JP5411737B2 - Ion adsorption module and water treatment method - Google Patents

Ion adsorption module and water treatment method Download PDF

Info

Publication number
JP5411737B2
JP5411737B2 JP2010027657A JP2010027657A JP5411737B2 JP 5411737 B2 JP5411737 B2 JP 5411737B2 JP 2010027657 A JP2010027657 A JP 2010027657A JP 2010027657 A JP2010027657 A JP 2010027657A JP 5411737 B2 JP5411737 B2 JP 5411737B2
Authority
JP
Japan
Prior art keywords
monolith
water
ion
ion exchange
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010027657A
Other languages
Japanese (ja)
Other versions
JP2010234357A (en
Inventor
洋 井上
弘次 山中
陽代 鈴木
理 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2010027657A priority Critical patent/JP5411737B2/en
Publication of JP2010234357A publication Critical patent/JP2010234357A/en
Application granted granted Critical
Publication of JP5411737B2 publication Critical patent/JP5411737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、イオン交換帯長さが顕著に短いイオン吸着モジュール及び水処理方法に関するものである。   The present invention relates to an ion adsorption module and a water treatment method having a remarkably short ion exchange zone length.

従来、イオン交換体は、イオン交換樹脂と総称される高分子合成樹脂に代表され、その製品形状別に分類すれば、粒状やフレーク状のイオン交換樹脂、膜状のイオン交換膜、及び繊維状のイオン交換繊維などに分類することができる。また、粒状のイオン交換樹脂の他に連続孔を有する有機多孔質イオン交換体も知られている。   Conventionally, ion exchangers are typified by polymer synthetic resins collectively referred to as ion exchange resins, and if classified according to product shape, granular or flake ion exchange resins, membrane ion exchange membranes, and fibrous ion exchange resins It can be classified into ion exchange fibers. In addition to the granular ion exchange resin, organic porous ion exchangers having continuous pores are also known.

例えば特開2004−82027号公報には、少なくとも被処理水が流入する開口を備える容器と、該容器に充填される互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1ml/g〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上である3次元網目構造を有する有機多孔質イオン交換体とを備えるイオン吸着モジュールが開示されている。   For example, in Japanese Patent Application Laid-Open No. 2004-82027, a container having at least an opening through which water to be treated flows, a macropore filled in the container, and a mesopore having an average diameter of 1 to 1000 μm in the wall of the macropore are provided. 3 having an open cell structure, a total pore volume of 1 ml / g to 50 ml / g, an ion exchange group uniformly distributed, and an ion exchange capacity of 0.5 mg equivalent / g dry porous body or more An ion adsorption module comprising an organic porous ion exchanger having a dimensional network structure is disclosed.

特開2004−82027号公報のイオン吸着モジュールによれば、イオン交換体の充填が極めて容易で、且つ上向流であっても充填層が移動しない。また、このイオン吸着モジュールを用いた水処理方法においては、流速が上がっても、イオン交換帯長さを短く維持することができ、イオン交換体装置の減容化が図れ、吸着したイオンの微量リークが起こらないため、再生頻度が下がり、処理効率を向上させることができる。なお、特開2002−306976号にはこの有機多孔質イオン交換体の製造方法の詳細が開示されている。   According to the ion adsorption module of Japanese Patent Application Laid-Open No. 2004-82027, the filling of the ion exchanger is extremely easy, and the packed bed does not move even in the upward flow. Further, in the water treatment method using this ion adsorption module, the ion exchange zone length can be kept short even when the flow rate is increased, the volume of the ion exchanger device can be reduced, and a small amount of adsorbed ions can be achieved. Since no leakage occurs, the reproduction frequency is reduced and the processing efficiency can be improved. Japanese Patent Laid-Open No. 2002-306976 discloses details of a method for producing this organic porous ion exchanger.

特開2004−82027号公報(特許請求の範囲)JP 2004-82027 A (Claims) 特開2002−306976号JP 2002-306976 A

しかしながら、特開2004−82027号公報のイオン吸着モジュールで使用する有機多孔質イオン交換体は、モノリスの共通の開口(メソポア)が1〜1,000μmと記載されているものの、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水差圧が大きくなってしまうという問題があった。また、開口の平均径を20μm近傍のものにすると、全細孔容積もそれに伴い大きくなるため、体積当たりのイオン交換容量が低下する、またイオン交換帯長さが長く、モジュールの交換頻度が高くなるという問題があった。   However, the organic porous ion exchanger used in the ion adsorption module of Japanese Patent Application Laid-Open No. 2004-82027 describes a common monolithic opening (mesopore) of 1 to 1,000 μm, but has a total pore volume of 5 ml. For monoliths with a small pore volume of / g or less, it is necessary to reduce the amount of water droplets in the water-in-oil emulsion, so the common opening becomes small, and those having an average diameter of 20 μm or more are substantially manufactured. Can not. For this reason, there existed a problem that water flow differential pressure | voltage will become large. In addition, when the average diameter of the openings is around 20 μm, the total pore volume also increases accordingly, so that the ion exchange capacity per volume decreases, the ion exchange zone length is long, and the module replacement frequency is high. There was a problem of becoming.

従って、本発明の目的は、イオン交換体の充填が極めて容易なイオン吸着モジュールを提供することにあり、また、他の目的は、通水差圧を小さくでき、流速が上がっても、イオン交換帯長さを短く維持することができ、且つ体積当りのイオン交換容量が大きく、吸着したイオンの微量リークが起こらないため、交換頻度が少なくなるもしくは再生頻度が下がり、処理効率を向上させることができるイオン吸着モジュール及び水処理方法を提供することにある。   Accordingly, an object of the present invention is to provide an ion adsorption module that is extremely easy to fill with an ion exchanger. Another object of the present invention is to reduce the water differential pressure and to increase the flow rate even if the flow rate increases. The band length can be kept short, the ion exchange capacity per volume is large, and a minute leak of adsorbed ions does not occur, so the exchange frequency is reduced or the regeneration frequency is lowered, and the processing efficiency can be improved. Another object is to provide an ion adsorption module and a water treatment method.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、開口径が大きく、中間体の有機多孔質体の骨格よりも太い骨格を有する骨太のモノリスが得られること、骨太のモノリスにイオン交換基を導入すると、骨太であるが故に膨潤が大きく、従って、開口を更に大きくできること、骨太のモノリスにイオン交換基を導入したモノリスイオン交換体(以下、「第1のモノリスイオン交換体」とも言う。)は、イオン吸着モジュールの吸着材として用いれば、通水差圧を小さくでき、流速が上がっても、イオン交換帯長さを短く維持することができ、且つ体積当りのイオン交換容量が大きく、吸着したイオンの微量リークが起こらないため、交換頻度が少なくなるもしくは再生頻度が下がり、処理効率を向上させることができることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, the existence of a monolithic organic porous material (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2002-306976. Below, if the vinyl monomer and the crosslinking agent are allowed to stand in a specific organic solvent, a monolith having a large opening diameter and a thicker skeleton than that of the intermediate organic porous material can be obtained. When the ion exchange group is introduced into the monolith, the swelling is large because it is thick, so that the opening can be further increased. When used as an adsorbent for an ion adsorption module, the exchanger can reduce the water differential pressure and keep the ion exchange zone length short even when the flow rate increases. And the ion exchange capacity per volume is large, and a minute leak of adsorbed ions does not occur. Therefore, the exchange frequency is reduced or the regeneration frequency is reduced, and the processing efficiency can be improved. It came to be completed.

また、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた大きな細孔容積を有するモノリス状有機多孔質体中間体)の存在下に、芳香族ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、三次元的に連続した芳香族ビニルポリマー骨格と、その骨格相間に三次元的に連続した空孔とからなり、両相が絡み合った共連続構造の疎水性モノリスが得られること、この共連続構造のモノリスは、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いこと、更にこの共連続構造の骨格が太いためイオン交換基を導入すれば、体積当りのイオン交換容量の大きなモノリス状有機多孔質イオン交換体が得られること、該モノリス状有機多孔質イオン交換体(以下、「第2のモノリスイオン交換体」とも言う。)は、イオン吸着モジュールの吸着材として用いれば、第1のモノリスイオン交換体と同様に、通水差圧を小さくでき、流速が上がっても、イオン交換帯長さを短く維持することができ、且つ体積当りのイオン交換容量が大きく、吸着したイオンの微量リークが起こらないため、交換頻度が少なくなるもしくは再生頻度が下がり、処理効率を向上させることができることなどを見出し、本発明を完成するに至った。   In addition, as a result of intensive studies, the present inventors have found that an aromatic monolith-like organic porous material intermediate having a large pore volume obtained by the method described in JP-A No. 2002-306976 is aromatic. If a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent, they are composed of a three-dimensionally continuous aromatic vinyl polymer skeleton and three-dimensionally continuous pores between the skeleton phases. It is possible to obtain an intertwined hydrophobic monolith with a co-continuous structure. This co-continuous monolith has a high continuity of pores, is not biased in size, and has a low pressure loss during fluid permeation. Since the skeleton of the co-continuous structure is thick, if an ion exchange group is introduced, a monolithic organic porous ion exchanger having a large ion exchange capacity per volume can be obtained, and the monolithic organic porous ion exchanger (hereinafter, “ Second When used as an adsorbent for an ion adsorption module, the “Norris ion exchanger” can also reduce the water flow differential pressure and increase the ion exchange zone length even when the flow rate is increased, as with the first monolith ion exchanger. The ion exchange capacity per volume is large and a small amount of adsorbed ions does not leak, so that the exchange frequency is reduced or the regeneration frequency is reduced, and the processing efficiency can be improved. As a result, the present invention has been completed.

すなわち、本発明は、少なくとも被処理水が流入する開口を備える容器と、該容器に充填される気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体とを備えることを特徴とするイオン吸着モジュールを提供するものである。   That is, according to the present invention, at least a container having an opening through which water to be treated flows and bubble-shaped macropores filled in the container overlap each other, and the overlapping part becomes an opening having an average diameter of 30 to 300 μm in a wet state. Continuous macropore structure, total pore volume of 0.5 to 5 ml / g, ion exchange capacity per volume in a water-wet state of 0.4 to 5 mg equivalent / ml, and ion exchange group is porous ion exchange Organic porous ion exchange in which the skeleton area is 25 to 50% in the image area in the SEM image of the cut surface of the continuous macropore structure (dried body) evenly distributed in the body An ion adsorption module comprising a body is provided.

また、本発明は、少なくとも被処理水が流入する開口を備える容器と、該容器に充填されるイオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体とを備えることを特徴とするイオン吸着モジュールを提供するものである。   In addition, the present invention provides a cross-linking structural unit in an amount of 0.3 to 5.0 mol% in all structural units into which at least an opening through which water to be treated flows and an ion exchange group filled in the container are introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and a three-dimensionally continuous pore having a diameter of 10 to 100 μm between the skeletons and comprising an aromatic vinyl polymer. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange group is the porous ion exchanger. An ion adsorption module comprising an organic porous ion exchanger uniformly distributed therein is provided.

また、本発明は、粒状のイオン交換樹脂充填層と、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体充填層を、上流側からこの順序で積層してなることを特徴とするイオン吸着モジュールを提供するものである。   In addition, the present invention is a continuous macropore structure in which a granular ion exchange resin-filled layer and bubble-shaped macropores overlap each other, and the overlapping portion is an opening having an average diameter of 30 to 300 μm in a wet state of water. The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger, And in the SEM image of the cut surface of the continuous macropore structure (dried body), the organic porous ion exchanger packed layer having a skeleton area of 25 to 50% in the image region in this order from the upstream side in this order. The present invention provides an ion adsorption module characterized in that it is laminated.

また、本発明は、粒状のイオン交換樹脂充填層と、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体充填層を、上流側からこの順序で積層してなることを特徴とするイオン吸着モジュールを提供するものである。   The present invention also includes a granular ion exchange resin packed layer and a thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups are introduced. Is a co-continuous structure composed of a three-dimensionally continuous skeleton having a diameter of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and the total pore volume is 0. Organic pores having an ion exchange capacity of 0.3 to 5 mg equivalent / ml per volume in a water-wet state and having an ion exchange group uniformly distributed in the porous ion exchanger It is an object of the present invention to provide an ion adsorption module characterized in that a porous ion exchanger packed layer is laminated in this order from the upstream side.

また、本発明は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体と被処理水を接触させることにより、該被処理水中のイオン性不純物を吸着除去することを特徴とする水処理方法を提供するものである。   Further, the present invention is a continuous macropore structure in which cellular macropores overlap each other, and the overlapping portion is an opening having an average diameter of 30 to 300 μm in a wet state of water, and has a total pore volume of 0.5 to 5 ml / g, The ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, the ion exchange groups are uniformly distributed in the porous ion exchanger, and the continuous macropore structure (dried body) In the SEM image of the cut surface of), an ionic impurity in the treated water is obtained by bringing the treated water into contact with the organic porous ion exchanger having an area of 25 to 50% of the image region in the image area. A water treatment method characterized by adsorbing and removing water is provided.

