、0.01〜100μm、好ましくは0.1〜50μm、特に好ましくは0.1〜30μmである。液透過領域において空孔径が小さいものを用いれば通水抵抗を高めることができる。なお、液透過領域に用いる第2の有機多孔質体の場合、三次元的に連続した骨格の平均直径(太さ)は水湿潤状態で1〜60μmである。   When used in the liquid permeation region, the average diameter of the pores in the wet state of the composite monolith ion exchanger is 0.01 to 150 μm, preferably 0.1 to 150 μm, particularly preferably 0.1 to 50 μm. When the organic porous body constituting the composite monolith ion exchanger is the first organic porous body when used in the liquid permeation region, the opening diameter of the composite monolith ion exchanger is 0.01 to 150 μm. When the organic porous body constituting the composite monolith ion exchanger is the second organic porous body, preferably 0.1 to 150 μm, particularly preferably 0.1 to 50 μm, the pore diameter of the composite monolith ion exchanger is 0.01-100 μm, preferably 0.1-50 μm, particularly preferably 0.1-30 μm. If one having a small pore diameter is used in the liquid permeation region, the water flow resistance can be increased. In addition, in the case of the 2nd organic porous body used for a liquid permeation | transmission area | region, the average diameter (thickness) of the three-dimensionally continuous frame | skeleton is 1-60 micrometers in a water wet state.

本発明に係る複合モノリスイオン交換体において、水湿潤状態での粒子体の直径及び突起体の大きさは、4〜40μm、好ましくは4〜30μm、特に好ましくは4〜20μmである。なお、本発明において、粒子体及び突起体は、共に骨格表面に突起状に観察されるものであり、粒状に観察されるものを粒子体と称し、粒状とは言えない突起状のものを突起体と称する。図24に、突起体の模式的な断面図を示す。図24中の(A)〜(E)に示すように、骨格表面61から突き出している突起状のものが突起体62であり、突起体62には、(A)に示す突起体62aのように粒状に近い形状のもの、(B)に示す突起体62bのように半球状のもの、(C)に示す突起体62cのように骨格表面の盛り上がりのようなもの等が挙げられる。また、他には、突起体61には、(D)に示す突起体62dのように、骨格表面61の平面方向よりも、骨格表面61に対して垂直方向の方が長い形状のものや、(E)に示す突起体62eのように、複数の方向に突起した形状のものもある。また、突起体の大きさは、SEM観察したときのSEM画像で判断され、個々の突起体のSEM画像での幅が最も大きくなる部分の長さを指す。   In the composite monolith ion exchanger according to the present invention, the diameter of the particles and the size of the protrusions in a wet state are 4 to 40 μm, preferably 4 to 30 μm, and particularly preferably 4 to 20 μm. In the present invention, both the particles and the protrusions are observed as protrusions on the surface of the skeleton, and the particles observed are referred to as particles, and the protrusions that are not granular are protrusions. Called the body. FIG. 24 shows a schematic cross-sectional view of the protrusion. As shown to (A)-(E) in FIG. 24, the protrusion-shaped thing protruded from the skeleton surface 61 is the protrusion 62, and the protrusion 62 is like the protrusion 62a shown to (A). The shape close to a granular shape, a hemispherical shape like a projection 62b shown in (B), and a swell of the skeleton surface like a projection 62c shown in (C). In addition, the protrusion 61 has a shape that is longer in the direction perpendicular to the skeleton surface 61 than in the plane direction of the skeleton surface 61, like the protrusion 62d shown in FIG. There is a thing of the shape which protruded in the several direction like the protrusion 62e shown to (E). Further, the size of the protrusions is determined by the SEM image when observed by SEM, and indicates the length of the portion where the width of each protrusion is the largest in the SEM image.

本発明に係る複合モノリスイオン交換体において、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上、好ましくは80%以上である。なお、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合は、全粒子体等の個数に占める水湿潤状態で4〜40μmの粒子体等の個数割合を指す。また、骨格相の表面は全粒子体等により40%以上、好ましくは50%以上被覆されている。なお、粒子体等による骨格層の表面の被覆割合は、SEMにより表面観察にしたときのSEM画像上の面積割合、つまり、表面を平面視したときの面積割合を指す。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体と複合モノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなってしまうため好ましくない。なお、全粒子体等とは、水湿潤状態で4〜40μmの粒子体等以外の大きさの範囲の粒子体及び突起体も全て含めた、骨格層の表面に形成されている全ての粒子体及び突起体を指す。   In the composite monolith ion exchanger according to the present invention, the proportion of 4 to 40 μm particles in a wet state in water is 70% or more, preferably 80% or more. In addition, the ratio which 4-40 micrometers particle bodies etc. occupy in the water wet state in all the particle bodies etc. points out the number ratio of 4-40 micrometers particle bodies etc. in the water wet state which occupy the number of all particle bodies. Further, the surface of the skeletal phase is covered by 40% or more, preferably 50% or more by the whole particles. The coverage ratio of the surface of the skeleton layer with particles or the like refers to the area ratio on the SEM image when the surface is observed by SEM, that is, the area ratio when the surface is viewed in plan. If the size of the particle covering the wall surface or the skeleton deviates from the above range, the effect of improving the contact efficiency between the fluid and the skeleton surface of the composite monolith ion exchanger and the inside of the skeleton is not preferable. In addition, all the particulate bodies etc. are all the particulate bodies formed on the surface of the skeleton layer including all the particulate bodies and protrusions in the size range other than the 4-40 μm particulate bodies in the wet state. And a protrusion.

上記複合モノリスイオン交換体の骨格表面に付着した粒子体等の水湿潤状態での直径又は大きさは、乾燥状態の複合モノリスイオン交換体のSEM画像の観察により得られる粒子体等の直径又は大きさに、乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値、又はイオン交換基導入前の乾燥状態の複合モノリスのSEM画像の観察により得られる粒子体等の直径又は大きさに、イオン交換基導入前後の膨潤率を乗じて算出した値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx4(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy4(mm)であり、この乾燥状態の複合モノリスイオン交換体をSEM観察したときのSEM画像中の粒子体等の直径又は大きさがz4(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)=z4×(x4/y4)」で算出される。そして、乾燥状態の複合モノリスイオン交換体のSEM画像中に観察される全ての粒子体等の直径又は大きさを測定して、その値を基に、1視野のSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出する。この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、全視野において、SEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出して、直径又は大きさが4〜40μmにある粒子体等が観察されるか否かを確認し、全視野において確認された場合、複合モノリスイオン交換体の骨格表面上に、直径又は大きさが水湿潤状態で4〜40μmにある粒子体が形成されていると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出し、各視野毎に、全粒子体等に占める水湿潤状態で4〜40μmの粒子体等の割合を求め、全視野において、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合が70%以上であった場合には、複合モノリスイオン交換体の骨格表面に形成されている全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上であると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等による骨格層の表面の被覆割合を求め、全視野において、全粒子体等による骨格層の表面の被覆割合が40%以上であった場合には、複合モノリスイオン交換体の骨格層の表面が全粒子体等により被覆されている割合が40%以上であると判断する。また、イオン交換基導入前の乾燥状態の複合モノリスの粒子体等の直径又は大きさと、その乾燥状態のモノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率とがわかる場合は、乾燥状態の複合モノリスの粒子体等の直径又は大きさに、膨潤率を乗じて、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさを算出して、上記と同様にして、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合、粒子体等による骨格層の表面の被覆割合を求めることもできる。   The diameter or size of the particles attached to the surface of the skeleton of the composite monolith ion exchanger in the water-wet state is the diameter or size of the particles obtained by observing the SEM image of the composite monolith ion exchanger in the dry state. Further, the value calculated by multiplying the swelling rate when the dry state is changed to the wet state, or the diameter or size of the particulates obtained by observing the SEM image of the composite monolith in the dry state before introducing the ion exchange group And a value calculated by multiplying the swelling ratio before and after introduction of the ion exchange group. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x4 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y4 (mm), and the diameter or size of the particles in the SEM image of the dried composite monolith ion exchanger observed by SEM is z4 (μm). The diameter or size (μm) of the particles of the monolith ion exchanger is expressed by the following formula: “diameter or size (μm) of the particles of the composite monolith ion exchanger in a water-wet state” = z4 × (x4 / y4) Is calculated. Then, the diameter or size of all particles observed in the SEM image of the composite monolith ion exchanger in the dry state is measured, and based on the value, all particles in one field of view SEM image, etc. The diameter or size of the water in a wet state is calculated. The SEM observation of the dried composite monolith ion exchanger is performed at least three times, and the diameter or size of the whole particle in the SEM image in the water-wet state is calculated in all fields of view. It is confirmed whether or not a particle body or the like at 4 to 40 μm is observed, and when it is confirmed in the entire visual field, the diameter or size is 4 to 40 μm in a wet state on the skeleton surface of the composite monolith ion exchanger. It is determined that the particle body at is formed. Further, according to the above, the diameter or size in the water wet state of all particles in the SEM image is calculated for each visual field, and the particle size of 4 to 40 μm in the water wet state occupying in the whole particles for each visual field. When the proportion of the particles, etc. is 40% or more in the wet state in all the particles in the entire visual field, the skeleton surface of the composite monolith ion exchanger is obtained. It is determined that the proportion of 4 to 40 μm particles in the wet state is 70% or more in all particles formed in the above. Further, according to the above, the coverage ratio of the surface of the skeletal layer with all particles in the SEM image was determined for each field of view, and the coverage ratio of the surface of the skeleton layer with all particles in all fields was 40% or more. In this case, it is determined that the ratio of the surface of the skeleton layer of the composite monolith ion exchanger covered with all the particulates is 40% or more. In addition, the diameter or size of the particles of the composite monolith in the dry state before the introduction of the ion exchange group and the composite monolith ion exchange in the wet state with respect to the dry composite monolith when the ion exchange group is introduced into the monolith in the dry state If the swelling rate of the body is known, the diameter or size of the particles of the composite monolith in the dry state is multiplied by the swelling rate to obtain the diameter or size of the particles of the composite monolith ion exchanger in the water wet state. In the same manner as described above, the diameter or size of the particles of the composite monolith ion exchanger in the water wet state, the ratio of the particles of 4 to 40 μm in the water wet state, etc. in the total particles, etc. In addition, the coverage ratio of the surface of the skeleton layer with particle bodies or the like can be obtained.

粒子体等による骨格相表面の被覆率が40%未満であると、流体と複合モノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり、イオン交換挙動の均一性が損なわれてしまうため好ましくない。上記粒子体等による被覆率の測定方法としては、モノリス(乾燥体)のSEM画像による画像解析方法が挙げられる。   When the coverage of the skeletal phase surface with particles and the like is less than 40%, the effect of improving the contact efficiency between the fluid and the inside of the skeleton of the composite monolith ion exchanger and the skeleton surface is reduced, and the uniformity of the ion exchange behavior is reduced. Since it will be damaged, it is not preferable. Examples of the method for measuring the coverage with the particulates include an image analysis method using a monolith (dry body) SEM image.

また、複合モノリスイオン交換体の全細孔容積は、複合モノリスの全細孔容積と同様である。すなわち、複合モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格相が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。なお、複合モノリス(モノリス中間体、複合モノリス、複合モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the composite monolith ion exchanger is the same as the total pore volume of the composite monolith. That is, even when the ion exchange group is introduced into the composite monolith to swell and increase the opening diameter, the total pore volume hardly changes because the skeletal phase is thick. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of water flow is increased, which is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume is not preferable. Is unfavorable because it decreases. Note that the total pore volume of the composite monolith (monolith intermediate, composite monolith, composite monolith ion exchanger) is the same both in the dry state and in the water wet state.

なお、複合モノリスイオン交換体に水を透過させた際の圧力損失は、複合モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the composite monolith ion exchanger is the same as the pressure loss when water is permeated through the composite monolith.

本発明の複合モノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3〜1.8mg当量/mlのイオン交換容量を有する。体積当りのイオン交換容量が0.2mg当量/ml未満であると、脱塩効率が低下してしまうため好ましくない。なお、本発明の複合モノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が複合モノリスの骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格の表面のみに導入された有機多孔質体のイオン交換容量は、有機多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The composite monolith ion exchanger of the present invention has an ion exchange capacity per volume in a water-wet state of 0.2 mg equivalent / ml or more, preferably 0.3 to 1.8 mg equivalent / ml. If the ion exchange capacity per volume is less than 0.2 mg equivalent / ml, the desalting efficiency is lowered, which is not preferable. In addition, the ion exchange capacity per weight in the dry state of the composite monolith ion exchanger of the present invention is not particularly limited, but since the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the composite monolith, 5 mg equivalent / g. The ion exchange capacity of the organic porous material in which the ion exchange group is introduced only on the surface of the skeleton cannot be determined depending on the kind of the organic porous material or the ion exchange group, but is 500 μg equivalent / g at most.

本発明の複合モノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。   Examples of the ion exchange group to be introduced into the composite monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group; a quaternary ammonium group and a tertiary amino group. And anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group.

本発明の複合モノリスイオン交換体において、導入されたイオン交換基は、複合モノリスの骨格の表面のみならず、骨格相内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格相の表面および骨格相の内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、複合モノリスの表面のみならず、骨格相の内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the composite monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the skeleton of the composite monolith but also inside the skeleton phase. Here, “the ion exchange groups are uniformly distributed” means that the distribution of the ion exchange groups is uniformly distributed at least on the order of μm on the surface of the skeleton phase and inside the skeleton phase. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, when the ion exchange groups are uniformly distributed not only on the surface of the composite monolith but also inside the skeleton phase, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be prevented. Durability is improved.

本発明の複合モノリスイオン交換体は、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りのイオン交換容量が極端に低下してしまうため好ましくない。該複合モノリスイオン交換体の厚みは、好適には3mm〜1000mmである。また、本発明の複合モノリスイオン交換体は、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。   The composite monolith ion exchanger of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. When the thickness is less than 1 mm, the ion exchange capacity per porous body is extremely reduced, which is not preferable. The thickness of the composite monolith ion exchanger is preferably 3 mm to 1000 mm. In addition, the composite monolith ion exchanger of the present invention has high mechanical strength because the basic structure of the skeleton is a continuous pore structure.

本発明の複合モノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、III工程で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程、を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことにより得られる。
The composite monolith ion exchanger of the present invention is obtained by stirring a mixture of an oil-soluble monomer containing no ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a surfactant and water. Preparing a water-in-oil emulsion and then polymerizing the water-in-oil emulsion to obtain a monolithic organic porous intermediate having a continuous macropore structure with a total pore volume of 5 to 30 ml / g, vinyl monomer, A mixture comprising a second crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer or the second crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II for preparing the compound II. The mixture obtained in Step II is allowed to stand, and polymerization is performed in the presence of the monolithic organic porous intermediate obtained in Step I II When the monolithic organic porous material is produced by performing the IV step of introducing an ion exchange group into the monolithic organic porous material obtained in the steps I and III, the following (1) to (5):
(1) The polymerization temperature in step III is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator;
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I;
(3) The vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I;
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more;
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II; obtained by performing Step II or Step III under conditions that satisfy at least one of the conditions .