また、本発明は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体と被処理水を接触させることにより、該被処理水中のイオン性不純物を吸着除去することを特徴とする水処理方法を提供するものである。   The present invention also provides a three-dimensional thickness of 1 to 60 μm in thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups have been introduced. A co-continuous structure composed of a continuous skeleton and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and has a total pore volume of 0.5 to 5 ml / g, An organic porous ion exchanger having an ion exchange capacity per volume in a wet state of 0.3 to 5 mg equivalent / ml and an ion exchange group uniformly distributed in the porous ion exchanger and water to be treated. It is intended to provide a water treatment method characterized by adsorbing and removing ionic impurities in the water to be treated by contacting them.

本発明によれば、多孔質イオン交換体は例えば充填容器に嵌るブロック形状として容易に作製することができ、充填も容易である。また、従来のモジュールで一般的に採用されている連続通水処理方法及び貯留容器や貯留槽中の水中に投入して行なうバッチ処理方法のいずれにも適用することができる。また、連続通水処理方法においてイオン性不純物の含有量が微量である場合には、コンパクトな装置で通水差圧を小さくでき、流速が上がっても、イオン交換帯長さを短く維持することができ、且つ体積当りのイオン交換容量が大きく、吸着したイオンの微量リークが起こらないため、交換頻度が少なくなるもしくは再生頻度が下がり、処理効率を向上させることができる。   According to the present invention, the porous ion exchanger can be easily produced, for example, as a block shape that fits into a filling container, and filling is also easy. Moreover, it can apply to both the continuous water flow processing method generally employ | adopted with the conventional module, and the batch processing method performed by throwing in the water in a storage container or a storage tank. In addition, when the content of ionic impurities is very small in the continuous water treatment method, the water differential pressure can be reduced with a compact device, and the ion exchange zone length should be kept short even when the flow rate is increased. In addition, since the ion exchange capacity per volume is large and a minute leak of adsorbed ions does not occur, the exchange frequency is reduced or the regeneration frequency is lowered, and the processing efficiency can be improved.

第1のモノリスイオン交換体におけるモノリスのSEM画像である。It is a SEM image of the monolith in the 1st monolith ion exchanger. 図1のモノリスの表面における硫黄原子の分布状態を示したEPMA画像である。It is an EPMA image which showed the distribution state of the sulfur atom in the surface of the monolith of FIG. 図1のモノリスの断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing a distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith of FIG. 参考例1〜11及び参考例20〜23の差圧係数と体積当たりのイオン交換容量の相関を示す図である。It is a figure which shows the correlation of the differential pressure | voltage coefficient of the reference examples 1-11 and the reference examples 20-23, and the ion exchange capacity per volume. 図1のSEM画像の断面として表れる骨格部を手動転写したものである。It is a manual transfer of the skeleton part that appears as a cross section of the SEM image of FIG. 第2のモノリスイオン交換体の共連続構造を模式的に示した図である。It is the figure which showed typically the co-continuous structure of the 2nd monolith ion exchanger. 共連続構造におけるモノリス中間体のSEM画像である。It is a SEM image of the monolith intermediate in a bicontinuous structure. 共連続構造を有するモノリスカチオン交換体のSEM画像である。It is a SEM image of the monolith cation exchanger which has a bicontinuous structure. 共連続構造を有するモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the sulfur atom in the surface of the monolith cation exchanger which has a bicontinuous structure. 共連続構造を有するモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the sulfur atom in the cross section (thickness) direction of the monolith cation exchanger which has a bicontinuous structure. 共連続構造を有する他のモノリスカチオン交換体のSEM画像である。It is a SEM image of the other monolith cation exchanger which has a bicontinuous structure. 従来(特開2002−306976号)の有機多孔質体のSEM写真である。It is the SEM photograph of the organic porous body of the former (Unexamined-Japanese-Patent No. 2002-306976).

本発明の実施の形態におけるイオン吸着モジュールにおいて、容器に充填されるのは、第1のモノリスイオン交換体又は第2のモノリスイオン交換体である。本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   In the ion adsorption module according to the embodiment of the present invention, the container is filled with the first monolith ion exchanger or the second monolith ion exchanger. In the present specification, “monolithic organic porous body” is simply “monolith”, “monolithic organic porous ion exchanger” is simply “monolith ion exchanger”, and “monolithic organic porous intermediate”. Is also simply referred to as “monolith intermediate”.

<第1のモノリスイオン交換体の説明>
第1のモノリスイオン交換体は、モノリスにイオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μm、好ましくは30〜200μm、特に35〜150μmの開口(メソポア)となる連続マクロポア構造体である。モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスイオン交換体の開口の平均直径は、水銀圧入法により測定される値である。また、水湿潤状態のモノリスイオン交換体の開口の平均直径は、乾燥状態のモノリスイオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy1(mm)であり、この乾燥状態のモノリスイオン交換体を水銀圧入法により測定したときの開口の平均直径がz1(μm)であったとすると、水湿潤状態のモノリスイオン交換体の開口の平均直径(μm)は、次式「水湿潤状態のモノリスイオン交換体の開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。
<Description of the first monolith ion exchanger>
The first monolith ion exchanger is obtained by introducing an ion exchange group into a monolith. Bubble-shaped macropores are overlapped with each other, and the overlapping portion is in a wet state with an average diameter of 30 to 300 μm, preferably 30. It is a continuous macropore structure having openings (mesopores) of ˜200 μm, particularly 35 to 150 μm. The average diameter of the opening of the monolith ion exchanger is larger than the average diameter of the opening of the monolith because the entire monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of water flow is increased, which is not preferable. If the average diameter of the openings is too large, contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable. In the present invention, the average diameter of the opening of the monolith intermediate in the dry state, the average diameter of the opening of the monolith in the dry state, and the average diameter of the opening of the monolith ion exchanger in the dry state are values measured by a mercury intrusion method. It is. Further, the average diameter of the openings of the monolith ion exchanger in the wet state is a value calculated by multiplying the average diameter of the openings of the monolith ion exchanger in the dry state by the swelling rate. Specifically, the water-wet monolith ion exchanger has a diameter of x1 (mm), the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y1 ( mm), and the average diameter of the opening of the monolith ion exchanger in the dry state measured by the mercury intrusion method was z1 (μm), the average diameter of the opening of the monolith ion exchanger in the water wet state ( μm) is calculated by the following formula: “average diameter of openings of monolith ion exchanger in water wet state (μm) = z1 × (x1 / y1)”. In addition, the average diameter of the opening of the dried monolith before introduction of the ion exchange group, and the swelling ratio of the monolith ion exchanger in the water wet state relative to the dried monolith when the ion exchange group is introduced into the dried monolith. In this case, the average diameter in the water-wet state of the pores of the monolith ion exchanger can also be calculated by multiplying the average diameter of the opening of the monolith in the dry state by the swelling rate.

第1のモノリスイオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、体積当りのイオン交換容量が低下してしまうため好ましくなく、50%を超えると、骨格が太くなり過ぎ、イオン交換特性の均一性が失われるため好ましくない。なお、特開2002−346392公報記載のモノリスは、実際には水に対する油相部の配合比を多くして骨格部分を太くしても、共通の開口を確保するためには配合比に限界があり、断面に表れる骨格部面積の最大値は画像領域中、25%を超えることはできない。   In the first monolith ion exchanger, in the SEM image of the cut surface of the continuous macropore structure, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. If the area of the skeleton part appearing in the cross section is less than 25% in the image region, it becomes a thin skeleton, which is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 50%, the skeleton becomes too thick. Since the uniformity of ion exchange characteristics is lost, it is not preferable. In addition, the monolith described in JP-A-2002-346392 actually has a limit to the blending ratio in order to ensure a common opening even if the blending ratio of the oil phase part with respect to water is increased to make the skeleton portion thick. Yes, the maximum value of the skeleton part area appearing in the cross section cannot exceed 25% in the image region.

SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100〜600、写真領域が約150mm×100mmである。SEM観察は、主観を排除したモノリスの任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行なうのがよい。切断されるモノリスは、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を図1及び図5を参照して説明する。また、図5は、図1のSEM写真の断面として表れる骨格部を転写したものである。図1及び図5中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号12)」であり、図1に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(図5中の符号13)である。図5の断面に表れる骨格部面積は、矩形状の写真領域11中、28%である。このように、骨格部は明確に判断できる。   The conditions for obtaining the SEM image may be any conditions as long as the skeleton part that appears in the cross section of the cut surface appears clearly. For example, the magnification is 100 to 600, and the photographic area is about 150 mm × 100 mm. SEM observation is preferably performed on three or more images, preferably five or more images, taken at arbitrary locations on an arbitrary cut surface of the monolith excluding subjectivity and at different locations. The monolith to be cut is in a dry state for use in an electron microscope. The skeleton part of the cut surface in the SEM image will be described with reference to FIGS. FIG. 5 is a transcribed skeleton that appears as a cross section of the SEM photograph of FIG. In FIGS. 1 and 5, what is generally indeterminate and shown in cross section is the “skeleton portion (reference numeral 12)” in the present invention, the circular hole shown in FIG. 1 is an opening (mesopore), and A relatively large curvature or curved surface is a macropore (reference numeral 13 in FIG. 5). The skeleton area shown in the cross section of FIG. 5 is 28% in the rectangular photographic region 11. Thus, the skeleton can be clearly determined.

SEM写真において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。   In the SEM photograph, the method for measuring the area of the skeletal part appearing in the cross section of the cut surface is not particularly limited, and after specifying the skeletal part by performing known computer processing or the like, calculation by automatic calculation or manual calculation by a computer or the like A method is mentioned. The manual calculation includes a method in which an indefinite shape is replaced with an aggregate such as a quadrangle, a triangle, a circle, or a trapezoid, and the areas are obtained by stacking them.

また、第1のモノリスイオン交換体は、0.5〜5ml/g、好適には0.8〜4ml/gの全細孔容積を有するものである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当たりのイオン交換容量が低下してしまうため好ましくない。本発明のモノリスは、開口の平均直径及び全細孔容積が上記範囲にあり、且つ骨太の骨格であるため、これをイオン吸着材として用いた場合、被処理水との接触面積が大きく、かつ優れた吸着能が発揮できる。なお、本発明では、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、水銀圧入法により測定される値である。また、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The first monolith ion exchanger has a total pore volume of 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss during water passage is increased, which is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. The monolith of the present invention has an average diameter of openings and a total pore volume in the above-mentioned range and is a bone skeleton. Excellent adsorption ability can be demonstrated. In the present invention, the total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is a value measured by a mercury intrusion method. In addition, the total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is the same both in the dry state and in the water wet state.

なお、第1のモノリスイオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.1MPa/m・LVの範囲、特に0.001〜0.05MPa/m・LVであることが好ましい。差圧係数および全細孔容積がこの範囲にあれば、これをイオン吸着材として用いた場合、被処理水との接触面積が大きく、かつ被処理水の円滑な流通が可能となる上に、十分な機械的強度を有しているため好ましい。   In addition, the pressure loss at the time of making water permeate | transmit the 1st monolith ion exchanger is the pressure loss at the time of letting water flow through the column packed with 1 m of the porous body at a water flow velocity (LV) of 1 m / h (hereinafter referred to as the pressure loss). , “Differential pressure coefficient”), it is preferably in the range of 0.001 to 0.1 MPa / m · LV, more preferably 0.001 to 0.05 MPa / m · LV. If the differential pressure coefficient and the total pore volume are within this range, when this is used as an ion adsorbent, the contact area with the water to be treated is large, and smooth circulation of the water to be treated is possible. Since it has sufficient mechanical strength, it is preferable.

第1のモノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.4〜5mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、透過時の圧力損失を低く押さえたままでイオン吸着性能を飛躍的に大きくすることができる。体積当りのイオン交換容量が0.4mg当量/ml未満であると、破過するまでに処理する処理水量が少なくなり、モジュールの交換頻度が高くなるため好ましくない。なお、本発明のモノリスイオン交換体の重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The first monolith ion exchanger has an ion exchange capacity of 0.4 to 5 mg equivalent / ml per volume in a water-wet state. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the monolith ion exchanger of the present invention can further increase the aperture diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall), so that the pressure loss during permeation can be reduced. Ion adsorption performance can be dramatically increased while keeping it low. If the ion exchange capacity per volume is less than 0.4 mg equivalent / ml, the amount of treated water to be treated before breakthrough is reduced and the frequency of module exchange is increased, which is not preferable. The ion exchange capacity per weight of the monolith ion exchanger of the present invention is not particularly limited. However, since the ion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, 3 to 5 mg equivalent / g It is. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface cannot be determined unconditionally depending on the type of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

第1のモノリスイオン交換体において、連続マクロポア構造体の骨格を構成る材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくなく、特に、イオン交換体の場合にはイオン交換基導入量が減少してしまうため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the first monolith ion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, it is not preferable because the mechanical strength is insufficient. On the other hand, if it exceeds 50 mol%, the porous body becomes brittle and the flexibility is lost. In particular, in the case of an ion exchanger, the amount of ion exchange groups introduced is decreased, which is not preferable. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalescence is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is high due to the ease of forming a continuous macropore structure, the ease of introducing ion-exchange groups and the high mechanical strength, and the high stability to acids and alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

第1のモノリスイオン交換体のイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。イオン交換基が、カチオン交換体であれば、半導体デバイスに特に悪影響を及ぼす金属類を効果的に除去することができる。   Examples of the ion exchange group of the first monolith ion exchanger include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group; a quaternary ammonium group and a tertiary amino group And anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group. If the ion exchange group is a cation exchanger, metals that have a particularly adverse effect on semiconductor devices can be effectively removed.

第1のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the first monolith ion exchanger, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be achieved. The durability against is improved.

(第1のモノリスイオン交換体の製造方法)
第1のモノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、該III工程で得られた骨太有機多孔質体にイオン交換基を導入するIV工程、を行なうことにより得られる。
(Method for producing first monolithic ion exchanger)
The first monolith ion exchanger is prepared by preparing a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizing the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of 5 to 16 ml / g, a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, a vinyl monomer, Step II for preparing a mixture comprising an organic solvent and a polymerization initiator that dissolves the cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. The mixture obtained in Step II is allowed to stand still and in Step I. Polymerization is performed in the presence of the obtained monolithic organic porous intermediate to obtain a thick organic porous body having a skeleton thicker than the skeleton of the organic porous intermediate. It is obtained by performing the IV step of introducing an ion exchange group into the thick organic porous material obtained in the step III.

第1のモノリスイオン交換体の製造方法において、I工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   In the first method for producing a monolithic ion exchanger, the step I may be performed in accordance with the method described in JP-A-2002-306976.

I工程のモノリス中間体の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜50モル%、好ましくは0.3〜5モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。   In the production of the monolith intermediate of step I, the oil-soluble monomer that does not contain an ion exchange group includes, for example, an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, and is soluble in water. Low and lipophilic monomers may be mentioned. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 50 mol%, preferably 0.3 to the total oil-soluble monomer. 5 mol% is preferable in that the mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, potassium persulfate, ammonium persulfate, Examples thereof include hydrogen oxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体の構造を鋳型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10〜16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, a porous structure having a thick skeleton is formed using the structure of the monolith intermediate as a template. The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. In particular, when the total pore volume is as large as 10 to 16 ml / g, in order to maintain a continuous macropore structure, it is preferable to contain 2 mol% or more of cross-linked structural units. On the other hand, if it exceeds 50 mol%, the porous body becomes brittle and the flexibility is lost.

モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造のモノリスを得ることができる。   The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the skeleton can be thickened to obtain a monolith having a uniform skeleton structure.

モノリス中間体の全細孔容積は、5〜16ml/g、好適には6〜16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、通水時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5〜1:20とすればよい。   The total pore volume of the monolith intermediate is 5 to 16 ml / g, preferably 6 to 16 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during water passage becomes large, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer deviates from the continuous macropore structure, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above numerical range, the ratio of the monomer and water may be about 1: 5 to 1:20.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜200μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスイオン交換体との接触が不十分となり、その結果、イオン成分の除去効率が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate body in a dry state. When the average diameter of the openings is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss at the time of passing water becomes large, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith ion exchanger becomes insufficient. As a result, the removal efficiency of ion components Is unfavorable because it decreases. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   Step II consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. A step of preparing a mixture of In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent, but is allowed to coexist in the polymerization system. It is preferred to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting at the time of polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, the resulting monolith skeleton (the thickness of the monolith skeleton wall) cannot be made thick, and the adsorption capacity per volume and the volume after introduction of ion exchange groups. This is not preferable because the ion exchange capacity per unit becomes small. On the other hand, when the addition amount of vinyl monomer exceeds 40 times, the opening diameter becomes small, and the pressure loss at the time of passing water becomes large.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3〜50モル%、特に0.3〜5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、50モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくないなお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is preferably 0.3 to 50 mol%, particularly 0.3 to 5 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 50 mol%, the brittleness of the monolith proceeds and the flexibility is lost, and the introduction amount of ion exchange groups is reduced. It is preferable to use it so as to be approximately equal to the crosslinking density of the monolith intermediate coexisting during the polymerization of the vinyl monomer / crosslinking agent. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.

II工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、II-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in Step II is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. In other words, it is a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, examples of the organic solvent include methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, II-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, polyethylene glycol, polypropylene Chain (poly) ethers such as glycol and polytetramethylene glycol; hexane, heptane, octane, isooctane, decane, dope Examples include chain saturated hydrocarbons such as decane; esters such as ethyl acetate, isopropyl acetate, cellosolve acetate, and ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the range of the present invention. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の骨格より太い骨格を有する骨太のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の骨太のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行して骨太骨格のモノリスが得られると考えられる。なお、開口径は重合の進行により狭められるが、モノリス中間体の全細孔容積が大きいため、例え骨格が骨太になっても適度な大きさの開口径が得られる。   In step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I to obtain a thick monolith having a skeleton thicker than the skeleton of the monolith intermediate. It is a process to obtain. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned thick monolith is lost. Is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) is present in the system, the vinyl monomer and the cross-linking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body to obtain a thick skeleton monolith. It is thought that. Although the opening diameter is narrowed by the progress of the polymerization, since the total pore volume of the monolith intermediate is large, an appropriate opening diameter can be obtained even if the skeleton becomes thick.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the thick monolith after polymerization is not pressed from the inner wall of the container and enters the reaction container without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して骨太のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton to thicken the skeleton. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a thick monolith.

次に、上記の方法によりモノリスを製造した後、イオン交換基を導入する方法が、得られるモノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   Next, a method of introducing an ion exchange group after producing a monolith by the above method is preferable in that the porous structure of the resulting monolith ion exchanger can be strictly controlled.

上記モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。   There is no restriction | limiting in particular as a method to introduce | transduce an ion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; A method of grafting a sodium styrenesulfonate or acrylamido-2-methylpropanesulfonic acid by introducing a mobile group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, a sulfonic acid group is introduced by functional group conversion. And the like. As a method for introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolith by the above method and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like.

第1のモノリスイオン交換体は、骨太のモノリスに陽イオン交換基が導入されるため例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。すなわち、特開2002−306976記載の従来のモノリスにイオン交換基が導入されたものよりも膨潤度が遥かに大きい。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、第1のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。   Since the cation exchange group is introduced into the thick monolith, the first monolith ion exchanger swells greatly, for example, 1.4 to 1.9 times as thick as the monolith. That is, the degree of swelling is much greater than that obtained by introducing an ion exchange group into a conventional monolith described in JP-A-2002-306976. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the first monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton despite the remarkably large opening diameter.

<第2のモノリスイオン交換体の説明>
第2のモノリスイオン交換体は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している。
<Description of Second Monolith Ion Exchanger>
The second monolith ion exchanger is a tertiary having a thickness of 1 to 60 μm made of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups are introduced. A co-continuous structure comprising an originally continuous skeleton and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and the total pore volume is 0.5 to 5 ml / g Yes, the ion exchange capacity per volume in a water-wet state is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger.

第2のモノリスイオン交換体は、イオン交換基が導入された平均太さが水湿潤状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは15〜90μm、特に20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は図6の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造10である。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。また、骨格が太いため機械的強度が高い。   The second monolith ion exchanger has a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in a water-wet state in which ion-exchange groups are introduced, and an average diameter between the skeletons. It is a co-continuous structure composed of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly 20 to 80 μm in a wet state. That is, as shown in the schematic diagram of FIG. 6, the co-continuous structure is a structure 10 in which a continuous skeleton phase 1 and a continuous vacancy phase 2 are intertwined and each of them is three-dimensionally continuous. The continuous pores 2 have higher continuity of the pores than the conventional open-cell monolith and particle aggregation type monolith, and the size thereof is not biased. Therefore, it is possible to achieve extremely uniform ion adsorption behavior. Moreover, since the skeleton is thick, the mechanical strength is high.

第2のモノリスイオン交換体の骨格の太さ及び空孔の直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質イオン交換体や粒子凝集型モノリス状有機多孔質イオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。三次元的に連続した空孔の直径が10μm未満であると、流体通過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一、すなわちイオン交換帯長さが長くなったり、吸着したイオンの微量リークを起こしやすいので好ましくない。また、骨格の太さが1μm未満であると、体積当りのイオン交換容量が低下する、機械的強度が低下する等の欠点が生じるため好ましくなく、一方、骨格の太さが大き過ぎると、イオン交換特性の均一性が失われ、イオン交換帯長さが長くなってしまうため好ましくない。   The skeleton thickness and pore diameter of the second monolith ion exchanger are larger than the monolith skeleton thickness and pore diameter because the entire monolith swells when an ion exchange group is introduced into the monolith. It becomes. These continuous pores have higher continuity of pores and are not biased in size compared to conventional open-cell monolithic organic porous ion exchangers and particle-aggregated monolithic organic porous ion exchangers. Therefore, extremely uniform ion adsorption behavior can be achieved. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss when passing through the fluid increases, which is not preferable. As a result, the ion exchange characteristics are not uniform, that is, the length of the ion exchange zone becomes long, or a small amount of adsorbed ions are likely to leak, which is not preferable. In addition, if the thickness of the skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases and the mechanical strength decreases, which is not preferable. On the other hand, if the skeleton thickness is too large, Since the uniformity of the exchange characteristics is lost and the ion exchange zone length becomes long, it is not preferable.

上記記連続構造体の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態のモノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy2(mm)であり、この乾燥状態のモノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy3(mm)であり、この乾燥状態のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the pores of the above-mentioned continuous structure in the water wet state is a value calculated by multiplying the average diameter of the pores of the monolith ion exchanger in the dry state measured by a known mercury intrusion method and the swelling ratio. It is. Specifically, the water-wet monolith ion exchanger has a diameter of x2 (mm), and the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y2 ( mm), and the average diameter of the pores when the dried monolith ion exchanger was measured by the mercury intrusion method was z2 (μm), the pores of the monolith ion exchanger in the water-wet state The average diameter (μm) is calculated by the following formula: “average diameter (μm) of water holes in the monolith ion exchanger pores = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dried monolith before introduction of the ion exchange groups, and the swelling ratio of the water-dried monolith ion exchanger with respect to the dried monolith when the ion exchange groups are introduced into the dried monolith. If it is known, the average diameter of the monolith ion exchanger pores in the water-wet state can be calculated by multiplying the average diameter of the pores of the dry monolith by the swelling rate. Further, the average thickness of the skeleton of the continuous structure in the water-wet state is obtained by performing SEM observation of the dried monolith ion exchanger at least three times, and measuring the thickness of the skeleton in the obtained image. It is a value calculated by multiplying the average value by the swelling rate. Specifically, the water-wet monolith ion exchanger has a diameter of x3 (mm), the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y3 ( SEM observation of this dried monolith ion exchanger at least three times, the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the ion exchanger in the water wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the monolith ion exchanger (μm) = z3 × (X3 / y3) ". In addition, the average thickness of the skeleton of the dried monolith before the introduction of the ion exchange group, and the swelling ratio of the monolith ion exchanger in the water wet state relative to the dried monolith when the ion exchange group is introduced into the dried monolith. When it is understood, the average thickness of the skeleton of the monolith ion exchanger can be calculated by multiplying the average thickness of the skeleton of the monolith in the dry state by the swelling ratio. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

第2のモノリスイオン交換体は、3次元的に連続した棒状骨格の太さが10μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、100μmを超えると、イオン交換特性の均一性が失われるため好ましくない。モノリスイオン交換体の壁部の定義及び測定方法などは、モノリスと同様である。   If the thickness of the three-dimensional continuous rod-like skeleton is less than 10 μm, the second monolith ion exchanger is not preferable because the ion exchange capacity per volume is lowered, and if it exceeds 100 μm, the ion exchange characteristics This is not preferable because the uniformity of the film is lost. The definition and measurement method of the wall of the monolith ion exchanger are the same as those of the monolith.

また、第2のモノリスイオン交換体は、0.5〜5ml/gの全細孔容積を有する。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に単位断面積当りの通水量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲であれば、流体との接触が極めて均一で接触面積も大きいため、イオン交換帯長さが短くなり、吸着したイオンの微量リークを起こし難い。また、低圧力損失下で流体の透過が可能となるためイオン吸着材として優れた性能を発揮する。なお、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The second monolith ion exchanger has a total pore volume of 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of water per unit cross-sectional area decreases, and the processing capacity decreases. It is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. If the three-dimensionally continuous pore size and total pore volume are within the above ranges, the contact with the fluid is extremely uniform and the contact area is large, so the ion exchange zone length is shortened and the adsorbed ions It is difficult to cause a slight leak. In addition, since the fluid can be permeated under a low pressure loss, it exhibits excellent performance as an ion adsorbent. The total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is the same in the dry state and in the water wet state.

なお、第2のモノリスイオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.5MPa/m・LVの範囲、特に0.001〜0.1MPa/m・LVである。透過速度および全細孔容積がこの範囲にあれば、これをイオン吸着材として用いた場合、被処理水との接触面積が大きく、かつ被処理水の円滑な流通が可能となる上に、十分な機械的強度を有しているため好ましい。   The pressure loss when water was permeated through the second monolith ion exchanger was the pressure loss when water was passed through a column filled with 1 m of a porous material at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). And “differential pressure coefficient”) in the range of 0.001 to 0.5 MPa / m · LV, particularly 0.001 to 0.1 MPa / m · LV. If the permeation rate and the total pore volume are within this range, when this is used as an ion adsorbent, the contact area with the water to be treated is large and the water to be treated can be smoothly distributed. It is preferable because of its high mechanical strength.