(モノリス中間体の製造方法)
本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。
(Method for producing monolith intermediate)
In the method for producing a monolith according to the present invention, in the step I, an oil-soluble monomer not containing an ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a mixture of a surfactant and water are stirred. In this step, a water-in-oil emulsion is prepared, and then the water-in-oil emulsion is polymerized to obtain a monolith intermediate having a continuous macropore structure having a total pore volume of 5 to 30 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。   Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more.

一分子中に少なくとも2個以上のビニル基を有する第1架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第1架橋剤は、機械的強度の高さから、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第1架橋剤の使用量は、ビニルモノマーと第1架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%、更に0.3〜3モル%であることが好ましい。第1架橋剤の使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   Examples of the first crosslinking agent having at least two or more vinyl groups in one molecule include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and ethylene glycol dimethacrylate. These crosslinking agents can be used singly or in combination of two or more. A preferred first cross-linking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength. The amount of the first crosslinking agent used is 0.3 to 10 mol%, particularly 0.3 to 5 mol%, and more preferably 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the first crosslinking agent. Is preferred. If the amount of the first crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate- Examples include acidic sodium sulfite.

イオン交換基を含まない油溶性モノマー、第1架橋剤、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、第1架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   There is no particular limitation on the mixing method when mixing the oil-soluble monomer containing no ion exchange group, the first cross-linking agent, the surfactant, water and the polymerization initiator to form a water-in-oil emulsion, A method of mixing components all at once, an oil-soluble monomer, a first crosslinking agent, a surfactant, an oil-soluble component that is an oil-soluble polymerization initiator, and a water-soluble component that is water or a water-soluble polymerization initiator For example, a method in which each component is mixed after being uniformly dissolved separately can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, particles or the like are formed on the surface of the skeleton phase of the continuous macropore structure using the structure of the monolith intermediate as a template, or particles or the like are formed on the surface of the skeleton phase of the co-continuous structure. Or The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the porous body becomes brittle and the flexibility is lost, which is not preferable.

モノリス中間体の全細孔容積は、5〜30ml/g、好適には6〜28ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5〜1:35とすればよい。   The total pore volume of the monolith intermediate is 5-30 ml / g, preferably 6-28 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer tends to be non-uniform, and in some cases, the structure collapses, which is not preferable. In order to set the total pore volume of the monolith intermediate in the above numerical range, the ratio (weight) of the monomer to water may be set to approximately 1: 5 to 1:35.

このモノマーと水との比を、概ね1:5〜1:20とすれば、モノリス中間体の全細孔容積が5〜16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第1の有機多孔質体のものが得られる。また、該配合比率を、概ね1:20〜1:35とすれば、モノリス中間体の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第2の有機多孔質体のものが得られる。   When the ratio of this monomer to water is approximately 1: 5 to 1:20, a monolith intermediate having a total pore volume of 5 to 16 ml / g and a continuous macropore structure can be obtained and obtained through Step III. The obtained composite monolithic organic porous body is the first organic porous body. Further, if the blending ratio is approximately 1:20 to 1:35, a monolith intermediate having a total pore volume of more than 16 ml / g and a continuous macropore structure of 30 ml / g or less can be obtained. The organic porous body of the composite monolith obtained through the above is obtained as the second organic porous body.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が、脱塩領域での使用の場合、乾燥状態で5〜150μmであり、液透過領域での使用の場合、乾燥状態で0.005〜150μmである。脱塩領域での使用の場合、開口の平均直径が5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、150μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、水の流路が均一に形成されにくくなるため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   In addition, the monolith intermediate has an average diameter of openings (mesopores) that are the overlapping portions of macropores and macropores, in the case of use in a desalted region, 5 to 150 μm in a dry state, and in the case of use in a liquid permeation region It is 0.005-150 μm in a dry state. In the case of use in a desalting region, if the average diameter of the openings is less than 5 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss during passing water becomes large. It is not preferable. On the other hand, if it exceeds 150 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and it becomes difficult to form a water flow path uniformly. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

また、複合モノリスイオン交換体の第1の有機多孔質体の場合、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が、脱塩領域での使用の場合、乾燥状態で20〜150μmであり、液透過領域での使用の場合、乾燥状態で0.005〜150μmである。また、複合モノリスイオン交換体の第2の有機多孔質体の場合、モノリス中間体は、三次元的に連続した空孔の平均直径が、脱塩領域での使用の場合、乾燥状態で5〜100μmであり、液透過領域での使用の場合、乾燥状態で0.005〜100μmである。   Further, in the case of the first organic porous body of the composite monolith ion exchanger, the monolith intermediate has an average diameter of openings (mesopores) where macropores overlap with macropores. 20 to 150 μm in the state, and 0.005 to 150 μm in the dry state when used in the liquid permeation region. In the case of the second organic porous body of the composite monolith ion exchanger, the monolith intermediate has an average diameter of three-dimensionally continuous pores of 5 to 5 in a dry state when used in a desalting region. In the case of use in a liquid permeation region, it is 0.005 to 100 μm in a dry state.

(複合モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Production method of composite monolith)
Step II is an organic solvent in which a vinyl monomer, a second cross-linking agent having at least two vinyl groups in one molecule, a vinyl monomer or a second cross-linking agent dissolves, but a polymer formed by polymerization of the vinyl monomer does not dissolve. And a step of preparing a mixture comprising a polymerization initiator. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体を形成できず、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous body, it is preferable because the particles cannot be formed in the skeleton of the produced monolith, and the ion exchange capacity per volume after introduction of the ion exchange groups is reduced. Absent. On the other hand, if the amount of vinyl monomer added exceeds 40 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

II工程で用いられる第2架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。第2架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら第2架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第2架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第2架橋剤の使用量は、ビニルモノマーと第2架橋剤の合計量に対して0.3〜20モル%、特に0.3〜10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   As the second crosslinking agent used in Step II, one having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the second crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These 2nd crosslinking agents can be used individually by 1 type or in combination of 2 or more types. A preferred second crosslinking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength and stability to hydrolysis. The amount of the second crosslinking agent used is preferably 0.3 to 20 mol%, particularly 0.3 to 10 mol%, based on the total amount of the vinyl monomer and the second crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 20 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

II工程で用いられる有機溶媒は、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が5〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the vinyl monomer and the second cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. It is. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain (poly) ethers such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol Chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane, etc .; Ethyl acetate, isopropyl acetate, cellosolve acetate, ethyl propionate, etc. Ethers, and the like. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 5 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 5% by weight, the polymerization rate is lowered, which is not preferable. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと第2架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and second crosslinking agent. .

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下、重合を行い、複合モノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと第2架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の特定の骨格構造を有するモノリスが得られる。   In step III, the mixture obtained in step II is allowed to stand, and in the presence of the monolith intermediate obtained in step I, polymerization is performed to obtain a composite monolith. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a second cross-linking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic material is obtained. A porous body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the specific skeleton described above is lost. A monolith having a structure is obtained.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the monolith after polymerization does not receive any pressure from the inner wall of the vessel and enters the reaction vessel without any gap, so that the monolith is not distorted and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配しされ、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a specific skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, or the like is used as an initiator, an inert atmosphere What is necessary is just to heat-polymerize at 20-100 degreeC for 1 to 48 hours in the lower sealed container. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the crosslinking agent are polymerized in the skeleton to form the specific skeleton structure. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolith having a specific skeleton structure.

上述の複合モノリスを製造する際に、下記(1)〜(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、本発明の特徴的な構造である、骨格表面に粒子体等が形成された複合モノリスを製造することができる。   When the above-mentioned composite monolith is produced, the skeleton, which is the characteristic structure of the present invention, is obtained by performing the II step or the III step under the conditions satisfying at least one of the following conditions (1) to (5). A composite monolith having particles or the like formed on the surface can be produced.

(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
(1) The polymerization temperature in step III is a temperature that is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator.
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I.
(3) The vinyl monomer used in step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in step I.
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more.
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II.

(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
(Description of (1) above)
The 10-hour half temperature is a characteristic value of the polymerization initiator, and if the polymerization initiator to be used is determined, the 10-hour half temperature can be known. Moreover, if there exists desired 10-hour half temperature, the polymerization initiator applicable to it can be selected. In step III, the polymerization rate is lowered by lowering the polymerization temperature, and particles and the like can be formed on the surface of the skeleton phase. The reason for this is that the monomer concentration drop inside the skeleton phase of the monolith intermediate becomes gradual, and the monomer distribution rate from the liquid phase part to the monolith intermediate decreases, so the surplus monomer is on the surface of the skeleton layer of the monolith intermediate. It is thought that it was concentrated in the vicinity and polymerized in situ.

重合温度の好ましいものは、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5〜20℃低い範囲に設定することが好ましい。   The preferred polymerization temperature is a temperature that is at least 10 ° C. lower than the 10-hour half-life temperature of the polymerization initiator used. Although the lower limit of the polymerization temperature is not particularly limited, the polymerization rate decreases as the temperature decreases, and the polymerization time becomes unacceptably long. Therefore, the polymerization temperature is 5 to 20 ° C. with respect to the 10-hour half temperature. It is preferable to set to a low range.

((2)の説明)
II工程で用いる第2架橋剤のモル%を、I工程で用いる第1架橋剤のモル%の2倍以上に設定して重合すると、本発明の複合モノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
(Description of (2))
When the mol% of the second cross-linking agent used in Step II is set to be twice or more of the mol% of the first cross-linking agent used in Step I, the composite monolith of the present invention is obtained. The reason for this is that the compatibility between the monolith intermediate and the polymer produced by impregnation polymerization is reduced and phase separation proceeds, so the polymer produced by impregnation polymerization is excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, It is considered that irregularities such as particles are formed on the surface. In addition, mol% of a crosslinking agent is a crosslinking density mol%, Comprising: The amount of crosslinking agents (mol%) with respect to the total amount of a vinyl monomer and a crosslinking agent is said.

II工程で用いる第2架橋剤モル%の上限は特に制限されないが、第2架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。好ましい第2架橋剤モル%の倍数は2倍〜10倍である。一方、I工程で用いる第1架橋剤モル%をII工程で用いられる第2架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、本発明の複合モノリスは得られない。   The upper limit of the second crosslinker mol% used in step II is not particularly limited, but if the second crosslinker mol% is extremely large, cracks occur in the monolith after polymerization, and the brittleness of the monolith proceeds and flexibility is increased. This is not preferable because it causes a problem that the amount of ion exchange groups to be lost is reduced. A preferred multiple of the second crosslinking agent mol% is 2 to 10 times. On the other hand, even when the mol% of the first cross-linking agent used in step I is set to be twice or more the mol% of the second cross-linking agent used in step II, the formation of particles on the surface of the skeleton phase does not occur. The composite monolith of the present invention cannot be obtained.

((3)の説明)
II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、本発明の複合モノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマー、すなわち、I工程で用いたモノリス中間体形成に用いたモノマー以外のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
(Explanation of (3))
When the vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I, the composite monolith of the present invention is obtained. For example, if the structures of vinyl monomers are slightly different, such as styrene and vinyl benzyl chloride, a composite monolith having particles or the like formed on the surface of the skeleton phase is generated. In general, two types of homopolymers obtained from two types of monomers that are slightly different in structure are not compatible with each other. Therefore, a monomer having a structure different from that of the monomer used for forming the monolith intermediate used in Step I, that is, a monomer other than the monomer used for forming the monolith intermediate used in Step I is used in Step II to polymerize in Step III. The monomer used in Step II is uniformly distributed and impregnated into the monolith intermediate, but when the polymerization proceeds and the polymer is produced, the produced polymer is not compatible with the monolith intermediate. Separation proceeds, and the produced polymer is considered to be excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, and irregularities such as particles are formed on the surface of the skeleton phase.

((4)の説明)
II工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、本発明の複合モノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
(Explanation of (4))
When the organic solvent used in step II is a polyether having a molecular weight of 200 or more, the composite monolith of the present invention is obtained. Polyethers have a relatively high affinity with monolith intermediates, especially low molecular weight cyclic polyethers are good solvents for polystyrene, and low molecular weight chain polyethers are not good solvents but have considerable affinity. . However, as the molecular weight of the polyether increases, the affinity with the monolith intermediate dramatically decreases and shows little affinity with the monolith intermediate. When such a solvent having poor affinity is used as the organic solvent, diffusion of the monomer into the skeleton of the monolith intermediate is inhibited, and as a result, the monomer is polymerized only near the surface of the skeleton of the monolith intermediate. It is considered that particles and the like are formed on the phase surface and irregularities are formed on the skeleton surface.

ポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200〜100000、特に好ましくは200〜10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。   The upper limit of the molecular weight of the polyether is not particularly limited as long as it is 200 or more. However, when the molecular weight is too high, the viscosity of the mixture prepared in the step II becomes high, and it is difficult to impregnate the monolith intermediate. Therefore, it is not preferable. The molecular weight of the preferred polyether is 200 to 100,000, particularly preferably 200 to 10,000. The terminal structure of the polyether may be an unmodified hydroxyl group, etherified with an alkyl group such as a methyl group or an ethyl group, or esterified with acetic acid, oleic acid, lauric acid, stearic acid, or the like. It may be made.

((5)の説明)
II工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、本発明の複合モノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10〜30重量%に設定することが好ましい。
(Explanation of (5))
When the concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture in Step II, the composite monolith of the present invention is obtained. By reducing the monomer concentration in the step II, the polymerization rate is reduced, and for the same reason as the above (1), particles and the like can be formed on the surface of the skeleton phase, and irregularities can be formed on the surface of the skeleton phase. . Although the lower limit of the monomer concentration is not particularly limited, the polymerization rate decreases as the monomer concentration decreases and the polymerization time becomes unacceptably long, so the monomer concentration may be set to 10 to 30% by weight. preferable.

III工程で得られた複合モノリスは、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する多数の粒子体又は該有機多孔質体の骨格表面上に形成される多数の突起体との複合構造体である。有機多孔質体の連続骨格相と連続空孔相は、SEM画像により観察することができる。有機多孔質体の基本構造は、連続マクロポア構造か、共連続構造である。   The composite monolith obtained in the step III includes an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles fixed to the skeleton surface of the organic porous body, or a skeleton surface of the organic porous body. It is a composite structure with a number of protrusions formed on it. The continuous skeleton phase and the continuous pore phase of the organic porous body can be observed by SEM images. The basic structure of the organic porous body is a continuous macropore structure or a co-continuous structure.

連続マクロポア構造は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態での平均直径20〜100μmの開口となるものであり、共連続構造体は、平均の太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に乾燥で平均直径が8〜80μmの三次元的に連続した空孔とからなるものである。   In the continuous macropore structure, bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 20 to 100 μm in a dry state. The co-continuous structure has an average thickness of 0. It is composed of a three-dimensionally continuous skeleton of 8 to 40 μm and three-dimensionally continuous pores having an average diameter of 8 to 80 μm by drying between the skeletons.