第2のモノリスイオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the second monolith ion exchanger, the material constituting the skeleton of the co-continuous structure is 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of the crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is used because of its ease of forming a co-continuous structure, ease of introduction of ion exchange groups, high mechanical strength, and high stability against acids and alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

第2のモノリスイオン交換体は、水湿潤状態での体積当りの陽イオン交換容量が0.3〜5mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができ、モジュールの交換頻度を低減できる。なお、第2のモノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The second monolith ion exchanger has an ion exchange capacity of 0.3 to 5 mg equivalent / ml cation exchange capacity per volume in a wet state of water. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, since the monolith ion exchanger of the present invention has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the ion exchange capacity per volume can be dramatically increased while keeping the pressure loss low, and the replacement frequency of the module can be reduced. The ion exchange capacity per weight in the dry state of the second monolith ion exchanger is not particularly limited, but the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the porous body. 5 mg equivalent / g. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface of the skeleton cannot be determined unconditionally depending on the kind of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

第2のモノリスイオン交換体におけるイオン交換基としては、第1のモノリスイオン交換体におけるイオン交換基と同様であり、その説明を省略する。第2のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。均一分布の定義は、第1のモノリスイオン交換体の均一分布の定義と同じである。   The ion exchange group in the second monolith ion exchanger is the same as the ion exchange group in the first monolith ion exchanger, and the description thereof is omitted. In the second monolith ion exchanger, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. The definition of the uniform distribution is the same as the definition of the uniform distribution of the first monolith ion exchanger.

(第2のモノリスイオン交換体の製造方法)
第2のモノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にイオン交換基を導入するIV工程を行うことで得られる。
(Method for producing second monolith ion exchanger)
The second monolith ion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and 30 ml / g or less, an aromatic vinyl monomer, and at least two or more vinyl groups in one molecule From an organic solvent and a polymerization initiator in which 0.3 to 5 mol% of the cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve but the polymer formed by polymerization of the aromatic vinyl monomer does not dissolve in the total oil-soluble monomer having Step II for preparing the mixture, the mixture obtained in Step II is allowed to stand, and polymerization is performed in the presence of the monolithic organic porous intermediate obtained in Step I. III to obtain a continuous structure, obtained by performing the IV step of introducing ion exchange groups to resulting co-continuous structure in the step III.

第2のモノリスイオン交換体におけるモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   What is necessary is just to perform the I process of obtaining the monolith intermediate body in a 2nd monolith ion exchanger based on the method of Unexamined-Japanese-Patent No. 2002-306976.

すなわち、I工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。   That is, in the step I, as the oil-soluble monomer not containing an ion exchange group, for example, it does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water, and is lipophilic. These monomers are mentioned. Specific examples of these monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene Diene monomers such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethyl methacrylate Sill, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. Among these monomers, preferred are aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and its content is 0.3 to 5 mol%, preferably 0.3 to the total oil-soluble monomer. 3 mol% is preferable in that a mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.

界面活性剤は、第1のモノリスイオン交換体のI工程で使用する界面活性剤と同様であり、その説明を省略する。   The surfactant is the same as the surfactant used in step I of the first monolith ion exchanger, and the description thereof is omitted.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide, hydrogen peroxide-ferrous chloride Sodium persulfate-sodium acid sodium sulfite and the like.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、第1のモノリスイオン交換体のI工程における混合方法と同様であり、その説明を省略する。   As a mixing method when an oil-soluble monomer not containing an ion exchange group, a surfactant, water and a polymerization initiator are mixed to form a water-in-oil emulsion, in the step I of the first monolith ion exchanger This is the same as the mixing method, and the description thereof is omitted.

第2のモノリスイオン交換体の製造方法において、I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル未満とすることが好ましい。   In the second method for producing a monolith ion exchanger, the monolith intermediate obtained in the step I is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 5 mol%, preferably 0.3 to 3 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is as small as 16 to 20 ml / g in the present invention, the cross-linking structural unit is preferably less than 3 mol in order to form a co-continuous structure.

モノリス中間体のポリマー材料の種類は、第1のモノリスイオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。   The type of the polymer material of the monolith intermediate is the same as the type of the polymer material of the monolith intermediate of the first monolith ion exchanger, and the description thereof is omitted.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には6〜25ml/gである。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を鋳型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を第2のモノリスイオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。   The total pore volume of the monolith intermediate is more than 16 ml / g and not more than 30 ml / g, preferably 6-25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a template. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the ion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within a specific range of the second monolith ion exchanger, the ratio of monomer to water may be approximately 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。開口の平均直径が5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスイオン交換体との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers in a dry state. If the average diameter of the openings is less than 5 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss during water passage becomes large, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith ion exchanger becomes insufficient, resulting in adsorption characteristics and ion exchange. This is not preferable because the characteristics deteriorate. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

第2のモノリスイオン交換体の製造方法において、II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   In the second method for producing a monolithic ion exchanger, the step II includes 0.3 to 5 mol% of a crosslinking agent in the aromatic vinyl monomer and the total oil-soluble monomer having at least two or more vinyl groups in one molecule. This is a step of preparing a mixture comprising an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

第2のモノリスイオン交換体の製造方法において、II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。   In the second method for producing a monolithic ion exchanger, the aromatic vinyl monomer used in step II includes a lipophilic aromatic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. If it is, there is no particular limitation, but it is preferable to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate coexisting in the polymerization system. Specific examples of these vinyl monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl, vinyl naphthalene and the like. These monomers can be used alone or in combination of two or more. Aromatic vinyl monomers preferably used in the present invention are styrene, vinyl benzyl chloride and the like.

これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量が多孔質体に対して5倍未満であると、棒状骨格を太くできず、イオン交換基導入後の体積当りのイオン交換容量が小さくなって、優れたイオン交換能力が発揮できなくなる。   The amount of these aromatic vinyl monomers added is 5 to 50 times, preferably 5 to 40 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of aromatic vinyl monomer added is less than 5 times that of the porous material, the rod-like skeleton cannot be thickened, the ion exchange capacity per volume after the introduction of ion exchange groups is reduced, and excellent ion exchange capacity is obtained. Cannot be demonstrated.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of vinyl monomer and crosslinking agent (total oil-soluble monomer). When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. This is not preferable because a problem arises in that the amount of introduction of is reduced. In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.

II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain structures such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (Poly) ethers; chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane; ethyl acetate, isopropyl acetate, cellosolve acetate, propionic acid Examples include esters such as ethyl. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration becomes less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the scope of the present invention, which is not preferable. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤は、第1のモノリスイオン交換体のII工程で用いる重合開始剤と同様であり、その説明を省略する。   The polymerization initiator is the same as the polymerization initiator used in Step II of the first monolith ion exchanger, and the description thereof is omitted.

第2のモノリスイオン交換体の製造方法において、III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、骨太骨格のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明の第2のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。   In the second method for producing a monolith ion exchanger, in step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I. This is a process of changing the continuous macropore structure of the body to a co-continuous structure to obtain a monolith with a bone skeleton. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a specific continuous macropore structure is present in the polymerization system as in the second monolith of the present invention, the structure of the monolith after the polymerization changes dramatically and the particle aggregation structure disappears. Thus, a monolith having the above-described bicontinuous structure is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) having a large total pore volume is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the monolith structure is changed from a two-dimensional wall surface to a one-dimensional rod-like skeleton to form a monolithic organic porous body having a co-continuous structure.

反応容器の内容積は、第1のモノリスイオン交換体の反応容器の内容積の説明と同様であり、その説明を省略する。   The internal volume of the reaction vessel is the same as the description of the internal volume of the reaction vessel of the first monolith ion exchanger, and the description thereof is omitted.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 5 to 50 times, preferably 5 to 40 times, by weight of the aromatic vinyl monomer added to the monolith intermediate. It is preferable to blend them as described above. Thereby, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and a thick skeleton is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that is allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

共連続構造を有するモノリスの基本構造は、平均太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔が配置された構造である。上記三次元的に連続した空孔の平均直径は、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。モノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の平均太さを測定して算出すればよい。また、共連続構造を有するモノリスは、0.5〜5ml/gの全細孔容積を有する。   The basic structure of a monolith having a co-continuous structure is a three-dimensional continuous skeleton having an average thickness of 0.8 to 40 μm in a dry state and a three-dimensional continuous sky having a diameter of 8 to 80 μm between the skeletons. This is a structure in which holes are arranged. The average diameter of the three-dimensionally continuous pores can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by the mercury intrusion method. The thickness of the skeleton of the monolith may be calculated by performing SEM observation at least three times and measuring the average thickness of the skeleton in the obtained image. A monolith having a co-continuous structure has a total pore volume of 0.5 to 5 ml / g.

重合条件は、第1のモノリスイオン交換体のIII工程の重合条件の説明と同様であり、その説明を省略する。   The polymerization conditions are the same as the description of the polymerization conditions in step III of the first monolith ion exchanger, and the description thereof is omitted.

IV工程において、共連続構造を有するモノリスにイオン交換基を導入する方法は、第1のモノリスイオン交換体における、モノリスにイオン交換基を導入する方法と同様であり、その説明を省略する。   In the step IV, the method for introducing an ion exchange group into a monolith having a co-continuous structure is the same as the method for introducing an ion exchange group into a monolith in the first monolith ion exchanger, and the description thereof is omitted.

第2のモノリスイオン交換体は、共連続構造のモノリスにイオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、第2のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、かつ被処理水を低圧、大流量で長期間通水することが可能であり、イオン吸着モジュールとして好適に用いることができる。   Since the ion exchange group is introduced into the bilithic monolith, the second monolith ion exchanger swells greatly, for example, 1.4 to 1.9 times that of the monolith. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Therefore, the second monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton even though the size of three-dimensionally continuous pores is remarkably large. In addition, since the skeleton is thick, it is possible to increase the ion exchange capacity per volume in a wet state of water, and it is possible to pass water to be treated for a long time at a low pressure and a large flow rate. be able to.

本発明の実施の形態におけるイオン吸着モジュールは、少なくとも被処理水が流入する開口を備える容器と、該容器に充填される第1のモノリスイオン交換体または第2のモノリスイオン交換体とを備えるものである。この容器は、被処理水が流入する開口のみを備えるものであれば、該イオン吸着モジュールを貯留容器や貯留槽中の水中に投入して当該水の浄化を行なうバッチ処理方法に適用でき、また、被処理水が流入する被処理水流入配管と、処理水が流出する処理水流出配管を備えるものであれば、従来より一般的に用いられている連続通水処理方法に適用できる。被処理水とイオン吸着モジュールの接触形態としては、被処理水と前記多孔質イオン交換体を接触させるものであれば、特に限定されるものではなく、単純な円柱状又は多角柱状充填層に上昇流又は下降流で通水する方式、円筒状充填層に円周方向外側から内筒へ通水する外圧方式、逆方向に通水する内圧方式、円筒状有機多孔質体を多数充填し、内圧式又は外圧式で通水するチューブラー方式、シート状充填層を用いる平膜方式、及び平膜を折り畳んだ形状に型枠成形したプリーツ方式などを例示することができる。   An ion adsorption module according to an embodiment of the present invention includes a container having at least an opening through which water to be treated flows, and a first monolith ion exchanger or a second monolith ion exchanger filled in the container. It is. As long as this container has only an opening through which water to be treated flows, it can be applied to a batch processing method in which the ion adsorption module is put into water in a storage container or storage tank to purify the water. As long as it has a treated water inflow pipe into which treated water flows and a treated water outflow pipe from which treated water flows out, it can be applied to a continuous water treatment method that has been generally used. The contact form of the water to be treated and the ion adsorption module is not particularly limited as long as the water to be treated and the porous ion exchanger are brought into contact with each other, and it rises to a simple cylindrical or polygonal packed bed. A method of passing water in a flow or downward flow, an external pressure method in which a cylindrical packed bed is passed from the outer circumferential direction to the inner cylinder, an internal pressure method in which water is passed in the reverse direction, a large number of cylindrical organic porous bodies are filled, Examples thereof include a tubular method that allows water to flow by a pressure method or an external pressure method, a flat membrane method that uses a sheet-like packed bed, and a pleat method that forms a flat membrane into a folded shape.

また、充填される多孔質イオン交換体の形状としては、前記吸着形態を採るモジュールの容器の形状に従って、ブロック状、シート状、板状、円柱状、円筒状などが選択される。また、上記有機多孔質イオン交換体を0.1mmから10mmの球形又は不定形の粒状小ブロックとし、この小ブロックを容器に充填して充填層を形成しても良い。これら各種形状の多孔質イオン交換体の成形方法としては、ブロック状多孔質イオン交換体からの切削による方法や、目的形状の型枠内に前記エマルジョンを充填して型枠内で重合を行う方法などが挙げられる。   Further, as the shape of the porous ion exchanger to be filled, a block shape, a sheet shape, a plate shape, a columnar shape, a cylindrical shape, or the like is selected according to the shape of the container of the module taking the adsorption form. Further, the organic porous ion exchanger may be formed into a spherical or irregular granular small block of 0.1 mm to 10 mm, and this small block may be filled into a container to form a packed bed. As a method for molding these various shapes of porous ion exchangers, a method by cutting from a block-shaped porous ion exchanger, or a method in which the emulsion is filled in a mold of a desired shape and polymerization is performed in the mold Etc.

容器に充填する多孔質イオン交換体の種類と充填形態としては、特に制限されず、使用目的や吸着しようとするイオン性不純物の種類により任意に決定することができる。具体的には、容器内に多孔質陽イオン交換体、多孔質陰イオン交換体を単独又は混在させて充填させる形態が挙げられる。また、多孔質イオン交換体を混在させる形態としては、ブロック状、シート状、板状又は円柱状に成形又は加工したものを通水方向に対して積層する形態、又は小ブロックイオン交換体を混合して充填する形態などが挙げられる。このうち、多孔質陽イオン交換体と多孔質陰イオン交換体を積層充填したものが、多孔質イオン交換体の作製と容器への充填が容易である点で好ましい。   The type and form of the porous ion exchanger filled in the container are not particularly limited, and can be arbitrarily determined depending on the purpose of use and the type of ionic impurities to be adsorbed. Specifically, a form in which the container is filled with a porous cation exchanger or a porous anion exchanger alone or in combination is exemplified. In addition, as a form to mix the porous ion exchanger, a form formed or processed into a block shape, a sheet shape, a plate shape or a column shape is laminated with respect to the water flow direction, or a small block ion exchanger is mixed. And filling form. Among these, a porous cation exchanger and a porous anion exchanger that are stacked and filled are preferred in terms of easy production of the porous ion exchanger and filling of the container.

また、本発明のイオン交換モジュールの他の形態としては、粒状のイオン交換樹脂充填層と前記多孔質イオン交換体充填層を、上流側からこの順序で積層してなるもの、及び前記多孔質イオン交換体が充填されたイオン吸着モジュールを、粒状のイオン交換樹脂が充填されたイオン吸着モジュールの下流側に配置されるものが挙げられる。前者の形態は後者の形態に比較して、接続配管を省略することができる。従来より汎用されている粒状イオン交換樹脂を上流部に、多孔質イオン交換体を下流部に配置することによって、初めにイオン性不純物を大量に除去し、次に残留イオン性不純物を高効率で除去することによって、総イオン交換帯長さの縮小、イオン吸着塔の低容化、高流速での吸着効率の向上が図れる。上流側の粒状イオン交換樹脂は、カチオン交換樹脂とアニオン交換樹脂の混合イオン交換樹脂が好ましく、下流側の多孔質イオン交換体は多孔質カチオン交換体と多孔質アニオン交換体の積層充填層が好ましい。   As another form of the ion exchange module of the present invention, a granular ion exchange resin packed layer and the porous ion exchanger packed layer are laminated in this order from the upstream side, and the porous ion What arrange | positions the ion adsorption module with which the exchanger was filled in the downstream of the ion adsorption module with which the granular ion exchange resin was filled is mentioned. The former form can omit connection piping compared with the latter form. By placing the granular ion exchange resin, which has been widely used in the past, in the upstream part and the porous ion exchanger in the downstream part, a large amount of ionic impurities are removed first, and then the residual ionic impurities are efficiently removed. By removing, the total ion exchange zone length can be reduced, the volume of the ion adsorption tower can be reduced, and the adsorption efficiency at a high flow rate can be improved. The upstream granular ion exchange resin is preferably a mixed ion exchange resin of a cation exchange resin and an anion exchange resin, and the downstream porous ion exchanger is preferably a stacked packed layer of a porous cation exchanger and a porous anion exchanger. .

本発明で用いるイオン交換モジュールの形状としては、特に制限されず、カラム状、扁平状及び下方部に鏡板部を備える塔形状等が挙げられる。扁平状(小太鼓状)のイオン交換モジュールは、イオン交換体充填層が通水方向において短く、通水方向に垂直方向(直径)において長いもので、通水と再生を短時間で行なう水処理方法に適する。また、下方部に鏡板部を備えるいわゆるイオン交換塔は、前記他の形態における粒状イオン交換樹脂と多孔質イオン交換体の積層充填の場合に用いられる。すなわち、従来の下方部に鏡板部を備えるいわゆるイオン交換塔は上流側から下流側に向けて、粒状イオン交換樹脂が充填された脱塩部と、目板またはディストリビューターの役目を果たす軽石(テカポア)が配設または充填された鏡板部とで構成されていたが、本例のイオン交換モジュールの場合、鏡板部の目板または軽石(テカポア)に置き換えて、前記多孔質イオン交換体を充填すればよく、これにより高速流でのイオン性不純物の吸着効率が高まると共に、多孔質イオン交換体がディストリビューターの役目を果たすため塔内部品を削減でき、更に上向流による再生で当該充填層が移動することがなく再生効率がよくなる。また、本発明のイオン吸着モジュールによれば、多孔質イオン交換体は例えば充填容器に嵌るブロック形状として得ることができ、充填が容易である。   The shape of the ion exchange module used in the present invention is not particularly limited, and examples thereof include a column shape, a flat shape, and a tower shape having an end plate portion at a lower portion. A flat (small drum-shaped) ion exchange module is a water treatment method in which the ion exchanger packed layer is short in the direction of water flow and long in the direction (diameter) perpendicular to the direction of water flow, and water flow and regeneration are performed in a short time. Suitable for. In addition, a so-called ion exchange tower having a mirror plate part in the lower part is used in the case of stacking and filling the granular ion exchange resin and the porous ion exchanger in the other embodiment. In other words, a so-called ion exchange tower having a mirror plate part in a conventional lower part has a desalting part filled with a granular ion exchange resin from the upstream side to the downstream side, and a pumice stone serving as the eyeplate or distributor. In the case of the ion exchange module in this example, the porous ion exchanger is filled with the end plate or pumice (tecapore) of the end plate part. This increases the efficiency of adsorption of ionic impurities in a high-speed flow, and the porous ion exchanger serves as a distributor, so that the number of parts in the tower can be reduced. Reproduction efficiency is improved without moving. In addition, according to the ion adsorption module of the present invention, the porous ion exchanger can be obtained, for example, in the form of a block that fits into a filling container, and is easily filled.

本発明の水処理方法は、被処理水と前記多孔質イオン交換体を接触させることにより、該被処理水中のイオン性不純物を吸着除去する方法(水処理第1方法)及び被処理水と粒状のイオン交換樹脂を接触させることにより得られた第1処理水を、更に前記多孔質イオン交換体に接触させることにより第2処理水を得る方法(水処理第2方法)である。水処理第1方法においては、被処理水中、イオン性不純物の含有量が微量、例えば導電率で0.1〜100mS/mの被処理水を処理する場合、該多孔質イオン交換体の充填が容易で小さな装置を用い、頻繁に再生する水処理方法に好適である。また、高流速でもイオン交換帯長さを短く維持することができ、イオン交換体装置の減容化が図れる。水処理第2方法によれば、イオン性不純物が微量であっても吸着率が高く、吸着したイオンのリークが起こり難い。すなわち、粒状イオン交換樹脂は粒径が0.2〜0.5mmのため、粒子内と粒子外での拡散速度が大きく異なり、流速が上がるとイオン吸着部分と未吸着部分の混在領域であるイオン交換帯長さが長くなり、吸着したイオンの微量リークが起こるものの、総交換容量が大きいためイオンの粗取りができる。一方、3次元網目構造を有する有機多孔質イオン交換体は、総交換容量が小さいが拡散速度に広がりがないため、高流速でもイオン交換帯長さを短く維持できる。このため、粒状イオン交換樹脂を上流側に、有機多孔質イオン交換体を下流側に設置することによって、始めにイオン性物質を大量に除去、次に残留イオンを高効率で除去することによって、総イオン交換帯長さの縮小、イオン吸着塔の低容化、高流速での吸着効率の向上が実現できる。従って、当該イオン吸着モジュールは、例えば従来の超純水製造装置のサブシステムに用いられているカートリッジポリッシャーの代替器とすることができる。   The water treatment method of the present invention comprises a method of adsorbing and removing ionic impurities in the water to be treated by bringing the water to be treated into contact with the porous ion exchanger (first method of water treatment), and the water to be treated and granular. This is a method (second water treatment method) in which a second treated water is obtained by further contacting the first treated water obtained by contacting the ion exchange resin with the porous ion exchanger. In the first water treatment method, when treating water to be treated having a small amount of ionic impurities, for example, conductivity of 0.1 to 100 mS / m in the water to be treated, the porous ion exchanger is filled. It is suitable for a water treatment method that uses an easy and small apparatus and regenerates frequently. Further, the ion exchange zone length can be kept short even at a high flow rate, and the volume of the ion exchanger apparatus can be reduced. According to the second water treatment method, the adsorption rate is high even if the amount of ionic impurities is very small, and the leak of adsorbed ions hardly occurs. That is, since the granular ion exchange resin has a particle size of 0.2 to 0.5 mm, the diffusion rate inside and outside the particle is greatly different, and when the flow rate is increased, the ion is a mixed region of the ion adsorbing part and the non-adsorbing part. Although the exchange zone length becomes long and a slight leak of adsorbed ions occurs, the total exchange capacity is large, so that rough ion removal is possible. On the other hand, since the organic porous ion exchanger having a three-dimensional network structure has a small total exchange capacity but does not spread in the diffusion rate, the ion exchange zone length can be kept short even at a high flow rate. For this reason, by installing the granular ion exchange resin on the upstream side and the organic porous ion exchanger on the downstream side, first, a large amount of ionic substances are removed, and then residual ions are removed with high efficiency. It is possible to reduce the total ion exchange zone length, reduce the volume of the ion adsorption tower, and improve the adsorption efficiency at a high flow rate. Therefore, the ion adsorption module can be used as an alternative to a cartridge polisher used in a subsystem of a conventional ultrapure water production apparatus, for example.

本発明の水処理方法は、前記多孔質イオン交換体を被処理水中の除去目的イオンより吸着選択性の低いイオン形とした後、被処理水を通水し、該被処理水中の目的イオンを吸着除去すると共に、該吸着選択性の低いイオンを被処理水中に放出する方法であってもよい。具体的には、除去目的イオンがカルシウムイオン、マグネシウムイオンである場合には、それより選択吸着性の低いナトリウムイオンを多孔質イオン交換体に吸着させ、これを水処理に用いる。この方法は、例えばボイラー給水のように、スケール付着防止が水処理の主たる目的である場合、必ずしも全てのイオンを除去する必要がないので、安価で安全に再生できる点で好適である。また、本発明の水処理方法は、多孔質イオン交換体が陽イオン交換体であり、該陽イオン交換体をナトリウム形とした後、被処理水を通水し、該被処理水中の硬度成分をナトリウムと交換する軟化処理方法であってもよい。この方法によれば、被処理水中の硬度成分を容易に除去できる。   In the water treatment method of the present invention, the porous ion exchanger is made into an ion form having a lower adsorption selectivity than the removal target ions in the water to be treated, and then the water to be treated is passed, A method may be used in which the ions having low adsorption selectivity are released into the water to be treated while being removed by adsorption. Specifically, when the ions to be removed are calcium ions and magnesium ions, sodium ions having a lower selective adsorptivity are adsorbed on the porous ion exchanger and used for water treatment. This method is preferable in that it is not necessarily required to remove all the ions when scale prevention is the main purpose of water treatment, such as boiler feed water, and it can be safely and inexpensively regenerated. Further, in the water treatment method of the present invention, the porous ion exchanger is a cation exchanger, and after the cation exchanger is made into a sodium form, the water to be treated is passed through, and the hardness component in the water to be treated May be a softening treatment method in which is replaced with sodium. According to this method, the hardness component in the for-treatment water can be easily removed.

本発明のイオン交換モジュール及び水処理方法において用いられる多孔質イオン交換体は、イオン吸着除去処理に繰り返し用いるため、薬剤により再生処理したものを用いることができる。再生処理方法としては、酸と多孔質陽イオン交換体、アルカリと多孔質陰イオン交換体をそれぞれ接触させることにより、該多孔質イオン交換体に吸着せしめたイオン性物質を脱着させる方法が挙げられる。酸としては、塩酸、硫酸及び硝酸等が、アルカリとしては苛性ソーダ等が挙げられる。また薬剤と多孔質イオン交換体の接触方法としては、上昇流でも下降流でも特に限定されるものではなく、粒状のイオン交換樹脂など他のイオン交換体が混在する場合でも、各イオン交換体を分離する操作は不要である。   Since the porous ion exchanger used in the ion exchange module and water treatment method of the present invention is repeatedly used for the ion adsorption removal treatment, it can be regenerated with a chemical. Examples of the regeneration treatment method include a method in which an ionic substance adsorbed on the porous ion exchanger is desorbed by contacting an acid and a porous cation exchanger, or an alkali and a porous anion exchanger, respectively. . Examples of the acid include hydrochloric acid, sulfuric acid, and nitric acid, and examples of the alkali include caustic soda. Further, the method of contacting the drug with the porous ion exchanger is not particularly limited to the upward flow or the downward flow. Even when other ion exchangers such as a granular ion exchange resin are mixed, each ion exchanger is Separation is not necessary.

(実施例)
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
Next, the present invention will be specifically described by way of examples, but this is merely an example and does not limit the present invention.

<第1のモノリスイオン交換体の製造(参考例1)>
(I工程;モノリス中間体の製造)
スチレン19.2g、ジビニルベンゼン1.0g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物をTHF1.8mlを含有する180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は56μm、全細孔容積は7.5ml/gであった。
<Production of first monolithic ion exchanger (Reference Example 1)>
(Step I; production of monolith intermediate)
19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water containing 1.8 ml of THF, and a vacuum stirring defoaming mixer which is a planetary stirring device. (EM Co., Ltd.) was used and stirred under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 56 μm, and the total pore volume was 7.5 ml / g.