IV工程は、III工程で得られた複合モノリスにイオン交換基を導入する工程である。この導入方法によれば、得られる複合モノリスイオン交換体の多孔構造を厳密にコントロールできる。   Step IV is a step of introducing an ion exchange group into the composite monolith obtained in step III. According to this introduction method, the porous structure of the obtained composite monolith ion exchanger can be strictly controlled.

上記複合モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;複合モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;複合モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。   The method for introducing an ion exchange group into the composite monolith is not particularly limited, and a known method such as polymer reaction or graft polymerization can be used. For example, as a method of introducing a sulfonic acid group, if the composite monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid, or fuming sulfuric acid; radical initiating groups uniformly on the composite monolith And a method of grafting sodium styrene sulfonate or acrylamido-2-methylpropane sulfonic acid by introducing a chain transfer group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, the sulfonic acid group is converted by functional group conversion. The method etc. which introduce | transduce are mentioned. In addition, as a method of introducing a quaternary ammonium group, if the composite monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method of producing monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine; uniformly introducing a radical initiating group or chain transfer group into the monolith on the skeleton surface and inside the skeleton, and N, N, N- Examples include a method of graft polymerization of trimethylammonium ethyl acrylate or N, N, N-trimethylammonium propylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like.

次に、本発明の第1の実施の形態における電気式脱イオン液製造装置の一例を図17を参照して説明する。図17は被処理液中のカチオン性不純物を除去するカチオンセル(図中、(A))とアニオン性不純物を除去するアニオンセル(図中、(B))を用いる2セルタイプのEDIの模式図である。   Next, an example of the electric deionized liquid production apparatus in the first embodiment of the present invention will be described with reference to FIG. FIG. 17 is a schematic diagram of a two-cell type EDI using a cation cell ((A) in the figure) for removing cationic impurities in the liquid to be treated and an anion cell ((B) in the figure) for removing anionic impurities. FIG.

図17中、電気式脱イオン液製造装置10は、カチオンセル10aとアニオンセル10bからなる。カチオンセル10aは、モノリスカチオン交換体が充填された脱カチオン領域1aと、脱カチオン領域1aのイオン排除側(陰極側)に隣接して配設される被処理液の一部が透過する液透過領域2aと、脱カチオン領域1aの陽極側に隣接して配設される被処理液の他の一部が透過する液透過領域3aと、脱カチオン領域1a、液透過領域2a及び液透過領域3aの両側に配設される陽極4a、陰極4bと、脱カチオン領域1aに被処理液を通液する被処理液流入管11と、液透過領域2aから透過した液が流入する陰極室6と、液透過領域3aから透過した液が流入する陽極室7と、脱カチオン領域1aから脱カチオン液を排出する脱カチオン液流出管12とを備える。   In FIG. 17, the electric deionized liquid production apparatus 10 includes a cation cell 10a and an anion cell 10b. The cation cell 10a is a liquid permeable region through which a part of the liquid to be treated that is disposed adjacent to the decation region 1a filled with the monolith cation exchanger and the ion exclusion side (cathode side) of the decation region 1a passes. A region 2a, a liquid permeable region 3a through which another part of the liquid to be treated disposed adjacent to the anode side of the decationized region 1a passes, a decationized region 1a, a liquid permeable region 2a, and a liquid permeable region 3a An anode 4a and a cathode 4b disposed on both sides of the substrate, a treatment liquid inflow pipe 11 for passing the treatment liquid through the decation region 1a, a cathode chamber 6 into which the liquid permeated from the liquid permeation region 2a flows, The anode chamber 7 into which the liquid which permeate | transmitted from the liquid permeation | transmission area | region 3 flows in, and the decation liquid outflow pipe 12 which discharges a decation liquid from the decation area 1a are provided.

カチオンセル10aにおいて、液透過領域2a及び液透過領域3aを形成するカチオン交換体の通液抵抗は、脱カチオン領域1aに充填されるモノリスカチオン交換体の通液抵抗より大きくしてある。被処理液は、脱カチオン領域1aの陰極側近傍から流入させ、処理液は、被処理液の流入口のほぼ対角線上の脱カチオン領域1aの陽極側近傍から流出させることが、排除されるイオンの流れ方向と脱カチオン領域1aにおける被処理液の流れ方向が逆方向となり、モノリスカチオン交換体を有効に利用し、且つカチオン性不純物Xのリークが無い処理液が得られる点で好ましい。 In the cation cell 10a, the flow resistance of the cation exchanger forming the liquid permeable region 2a and the liquid permeable region 3a is larger than the liquid resistance of the monolith cation exchanger filled in the decation region 1a. The liquid to be treated is introduced from the vicinity of the cathode side of the decation region 1a, and the treatment liquid is excluded from flowing out from the vicinity of the anode side of the decation region 1a substantially diagonally to the inlet of the liquid to be treated. And the flow direction of the liquid to be treated in the decationization region 1a are opposite to each other, which is preferable in that a monolith cation exchanger is effectively used and a treatment liquid free from leakage of the cationic impurity X + is obtained.

図17(B)のアニオンセル10bにおいて、図17(A)のカチオンセル10aと同一構成要素には同一符号を付して、その説明を省略し、異なる点について説明する。すなわち、アニオンセル10bにおいて、カチオンセル10aと異なる点は、脱塩領域にモノリスアニオン交換体を充填し、液透過領域2b及び液透過領域3bにはアニオン交換体を装填した点、被処理液は脱アニオン領域1bの陽極側近傍から流入させ、処理液は、被処理液の流入口のほぼ対角線上の脱アニオン領域1bの陰極側近傍から流出させた点である。そして、カチオンセル10aの脱カチオン液流出管12とアニオンセル10bの被処理液流入管13を連結している。アニオンセル10bもカチオンセル10a同様、極めて簡易な構造である。   In the anion cell 10b of FIG. 17B, the same components as those of the cation cell 10a of FIG. 17A are denoted by the same reference numerals, description thereof will be omitted, and different points will be described. That is, the anion cell 10b is different from the cation cell 10a in that the desalting region is filled with a monolith anion exchanger, and the liquid permeation region 2b and the liquid permeation region 3b are filled with an anion exchanger. The treatment liquid is introduced from the vicinity of the anode side of the deanion region 1b, and the treatment liquid is caused to flow out from the vicinity of the cathode side of the deanion region 1b on a substantially diagonal line of the inlet of the liquid to be treated. And the decation liquid outflow pipe 12 of the cation cell 10a and the to-be-processed liquid inflow pipe 13 of the anion cell 10b are connected. Similar to the cation cell 10a, the anion cell 10b has a very simple structure.

次に、電気式脱イオン液製造装置10を用いた脱塩液の製造方法について説明する。被処理液を被処理液流入管11から脱カチオン領域1aに流入させる。脱カチオン領域1aに流入した被処理液は、液透過領域2a及び液透過領域3aを形成するカチオン交換体の通液抵抗が、脱カチオン領域1aに充填されるモノリスカチオン交換体の通液抵抗より大きいため、被処理液の大部分が脱カチオン領域1aを流通し、その一部が液透過領域2a及び液透過領域3aを透過する。液透過領域2aを透過した透過液は、電気泳動的に排除されるカチオン性不純物Xとともに陰極室6に陰極液として排出される。液透過領域2aにおいては、常に被処理液の一部が透過しており、希釈効果によりスケール発生を防止する。また、液透過領域3aを透過した透過液は、陽極室7に陽極液として排出される。図中、脱カチオン領域1aにおける流路17は模式的に示したものであるが、実際の流れも、概ねこのような流れとなる。 Next, the manufacturing method of the desalination liquid using the electric deionization liquid manufacturing apparatus 10 is demonstrated. The liquid to be treated is caused to flow from the liquid inlet 11 for the liquid to be treated into the decation region 1a. The liquid to be treated that has flowed into the decationization region 1a has a liquid passage resistance of the cation exchanger that forms the liquid permeation region 2a and the liquid permeation region 3a due to the liquid passage resistance of the monolith cation exchanger filled in the decation region 1a. Since it is large, most of the liquid to be treated flows through the decationization region 1a, and a part thereof passes through the liquid permeation region 2a and the liquid permeation region 3a. The permeated liquid that has passed through the liquid permeable region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded. In the liquid permeation region 2a, a part of the liquid to be treated is always transmitted, and scale generation is prevented by the dilution effect. In addition, the permeated liquid that has permeated through the liquid permeable region 3 a is discharged into the anode chamber 7 as an anolyte. In the drawing, the flow path 17 in the decationization region 1a is schematically shown, but the actual flow is also generally such a flow.

次いで、カチオン性不純物が除去された被処理液を被処理液流入管13から脱アニオン領域1bに流入させる。脱アニオン領域1bに流入した被処理液は、液透過領域2b及び液透過領域3bを形成するアニオン交換体の通液抵抗が、脱アニオン領域1bに充填されるモノリスアニオン交換体の通液抵抗より大きいため、被処理液の大部分が脱アニオン領域1bを流通し、その一部が液透過領域2b及び液透過領域3bを透過する。液透過領域2bを透過した透過液は、電気泳動的に排除されるアニオン性不純物Yとともに陽極室7に陽極液として排出される。液透過領域2bにおいては、カチオンセル10aと同様、常に被処理液の一部が透過しており、希釈効果によりスケール発生を防止する。また、液透過領域3bを透過した透過液は、陰極室6に陰極液として排出される。図中、脱アニオン領域1bにおける流路18は模式的に示したものであるが、実際の流れも、概ねこのような流れとなる。 Next, the liquid to be treated from which the cationic impurities have been removed is caused to flow from the liquid to be treated inlet 13 into the deanion region 1b. The liquid to be treated that has flowed into the deanion region 1b has a liquid resistance of the anion exchanger that forms the liquid permeation region 2b and the liquid permeation region 3b due to the liquid resistance of the monolith anion exchanger filled in the deanion region 1b. Since it is large, most of the liquid to be treated flows through the deanion region 1b, and a part thereof passes through the liquid permeation region 2b and the liquid permeation region 3b. The permeated liquid that has passed through the liquid permeable region 2b is discharged as an anolyte into the anode chamber 7 together with the anionic impurity Y that is electrophoretically excluded. In the liquid permeation region 2b, like the cation cell 10a, a part of the liquid to be treated is always permeating, and scale generation is prevented by the dilution effect. Further, the permeated liquid that has passed through the liquid permeable region 3 b is discharged into the cathode chamber 6 as a catholyte. In the figure, the flow path 18 in the deanion region 1b is schematically shown, but the actual flow is also generally such a flow.

カチオンセル10aとアニオンセル10bからなる2セルタイプの電気式脱イオン液製造装置10によれば、カチオンセル10a及びアニオンセル10b共に、イオン交換膜を全く使用していないため、装置構造が極めて簡略化でき、製作コストも低減できる。また、カチオンセル10aの陰極側の液透過領域2a及びアニオンセル10bの陽極側の液透過領域2bにおいては、従来のEDIでは避けることができなかったスケール発生を、透過する被処理液の希釈効果により防止することができる。また、脱塩領域で用いるモノリスイオン交換体は強度が高く、また流路を形成する開口や空孔も大きいため、通水時の圧力損失を低下させることができ、体積当りのイオン交換容量が大きいため、導電性や処理水水質を高めることができる。   According to the two-cell type electric deionized liquid production apparatus 10 composed of the cation cell 10a and the anion cell 10b, neither the cation cell 10a nor the anion cell 10b uses an ion exchange membrane at all, so the apparatus structure is extremely simple. Manufacturing costs can be reduced. Further, in the liquid permeable region 2a on the cathode side of the cation cell 10a and the liquid permeable region 2b on the anode side of the anion cell 10b, the generation effect of the scale that cannot be avoided by conventional EDI is diluted. Can be prevented. In addition, the monolith ion exchanger used in the desalting region has high strength, and since the openings and pores forming the flow path are large, the pressure loss during water flow can be reduced, and the ion exchange capacity per volume can be reduced. Since it is large, conductivity and treated water quality can be improved.

次に、本発明の第2の実施の形態における電気式脱イオン液製造装置の一例を図18を参照して説明する。図18は被処理液中のカチオン性不純物を除去するカチオンセル20a(図中、(A))とアニオン性不純物を除去するアニオンセル20b(図中、(B))を用いる2セルタイプの他のEDIの模式図である。図18において、図17と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、図18において、図17と異なる点は、カチオンセル20aにおいて、脱カチオン領域1aの陽極側には、カチオン交換膜5を付設し、脱カチオン領域1aと陽極室7間に液の透過がないようにした点、アニオンセル20bにおいて、脱アニオン領域1bの陰極側には、カチオン交換膜5を付設し、脱アニオン領域1bと陰極室6間に液の透過がないようにした点にある。   Next, an example of an electrical deionized liquid production apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 18 shows another two-cell type using a cation cell 20a ((A) in the figure) for removing cationic impurities in the liquid to be treated and an anion cell 20b ((B) in the figure) for removing anionic impurities. It is a schematic diagram of EDI. In FIG. 18, the same components as those in FIG. 17 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 18 is different from FIG. 17 in that, in the cation cell 20a, the cation exchange membrane 5 is provided on the anode side of the decation region 1a, and the permeation of the liquid is performed between the decation region 1a and the anode chamber 7. In the anion cell 20b, a cation exchange membrane 5 is provided on the cathode side of the deanion region 1b so that no liquid permeates between the deanion region 1b and the cathode chamber 6. .

カチオンセル20aとアニオンセル20bからなる2セルタイプの電気式脱イオン液製造装置20によれば、イオン交換膜を一部に使用するものの、前記電気式脱イオン液製造装置10と同様の効果を奏する。   According to the two-cell type electric deionized liquid production apparatus 20 comprising the cation cell 20a and the anion cell 20b, although the ion exchange membrane is used in part, the same effect as the electric deionized liquid production apparatus 10 is obtained. Play.

次に、本発明の第3の実施の形態における電気式脱イオン液製造装置の一例を図19を参照して説明する。図19はカチオン性不純物とアニオン性不純物を同時に除去する1セルタイプのEDIの模式図である。図19において、図17と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、図19において、図17と異なる点は、セル構造を、単一セル構造のカチオン/アニオンセル30とした点、脱塩領域1cにはカチオン交換体とアニオン交換体の混合モノリスイオン交換体を充填した点、脱塩領域1cの陰極側の液透過領域2aには、カチオン交換体を装填し、脱塩領域1cの陽極側の液透過領域3bには、アニオン交換体を装填した点にある。混合モノリスイオン交換体としては、カチオンモノリスとアニオンモノリスの積層構造体が挙げられる。この積層構造体の積層方向は、処理液が流れる方向か、処理液が流れる方向と直角方向のいずれであってもよい。   Next, an example of an electric deionized liquid production apparatus according to the third embodiment of the present invention will be described with reference to FIG. FIG. 19 is a schematic diagram of one-cell type EDI that simultaneously removes cationic impurities and anionic impurities. 19, the same components as those in FIG. 17 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. That is, FIG. 19 differs from FIG. 17 in that the cell structure is a cation / anion cell 30 having a single cell structure, and in the desalted region 1c, a mixed monolith ion exchanger of a cation exchanger and an anion exchanger is used. The cation exchanger is loaded on the cathode side liquid permeable region 2a of the desalting region 1c, and the anion exchanger is loaded on the anode side liquid permeable region 3b of the desalting region 1c. is there. Examples of the mixed monolith ion exchanger include a laminated structure of a cation monolith and an anion monolith. The lamination direction of the laminated structure may be either the direction in which the processing liquid flows or the direction perpendicular to the direction in which the processing liquid flows.