(モノリスの製造)
次いで、スチレン49.0g、ジビニルベンゼン1.0g、1-デカノール50g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、7.6g分取した。分取したモノリス中間体を内径90mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monoliths)
Next, 49.0 g of styrene, 1.0 g of divinylbenzene, 50 g of 1-decanol, and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 7.6 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 90 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1に示す。図1のSEM画像は、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1から明らかなように、当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格が比較例の図12のものと比べて遥かに太く、また、骨格を構成する壁部の厚みが厚いものであった。   FIG. 1 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. The SEM image in FIG. 1 is an image at an arbitrary position on a cut surface obtained by cutting a monolith at an arbitrary position. As is clear from FIG. 1, the monolith has a continuous macropore structure, and the skeleton constituting the continuous macropore structure is much thicker than that of the comparative example of FIG. The thickness of the part was thick.

次ぎに、得られたモノリスを主観を排除して上記位置とは異なる位置で切断して得たSEM画像2点、都合3点から壁部の厚みと断面に表れる骨格部面積を測定した。壁部の厚みは1つのSEM写真から得た8点の平均であり、骨格部面積は画像解析により求めた。なお、壁部は前述の定義のものである。また、骨格部面積は3つのSEM画像の平均で示した。この結果、壁部の平均厚みは30μm、断面で表れる骨格部面積はSEM画像中28%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は31μm、全細孔容積は2.2ml/gであった。結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、I工程で得られたモノリス中間体、II工程で用いた有機溶媒を示す。   Next, the thickness of the wall part and the area of the skeleton part appearing in the cross section were measured from two SEM images obtained by cutting the obtained monolith at a position different from the above position, excluding subjectivity. The wall thickness was an average of 8 points obtained from one SEM photograph, and the skeleton area was determined by image analysis. The wall portion has the above definition. Moreover, the skeleton part area was shown by the average of three SEM images. As a result, the average thickness of the wall portion was 30 μm, and the area of the skeleton portion represented by the cross section was 28% in the SEM image. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 31 μm, and the total pore volume was 2.2 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows, in order from the left, the vinyl monomer used in Step II, the crosslinking agent, the monolith intermediate obtained in Step I, and the organic solvent used in Step II.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は27gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸145gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリスカチオン交換体を得た。
(Production of monolith cation exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 27 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 145 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a continuous macropore structure.

得られたカチオン交換体の反応前後の膨潤率は1.7倍であり、体積当りのイオン交換容量は、水湿潤状態で0.67mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ54μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは50μm、骨格部面積はSEM写真の写真領域中28%、全細孔容積は2.2ml/gであった。また、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さは、LV=20m/hにおいて22mmであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.016MPa/m・LVであった。その結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.7 times, and the ion exchange capacity per volume was 0.67 mg equivalent / ml in a water wet state. The average diameter of the opening of the organic porous ion exchanger in the water-wet state was estimated to be 54 μm from the value of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state. The average thickness of the wall part constituting the skeleton was 50 μm, the skeleton part area was 28% in the photographic region of the SEM photograph, and the total pore volume was 2.2 ml / g. Moreover, the ion exchange zone length regarding the sodium ion of this monolith cation exchanger was 22 mm in LV = 20 m / h. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.016 MPa / m · LV. The results are summarized in Table 2.

次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。結果を図2及び図3に示す。図2は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図3は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図2及び図3より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. FIG. 2 shows a distribution state of sulfur atoms on the surface of the cation exchanger, and FIG. 3 shows a distribution state of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 2 and 3, it can be seen that the sulfonic acid groups are uniformly introduced into the surface of the cation exchanger and inside the skeleton (cross-sectional direction).

<第1のモノリスイオン交換体の製造(参考例2〜11)>
(モノリスの製造)
スチレンの使用量、架橋剤の種類と使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例2〜11のSEM画像(不図示)及び表2から、参考例2〜11のモノリスの開口の平均直径は22〜70μmと大きく、骨格を構成する壁部の平均厚みも25〜50μmと厚く、骨格部面積はSEM画像領域中26〜44%と骨太のモノリスであった。
<Production of first monolith ion exchanger (Reference Examples 2 to 11)>
(Manufacture of monoliths)
Table 1 shows the amount of styrene used, the type and amount of crosslinking agent, the type and amount of organic solvent, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. In addition, from the SEM images (not shown) of Reference Examples 2 to 11 and Table 2, the average diameter of the openings of the monoliths of Reference Examples 2 to 11 is as large as 22 to 70 μm, and the average thickness of the walls constituting the skeleton is also 25 to 25 mm. It was as thick as 50 μm, and the skeletal area was 26-44% in the SEM image area, and it was a monolith of bone.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ参考例1と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリスカチオン交換体を製造した。その結果を表2に示す。参考例2〜11のモノリスカチオン交換体の開口の平均直径は46〜138μmであり、骨格を構成する壁部の平均厚みも45〜110μmと厚く、骨格部面積はSEM画像領域中26〜44%であった。イオン交換帯長さも従来のものよりも短く、差圧係数も低い値を示した。また、参考例8のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a monolith cation exchanger having a continuous macropore structure. The results are shown in Table 2. The average diameters of the openings of the monolith cation exchangers of Reference Examples 2 to 11 are 46 to 138 μm, the average thickness of the wall portion constituting the skeleton is also as thick as 45 to 110 μm, and the skeleton area is 26 to 44% in the SEM image region. Met. The ion exchange zone length was shorter than the conventional one, and the differential pressure coefficient was also low. The monolith cation exchanger of Reference Example 8 was also evaluated for mechanical properties.

(モノリスカチオン交換体の機械的特性評価)
参考例8で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ45kPa、50kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは25%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 8 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state, and used as a test piece for a tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 45 kPa and 50 kPa, respectively, which were much larger than those of the conventional monolith cation exchanger. Further, the tensile elongation at break was 25%, which was a value larger than that of the conventional monolith cation exchanger.

参考例12及び13
(モノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法で参考例4と同じ組成・構造のモノリスを製造した。なお、参考例13は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例12と同様の方法で行ったものである。その結果を表1及び表2に示す。
Reference Examples 12 and 13
(Manufacture of monoliths)
A monolith having the same composition and structure as Reference Example 4 was produced in the same manner as Reference Example 1 except that the amount of styrene used, the amount of crosslinking agent used, and the amount of organic solvent used were changed to the amounts shown in Table 1. . Reference Example 13 was carried out in the same manner as Reference Example 12 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 1 and 2.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して
単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

参考例12及び参考例13のアニオン交換体の体積当りのイオン交換容量、水湿潤状態での有機多孔質イオン交換体の開口の平均直径、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚み、骨格部面積(SEM写真の写真領域中に占める割合)、全細孔容積、イオン交換帯長さ及び差圧係数などを表2にまとめて示した。   Ion exchange capacity per volume of the anion exchangers of Reference Example 12 and Reference Example 13, average diameter of openings of organic porous ion exchangers in a wet state of water, and walls constituting the skeleton obtained by the same method as that of monolith Table 2 summarizes the average thickness, skeleton area (ratio in the photographic region of the SEM photograph), total pore volume, ion exchange zone length, differential pressure coefficient, and the like.

次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

<第2のモノリスイオン交換体の製造(参考例14)>
(I工程;モノリス中間体の製造)
スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図7)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
<Production of Second Monolith Ion Exchanger (Reference Example 14)>
(Step I; production of monolith intermediate)
5.4 g of styrene, 0.17 g of divinylbenzene, 1.4 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. When the internal structure of the monolith intermediate (dry body) obtained in this way was observed with an SEM image (FIG. 7), the wall portion separating two adjacent macropores was very thin and rod-shaped, but the open cell structure The average diameter of the openings (mesopores) where the macropores overlap with each other as measured by the mercury intrusion method was 70 μm, and the total pore volume was 21.0 ml / g.

(共連続構造モノリスの製造)
次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monocontinuous monolith)
Subsequently, 76.0 g of styrene, 4.0 g of divinylbenzene, 120 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 40 mm to fractionate 4.1 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは10μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは17μm、全細孔容積は2.9ml/gであった。その結果を表3及び4にまとめて示す。表4中、骨格の太さは骨格の直径で表した。   When the internal structure of the monolith (dry body) containing 3.2 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained in this way was observed by SEM, the monolith had a skeleton and pores, respectively. It was a three-dimensional continuous structure with both phases intertwined. Moreover, the thickness of the skeleton measured from the SEM image was 10 μm. Further, the size of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 17 μm, and the total pore volume was 2.9 ml / g. The results are summarized in Tables 3 and 4. In Table 4, the thickness of the skeleton was represented by the diameter of the skeleton.

(共連続構造モノリス状カチオン交換体の製造)
上記の方法で製造したモノリスを、直径75mm、厚み約15mmの円盤状に切断した。モノリスの重量は18gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸99gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して共連続構造を有するモノリスカチオン交換体を得た。
(Production of co-continuous monolithic cation exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 75 mm and a thickness of about 15 mm. The weight of the monolith was 18 g. To this was added 1500 ml of dichloromethane, heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 99 g of chlorosulfuric acid, heated up and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a co-continuous structure.

得られたカチオン交換体を一部切り出し、乾燥させた後、その内部構造をSEMにより観察したところ、当該モノリスカチオン体は共連続構造を維持していることを確認した。そのSEM画像を図8に示す。また、該カチオン交換体の反応前後の膨潤率は1.4倍であり、体積当りのイオン交換容量は水湿潤状態で0.74mg当量/mlであった。水湿潤状態でのモノリスの連続空孔の大きさを、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ24μmであり、骨格の直径は14μm、全細孔容積は2.9ml/gであった。   A part of the obtained cation exchanger was cut out and dried, and then its internal structure was observed by SEM. As a result, it was confirmed that the monolith cation body maintained a co-continuous structure. The SEM image is shown in FIG. Moreover, the swelling ratio before and after the reaction of the cation exchanger was 1.4 times, and the ion exchange capacity per volume was 0.74 mg equivalent / ml in a water-wet state. The size of the continuous pores of the monolith in the water wet state was estimated from the value of the monolith and the swelling ratio of the cation exchanger in the water wet state to be 24 μm, the skeleton diameter was 14 μm, and the total pore volume was 2. It was 9 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は、0.052MPa/m・LVであった。更に、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは16mmであり、市販の強酸性カチオン交換樹脂であるアンバーライトIR120B(ロームアンドハース社製)の値(320mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質カチオン交換体の値に比べても短かった。その結果を表4にまとめて示す。   The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.052 MPa / m · LV. Furthermore, when the ion exchange zone length for sodium ions of the monolith cation exchanger was measured, the ion exchange zone length at LV = 20 m / h was 16 mm. Amberlite IR120B (a commercially available strong acid cation exchange resin) It was not only overwhelmingly shorter than the value (320 mm) manufactured by Rohm and Haas, but also shorter than the value of the monolithic porous cation exchanger having a conventional open cell structure. The results are summarized in Table 4.

次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図9及び図10に示す。図9及び図10共に、左右の写真はそれぞれ対応している。図9は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図10は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図9左側の写真中、左右傾斜して延びるものが骨格部であり、図10左側の写真中、2つの円形状は骨格の断面である。図9及び図10より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 9 and 10, the left and right photographs correspond to each other. FIG. 9 shows a distribution state of sulfur atoms on the surface of the cation exchanger, and FIG. 10 shows a distribution state of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. In the photograph on the left side of FIG. 9, a part extending in a horizontal direction is a skeleton part, and in the photograph on the left side of FIG. 10, two circular shapes are cross sections of the skeleton. 9 and 10, it can be seen that the sulfonic acid groups are uniformly introduced into the surface of the cation exchanger and inside the skeleton (cross-sectional direction).

<第2のモノリスイオン交換体の製造(参考例15〜17)>
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表3に示す配合量に変更した以外は、参考例14と同様の方法で共連続構造を有するモノリスを製造した。なお、参考例17は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例14と同様の方法で行ったものである。その結果を表3及び表4に示す。
<Production of Second Monolith Ion Exchanger (Reference Examples 15 to 17)>
(Manufacture of monolith with co-continuous structure)
Except for changing the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used as shown in Table 3. A monolith having a co-continuous structure was produced in the same manner as in Reference Example 14. Reference Example 17 was carried out in the same manner as Reference Example 14 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 3 and 4.

(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表4に示す配合量に変更した以外は、参考例14と同様の方法で共連続構造を有するモノリスを製造した。その結果を表3及び表4に示す。
(Manufacture of monolith with co-continuous structure)
The amount of styrene used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used were changed to the amounts shown in Table 4. Except for the above, a monolith having a co-continuous structure was produced in the same manner as in Reference Example 14. The results are shown in Tables 3 and 4.

(共連続構造を有するモノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ参考例14と同様の方法でクロロ硫酸と反応させ、共連続構造を有するモノリスカチオン交換体を製造した。その結果を表4に示す。また、得られた共連続構造を有するモノリスカチオン交換体の内部構造は、不図示のSEM画像及び表4から参考例15〜17で得られたモノリスカチオン交換体は差圧係数が小さい、体積当りの交換容量が大きい、イオン交換帯長さが短いといった優れた特性を示した。また、参考例15のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger having a co-continuous structure)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 14 to produce a monolith cation exchanger having a co-continuous structure. The results are shown in Table 4. Further, the internal structure of the obtained monolithic cation exchanger having a co-continuous structure is as follows. The monolithic cation exchangers obtained in Reference Examples 15 to 17 from SEM images not shown and Table 4 have a small differential pressure coefficient per volume. Excellent exchange capacity and short ion exchange zone length. The monolith cation exchanger of Reference Example 15 was also evaluated for mechanical properties.