次に、カチオン/アニオンセル30を用いた脱塩液の製造方法について説明する。被処理液流入管11を通って脱塩領域1cに流入した被処理液は、液透過領域2a及び液透過領域3bを形成するカチオン交換体及びアニオン交換体の通液抵抗が、脱塩領域1cに充填される混合イオン交換体の通液抵抗より大きいため、被処理液の大部分が脱塩領域1cを流通し、その一部が液透過領域2a及び液透過領域3bを透過する。液透過領域2aを透過した透過液は、電気泳動的に排除されるカチオン性不純物Xとともに陰極室6に陰極液として排出される。また、液透過領域3bを透過した透過液は、陽極室7に陽極液として排出される。液透過領域2a及び液透過領域3bにおいては、常に被処理液の一部が透過しており、希釈効果によりスケール発生を防止する。図中、脱塩領域1cにおける流路17は模式的に示したものであるが、実際の流れも、概ねこのような流れとなる。 Next, a method for producing a desalting solution using the cation / anion cell 30 will be described. The liquid to be processed which has flowed into the desalting region 1c through the processing liquid inflow pipe 11 has a resistance to flow of the cation exchanger and the anion exchanger forming the liquid permeation region 2a and the liquid permeation region 3b. Therefore, most of the liquid to be treated flows through the desalting region 1c, and part of the liquid passes through the liquid permeation region 2a and the liquid permeation region 3b. The permeated liquid that has passed through the liquid permeable region 2a is discharged as a catholyte into the cathode chamber 6 together with the cationic impurities X + that are electrophoretically excluded. Further, the permeated liquid that has passed through the liquid permeable region 3 b is discharged into the anode chamber 7 as an anolyte. In the liquid permeation region 2a and the liquid permeation region 3b, a part of the liquid to be treated is always transmitted, and scale generation is prevented by the dilution effect. In the figure, the flow path 17 in the desalting region 1c is schematically shown, but the actual flow is also generally such a flow.

1セルタイプの電気式脱イオン液製造装置30によれば、2セルタイプの電気式脱イオン液製造装置20と同様の効果を奏する。   According to the 1-cell type electric deionized liquid manufacturing apparatus 30, the same effects as the 2-cell type electric deionized liquid manufacturing apparatus 20 are obtained.

次に、本発明の第4の実施の形態における電気式脱イオン液製造装置の一例を図20を参照して説明する。図20はカチオン性不純物とアニオン性不純物を同時に除去する脱塩室を複数個に並列配置したEDIの模式図である。図20において、図17と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、図20において、図17と異なる点は、電極間に配設される脱塩セルの基本構造が相違する点にある。すなわち、陽極室7と陰極室6との間に、陽極側が液透過領域であるアニオン交換体2bで区画され陰極側が液透過領域であるモノリスカチオン交換体2aで区画された脱塩室1d、1dと、陽極側が液透過領域であるカチオン交換体で区画され陰極側が液透過領域であるアニオン交換体で区画された濃縮室9を有するEDIである。電気式脱イオン液製造装置40において、脱塩室1d、1dの設置個数はこれに限定されず、1個でも、3個以上であってもよい。 Next, an example of an electrical deionized liquid production apparatus in the fourth embodiment of the present invention will be described with reference to FIG. FIG. 20 is a schematic diagram of EDI in which a plurality of desalting chambers for simultaneously removing cationic impurities and anionic impurities are arranged in parallel. In FIG. 20, the same components as those in FIG. 17 are denoted by the same reference numerals, description thereof will be omitted, and different points will be mainly described. That is, FIG. 20 is different from FIG. 17 in that the basic structure of the desalting cell disposed between the electrodes is different. That is, between the anode chamber 7 and the cathode chamber 6, desalting chambers 1 d, 1 d partitioned on the anode side by an anion exchanger 2 b which is a liquid permeable region and on the cathode side by a monolith cation exchanger 2 a which is a liquid permeable region. And an EDI having a concentration chamber 9 which is partitioned by a cation exchanger which is a liquid-permeable region and whose cathode side is partitioned by an anion exchanger which is a liquid-permeable region. In the electric deionized liquid production apparatus 40, the number of installed desalting chambers 1d and 1d is not limited to this, and may be one or three or more.

次に、電気式脱イオン液製造装置40を用いた脱塩液の製造方法について説明する。被処理液を被処理液流入管11から脱塩領域1d、1dに流入させる。脱塩領域1d、1dに流入した被処理液は、液透過領域2a及び液透過領域2bを形成するイオン交換体の通液抵抗が、脱塩領域1d、1dに充填されるモノリス混合イオン交換体の通液抵抗より大きいため、被処理液の大部分が脱塩領域1d、1dを流通し、その一部が液透過領域2a及び液透過領域2bを透過する。液透過領域2aを透過した透過液は、電気泳動的に排除されるカチオン性不純物Xとともに陰極室6及び濃縮室9に陰極液及び濃縮液として排出される。また、液透過領域2bを透過した透過液は、電気泳動的に排除されるアニオン性不純物Yとともに陽極室7及び濃縮室9に陽極液及び濃縮液として排出される。液透過領域2a及び液透過領域2bにおいては、常に被処理液の一部が透過しており、希釈効果によりスケール発生を防止する。図中、脱塩領域1dにおける流路17は模式的に示したものであるが、実際の流れも、概ねこのような流れとなる。 Next, a method for producing a desalting solution using the electric deionizing solution production apparatus 40 will be described. The liquid to be processed is caused to flow into the desalting regions 1d and 1d from the liquid inlet pipe 11 to be processed. The liquid to be treated that has flowed into the desalting regions 1d and 1d is a monolith mixed ion exchanger in which the resistance of the ion exchanger forming the liquid permeable region 2a and the liquid permeable region 2b is filled in the desalting regions 1d and 1d. Therefore, most of the liquid to be treated flows through the desalting regions 1d and 1d, and part of the solution passes through the liquid permeable region 2a and the liquid permeable region 2b. The permeated liquid that has passed through the liquid permeable region 2a is discharged as a catholyte and a concentrated liquid into the cathode chamber 6 and the concentrating chamber 9 together with the cationic impurities X + that are electrophoretically excluded. The permeated liquid that has passed through the liquid permeable region 2b is discharged as an anolyte and a concentrated liquid into the anode chamber 7 and the concentrating chamber 9 together with the anionic impurity Y that is electrophoretically excluded. In the liquid permeation area 2a and the liquid permeation area 2b, a part of the liquid to be treated is always transmitted, and scale generation is prevented by the dilution effect. In the figure, the flow path 17 in the desalting region 1d is schematically shown, but the actual flow is also generally such a flow.

脱塩室並列配置の電気式脱イオン液製造装置40によれば、1セルタイプの電気式脱イオン液製造装置30や2セルタイプの電気式脱イオン液製造装置20と同様の効果を奏する。   According to the electric deionization liquid production apparatus 40 arranged in parallel with the desalting chamber, the same effects as those of the one-cell type electric deionization liquid production apparatus 30 and the two-cell type electric deionization liquid production apparatus 20 are obtained.

次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

参考例1
(I工程;モノリス中間体の製造)
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は15.8ml/gであった。
Reference example 1
(Step I; production of monolith intermediate)
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 40 μm, and the total pore volume was 15.8 ml / g.

(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、3.2g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
Next, 36.0 g of styrene, 4.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 6.6 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, while the crosslink density of the monolith intermediate is 1.3 mol%, and the crosslink density ratio is 5.1 times. Met. Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 3.2 g was collected. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1〜図3に示す。図1〜図3のSEM画像は、倍率が異なるものであり、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1〜図3から明らかなように、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は80%であった。また、粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%であった。   The results of observing the internal structure of the composite monolith (dried body) composed of the styrene / divinylbenzene copolymer thus obtained by SEM are shown in FIGS. The SEM images in FIG. 1 to FIG. 3 have different magnifications, and are images at arbitrary positions on a cut surface obtained by cutting a monolith at an arbitrary position. As apparent from FIGS. 1 to 3, the composite monolith has a continuous macropore structure, and the surface of the skeletal phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 4 μm. The particle coverage of the skeleton surface by the body and the like was 80%. Moreover, the ratio for which the particle body with a particle size of 3-5 micrometers occupied to the whole particle body was 90%.

また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は16μm、全細孔容積は2.3ml/gであった。その結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、有機溶媒、I工程で得られたモノリス中間体を示す。また、粒子体等は粒子で示した。   Moreover, the average diameter of the opening of the composite monolith measured by mercury porosimetry was 16 μm, and the total pore volume was 2.3 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows the vinyl monomer, the crosslinking agent, the organic solvent used in Step II, and the monolith intermediate obtained in Step I in order from the left. Further, the particle bodies and the like are shown as particles.

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は19.6gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸98.9gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 19.6 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 98.9 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a composite monolith cation exchanger.

得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ21μmであり、同様の方法で求めた被覆粒子の平均粒径は5μmであった。なお、全粒子体等による骨格表面の粒子被覆率は80%、全細孔容積は2.3ml/gであった。また、粒径4〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.057MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、イオン交換帯長さは9mmであり、著しく短い値を示した。結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.3 times, and the ion exchange capacity per volume was 1.11 mg equivalent / ml in a water wet state. The average diameter of the openings of the organic porous ion exchanger in the water wet state was 21 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average particle size of the particles was 5 μm. The particle coverage of the skeletal surface with all particles was 80%, and the total pore volume was 2.3 ml / g. Moreover, the ratio for which the particle body of 4-7 micrometers of particle | grains accounts to the whole particle body was 90%. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.057 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Further, the length of the ion exchange zone was 9 mm, showing a remarkably short value. The results are summarized in Table 2.

次に、複合モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the composite monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 4 and 5, the left and right photographs correspond to each other. FIG. 4 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 5 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 4 and 5, it can be seen that the sulfonic acid groups are uniformly introduced on the skeleton surface of the cation exchanger and inside the skeleton (cross-sectional direction).

参考例2〜5
(複合モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度と使用量及び重合温度を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図6〜図13に示す。図6〜図8は参考例2、図9及び図10は参考例3、図11は参考例4、図12及び図13は参考例5のものである。なお、参考例2については架橋密度比(2.5倍)、参考例3については有機溶媒の種類(PEG;分子量400)、参考例4についてはビニルモノマー濃度(28.0%)、参考例5については重合温度(40℃;重合開始剤の10時間半減温度より11℃低い)について、本発明の製造条件を満たす条件で製造した。図6〜図13から参考例3〜5の複合モノリスの骨格表面に付着しているものは粒子体というよりは突起体であった。突起体の「粒子平均径」は突起体の大きさ(最大径)の平均径である。図6〜図13及び表2から、参考例2〜6のモノリス骨格表面に付着している粒子の平均径は3〜8μm、全粒子体等による骨格表面の粒子被覆率は50〜95%であった。また、参考例2が粒径3〜6μmの粒子体が全体の粒子体に占める割合は80%、参考例3が粒径3〜10μmの突起体が全体の粒子体に占める割合は80%、参考例4が粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%、参考例5が粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。
Reference Examples 2-5
(Manufacture of composite monolith)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density and the amount used, and the polymerization temperature are shown in Table 1. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. 6 to 8 are of Reference Example 2, FIGS. 9 and 10 are of Reference Example 3, FIG. 11 is of Reference Example 4, and FIGS. 12 and 13 are of Reference Example 5. For Reference Example 2, the crosslinking density ratio (2.5 times), for Reference Example 3, the type of organic solvent (PEG; molecular weight 400), for Reference Example 4, the vinyl monomer concentration (28.0%), Reference Example For No. 5, the polymerization temperature (40 ° C .; 11 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions satisfying the production conditions of the present invention. From FIG. 6 to FIG. 13, what adhered to the skeleton surface of the composite monoliths of Reference Examples 3 to 5 were protrusions rather than particles. The “particle average diameter” of the protrusion is the average diameter of the protrusions (maximum diameter). From FIG. 6 to FIG. 13 and Table 2, the average diameter of the particles adhering to the surface of the monolith skeleton of Reference Examples 2 to 6 is 3 to 8 μm, and the particle coverage of the skeleton surface by all particles is 50 to 95%. there were. In addition, the proportion of Reference Example 2 in which particles having a particle diameter of 3 to 6 μm occupy the entire particle body is 80%, and the ratio of Reference Example 3 in which protrusions having a particle diameter of 3 to 10 μm occupy the entire particle is 80% In Reference Example 4, the proportion of particles having a particle diameter of 3 to 5 μm in the total particle body was 90%, and in Reference Example 5, the proportion of particles having a particle diameter of 3 to 7 μm in the entire particle body was 90%. .

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、それぞれ参考例1と同様の方法でクロロ硫酸と反応させ、複合モノリスカチオン交換体を製造した。その結果を表2に示す。参考例2〜5における複合モノリスカチオン交換体の連続細孔の平均直径は21〜52μmであり、骨格表面に付着している粒子体等の平均径は5〜13μm、全粒子体等による骨格表面の粒子被覆率も50〜95%と高く、差圧係数も0.010〜0.057MPa/m・LVと小さい上に、イオン交換帯長さも8〜12mmと著しく小さな値であった。また、粒径5〜10μmの粒子体が全体の粒子体に占める割合は90%であった。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a composite monolith cation exchanger. The results are shown in Table 2. The average diameter of the continuous pores of the composite monolith cation exchanger in Reference Examples 2 to 5 is 21 to 52 μm, the average diameter of the particles attached to the skeleton surface is 5 to 13 μm, the skeleton surface due to all the particles, etc. The particle coverage was as high as 50 to 95%, the differential pressure coefficient was as small as 0.010 to 0.057 MPa / m · LV, and the ion exchange zone length was as extremely small as 8 to 12 mm. Moreover, the ratio for which the particle body with a particle size of 5-10 micrometers occupied to the whole particle body was 90%.

参考例6
(複合モノリスの製造)
ビニルモノマーの種類とその使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図14〜図16に示す。参考例6の複合モノリスの骨格表面に付着しているものは突起体であった。参考例6のモノリスは、表面に形成された突起体の最大径の平均径が10μmであり、全粒子体等による骨格表面の粒子被覆率は100%であった。また、粒径6〜12μmの粒子体が全体の粒子体に占める割合は80%であった。
Reference Example 6
(Manufacture of composite monolith)
Table 1 shows the type and amount of vinyl monomer used, amount of crosslinking agent used, type and amount of organic solvent, monolith intermediate porous structure coexisting during polymerization in step III, crosslinking density and amount used. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. What adhered to the skeleton surface of the composite monolith of Reference Example 6 was a protrusion. In the monolith of Reference Example 6, the average diameter of the maximum diameter of the protrusions formed on the surface was 10 μm, and the particle coverage of the skeletal surface with all the particulates was 100%. Moreover, the ratio for which the particle body with a particle size of 6-12 micrometers occupied to the whole particle body was 80%.