(モノリスカチオン交換体の機械的特性評価)
参考例15で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ23kPa、15kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは50%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 15 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state of water and used as a test piece for a tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 23 kPa and 15 kPa, respectively, which were significantly larger than the conventional monolith cation exchanger. Further, the tensile elongation at break was 50%, which was a value larger than that of the conventional monolith cation exchanger.

参考例18及び19
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表4に示す配合量に変更した以外は、参考例14と同様の方法で共連続構造を有するモノリスを製造した。なお、参考例19は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例18と同様の方法で行ったものである。その結果を表3及び表4に示す。
Reference Examples 18 and 19
(Manufacture of monolith with co-continuous structure)
Except that the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used were changed to the amounts shown in Table 4. A monolith having a co-continuous structure was produced in the same manner as in Reference Example 14. Reference Example 19 was carried out in the same manner as Reference Example 18 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 3 and 4.

(共連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger having a co-open cell structure)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

参考例18及び参考例19のアニオン交換体の体積当りのイオン交換容量、水湿潤状態での有機多孔質イオン交換体の連続空孔の平均直径、モノリスと同様の方法で求めた骨格の太さ、全細孔容積、イオン交換帯長さ及び差圧係数などを表4にまとめて示した。また、得られた共連続構造を有するモノリスアニオン交換体の内部構造はSEM画像(不図示)により観察した。   The ion exchange capacity per volume of the anion exchangers of Reference Example 18 and Reference Example 19, the average diameter of the continuous pores of the organic porous ion exchanger in a water-wet state, and the thickness of the skeleton obtained by the same method as that of the monolith Table 4 summarizes the total pore volume, ion exchange zone length, differential pressure coefficient, and the like. Moreover, the internal structure of the obtained monolith anion exchanger having a co-continuous structure was observed by an SEM image (not shown).

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の表面のみならず、内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the surface of the anion exchanger but also inside, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

参考例20
(連続マクロポア構造を有するモノリス状有機多孔質体(公知品)の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
Reference Example 20
(Manufacture of monolithic organic porous material having a continuous macropore structure (known product))
A monolithic organic porous body having a continuous macropore structure was produced according to the production method described in JP-A-2002-306976. That is, 19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of SMO and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolithic organic porous body having a continuous macropore structure.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した有機多孔質体の内部構造を表すSEMは、図12と同様の構造であった。図12から明らかなように、当該有機多孔質体は連続マクロポア構造を有しているが、連続マクロポア構造体の骨格を構成する壁部の厚みは実施例に比べて薄く、また、SEM画像から測定した壁部の平均厚みは5μm、骨格部面積はSEM画像領域中10%であった。また、水銀圧入法により測定した当該有機多孔質体の開口の平均直径は29μm、全細孔容積は、8.6ml/gであった。その結果を表5にまとめて示す。表1、2及び5中、メソポア直径は開口の平均直径を意味する。また、表1〜5中、厚み、骨格直径、空孔の値はそれぞれ平均を示す。   The SEM representing the internal structure of the organic porous material containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained had the same structure as FIG. As is clear from FIG. 12, the organic porous body has a continuous macropore structure, but the thickness of the wall portion constituting the skeleton of the continuous macropore structure is thinner than that of the example, and from the SEM image The measured wall thickness average thickness was 5 μm, and the skeleton area was 10% in the SEM image area. Moreover, the average diameter of the opening of the organic porous material measured by mercury porosimetry was 29 μm, and the total pore volume was 8.6 ml / g. The results are summarized in Table 5. In Tables 1, 2 and 5, the mesopore diameter means the average diameter of the openings. Moreover, in Tables 1-5, the value of thickness, skeleton diameter, and a void | hole each shows an average.

(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体(公知品)の製造)
上記の方法で製造した有機多孔質体を、外径70mm、厚み約15mmの円盤状に切断した。有機多孔質体の重量は6gであった。これにジクロロメタン1000mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸30gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.22mg当量/mlと参考例1などに比べて小さな値を示した。水湿潤状態での有機多孔質イオン交換体のメソポアの平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ46μmであり、骨格を構成する壁部の平均厚み8μm、骨格部面積はSEM画像領域中10%、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.013MPa/m・LVであった。結果を表5にまとめて示す。また、参考例20で得られたモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure (known product))
The organic porous body produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the organic porous material was 6 g. To this was added 1000 ml of dichloromethane, and the mixture was heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 30 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic porous cation exchanger having a continuous macropore structure. The swelling rate before and after the reaction of the obtained cation exchanger was 1.6 times, and the ion exchange capacity per volume was 0.22 mg equivalent / ml in a water-wet state, which was a small value compared to Reference Example 1 and the like. It was. The average diameter of the mesopores of the organic porous ion exchanger in the water wet state was 46 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average thickness was 8 μm, the skeleton part area was 10% in the SEM image area, and the total pore volume was 8.6 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.013 MPa / m · LV. The results are summarized in Table 5. The monolith cation exchanger obtained in Reference Example 20 was also evaluated for mechanical properties.

(従来のモノリスカチオン交換体の機械的特性評価)
参考例20で得られたモノリスカチオン交換体について、参考例8の評価方法と同様の方法で引張試験を行った。その結果、引張強度、引張弾性率はそれぞれ28kPa、12kPaであり、参考例8のモノリスカチオン交換体に比べて低い値であった。また、引張破断伸びも17%であり、本発明のモノリスカチオン交換体よりも小さかった。
(Mechanical property evaluation of conventional monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 20 was subjected to a tensile test by the same method as the evaluation method of Reference Example 8. As a result, the tensile strength and the tensile modulus were 28 kPa and 12 kPa, respectively, which were lower than the monolith cation exchanger of Reference Example 8. The tensile elongation at break was 17%, which was smaller than that of the monolith cation exchanger of the present invention.

参考例21〜23
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
スチレンの使用量、ジビニルベンゼンの使用量、SMOの使用量を表5に示す配合量に変更した以外は、参考例20と同様の方法で、従来技術により連続マクロポア構造を有するモノリス状有機多孔質体を製造した。結果を表5に示す。また、参考例23のモノリスの内部構造は不図示のSEMにより観察した。なお、参考例23は全細孔容積を最小とする条件であり、油相部に対してこれ以下の水の配合では、開口が形成できない。参考例21〜23のモノリスはいずれも、開口径が9〜18μmと小さく、骨格を構成する壁部の平均厚みも15μmと薄く、また、骨格部面積はSEM画像領域中最大でも22%と少なかった。
Reference Examples 21-23
(Manufacture of monolithic organic porous body having continuous macropore structure)
A monolithic organic porous material having a continuous macropore structure according to the conventional technique in the same manner as in Reference Example 20, except that the amount of styrene used, the amount of divinylbenzene, and the amount of SMO used are changed to the amounts shown in Table 5. The body was manufactured. The results are shown in Table 5. Further, the internal structure of the monolith of Reference Example 23 was observed with an SEM (not shown). In addition, Reference Example 23 is a condition for minimizing the total pore volume, and an opening cannot be formed by adding less water to the oil phase part. In all of the monoliths of Reference Examples 21 to 23, the opening diameter is small as 9 to 18 μm, the average thickness of the wall portion constituting the skeleton is as thin as 15 μm, and the skeleton portion area is as small as 22% at the maximum in the SEM image region. It was.

(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体の製造)
上記の方法で製造した有機多孔質体を、参考例20と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリス状多孔質カチオン交換体を製造した。結果を表5に示す。開口直径を大きくしようとすると壁部の厚みが小さくなったり、骨格が細くなったりする。一方、壁部を厚くしたり、骨格を太くしようとすると開口の直径が減少する傾向が認められた。その結果、差圧係数を低く押さえると体積当りのイオン交換容量が減少し、イオン交換容量を大きくすると差圧係数が増大した。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure)
The organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 20 to produce a monolithic porous cation exchanger having a continuous macropore structure. The results are shown in Table 5. If the opening diameter is increased, the thickness of the wall portion is reduced or the skeleton is reduced. On the other hand, when the wall portion was made thicker or the skeleton was made thicker, the diameter of the opening tended to decrease. As a result, when the differential pressure coefficient was kept low, the ion exchange capacity per volume decreased, and when the ion exchange capacity was increased, the differential pressure coefficient increased.

参考例24
II工程で用いる有機溶媒の種類をポリスチレンの良溶媒であるジオキサンに変更したことを除いて、参考例1と同様の方法でモノリスの製造を試みた。しかし、単離した生成物は透明であり、多孔構造の崩壊・消失が示唆された。確認のためSEM観察を行ったが、緻密構造しか観察されず、連続マクロポア構造は消失していた。
Reference Example 24
Monolith production was attempted in the same manner as in Reference Example 1, except that the type of organic solvent used in Step II was changed to dioxane, which is a good solvent for polystyrene. However, the isolated product was transparent, suggesting collapse / disappearance of the porous structure. SEM observation was performed for confirmation, but only a dense structure was observed, and the continuous macropore structure disappeared.

参考例25
(多孔質カチオン交換体(公知)の製造)
スチレン27.7g、ジビニルベンゼン6.9g、アゾビスイソブチロニトリル0.14g及びソルビタンモノオレエート3.8gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を450mlの純水に添加し、ホモジナイザーを用いて2万回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、油中水滴型エマルジョンをステンレス製のオートクレーブに移し、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、40℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を14モル%含有した多孔質体5gを分取し、テトラクロロエタン500gを加え、60℃で30分加熱した後、室温まで冷却し、クロロ硫酸25gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥して多孔質カチオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、不図示のSEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度を測定したところ、14,000l/分・m・MPaであった
Reference Example 25
(Production of porous cation exchanger (known))
27.7 g of styrene, 6.9 g of divinylbenzene, 0.14 g of azobisisobutyronitrile and 3.8 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 450 ml of pure water, stirred at 20,000 rpm for 2 minutes using a homogenizer, and a water-in-oil emulsion. Got. After emulsification, the water-in-oil emulsion was transferred to a stainless steel autoclave, sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol, unreacted monomer and sorbitan monooleate were removed, and dried under reduced pressure at 40 ° C. overnight. 5 g of a porous material containing 14 mol% of a crosslinking component composed of a styrene / divinylbenzene copolymer obtained in this manner was collected, 500 g of tetrachloroethane was added, and the mixture was heated at 60 ° C. for 30 minutes, and then to room temperature. After cooling, 25 g of chlorosulfuric acid was gradually added and reacted at room temperature for 24 hours. Thereafter, acetic acid was added, the reaction product was poured into a large amount of water, washed with water and dried to obtain a porous cation exchanger. The ion exchange capacity of this porous material is 4.0 mg equivalent / g in terms of dry porous material, and sulfonic acid groups are uniformly introduced into the porous material by mapping of sulfur atoms using EPMA. It was confirmed. Further, as a result of SEM observation (not shown), the internal structure of the porous body has an open cell structure, and most of the macropores having an average diameter of 30 μm are overlapped, and the mesopores formed by the overlap of the macropores and the macropores. The average diameter was 5 μm and the total pore volume was 10.1 ml / g. The porous body was cut out to a thickness of 10 mm, and the water permeation rate was measured. As a result, it was 14,000 l / min · m 2 · MPa.

なお、参考例1〜11及び参考例20〜23で製造したモノリスイオン交換体について、差圧係数と体積当りのイオン交換容量の関係を図4に示した。図4から明らかなように、参考例1〜11に対して公知の参考例20〜23は差圧係数とイオン交換容量のバランスが悪いことがわかる。一方、参考例1〜11は体積当りのイオン交換容量が大きく、更に差圧係数も低いことがわかる。   In addition, about the monolith ion exchanger manufactured by Reference Examples 1-11 and Reference Examples 20-23, the relationship between a differential pressure coefficient and the ion exchange capacity per volume was shown in FIG. As is clear from FIG. 4, it can be seen that the known reference examples 20 to 23 have a poor balance between the differential pressure coefficient and the ion exchange capacity with respect to the reference examples 1 to 11. On the other hand, it is understood that Reference Examples 1 to 11 have a large ion exchange capacity per volume and a low differential pressure coefficient.

イオン交換体を充填した内径57mmのカラムに対して原水を、上方から下方へ下向流となるように通水し、処理水中のナトリウム濃度が1μg/lを上回る時間を測定した。また、通水中の通水差圧も測定した。この通水実験の条件は下記の通りである。その結果、処理水中のナトリウム濃度が1μg/lを上回る時間は114日であった。また、通水差圧は24kPaであった。   Raw water was passed through a column having an inner diameter of 57 mm packed with an ion exchanger so as to flow downward from above, and the time during which the sodium concentration in the treated water exceeded 1 μg / l was measured. Moreover, the water flow differential pressure during water flow was also measured. The conditions of this water flow experiment are as follows. As a result, the time when the sodium concentration in the treated water exceeded 1 μg / l was 114 days. The water flow differential pressure was 24 kPa.