(複合モノリスアニオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。複合モノリスの重量は17.9gであった。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液114.5gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、メタノールで洗浄してテトラヒドロフランを除き、更に純水で洗浄してモノリスアニオン交換体を得た。
(Production of complex monolith anion exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the composite monolith was 17.9 g. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 114.5 g of a 30% trimethylamine aqueous solution, heated to react at 40 ° C. for 24 hours. After completion of the reaction, the resultant was washed with methanol to remove tetrahydrofuran, and further washed with pure water to obtain a monolith anion exchanger.

得られた複合アニオン交換体の反応前後の膨潤率は2.0倍であり、体積当りのイオン交換容量は、水湿潤状態で0.32mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の連続細孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ58μmであり、同様の方法で求めた突起体の平均径は20μm、全粒子体等による骨格表面の粒子被覆率は100%、全細孔容積は2.1ml/gであった。また、イオン交換帯長さは16mmと非常に短い値を示した。なお、水を透過させた際の圧力損失の指標である差圧係数は、0.041MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。また、粒径12〜24μmの粒子体が全体の粒子体に占める割合は80%であった。その結果を表2にまとめて示す。   The obtained composite anion exchanger had a swelling ratio of 2.0 times before and after the reaction, and the ion exchange capacity per volume was 0.32 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the organic porous ion exchanger in the water wet state was 58 μm as estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state. The average diameter of the body was 20 μm, the particle coverage of the skeletal surface with all particles was 100%, and the total pore volume was 2.1 ml / g. The ion exchange zone length was as short as 16 mm. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.041 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Moreover, the ratio for which the particle body with a particle size of 12-24 micrometers occupied to the whole particle body was 80%. The results are summarized in Table 2.

次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

参考例7
(モノリス中間体の製造)
参考例1と同様の方法で行いモノリス中間体を得た。
Reference Example 7
(Manufacture of monolith intermediates)
A monolith intermediate was obtained in the same manner as in Reference Example 1.

(複合モノリスの製造)
スチレン38.0g、ジビニルベンゼン2.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は3.3モル%であり、架橋密度比は2.5倍であった。次に上記モノリス中間体を直径70mm、厚さ約30mmの円盤状に切断して3.3gを分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
38.0 g of styrene, 2.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 3.3 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, with a crosslink density ratio of 2.5 times the crosslink density of the monolith intermediate of 1.3 mol%. Met. Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 30 mm to obtain 3.3 g. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径5μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は50%であった。また、粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は35μm、全細孔容積は3.8ml/gであった。   The internal structure of the monolith (dry body) containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was observed by SEM. The monolith has a continuous macropore structure, and the surface of the skeleton phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 5 μm, and the particle coverage of the skeleton surface by all particles is 50%. Met. Moreover, the ratio for which the particle body with a particle size of 3-7 micrometers occupied to the whole particle body was 90%. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 35 μm, and the total pore volume was 3.8 ml / g.

(複合モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of complex monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.5倍であり、体積当りのアニオン交換容量は水湿潤状態で0.72mg当量/mlであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ53μmであり、同様の方法で求めた被覆粒子の平均粒径は8μmであった。なお、全粒子体等による骨格表面の粒子被覆率は50%、全細孔容積は3.8ml/gであった。また、粒径4〜8μmの粒子体が全体の粒子体に占める割合は90%であった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.5 times, and the anion exchange capacity per volume was 0.72 mg equivalent / ml in a water-wet state. The average diameter of the openings of the monolith anion exchanger in the water wet state was estimated to be 53 μm from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and the average particle diameter of the coated particles determined by the same method The diameter was 8 μm. In addition, the particle | grain coverage of the frame | skeleton surface by all the particle bodies etc. was 50%, and the total pore volume was 3.8 ml / g. Moreover, the ratio for which the particle diameter of 4-8 micrometers was occupied to the whole particle body was 90%.

また、水を透過させた際の圧力損失の指標である差圧係数は、0.017MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは14mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短かった。   The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.017 MPa / m · LV, which is a low pressure loss that does not cause any practical problems. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 14 mm, and amberlite which is a commercially available strong basic anion exchange resin. It was overwhelmingly shorter than the value (165 mm) of IRA402BL (made by Rohm and Haas).

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that the chloride ions were uniformly distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. It was.

参考例8
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、不図示のSEM写真から骨格表面には粒子体や突起体の形成は全く認められなかった。表1及び表2から、本発明の特定の製造条件と逸脱する条件、すなわち、上記(1)〜(5)の要件から逸脱した条件下でモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Reference Example 8
(Manufacture of monoliths)
Except for changing the usage amount of the vinyl monomer, the usage amount of the crosslinking agent, the type and usage amount of the organic solvent, and the usage amount of the monolith intermediate coexisting during the polymerization in Step III to the blending amounts shown in Table 1, Example 1 and A monolith was produced in a similar manner. The results are shown in Tables 1 and 2. From the SEM photograph (not shown), the formation of particles and protrusions was not observed at all on the skeleton surface. From Table 1 and Table 2, when a monolith is produced under conditions deviating from the specific production conditions of the present invention, that is, conditions deviating from the requirements (1) to (5) above, particle formation on the surface of the monolith skeleton is caused. It turns out that it is not recognized.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、参考例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは26mmであり、参考例1〜7と比較して大きな値であった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 26 mm, which was a large value as compared with Reference Examples 1-7.

参考例9〜11
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例9については架橋密度比(0.2倍)、参考例10については有機溶媒の種類(2-(2-メトキシエトキシ)エタノール;分子量120)、参考例11については重合温度(50℃;重合開始剤の10時間半減温度より1℃低い)について、本発明の製造条件を満たさない条件で製造した。結果を表2に示す。参考例9、11のモノリスについては骨格表面での粒子生成はなかった。また、参考例10では単離した生成物は透明であり、多孔構造が崩壊、消失していた。
Reference Examples 9-11
(Manufacture of monoliths)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density, and the amount used were changed to the amounts shown in Table 1. Produced a monolith in the same manner as in Reference Example 1. The results are shown in Tables 1 and 2. For Reference Example 9, the crosslinking density ratio (0.2 times), for Reference Example 10, the type of organic solvent (2- (2-methoxyethoxy) ethanol; molecular weight 120), and for Reference Example 11, the polymerization temperature (50 C .: 1 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions that did not satisfy the production conditions of the present invention. The results are shown in Table 2. For the monoliths of Reference Examples 9 and 11, there was no particle formation on the skeleton surface. In Reference Example 10, the isolated product was transparent, and the porous structure was collapsed and disappeared.

(モノリスカチオン交換体の製造)
参考例10を除き、上記の方法で製造した有機多孔質体を、参考例8と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。その結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは23〜26mmであり、参考例1〜7と比較して大きな値であった。
(Production of monolith cation exchanger)
Except for Reference Example 10, the organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 8 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 23 to 26 mm, which was a large value as compared with Reference Examples 1 to 7.

参考例12
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の使用量、III工程で重合時に共存させるモノリス中間体の多孔構造および使用量を表1に示す配合量に変更した以外は、参考例8と同様の方法でモノリスを製造した。その結果を表1及び表2に示すが、本発明の特定の製造条件を逸脱してモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Reference Example 12
(Manufacture of monoliths)
Reference Example 8 except that the use amount of the vinyl monomer, the use amount of the crosslinking agent, the use amount of the organic solvent, the porous structure and the use amount of the monolith intermediate coexisting during the polymerization in Step III were changed to the blending amounts shown in Table 1. A monolith was produced in the same manner as described above. The results are shown in Tables 1 and 2, and it can be seen that when a monolith is produced outside the specific production conditions of the present invention, no particle formation is observed on the surface of the monolith skeleton.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。結果を表2に示が、得られたモノリスアニオン交換体のイオン交換帯長さは47mmであり、参考例1〜7と比較して大きな値であった。表1及び2中、メソポア直径及び細孔の値はそれぞれ平均値を示す。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated. The results are shown in Table 2. The obtained monolith anion exchanger had an ion exchange zone length of 47 mm, which was a large value compared to Reference Examples 1-7. In Tables 1 and 2, the mesopore diameter and pore value are average values.

参考例13(公知のカチオンモノリス)
スチレン46.3g、ジビニルベンゼン2.4g、アゾビスイソブチロニトリル0.3g及びソルビタンモノオレエート3.1gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を180mlの純水に添加し、遊星式攪拌装置を用いて(公転/自転)=(1800rpm/600rpm)で5分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで12時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した。その後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した多孔質体を切断して16.6g採取し、これにジクロロメタン900mlを加え、35℃で1時間加熱した後、0℃まで氷冷し、クロロスルホン酸88.0gを徐々に加え、クロロスルホン酸添加終了後、昇温して35℃で24時間反応させた。その後、メタノールで反応物を洗浄し、水洗して多孔質陽イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.5mg当量/ gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体(液透過領域用カチオンモノリス)の内部構造は、連続気泡構造を有しており、平均径30.0μm のマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値を水銀圧入法で求めたところ、直径の平均値は8.5μm 、全細孔容積は、2.7ml/gであった。
Reference Example 13 (known cationic monolith)
46.3 g of styrene, 2.4 g of divinylbenzene, 0.3 g of azobisisobutyronitrile and 3.1 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 180 ml of pure water, and (revolution / spinning) = (1800 rpm / 600 rpm) using a planetary stirrer. Stirring for a minute gave a water-in-oil emulsion. After completion of emulsification, the resulting product was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After the completion of the polymerization, the contents were taken out and subjected to Soxhlet extraction with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Then, it dried under reduced pressure at 85 degreeC all day and night. The porous body containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was cut and 16.6 g was sampled, 900 ml of dichloromethane was added thereto, and 1 ml at 35 ° C. was added. After heating for hours, the mixture was ice-cooled to 0 ° C., 88.0 g of chlorosulfonic acid was gradually added, and after the addition of chlorosulfonic acid, the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, the reaction product was washed with methanol and washed with water to obtain a porous cation exchanger. The ion exchange capacity of this porous body is 4.5 mg equivalent / g in terms of dry porous body, and sulfonic acid groups are uniformly introduced into the porous body by mapping of sulfur atoms using EPMA. It was confirmed. Moreover, as a result of SEM observation, the internal structure of the porous body (cationic monolith for liquid permeation region) has an open cell structure, and most of the macropores having an average diameter of 30.0 μm overlap each other. When the average value of the diameters of the mesopores formed by the overlap was determined by the mercury intrusion method, the average value of the diameters was 8.5 μm and the total pore volume was 2.7 ml / g.

参考例14(公知のカチオンモノリス)
スチレン19.2g、ジビニルベンゼン1.0g、アゾビスイソブチロニトリル0.3g及びソルビタンモノオレエート1.1gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を180mlの純水に添加し、遊星式攪拌装置を用いて(公転/自転)=(1000rpm/330rpm)で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで12時間ソックスレー抽出して未反応モノマーとソルビタンモノオレエートを除去した。その後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した多孔質体を切断して7.9g採取し、ジクロロメタン900mlを加え、35℃で1時間加熱した後、0℃まで氷冷し、クロロスルホン酸42.0gを徐々に加え、クロロスルホン酸添加終了後昇温して35℃で24時間反応させた。その後、メタノールで反応物を洗浄し、水洗して多孔質陽イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.6mg当量/ gであった。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径100μm のマクロポアの大部分が重なり合った構造を有していた。マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値を水銀圧入法で求めたところ、直径の平均値は29.0μm、全細孔容積は、8.6ml/gであった。
Reference Example 14 (known cationic monolith)
19.2 g of styrene, 1.0 g of divinylbenzene, 0.3 g of azobisisobutyronitrile and 1.1 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 180 ml of pure water, and (revolution / spinning) = (1000 rpm / 330 rpm) 2 using a planetary stirrer. Stirring for a minute gave a water-in-oil emulsion. After completion of emulsification, the resulting product was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the contents were taken out and subjected to Soxhlet extraction with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Then, it dried under reduced pressure at 85 degreeC all day and night. The porous body containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was cut and 7.9 g was collected, 900 ml of dichloromethane was added, and the mixture was heated at 35 ° C. for 1 hour. After cooling to 0 ° C., 42.0 g of chlorosulfonic acid was gradually added. After completion of the addition of chlorosulfonic acid, the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, the reaction product was washed with methanol and washed with water to obtain a porous cation exchanger. The ion exchange capacity of this porous material was 4.6 mg equivalent / g in terms of dry porous material. As a result of SEM observation, the internal structure of the porous body had an open-cell structure, and had a structure in which most of the macropores having an average diameter of 100 μm overlapped. When the average value of the diameter of the mesopore formed by the overlap of the macropore and the macropore was determined by the mercury intrusion method, the average value of the diameter was 29.0 μm and the total pore volume was 8.6 ml / g.

参考例15(公知のアニオンモノリス)
スチレン46.3gの代わりに、p−クロロメチルスチレン27.4gを用い、ジビニルベンゼン1.6g、アゾビスイソブチロニトリル0.3g、ソルビタンモノオレエート2.0gを混合し、均一に溶解させた。次に、当該p−クロロメチルスチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を180mlの純水に添加し、遊星式攪拌装置を用いて(公転/自転)=(1800rpm/600rpm)で5分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで12時間ソックスレー抽出して未反応モノマーとソルビタンモノオレエートを除去した。その後、85℃で一昼夜減圧乾燥した。このようにして得られたp−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を5.0モル%含有した多孔質体を切断して10.7g採取し、テトラヒドロフラン900gを加え60℃で1時間加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液58.8gを徐々に加え、トリメチルアミン水溶液添加終了後昇温して60℃で6時間反応させた。反応終了後、多孔質体を取り出し、メタノールで洗浄後水洗し、乾燥して多孔質陰イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で3.6mg当量/gであり、SIMSにより、トリメチルアンモニウム基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合った構造を有していた。マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値を水銀圧入法で求めたところ、直径の平均値は7.8μm、全細孔容積は4.0ml/gであった。
Reference Example 15 (known anionic monolith)
Instead of 46.3 g of styrene, 27.4 g of p-chloromethylstyrene is used, and 1.6 g of divinylbenzene, 0.3 g of azobisisobutyronitrile, and 2.0 g of sorbitan monooleate are mixed and dissolved uniformly. It was. Next, the p-chloromethylstyrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 180 ml of pure water, and (revolution / spinning) = (1800 rpm /) using a planetary stirrer. (600 rpm) for 5 minutes to obtain a water-in-oil emulsion. After completion of emulsification, the resulting product was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the contents were taken out and subjected to Soxhlet extraction with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Then, it dried under reduced pressure at 85 degreeC all day and night. 10.7 g of the porous body containing 5.0 mol% of the cross-linking component composed of the p-chloromethylstyrene / divinylbenzene copolymer thus obtained was cut and sampled, and 900 g of tetrahydrofuran was added at 60 ° C. After heating for 1 hour, the mixture was cooled to room temperature, 58.8 g of a trimethylamine (30%) aqueous solution was gradually added, and after completion of the addition of the trimethylamine aqueous solution, the temperature was raised and reacted at 60 ° C. for 6 hours. After completion of the reaction, the porous body was taken out, washed with methanol, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 3.6 mg equivalent / g in terms of dry porous material, and it was confirmed by SIMS that trimethylammonium groups were uniformly introduced into the porous material. As a result of SEM observation, the internal structure of the porous body had an open-cell structure, and had a structure in which most macropores having an average diameter of 30 μm overlapped. When the average value of the diameter of the mesopore formed by the overlap of the macropore and the macropore was determined by the mercury intrusion method, the average value of the diameter was 7.8 μm and the total pore volume was 4.0 ml / g.

参考例16(公知のアニオンモノリス)
スチレン19.2gの代わりに、p−クロロメチルスチレン19.2gを用い、ジビニルベンゼン1.0g、アゾビスイソブチロニトリル0.3g、ソルビタンモノオレエート2.0gを混合し、均一に溶解させた。次に、当該p−クロロメチルスチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を180mlの純水に添加し、遊星式攪拌装置を用いて(公転/自転)=(1000rpm/330rpm)で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで12時間ソックスレー抽出して未反応モノマーとソルビタンモノオレエートを除去した。その後、85℃で一昼夜減圧乾燥した。このようにして得られたp−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を5.0モル%含有した多孔質体を切断して6.8g採取し、これにテトラヒドロフラン900gを加え60℃で1時間加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液43.1gを徐々に加え、トリメチルアミン水溶液添加終了後昇温して60℃で6時間反応させた。反応終了後、多孔質体を取り出し、メタノールで洗浄後水洗し、乾燥して多孔質陰イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであった。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径70μm のマクロポアの大部分が重なり合った構造を有していた。マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値を水銀圧入法で求めたところ、直径の平均値は21.0μm、全細孔容積は8.4ml/gであった。
Reference Example 16 (known anionic monolith)
Instead of 19.2 g of styrene, 19.2 g of p-chloromethylstyrene is used and 1.0 g of divinylbenzene, 0.3 g of azobisisobutyronitrile and 2.0 g of sorbitan monooleate are mixed and dissolved uniformly. It was. Next, the p-chloromethylstyrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 180 ml of pure water, and (revolution / spinning) = (1000 rpm /) using a planetary stirrer. (330 rpm) for 2 minutes to obtain a water-in-oil emulsion. After completion of emulsification, the resulting product was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the contents were taken out and subjected to Soxhlet extraction with isopropanol for 12 hours to remove unreacted monomers and sorbitan monooleate. Then, it dried under reduced pressure at 85 degreeC all day and night. The porous body containing 5.0 mol% of the cross-linking component made of the p-chloromethylstyrene / divinylbenzene copolymer thus obtained was cut and 6.8 g was sampled, and 900 g of tetrahydrofuran was added thereto. After heating at 0 ° C. for 1 hour, the mixture was cooled to room temperature, 43.1 g of a trimethylamine (30%) aqueous solution was gradually added, and after completion of the addition of the aqueous trimethylamine solution, the temperature was raised and reacted at 60 ° C. for 6 hours. After completion of the reaction, the porous body was taken out, washed with methanol, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 3.7 mg equivalent / g in terms of dry porous material. As a result of SEM observation, the internal structure of the porous body had an open-cell structure, and had a structure in which most macropores having an average diameter of 70 μm overlapped. When the average value of the diameter of the mesopore formed by the overlap of the macropore and the macropore was determined by the mercury intrusion method, the average value of the diameter was 21.0 μm and the total pore volume was 8.4 ml / g.

(カチオンセルの作製)
液透過領域用カチオンモノリスとして、参考例13のモノリスカチオン交換体を、脱カチオン領域用カチオンモノリスとして、参考例2のモノリスカチオン交換体をそれぞれ使用した。そして、図18に示すような電気式脱イオン液製造装置20を作製するため、図21に示すようなカチオンセル20aを先ず作製した。得られた液透過領域用カチオンモノリス及び脱カチオン領域用カチオンモノリスから、純水湿潤状態でそれぞれ縦(H)50mm、横(W)40mm、厚さ(L)20mmの2個の直方体2a、11aを切り出して脱カチオン室に積層充填する充填材を得た。次いで、セル容器201内に、陰極室(図中、左側)から順に、液透過領域用カチオンモノリス2a及び脱カチオン領域用カチオンモノリス11aを密着して装填し、脱カチオン領域用カチオンモノリス11aの陽極側の隣接空間にカチオン交換樹脂12a(アンバーライトIR120B、ロームアンドハース社製)80ml容量を充填した。セル容器201には、図中、脱カチオン領域用カチオンモノリス11aが位置する底面に被処理液流入管11が付設され、カチオン交換樹脂12aが位置する陽極側の上面に処理液流出管12が付設されている。次いで、セル容器201の陰極側には陰極室を形成し、更に陰極室の外側面にSUS304製の陰極を配置した。また、カチオン交換樹脂12aの陽極側に陽イオン交換膜(Nafion 350;デュポン社製)を密着して配設し、更に、陽イオン交換膜の外側面に白金被膜チタン基板からなる陽極を配置し、適宜ノズルやリード線取り出し口を設けて、カチオンセル20aを作製した。なお、簡略化のため、図21中、陽イオン交換膜、電極室及び電極の記載を省略した。
(Preparation of cation cell)
The monolith cation exchanger of Reference Example 13 was used as the cation monolith for the liquid permeation region, and the monolith cation exchanger of Reference Example 2 was used as the cation monolith for the decation region. Then, in order to produce an electric deionized liquid production apparatus 20 as shown in FIG. 18, a cation cell 20a as shown in FIG. 21 was first produced. From the obtained cation monolith for liquid permeation region and cation monolith for decation region, two rectangular parallelepipeds 2a each having a longitudinal (H) of 50 mm, a lateral (W) of 40 mm, and a thickness (L 1 ) of 20 mm in a pure water wet state, 11a was cut out to obtain a filler for stacking and filling the decation chamber. Next, in order from the cathode chamber (on the left side in the figure), the cell monolith 2a and the cation monolith 11a for the decation region are in close contact and loaded into the cell container 201, and the anode of the cation monolith 11a for the decation region The adjacent space on the side was filled with 80 ml capacity of cation exchange resin 12a (Amberlite IR120B, manufactured by Rohm and Haas). In the figure, the cell container 201 is provided with a treatment liquid inflow pipe 11 on the bottom surface where the cation monolith 11a for the decationization region is located, and a treatment liquid outflow pipe 12 is attached on the upper surface on the anode side where the cation exchange resin 12a is located. Has been. Next, a cathode chamber was formed on the cathode side of the cell container 201, and a SUS304 cathode was disposed on the outer surface of the cathode chamber. A cation exchange membrane (Nafion 350; manufactured by DuPont) is disposed in close contact with the anode side of the cation exchange resin 12a, and an anode made of a platinum-coated titanium substrate is disposed on the outer surface of the cation exchange membrane. A cation cell 20a was prepared by appropriately providing nozzles and lead wire outlets. For simplification, the description of the cation exchange membrane, the electrode chamber, and the electrode is omitted in FIG.

(アニオンセルの作製)
液透過領域用アニオンモノリスとして、参考例15のモノリスアニオン交換体を、脱アニオン領域用アニオンモノリスとして、参考例7のモノリスアニオン交換体をそれぞれ使用した。得られた液透過領域用アニオンモノリス及び脱アニオン領域用アニオンモノリスから、純水湿潤状態でそれぞれ縦(H)50mm、横(W)40mm、厚さ(L)20mmの2個の直方体2b、11bを切り出して脱アニオン室に積層充填する充填材を得た。次いで、セル容器202内に、陽極室(図21中、左側)から順に、液透過領域用アニオンモノリス2b及び脱アニオン領域用アニオンモノリス11bを密着して装填し、脱アニオン領域用アニオンモノリス11bの陰極側の隣接空間にアニオン交換樹脂12b(アンバーライトIRA402BL、ロームアンドハース社製)80ml容量を充填した。セル容器202には、図中、脱アニオン領域用アニオンモノリス11bが位置する底面に被処理液(脱カチオン液)流入管13が付設され、アニオン交換樹脂12bが位置する陰極側の上面に脱塩液流出管14が付設されている。次いで、セル容器202の陽極側には陽極室を形成し、更に陽極室の外側面に白金被膜チタン基板からなる陽極を配置した。また、アニオン交換樹脂12bの陰極側に陽イオン交換膜(Nafion 350;デュポン社製)を密着して配設し、更に、陽イオン交換膜の外側面にSUS304製の陰極を配置し、適宜ノズルやリード線取り出し口を設けて、アニオンセル20bを作製した。
(Preparation of anion cell)
The monolith anion exchanger of Reference Example 15 was used as the anion monolith for the liquid permeation region, and the monolith anion exchanger of Reference Example 7 was used as the anion monolith for the deanion region. From the obtained anion monolith for liquid permeation region and anion monolith for deionization region, two rectangular parallelepipeds 2b each having a longitudinal (H) 50 mm, a lateral (W) 40 mm, and a thickness (L 1 ) 20 mm in a pure water wet state, 11b was cut out to obtain a filler for stacking and filling the deanion chamber. Next, in the cell container 202, the anion monolith 2b for liquid permeation region and the anion monolith 11b for deanion region are in close contact with each other in order from the anode chamber (left side in FIG. 21). An adjacent space on the cathode side was filled with 80 ml capacity of anion exchange resin 12b (Amberlite IRA402BL, manufactured by Rohm and Haas). The cell container 202 is provided with a liquid to be treated (decationization liquid) inflow pipe 13 on the bottom surface where the anion monolith 11b for the deionization region is located in the figure, and desalting on the upper surface on the cathode side where the anion exchange resin 12b is located. A liquid outflow pipe 14 is attached. Next, an anode chamber was formed on the anode side of the cell container 202, and an anode made of a platinum-coated titanium substrate was disposed on the outer surface of the anode chamber. Further, a cation exchange membrane (Nafion 350; manufactured by DuPont) is disposed in close contact with the cathode side of the anion exchange resin 12b, and a SUS304 cathode is disposed on the outer surface of the cation exchange membrane. An anion cell 20b was prepared by providing a lead wire outlet.

(電気式脱イオン液製造装置20の作製)
得られたカチオンセル20aの処理液流出管12とアニオンセル20bの被処理液流入管13を接続し、2つの電極室には他の2つの電極室に透過した透過液の一部をそれぞれ供給するようにした。
(Preparation of electric deionized liquid manufacturing apparatus 20)
The treatment liquid outflow pipe 12 of the obtained cation cell 20a and the liquid inflow pipe 13 to be treated of the anion cell 20b are connected, and a part of the permeated liquid that has passed through the other two electrode chambers is supplied to the two electrode chambers. I tried to do it.

(脱イオン液の製造)
得られた電気式脱イオン液製造装置20に、導電率130μS/cmの水を被処理液として流速15l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は98Vで、導電率0.65μS/cmの処理液が流速13l/hで得られた。なお、カチオンセル20aで透過した透過液(陰極液)の流速及びアニオンセル20bで透過した透過液(陽極液)の流速はそれぞれ、1l/hであった。
(Manufacture of deionized liquid)
The electric deionized liquid production apparatus 20 thus obtained was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 15 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operation voltage was 98 V, and a treatment liquid having an electric conductivity of 0.65 μS / cm was obtained at a flow rate of 13 l / h. The flow rate of the permeate (catholyte) permeated through the cation cell 20a and the flow rate of the permeate (anolyte) permeated through the anion cell 20b were 1 l / h, respectively.

比較例1
参考例2のモノリスカチオン交換体に代えて、参考例14のモノリスカチオン交換体を、参考例7のモノリスアニオン交換体に代えて、参考例16のモノリスアニオン交換体を、それぞれ使用した以外は、実施例1と同様の方法で行った。得られた電気式脱イオン液製造装置20に、導電率130μS/cmの水を被処理液として流速15l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は110Vで、導電率1μS/cmの処理液が流速10l/hで得られた。なお、カチオンセル20aで透過した透過液(陰極液)の流速及びアニオンセル20bで透過した透過液(陽極液)の流速はそれぞれ、2.5l/hであった。
Comparative Example 1
Instead of the monolith cation exchanger of Reference Example 2, instead of the monolith cation exchanger of Reference Example 14 and the monolith anion exchanger of Reference Example 7 instead of the monolith anion exchanger of Reference Example 7, The same method as in Example 1 was used. The obtained electric deionized liquid production apparatus 20 was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 15 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operating voltage was 110 V, and a treatment liquid having an electrical conductivity of 1 μS / cm was obtained at a flow rate of 10 l / h. The flow rate of the permeate (catholyte) permeated through the cation cell 20a and the flow rate of the permeate (anolyte) permeated through the anion cell 20b were 2.5 l / h, respectively.

<液透過側カチオンモノリス(製造例1)>
(モノリス中間体の製造)
スチレン19.85g、ジビニルベンゼン0.40g、ソルビタンモノオレエート(以下SMOと略す)1.07gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は20μm、全細孔容積は8.5ml/gであった。
<Liquid Permeation Side Cationic Monolith (Production Example 1)>
(Manufacture of monolith intermediates)
19.85 g of styrene, 0.40 g of divinylbenzene, 1.07 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the opening (mesopore) where the macropores and macropores of the monolith intermediate overlap was 20 μm, and the total pore volume was 8.5 ml / g.

(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、8.4g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
Next, 36.0 g of styrene, 4.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 6.6 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, while the crosslink density of the monolith intermediate is 1.3 mol%, and the crosslink density ratio is 5.1 times. Met. Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 8.4 g was collected. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は80%であった。また、粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%であった。また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は7μm、全細孔容積は2.1ml/gであった。   As a result of observing the internal structure of the composite monolith (dried body) comprising the styrene / divinylbenzene copolymer thus obtained by SEM, the composite monolith has a continuous macropore structure. The surface of the skeletal phase constituting the particle was coated with particles having an average particle diameter of 4 μm, and the particle coverage of the skeleton surface by all particles was 80%. Moreover, the ratio for which the particle body with a particle size of 3-5 micrometers occupied to the whole particle body was 90%. Moreover, the average diameter of the opening of the composite monolith measured by mercury porosimetry was 7 μm, and the total pore volume was 2.1 ml / g.

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は21.9gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸122.7gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 21.9 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 122.7 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a composite monolith cation exchanger.

得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.22mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ9μmであり、モノリスと同様の方法で求めた全粒子体等による骨格表面の粒子被覆率は80%、被覆粒子の平均粒径は5μm、全細孔容積は2.1ml/gであった。また、粒径4〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.31MPa/m・LVであった。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.3 times, and the ion exchange capacity per volume was 1.22 mg equivalent / ml in a water-wet state. The average diameter of the openings of the organic porous ion exchanger in the water-wet state is 9 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state, and is obtained by the same method as for the monolith. The particle coverage of the skeletal surface with all particles was 80%, the average particle size of the coated particles was 5 μm, and the total pore volume was 2.1 ml / g. Moreover, the ratio for which the particle body of 4-7 micrometers of particle | grains accounts to the whole particle body was 90%. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.31 MPa / m · LV.