(通水条件)
・ イオン交換体;上流側が粒状のカチオン交換樹脂とアニオン交換樹脂の混合樹脂(混合比率=1:1(充填体積比)、樹脂層高;300mm)と下流側がモノリス(直径57mm、高さ40mm)の積層体
・ カチオン交換樹脂;IR120B(商品名)
・ アニオン交換樹脂;IRA402BL(商品名)
・ 原水;NaCl水溶液、ナトリウム濃度80μg/l
・ 流量;120l/h
・ モノリス;参考例8のカチオンモノリス
(Water flow conditions)
・ Ion exchanger: Mixed resin of granular cation exchange resin and anion exchange resin on the upstream side (mixing ratio = 1: 1 (fill volume ratio), resin layer height: 300 mm) and monolith on the downstream side (diameter 57 mm, height 40 mm) Laminate of cation exchange resin; IR120B (trade name)
・ Anion exchange resin; IRA402BL (trade name)
Raw water: NaCl aqueous solution, sodium concentration 80 μg / l
・ Flow rate: 120 l / h
Monolith; cationic monolith of Reference Example 8

カチオン交換樹脂は、一度塩化ナトリウムでNa型にした後、1N塩酸で再生率99%で再生後、超純水で十分に洗浄して再生形とし使用した。なお、再生率とは樹脂に吸着できる交換容量の内、H型の容量の割合を言う。   The cation exchange resin was once made into Na type with sodium chloride, regenerated with 99% regeneration rate with 1N hydrochloric acid, washed thoroughly with ultrapure water and used in a regenerated form. The regeneration rate is the ratio of the H-type capacity among the exchange capacity that can be adsorbed to the resin.

参考例8のカチオンモノリスに代えて、参考例17のカチオンモノリスを使用した以外は、実施例1と同様の方法で行った。その結果、処理水中のナトリウム濃度が1μg/lを上回る時間は147日であった。また、通水差圧は18kPaであった。   The same procedure as in Example 1 was performed except that the cation monolith of Reference Example 17 was used instead of the cation monolith of Reference Example 8. As a result, the time when the sodium concentration in the treated water exceeded 1 μg / l was 147 days. Moreover, the water flow differential pressure was 18 kPa.

比較例1
参考例8のカチオンモノリスに代えて、参考例25のカチオンモノリスを使用した以外は、実施例1と同様の方法で行った。その結果、処理水中のナトリウム濃度が1μg/lを上回る時間は21日であった。また、通水差圧は230kPaであった。
Comparative Example 1
The same procedure as in Example 1 was performed except that the cation monolith of Reference Example 25 was used instead of the cation monolith of Reference Example 8. As a result, the time during which the sodium concentration in the treated water exceeded 1 μg / l was 21 days. Moreover, the water flow differential pressure was 230 kPa.

比較例2
イオン交換体として、粒状のカチオン交換樹脂とアニオン交換樹脂の混合樹脂(樹脂層高;340mm)としたこと以外は、実施例1と同様の方法で行った。すなわち、比較例1はイオン交換体として、モノリスを使用せず、粒状のイオン交換樹脂100%としたものである。その結果、処理水中のナトリウム濃度が1μg/lを上回る時間は0日、すなわち、通水の初日から処理水中のナトリウム濃度が1μg/lを上回った。また、通水差圧は230kPaであった。
Comparative Example 2
The same procedure as in Example 1 was performed except that the ion exchanger was a mixed resin of a granular cation exchange resin and an anion exchange resin (resin layer height: 340 mm). That is, in Comparative Example 1, a monolith is not used as the ion exchanger, and the granular ion exchange resin is 100%. As a result, the time when the sodium concentration in the treated water exceeded 1 μg / l was 0 day, that is, the sodium concentration in the treated water exceeded 1 μg / l from the first day of water flow. Moreover, the water flow differential pressure was 230 kPa.

実施例1および2は比較例1及び2に比べて、吸着したイオンのリークが遅い。このため、イオン交換モジュールの交換頻度を減らすことができる。また、通水差圧が低いため、低圧での送水が可能である。
なお、実施例2は、参考例である。
In Examples 1 and 2, leakage of adsorbed ions is slower than in Comparative Examples 1 and 2. For this reason, the exchange frequency of an ion exchange module can be reduced. Moreover, since the water flow differential pressure is low, water can be fed at a low pressure.
In addition, Example 2 is a reference example.

Claims (7)

少なくとも被処理水が流入する開口を備える容器と、該容器に充填される気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体とを備えることを特徴とするイオン吸着モジュール。   At least a container having an opening through which water to be treated flows and a bubble-shaped macropore filled in the container overlap each other, and this overlapping portion is a continuous macropore structure having an average diameter of 30 to 300 μm in an wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. And the SEM image of the cut surface of the continuous macropore structure (dry body) includes an organic porous ion exchanger having a skeleton part area of 25 to 50% in the image region. A featured ion adsorption module. 前記容器は、被処理水が流入する開口に接続される被処理水流入配管と、処理水流出配管を備えることを特徴とする請求項1記載のイオン吸着モジュール。 The container, the ion adsorption module according to claim 1 Symbol mounting, characterized in that it comprises a treated water inlet pipe connected to an opening for-treatment water flows, the treated water outlet pipe. 前記有機多孔質イオン交換体が、有機多孔質陽イオン交換体と有機多孔質陰イオン交換体であって、該有機多孔質陽イオン交換体と該有機多孔質陰イオン交換体を積層充填してなることを特徴とする請求項1又は2のいずれか1項に記載のイオン吸着モジュール。 The organic porous ion exchanger is an organic porous cation exchanger and an organic porous anion exchanger, and the organic porous cation exchanger and the organic porous anion exchanger are stacked and filled. The ion adsorption module according to any one of claims 1 and 2 . 少なくとも被処理水が流入する開口を備える容器と、該容器に充填される粒状のイオン交換樹脂充填層と、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体充填層備え該被処理水が流入する開口側からこの順序で積層してなることを特徴とするイオン吸着モジュール。 A container having at least an opening through which water to be treated flows, a granular ion exchange resin packed layer filled in the container, and bubble-shaped macropores overlap each other, and the overlapping portion has an average diameter of 30 to 300 μm in a wet state of water. It is a continuous macropore structure that becomes an opening, and has a total pore volume of 0.5 to 5 ml / g, an ion exchange capacity per volume in a water-wet state of 0.4 to 5 mg equivalent / ml, and the ion exchange group is porous. Organic pores that are uniformly distributed in the porous ion exchanger and have a skeleton part area of 25 to 50% in the image area in the SEM image of the cut surface of the continuous macropore structure (dried body) ion adsorption module, characterized by a quality ion exchanger packed bed, formed by laminating from the opening side of該被treated water flows in this order. 状のイオン交換樹脂が充填されたイオン吸着モジュールと、
少なくとも被処理水が流入する開口を備える容器と、該容器に充填される気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体とを備えるイオン吸着モジュールと、
を備え、被処理水が、初めに該粒状のイオン交換樹脂に、次に該有機多孔質イオン交換体に、流入されるように配置されることを特徴とするイオン吸着モジュール。
An ion adsorption module which grain-like ion-exchange resin is filled,
A continuous macropore structure in which at least a container having an opening into which water to be treated flows and bubble-shaped macropores filled in the container overlap each other, and the overlapping part is an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), an ion adsorption comprising an organic porous ion exchanger having a skeleton part area of 25 to 50% in the image region Module,
The provided, the water to be treated, granular ion exchange resin initially, then the organic porous ion exchange material, wherein the to Louis on adsorption module that is arranged to be flowed.
気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体と被処理水を接触させることにより、該被処理水中のイオン性不純物を吸着除去することを特徴とする水処理方法。   Bubble-shaped macropores overlap each other, and the overlapping portion is a continuous macropore structure having an opening with an average diameter of 30 to 300 μm in a water wet state, the total pore volume is 0.5 to 5 ml / g, and the volume in a water wet state SEM of the cut surface of the continuous macropore structure (dried body) having an ion exchange capacity of 0.4 to 5 mg equivalent / ml, an ion exchange group uniformly distributed in the porous ion exchanger In the image, by adsorbing and removing ionic impurities in the water to be treated by bringing the water to be treated into contact with the organic porous ion exchanger having an area of 25 to 50% in the image area in the image area. A water treatment method characterized. 前記被処理水が、予め粒状のイオン交換樹脂で処理された処理水であることを特徴とする請求項記載の水処理方法。 The water treatment method according to claim 6 , wherein the water to be treated is treated water previously treated with a granular ion exchange resin.
JP2010027657A 2009-03-10 2010-02-10 Ion adsorption module and water treatment method Active JP5411737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027657A JP5411737B2 (en) 2009-03-10 2010-02-10 Ion adsorption module and water treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009057077 2009-03-10
JP2009057077 2009-03-10
JP2010027657A JP5411737B2 (en) 2009-03-10 2010-02-10 Ion adsorption module and water treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013195799A Division JP5685632B2 (en) 2009-03-10 2013-09-20 Ion adsorption module and water treatment method

Publications (2)

Publication Number Publication Date
JP2010234357A JP2010234357A (en) 2010-10-21
JP5411737B2 true JP5411737B2 (en) 2014-02-12

Family

ID=43089217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010027657A Active JP5411737B2 (en) 2009-03-10 2010-02-10 Ion adsorption module and water treatment method
JP2013195799A Active JP5685632B2 (en) 2009-03-10 2013-09-20 Ion adsorption module and water treatment method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013195799A Active JP5685632B2 (en) 2009-03-10 2013-09-20 Ion adsorption module and water treatment method

Country Status (1)

Country Link
JP (2) JP5411737B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
JP7081974B2 (en) * 2018-05-09 2022-06-07 オルガノ株式会社 Liquid purification cartridge and liquid purification method
JPWO2021166368A1 (en) * 2020-02-18 2021-08-26
JP7437276B2 (en) 2020-09-18 2024-02-22 オルガノ株式会社 Ion exchanger analysis method and ion exchanger pretreatment device
KR20230104263A (en) * 2020-11-12 2023-07-07 오르가노 코포레이션 Analysis method of metal impurity content

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712223B2 (en) * 2001-05-22 2011-06-29 オルガノ株式会社 Solid acid catalyst
JP4633955B2 (en) * 2001-04-13 2011-02-16 オルガノ株式会社 Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
KR20030016291A (en) * 2001-04-13 2003-02-26 오르가노 가부시키가이샤 Ion Exchanger
US20040122117A1 (en) * 2001-04-13 2004-06-24 Koji Yamanaka Composite porous ion-exchanger, method for manufacturing the ion-exchanger, deionization module using the ion-exchaner and electric deionized water manufacturing device
JP4034163B2 (en) * 2001-12-21 2008-01-16 オルガノ株式会社 Organic porous body, production method thereof, and organic porous ion exchanger
JP3966501B2 (en) * 2002-03-18 2007-08-29 オルガノ株式会社 Ultrapure water production equipment
JP4011440B2 (en) * 2002-08-28 2007-11-21 オルガノ株式会社 Ion adsorption module and water treatment method
JP2004321930A (en) * 2003-04-24 2004-11-18 Japan Organo Co Ltd Chemical filter
JP4428616B2 (en) * 2003-05-06 2010-03-10 オルガノ株式会社 Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP4216142B2 (en) * 2003-07-01 2009-01-28 オルガノ株式会社 Method for producing aminated organic porous material
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5019470B2 (en) * 2007-06-12 2012-09-05 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5208550B2 (en) * 2007-06-12 2013-06-12 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP4931006B2 (en) * 2007-08-03 2012-05-16 オルガノ株式会社 Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production
JP5019471B2 (en) * 2007-08-10 2012-09-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) * 2007-08-22 2013-09-18 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) * 2007-10-11 2012-09-12 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5089420B2 (en) * 2008-02-14 2012-12-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5131911B2 (en) * 2008-03-18 2013-01-30 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5486162B2 (en) * 2008-03-18 2014-05-07 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
US9346895B2 (en) * 2008-12-18 2016-05-24 Organo Corporation Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5116710B2 (en) * 2009-03-10 2013-01-09 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
CN102348505B (en) * 2009-03-10 2014-07-02 奥加诺株式会社 Ion adsorption module and method of treating water
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
JP5465463B2 (en) * 2009-05-12 2014-04-09 オルガノ株式会社 Ion adsorption module and water treatment method
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment

Also Published As

Publication number Publication date
JP5685632B2 (en) 2015-03-18
JP2014028370A (en) 2014-02-13
JP2010234357A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5685632B2 (en) Ion adsorption module and water treatment method
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5698813B2 (en) Ultrapure water production equipment
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5430983B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5116724B2 (en) Ultrapure water production equipment
TWI758266B (en) Method of refining organic solvent
JP2009191148A (en) Monolithic organic porous article, monolithic organic porous ion exchanger, method for producing the same, and chemical filter
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5116710B2 (en) Electric deionized water production apparatus and deionized water production method
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
JP5431195B2 (en) Electric deionized water production equipment
JP2010234359A (en) Electric deionized water production apparatus
JP5431197B2 (en) Electric deionized liquid production equipment
JP2019195763A (en) Liquid purification cartridge, and method of purifying liquid
JP2003166982A (en) Organic porous material, manufacturing method therefor, and organic porous ion exchanger
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JP5268722B2 (en) Solid acid catalyst
JP5642211B2 (en) Solid acid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250