<液透過側アニオンモノリス(製造例2)>
(複合モノリスの製造)
ビニルベンジルクロライド39.4g、ジビニルベンゼン0.6g、1-ブタノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。次に、製造例1で得られたモノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、8.1g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-ブタノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
<Liquid Permeation Side Anionic Monolith (Production Example 2)>
(Manufacture of composite monolith)
39.4 g of vinylbenzyl chloride, 0.6 g of divinylbenzene, 60 g of 1-butanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. Next, the monolith intermediate obtained in Production Example 1 was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 8.1 g was obtained. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-butanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたビニルベンジルクロライド/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均5μmの突起体で被覆され、全粒子体等による骨格表面の被覆率は100%であった。また、粒径3〜7μmの突起体が全体の突起体に占める割合は80%であった。また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は8μm、全細孔容積は1.8ml/gであった。   As a result of observing the internal structure of the composite monolith (dry body) composed of the vinylbenzyl chloride / divinylbenzene copolymer thus obtained by SEM, the composite monolith has a continuous macropore structure. The surface of the skeletal phase constituting the structure was covered with protrusions having an average of 5 μm, and the coverage of the skeleton surface with all particles and the like was 100%. Moreover, the ratio for which the projection body with a particle size of 3-7 micrometers occupied to the whole projection body was 80%. Moreover, the average diameter of the opening of the composite monolith measured by the mercury intrusion method was 8 μm, and the total pore volume was 1.8 ml / g.

(複合モノリスアニオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。複合モノリスの重量は23.0gであった。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液114.5gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、メタノールで洗浄してテトラヒドロフランを除き、更に純水で洗浄してモノリスアニオン交換体を得た。
(Production of complex monolith anion exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the composite monolith was 23.0 g. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 114.5 g of a 30% trimethylamine aqueous solution, heated to react at 40 ° C. for 24 hours. After completion of the reaction, the resultant was washed with methanol to remove tetrahydrofuran, and further washed with pure water to obtain a monolith anion exchanger.

得られた複合アニオン交換体の反応前後の膨潤率は2.0倍であり、体積当りのイオン交換容量は、水湿潤状態で0.63mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の連続細孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ16μmであり、同様の方法で求めた突起体の平均径は10μm、全粒子体等による骨格表面の被覆率は100%、全細孔容積は1.8ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.20MPa/m・LVであった。また、粒径6〜14μmの突起体が全体の突起体に占める割合は80%であった。   The swelling rate before and after the reaction of the obtained composite anion exchanger was 2.0 times, and the ion exchange capacity per volume was 0.63 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the organic porous ion exchanger in the water wet state was 16 μm as estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state. The average diameter of the body was 10 μm, the coverage of the skeletal surface with all particles was 100%, and the total pore volume was 1.8 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.20 MPa / m · LV. Further, the ratio of the protrusions having a particle diameter of 6 to 14 μm to the entire protrusions was 80%.

(カチオンセルの作製)
液透過領域用カチオンモノリスとして、参考例13のモノリスカチオン交換体に代えて、製造例1で得られたモノリスカチオン交換体を使用した以外は、実施例1と同様の方法でカチオンセルを作製した。
(Preparation of cation cell)
A cation cell was prepared in the same manner as in Example 1 except that the monolith cation exchanger of Reference Example 13 was used instead of the monolith cation exchanger of Reference Example 13 as the cation monolith for the liquid permeation region. .

(アニオンセルの作製)
液透過領域用アニオンモノリスとして、参考例15のモノリスアニオン交換体に代えて、製造例2で得られたモノリスアニオン交換体を使用した以外は、実施例1と同様の方法でアニオンセルを作製した。
(Preparation of anion cell)
An anion cell was prepared in the same manner as in Example 1, except that the monolith anion exchanger obtained in Production Example 2 was used instead of the monolith anion exchanger of Reference Example 15 as the anion monolith for the liquid permeation region. .

(電気式脱イオン液製造装置20の作製及び脱イオン液の製造)
実施例1と同様の方法で行った。その結果、操作電圧は94Vで、導電率0.65μS/cmの処理液が流速13l/hで得られた。
(Production of electric deionized liquid production apparatus 20 and production of deionized liquid)
The same method as in Example 1 was used. As a result, an operation voltage was 94 V, and a treatment liquid having an electric conductivity of 0.65 μS / cm was obtained at a flow rate of 13 l / h.

(カチオンセルの作製)
脱塩領域用カチオンモノリスとして、参考例2のモノリスカチオン交換体とカチオン交換樹脂12aとの混合体に代えて、カチオン交換樹脂12a単独使用とした以外は、実施例2と同様の方法でカチオンセルを作製した。
(Preparation of cation cell)
As the cation monolith for the desalting region, a cation cell was prepared in the same manner as in Example 2 except that the cation exchange resin 12a was used alone instead of the mixture of the monolith cation exchanger of Reference Example 2 and the cation exchange resin 12a. Was made.

(アニオンセルの作製)
脱塩領域用アニオンモノリスとして、参考例7のモノリスアニオン交換体とアニオン交換樹脂12bとの混合体に代えて、アニオン交換樹脂12b単独使用とした以外は、実施例2と同様の方法でアニオンセルを作製した。
(Preparation of anion cell)
The anion cell was prepared in the same manner as in Example 2, except that the anion monolith for the desalting region was replaced with the mixture of the monolith anion exchanger and the anion exchange resin 12b of Reference Example 7 and the anion exchange resin 12b was used alone. Was made.

(電気式脱イオン液製造装置20の作製及び脱イオン液の製造)
実施例1と同様の方法で電気式脱イオン液製造装置20を作製した。得られた電気式脱イオン液製造装置20に、導電率130μS/cmの水を被処理液として流速15l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は116Vで、導電率2μS/cm(入口;130μS/cm)の処理液が流速14l/hで得られた。
(Production of electric deionized liquid production apparatus 20 and production of deionized liquid)
An electric deionized liquid production apparatus 20 was produced in the same manner as in Example 1. The electric deionized liquid production apparatus 20 thus obtained was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 15 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operation voltage was 116 V, and a treatment liquid having an electric conductivity of 2 μS / cm (inlet; 130 μS / cm) was obtained at a flow rate of 14 l / h.

(カチオンセルの作製)
脱塩領域用カチオンモノリスとして、参考例2のモノリスカチオン交換体とカチオン交換樹脂12aとの混合体に代えて、参考例2のモノリスカチオン交換体単独使用とした以外は、実施例1と同様の方法でカチオンセルを作製した。但し、電気式脱イオン液製造装置を異なる形態のものとした。すなわち、図17に示すような電気式脱イオン液製造装置10を作製するため、カチオンセルを先ず作製した。得られた液透過領域用カチオンモノリスから、純水湿潤状態で縦(H)50mm、横(W)40mm、厚さ(L)20mmの2個の直方体、脱カチオン領域用カチオンモノリスから、純水湿潤状態でそれぞれ縦(H)50mm、横(W)40mm、厚さ(L)40mmの直方体をそれぞれ切り出して脱カチオン室に積層充填する充填材を得た。次いで、セル容器内に、陰極室から順に、液透過領域用カチオンモノリス、脱カチオン領域用カチオンモノリス及び液透過領域用カチオンモノリスを密着して装填した。セル容器には、脱カチオン領域用カチオンモノリスが位置する陰極側の液透過領域用カチオンモノリス近傍に被処理液流入管を、脱カチオン領域用カチオンモノリスが位置する陽極側の液透過領域用カチオンモノリス近傍に処理液流出管をそれぞれ付設した。セル容器の陰極側には陰極室を形成し、更に陰極室の外側面にSUS304製の陰極を配置した。セル容器の陽極側には陽極室を形成し、更に、陽極室の外側に白金被膜チタン基板からなる陽極を配置し、適宜ノズルやリード線取り出し口を設けて、カチオンセルを作製した。
(Preparation of cation cell)
As the cation monolith for the desalting region, the same as Example 1 except that the monolith cation exchanger of Reference Example 2 was used alone instead of the mixture of the monolith cation exchanger of Reference Example 2 and the cation exchange resin 12a. A cation cell was prepared by this method. However, the electric deionized liquid production apparatus was of a different form. That is, in order to produce the electrical deionized liquid production apparatus 10 as shown in FIG. From the obtained cation monolith for liquid permeation region, it was purified from two cuboids of length (H) 50 mm, width (W) 40 mm, thickness (L 1 ) 20 mm in a pure water wet state, from the cation monolith for decation region. A rectangular parallelepiped having a length (H) of 50 mm, a width (W) of 40 mm, and a thickness (L 1 ) of 40 mm, respectively, was cut out in a wet state of water to obtain a filler for stacking and filling the decation chamber. Next, in the cell container, a cation monolith for liquid permeation region, a cation monolith for decation region, and a cation monolith for liquid permeation region were loaded in close contact from the cathode chamber. In the cell container, an inflow pipe to be treated is provided in the vicinity of the cation monolith for the cathode side liquid permeation region where the cation monolith for the decation region is located, and the cation monolith for the anode side liquid permeable region where the cation monolith for the decation region is located. A treatment liquid outflow pipe was attached in the vicinity. A cathode chamber was formed on the cathode side of the cell container, and a SUS304 cathode was disposed on the outer surface of the cathode chamber. An anode chamber was formed on the anode side of the cell container, an anode made of a platinum-coated titanium substrate was disposed outside the anode chamber, and a nozzle and a lead wire outlet were appropriately provided to produce a cation cell.

(アニオンセルの作製)
脱塩領域用アニオンモノリスとして、参考例7のモノリスアニオン交換体とアニオン交換樹脂12bとの混合体に代えて、参考例7のモノリスアニオン交換体単独使用とした以外は、実施例1と同様の方法でアニオンセルを作製した。但し、電気式脱イオン液製造装置を異なる形態のものとした。すなわち、図17に示すような電気式脱イオン液製造装置10を作製するため、アニオンセルを作製した。得られた液透過領域用アニオンモノリスから、純水湿潤状態で縦(H)50mm、横(W)40mm、厚さ(L)20mmの2個の直方体、脱アニオン領域用アニオンモノリスから、純水湿潤状態でそれぞれ縦(H)50mm、横(W)40mm、厚さ(L)40mmの直方体をそれぞれ切り出して脱アニオン室に積層充填する充填材を得た。次いで、セル容器内に、陽極室から順に、液透過領域用アニオンモノリス、脱アニオン領域用アニオンモノリス及び液透過領域用アニオンモノリスを密着して装填した。セル容器には、脱アニオン領域用カチオンモノリスが位置する陽極側の液透過領域用アニオンモノリス近傍に被処理液(脱カチオン液)流入管を、脱アニオン領域用アニオンモノリスが位置する陰極側の液透過領域用アニオンモノリス近傍に処理液流出管をそれぞれ付設した。セル容器の陰極側には陰極室を形成し、更に陰極室の外側面にSUS304製の陰極を配置した。セル容器の陽極側には陽極室を形成し、更に、陽極室の外側に白金被膜チタン基板からなる陽極を配置し、適宜ノズルやリード線取り出し口を設けて、アニオンセルを作製した。
(Preparation of anion cell)
As the anion monolith for the desalting region, the same as Example 1 except that the monolith anion exchanger of Reference Example 7 was used alone instead of the mixture of the monolith anion exchanger of Reference Example 7 and the anion exchange resin 12b. An anion cell was prepared by this method. However, the electric deionized liquid production apparatus was of a different form. That is, an anion cell was produced in order to produce the electric deionized liquid production apparatus 10 as shown in FIG. From the obtained anion monolith for liquid permeation region, pure water from two rectangular parallelepipeds of 50 mm in length (H), 40 mm in width (W) and 20 mm in thickness (L 1 ) in a pure water wet state, anion monolith for deionization region A rectangular parallelepiped having a length (H) of 50 mm, a width (W) of 40 mm, and a thickness (L 1 ) of 40 mm, respectively, was cut out in a wet state of water to obtain a filler for stacking and filling the deanion chamber. Next, an anion monolith for liquid permeation region, an anion monolith for deionization region, and an anion monolith for liquid permeation region were in close contact with each other in order from the anode chamber. In the cell container, an inflow pipe for the liquid to be treated (decation liquid) is located in the vicinity of the anion monolith for the liquid permeation area on the anode side where the cation monolith for the deanion area is located, and a liquid on the cathode side where the anion monolith for the deanion area is located. A treatment liquid outflow pipe was provided in the vicinity of the anion monolith for the permeation region. A cathode chamber was formed on the cathode side of the cell container, and a SUS304 cathode was disposed on the outer surface of the cathode chamber. An anode chamber was formed on the anode side of the cell container, and an anode made of a platinum-coated titanium substrate was disposed outside the anode chamber, and a nozzle and a lead wire outlet were appropriately provided to produce an anion cell.

(電気式脱イオン液製造装置10の作製及び脱イオン液の製造)
図17に示すような電気式脱イオン液製造装置10を作製した。得られた電気式脱イオン液製造装置10に、導電率130μS/cmの水を被処理液として流速11l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は88Vで、導電率0.57μS/cmの処理液が得られた。
(Production of electric deionized liquid production apparatus 10 and production of deionized liquid)
An electric deionized liquid production apparatus 10 as shown in FIG. 17 was produced. The electric deionized liquid production apparatus 10 thus obtained was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 11 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operation voltage was 88 V, and a treatment liquid having a conductivity of 0.57 μS / cm was obtained.

(カチオンセルの作製)
脱塩領域用カチオンモノリスとして、参考例2のモノリスカチオン交換体とカチオン交換樹脂12aとの混合体に代えて、参考例2のモノリスカチオン交換体単独使用とした以外は、実施例2と同様の方法でカチオンセルを作製した。但し、電気式脱イオン液製造装置は実施例4と同様の図17に示すような電気式脱イオン液製造装置10を使用したため、それに適合するカチオンセルを実施例4と同様の方法で作製した。
(Preparation of cation cell)
As the cation monolith for the desalting region, the same as Example 2 except that the monolith cation exchanger of Reference Example 2 was used alone instead of the mixture of the monolith cation exchanger of Reference Example 2 and the cation exchange resin 12a. A cation cell was prepared by this method. However, since the electrical deionized liquid production apparatus used the same electrical deionized liquid production apparatus 10 as shown in FIG. 17 as in Example 4, a cation cell suitable for it was produced in the same manner as in Example 4. .

(アニオンセルの作製)
脱塩領域用アニオンモノリスとして、参考例7のモノリスアニオン交換体とアニオン交換樹脂12bとの混合体に代えて、参考例7のモノリスアニオン交換体単独使用とした以外は、実施例2と同様の方法でアニオンセルを作製した。但し、電気式脱イオン液製造装置は実施例4と同様の図17に示すような電気式脱イオン液製造装置10を使用したため、それに適合するカチオンセルを実施例4と同様の方法で作製した。
(Preparation of anion cell)
As the anion monolith for the desalting region, the same as Example 2 except that the monolith anion exchanger of Reference Example 7 was used alone instead of the mixture of the monolith anion exchanger of Reference Example 7 and the anion exchange resin 12b. An anion cell was prepared by this method. However, since the electrical deionized liquid production apparatus used the same electrical deionized liquid production apparatus 10 as shown in FIG. 17 as in Example 4, a cation cell suitable for it was produced in the same manner as in Example 4. .

(電気式脱イオン液製造装置10の作製及び脱イオン液の製造)
図17に示すような電気式脱イオン液製造装置10を作製した。得られた電気式脱イオン液製造装置10に、導電率130μS/cmの水を被処理液として流速11l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は85Vで、導電率0.57μS/cmの処理液が得られた。
(Production of electric deionized liquid production apparatus 10 and production of deionized liquid)
An electric deionized liquid production apparatus 10 as shown in FIG. 17 was produced. The electric deionized liquid production apparatus 10 thus obtained was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 11 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operation voltage was 85 V, and a treatment liquid having a conductivity of 0.57 μS / cm was obtained.

(カチオンセル)
脱塩領域用カチオンモノリス及び液透過領域用カチオンモノリス共に、同じ参考例2のモノリスカチオン交換体を使用した。すなわち、カチオンセルには単一のモノリスカチオン交換体を充填したものを使用した。
(Cation cell)
The same monolith cation exchanger of Reference Example 2 was used for both the cation monolith for the desalting region and the cation monolith for the liquid permeation region. That is, a cation cell filled with a single monolith cation exchanger was used.

(アニオンセル)
脱塩領域用アニオンモノリス及び液透過領域用アニオンモノリス共に、同じ参考例7のモノリスアニオン交換体を使用した。すなわち、アニオンセルには単一のモノリスアニオン交換体を充填したものを使用した。
(Anion cell)
The same monolith anion exchanger of Reference Example 7 was used for both the anion monolith for the desalting region and the anion monolith for the liquid permeation region. That is, an anion cell filled with a single monolith anion exchanger was used.

(電気式脱イオン液製造装置10の作製及び脱イオン液の製造)
図17に示すような電気式脱イオン液製造装置10を作製した。また、4箇所の液透過領域に設けられた透過液流出配管の途中には流量調節弁を設置し、弁の開度により、被処理水の流速が11l/hの流量となるように調整した。得られた電気式脱イオン液製造装置10に、導電率130μS/cmの水を被処理液として流速11l/hで連続通液し、2.5Aの直流電流をカチオンセルからアニオンセルへ直列で通電したところ、操作電圧は85Vで、導電率0.57μS/cmの処理液が得られた。
(Production of electric deionized liquid production apparatus 10 and production of deionized liquid)
An electric deionized liquid production apparatus 10 as shown in FIG. 17 was produced. In addition, a flow control valve was installed in the middle of the permeate outflow piping provided in the four liquid permeation regions, and the flow rate of the water to be treated was adjusted to a flow rate of 11 l / h depending on the opening of the valve. . The electric deionized liquid production apparatus 10 thus obtained was continuously supplied with water having a conductivity of 130 μS / cm as a liquid to be treated at a flow rate of 11 l / h, and a direct current of 2.5 A was serially connected from the cation cell to the anion cell. When energized, an operation voltage was 85 V, and a treatment liquid having a conductivity of 0.57 μS / cm was obtained.

1a 脱カチオン領域
1b 脱アニオン領域
1c 脱塩領域
1d 脱塩室
2a、2b、3a、3b 液透過領域
4a 陽極
4b 陰極
6 陰極室
7 陽極室
9 脱塩室
10、20、30、30a、40 電気式脱イオン液製造装置
10a カチオンセル
10b アニオンセル
11、13 被処理液流入管
12 脱カチオン液流出管
14 脱塩液流出管
15 流量調節弁
17、18 流路
DESCRIPTION OF SYMBOLS 1a Decation area | region 1b Deionization area | region 1c Desalination area | region 1d Desalination room | chamber 2a, 2b, 3a, 3b Liquid permeable area | region 4a Anode 4b Cathode room 6 Cathode room 7 Anode room 9 Desalination room 10, 20, 30, 30a, 40 Electricity Deionized liquid production apparatus 10a Cation cell 10b Anion cell 11, 13 Liquid to be treated inflow pipe 12 Decationized liquid outflow pipe 14 Desalted liquid outflow pipe 15 Flow control valve
17, 18 flow path

Claims (3)

第1イオン交換体が充填された脱塩領域と、
該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、
該脱塩領域と該液透過領域の両側に配設される電極と、
被処理液を通液する被処理液流入管と、
該液透過領域から透過した液を排出する電極室又は濃縮室と、
該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、
該第1イオン交換体が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であるか、又は該モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂との混合イオン交換体であり、
該第2イオン交換体の通水抵抗が、該第1イオン交換体の通水抵抗より大であることを特徴とする電気式脱イオン液製造装置。
A desalting region filled with a first ion exchanger;
A liquid permeable region filled with a second ion exchanger through which a part of the liquid to be treated is disposed adjacent to the ion exclusion side of the desalting region;
Electrodes disposed on both sides of the desalting region and the liquid-permeable region;
A treatment liquid inlet pipe for passing the treatment liquid;
An electrode chamber or a concentration chamber for discharging the liquid that has permeated from the liquid-permeable region;
A desalting solution outlet pipe for discharging the desalting solution from the desalting region,
The first ion exchanger is an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or the organic porous body A composite structure with a large number of protrusions having a size of 4 to 40 μm formed on the surface of the skeleton, and having an average pore diameter of 10 to 150 μm and a total pore volume of 0.5 to 5 ml / in a wet state or a monolithic organic porous ion exchanger having an ion exchange capacity of 0.2 mg equivalent / ml or more per volume in a water-wet state, or the monolithic organic porous ion exchanger and granular ion exchange A mixed ion exchanger with resin,
An apparatus for producing an electrical deionized liquid, wherein the flow resistance of the second ion exchanger is greater than the flow resistance of the first ion exchanger.
第1イオン交換体が充填された脱塩領域と、
該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、
該脱塩領域と該液透過領域の両側に配設される電極と、
被処理液を通液する被処理液流入管と、
該液透過領域から透過した液を排出する電極室又は濃縮室と、
該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、
該第2イオン交換体が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径0.01〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であり、
該第1イオン交換体の通水抵抗が、該第2イオン交換体の通水抵抗より小であることを特徴とする電気式脱イオン液製造装置。
A desalting region filled with a first ion exchanger;
A liquid permeable region filled with a second ion exchanger through which a part of the liquid to be treated is disposed adjacent to the ion exclusion side of the desalting region;
Electrodes disposed on both sides of the desalting region and the liquid-permeable region;
A treatment liquid inlet pipe for passing the treatment liquid;
An electrode chamber or a concentration chamber for discharging the liquid that has permeated from the liquid-permeable region;
A desalting solution outlet pipe for discharging the desalting solution from the desalting region,
The second ion exchanger is an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or the organic porous body A composite structure with a large number of protrusions having a size of 4 to 40 μm formed on the surface of the skeleton, and having an average pore diameter of 0.01 to 150 μm and a total pore volume of 0.5 to 5 ml / g, a monolithic organic porous ion exchanger having an ion exchange capacity per volume of 0.2 mg equivalent / ml or more in a wet state of water,
The apparatus for producing an electrical deionized liquid, wherein the water resistance of the first ion exchanger is smaller than the water resistance of the second ion exchanger.
第1イオン交換体が充填された脱塩領域と、
該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する第2イオン交換体が充填された液透過領域と、
該脱塩領域と該液透過領域の両側に配設される電極と、
被処理液を通液する被処理液流入管と、
該液透過領域から透過した液を排出する電極室又は濃縮室と、
該脱塩領域から脱塩液を排出する脱塩液流出管と、を備えるものであって、
該第1イオン交換体と該第2イオン交換体は同じで、該脱塩領域と該液透過領域は単一のモノリスで形成され、且つ前記液透過領域から透過した流出液の流路に、流量調節手段を配設するものであり、該単一のモノリスが、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン液製造装置。
A desalting region filled with a first ion exchanger;
A liquid permeable region filled with a second ion exchanger through which a part of the liquid to be treated is disposed adjacent to the ion exclusion side of the desalting region;
Electrodes disposed on both sides of the desalting region and the liquid-permeable region;
A treatment liquid inlet pipe for passing the treatment liquid;
An electrode chamber or a concentration chamber for discharging the liquid that has permeated from the liquid-permeable region;
A desalting solution outlet pipe for discharging the desalting solution from the desalting region,
The first ion exchanger and the second ion exchanger are the same, the desalting region and the liquid permeation region are formed of a single monolith, and in the flow path of the effluent that has permeated from the liquid permeation region, The flow rate adjusting means is disposed, and the single monolith has an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body. A composite structure with a large number of particles or a large number of protrusions having a size of 4 to 40 μm formed on the skeleton surface of the organic porous body, and having an average pore diameter of 10 to 150 μm in a water-wet state, Electricity characterized by being a monolithic organic porous ion exchanger having a total pore volume of 0.5 to 5 ml / g and an ion exchange capacity of 0.2 mg equivalent / ml or more per volume in a water-wet state Type deionized liquid production equipment.
JP2009117345A 2009-05-14 2009-05-14 Electric deionized liquid production equipment Expired - Fee Related JP5030182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117345A JP5030182B2 (en) 2009-05-14 2009-05-14 Electric deionized liquid production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117345A JP5030182B2 (en) 2009-05-14 2009-05-14 Electric deionized liquid production equipment

Publications (3)

Publication Number Publication Date
JP2010264375A JP2010264375A (en) 2010-11-25
JP2010264375A5 JP2010264375A5 (en) 2012-02-23
JP5030182B2 true JP5030182B2 (en) 2012-09-19

Family

ID=43361855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117345A Expired - Fee Related JP5030182B2 (en) 2009-05-14 2009-05-14 Electric deionized liquid production equipment

Country Status (1)

Country Link
JP (1) JP5030182B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586979B2 (en) * 2009-05-14 2014-09-10 オルガノ株式会社 Electric deionized water production apparatus and operation method thereof
JP2014024013A (en) * 2012-07-27 2014-02-06 Omega:Kk Desalination method of sea water or the like

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007945A1 (en) * 1991-10-21 1993-04-29 Cornell Research Foundation, Inc. Column with macroporous polymer media
JP4633955B2 (en) * 2001-04-13 2011-02-16 オルガノ株式会社 Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
JP3773190B2 (en) * 2002-05-15 2006-05-10 オルガノ株式会社 Electric deionized water production equipment
JP4609924B2 (en) * 2004-07-02 2011-01-12 オルガノ株式会社 Electric deionized water production equipment
JP4721323B2 (en) * 2004-12-06 2011-07-13 オルガノ株式会社 Electric deionized liquid production apparatus and deionized liquid production method
JP4333919B2 (en) * 2005-04-07 2009-09-16 オルガノ株式会社 Organic porous ion exchanger, method for producing the same, ion concentration column, and ion chromatography apparatus
JP2006297244A (en) * 2005-04-19 2006-11-02 Japan Organo Co Ltd Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
JP4919318B2 (en) * 2005-12-07 2012-04-18 オルガノ株式会社 Functional group introduction reaction column, functional group introduction apparatus, and functional group introduction method
JP4855068B2 (en) * 2005-12-28 2012-01-18 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP4828242B2 (en) * 2006-01-31 2011-11-30 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP4672601B2 (en) * 2006-05-31 2011-04-20 オルガノ株式会社 Deionized water production equipment
JP2008055388A (en) * 2006-09-04 2008-03-13 Japan Organo Co Ltd Electric deionized water making apparatus and its operation method
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5208550B2 (en) * 2007-06-12 2013-06-12 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5019470B2 (en) * 2007-06-12 2012-09-05 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP4931006B2 (en) * 2007-08-03 2012-05-16 オルガノ株式会社 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production
JP5019471B2 (en) * 2007-08-10 2012-09-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) * 2007-08-22 2013-09-18 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) * 2007-10-11 2012-09-12 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5283893B2 (en) * 2007-11-28 2013-09-04 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5089420B2 (en) * 2008-02-14 2012-12-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5486162B2 (en) * 2008-03-18 2014-05-07 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5131911B2 (en) * 2008-03-18 2013-01-30 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
JP5465463B2 (en) * 2009-05-12 2014-04-09 オルガノ株式会社 Ion adsorption module and water treatment method
JP5116710B2 (en) * 2009-03-10 2013-01-09 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5411737B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ion adsorption module and water treatment method
JP5383310B2 (en) * 2009-05-13 2014-01-08 オルガノ株式会社 Deionization module and electric deionized water production apparatus
JP5557545B2 (en) * 2009-03-10 2014-07-23 オルガノ株式会社 Deionization module and electric deionized water production apparatus
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
JP5431196B2 (en) * 2009-03-12 2014-03-05 オルガノ株式会社 Electric deionized water production apparatus and operation method thereof
JP5431194B2 (en) * 2009-03-12 2014-03-05 オルガノ株式会社 Electric deionized water production equipment
JP5557546B2 (en) * 2009-03-12 2014-07-23 オルガノ株式会社 Electric deionized water production equipment
JP5431195B2 (en) * 2009-03-12 2014-03-05 オルガノ株式会社 Electric deionized water production equipment
JP5486204B2 (en) * 2009-03-13 2014-05-07 オルガノ株式会社 Method and apparatus for detecting anion in liquid
JP5431197B2 (en) * 2009-03-18 2014-03-05 オルガノ株式会社 Electric deionized liquid production equipment
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment
JP5137896B2 (en) * 2009-05-12 2013-02-06 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment

Also Published As

Publication number Publication date
JP2010264375A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5383310B2 (en) Deionization module and electric deionized water production apparatus
JP3773190B2 (en) Electric deionized water production equipment
JP5116724B2 (en) Ultrapure water production equipment
WO2010104004A1 (en) Ion adsorption module and method of treating water
KR20180081569A (en) Method for purifying organic solvents
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5864649B2 (en) Electric deionized water production equipment
JP5116710B2 (en) Electric deionized water production apparatus and deionized water production method
JP5864648B2 (en) Deionization module and electric deionized water production apparatus
JP5030181B2 (en) Electric deionized water production equipment
JP5431197B2 (en) Electric deionized liquid production equipment
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
JP5048712B2 (en) Electric deionized water production equipment
JP5465463B2 (en) Ion adsorption module and water treatment method
KR102542839B1 (en) Ultrapure water production method, ultrapure water production system, and ion exchanger charging module
JP5431194B2 (en) Electric deionized water production equipment
JP5030182B2 (en) Electric deionized liquid production equipment
JP5431195B2 (en) Electric deionized water production equipment
JP5525848B2 (en) Ion chromatography device column, suppressor and ion chromatography device
JP5497468B2 (en) Electric deionized water production equipment
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
WO2010104007A1 (en) Deionization module and electric device for producing deionized water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

R150 Certificate of patent or registration of utility model

Ref document number: 5030182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees