JP2003166982A - Organic porous material, manufacturing method therefor, and organic porous ion exchanger - Google Patents

Organic porous material, manufacturing method therefor, and organic porous ion exchanger

Info

Publication number
JP2003166982A
JP2003166982A JP2002228616A JP2002228616A JP2003166982A JP 2003166982 A JP2003166982 A JP 2003166982A JP 2002228616 A JP2002228616 A JP 2002228616A JP 2002228616 A JP2002228616 A JP 2002228616A JP 2003166982 A JP2003166982 A JP 2003166982A
Authority
JP
Japan
Prior art keywords
organic porous
macropores
porous material
oil
ion exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228616A
Other languages
Japanese (ja)
Other versions
JP2003166982A5 (en
JP3957179B2 (en
Inventor
Hiroshi Inoue
洋 井上
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002228616A priority Critical patent/JP3957179B2/en
Publication of JP2003166982A publication Critical patent/JP2003166982A/en
Publication of JP2003166982A5 publication Critical patent/JP2003166982A5/ja
Application granted granted Critical
Publication of JP3957179B2 publication Critical patent/JP3957179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic porous material that can be used as an adsorbent, having a superior adsorption capacity and a high adsorption rate, an ion exchanger having high durability with respect to swelling and shrinkage, and filler for chromatography having superior dividability for a high-molecular weight compound and has a markedly large specific surface area. <P>SOLUTION: This organic porous material has a continuous cell structure, containing macro-pores connected to each other and meso-pores having a mean pore diameter of 1-1,000 μm in the walls of the macro-pores. This material also has noncontinuous micro-pores, having a means pore diameter of 5-800 μm in the internal wall of the cell structure constituted of the macro-pores and meso-pores. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の所属する技術分野】本発明は、吸着剤、クロマ
トグラフィー用充填剤およびイオン交換体として有用な
有機多孔質体、その製造方法および有機多孔質イオン交
換体に関するものである。
TECHNICAL FIELD The present invention relates to an organic porous material useful as an adsorbent, a packing material for chromatography, and an ion exchanger, a method for producing the same, and an organic porous ion exchanger.

【0002】[0002]

【従来の技術】互いにつながっているマクロポアとマク
ロポアの壁内にメソポアを有する連続気泡構造を有し、
更に上記気泡構造の内壁にミクロポアを有している多孔
質体としては、シリカ等で構成された無機多孔質体が知
られている(米国特許第5624875号)。そして、該無機
多孔質体はクロマトグラフィー用充填剤として活発な用
途開発がなされている。しかし、この無機多孔質体は親
水性であるため、吸着剤として用いるためには、表面の
疎水処理等の煩雑かつコストアップを伴う操作が必要で
あった。また、この無機多孔質体を水中に長時間保持す
ると、シリカの加水分解によって生じるシリケートイオ
ンが水中に溶出するため、純水や超純水を製造するため
のイオン交換体として用いることは、不可能であった。
一方、上記無機多孔質体をクロマトグラフィー用充填剤
として用いると、従来の粒状充填剤を用いた場合に比べ
格段に性能の向上が達成できることが報告されている
が、その製法上、メソポアの孔径は最大で50μmであ
るため、低圧で大流量の処理を行う際に制約を受けてい
た。また、ミクロポアの孔径も最大で100nm程度で
あるため、タンパク質や酵素といった高分子化合物の分
離において、高分子量成分の分画が不十分になるといっ
た問題を有していた。
2. Description of the Related Art An open-cell structure having macropores and mesopores in the walls of macropores that are connected to each other,
Further, as a porous body having micropores on the inner wall of the cell structure, an inorganic porous body made of silica or the like is known (US Pat. No. 5,624,875). The inorganic porous material has been actively developed as a packing material for chromatography. However, since this inorganic porous material is hydrophilic, it has been necessary to perform a complicated and costly operation such as hydrophobic treatment on the surface in order to use it as an adsorbent. Further, when this inorganic porous material is kept in water for a long time, silicate ions generated by hydrolysis of silica are eluted in water, and therefore it is not suitable to use as an ion exchanger for producing pure water or ultrapure water. It was possible.
On the other hand, it has been reported that when the above inorganic porous material is used as a packing material for chromatography, a marked improvement in performance can be achieved compared to the case where a conventional granular packing material is used. Has a maximum of 50 μm, and thus has been restricted when processing a large flow rate at a low pressure. In addition, since the pore size of the micropores is about 100 nm at the maximum, there is a problem that the fractionation of high molecular weight components becomes insufficient in the separation of high molecular weight compounds such as proteins and enzymes.

【0003】これに対して、連続孔を有する有機多孔質
体としては、粒子凝集型構造を有する多孔質体がF.Sve
c,Science,273,205〜211(1996)等に開示されている。
しかし、この方法で得られた多孔質体は粒子凝集型構造
のため、細孔容積が小さく、メソポアも大きくできない
ため、低圧で大流量の処理を行う際に制約を受けてい
た。また、ミクロポアの存在も不明確で比表面積が小さ
いため、吸着剤として用いたときに吸着能力が低く、ク
ロマトグラフィー用充填剤として用いた時に高分子化合
物を分子量ごとに分画することが困難であった。
On the other hand, as an organic porous material having continuous pores, a porous material having a particle aggregation type structure is F.Sve.
c, Science, 273, 205 to 211 (1996) and the like.
However, since the porous body obtained by this method has a particle agglomeration type structure, the pore volume is small and the mesopores cannot be large, so that it has been restricted when performing a large flow rate at low pressure. In addition, since the presence of micropores is unclear and the specific surface area is small, the adsorption capacity is low when used as an adsorbent, and it is difficult to fractionate high molecular compounds by molecular weight when used as a packing material for chromatography. there were.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、上記従来の技術の問題点を解決したものであって、
吸着容量や吸着速度に優れた吸着剤、膨潤や収縮に対す
る耐久性に優れたイオン交換体、高分子量化合物の分画
特性に優れたクロマトグラフィー用充填剤として用いる
ことのできる比表面積が格段に大きい有機多孔質体、そ
の製造方法および有機多孔質イオン交換体を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art.
Adsorbents with excellent adsorption capacity and adsorption rate, ion exchangers with excellent durability against swelling and shrinkage, and chromatographic packing materials with excellent fractionation properties for high molecular weight compounds have a remarkably large specific surface area. An object is to provide an organic porous material, a method for producing the same, and an organic porous ion exchanger.

【0005】[0005]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、イオン交換基を含ま
ない油溶性モノマー、特定の沈殿剤、界面活性剤及び水
を含有する油中水滴型エマルジョンを重合させて得られ
る有機多孔質体は、強度を保持しつつ、且つ細孔容積や
比表面積が格段に大きいため、吸着容量や吸着速度に優
れた吸着剤や、低圧、大流量の処理が可能で、膨潤や収
縮に対する耐久性に優れたイオン交換体や、高分子量化
合物の分画特性に優れたクロマトグラフィー用充填剤に
好適であることなどを見出し、本発明を完成するに至っ
た。すなわち、本発明(1)は、互いにつながっている
マクロポアとマクロポアの壁内に平均孔径が1〜100
0μmのメソポアを有する連続気泡構造を有し、前記マ
クロポアと前記メソポアで形成される気泡構造の内壁
に、更に平均孔径が5〜800nmの非連続孔であるミ
クロポアを有している有機多孔質体を提供するものであ
る。この有機多孔質体は、特定の連続気泡構造を有した
ものであり、従来の粒子凝集型多孔質体とは全く異なる
新規な構造である。また、該有機多孔質体は、強度を保
持しつつ、比較的大きなメソポアと非連続孔のミクロポ
アを採ることができるため、細孔容積や比表面積を格段
に大きくすることができる。このため、吸着容量や吸着
速度に優れた吸着剤や、低圧、大流量の処理が可能で、
膨潤や収縮に対する耐久性に優れたイオン交換体や、高
分子量化合物の分画特性に優れたクロマトグラフィー用
充填剤に好適である。
Under the circumstances, as a result of intensive investigations by the present inventors, in the oil containing an oil-soluble monomer containing no ion exchange group, a specific precipitating agent, a surfactant and water. An organic porous material obtained by polymerizing a water droplet type emulsion has an adsorbent excellent in adsorption capacity and adsorption rate, a low pressure, and a large flow rate while maintaining strength and having a remarkably large pore volume and specific surface area. It is possible to complete the present invention by discovering that it is suitable as an ion exchanger having excellent durability against swelling and shrinkage, and as a packing material for chromatography having excellent fractionation characteristics of high molecular weight compounds. I arrived. That is, in the present invention (1), the average pore size is 1 to 100 in the macropores and the walls of the macropores that are connected to each other.
An organic porous body having an open cell structure having 0 μm mesopores and further having micropores which are non-continuous pores having an average pore diameter of 5 to 800 nm on the inner wall of the cell structure formed of the macropores and the mesopores. Is provided. This organic porous body has a specific open cell structure, and has a novel structure which is completely different from the conventional particle aggregation type porous body. Further, since the organic porous body can have a relatively large mesopore and a micropore having discontinuous pores while maintaining strength, the pore volume and the specific surface area can be remarkably increased. Therefore, it is possible to process adsorbents with excellent adsorption capacity and adsorption rate, low pressure, and large flow rates.
It is suitable as an ion exchanger having excellent durability against swelling and contraction, and as a packing material for chromatography having excellent fractionation characteristics of high molecular weight compounds.

【0006】また、本発明(2)は、イオン交換基を含
まない油溶性モノマー、該油溶性モノマーが重合してで
きるポリマーに対する貧溶媒で且つ油溶性モノマーを溶
解する沈殿剤、界面活性剤及び水を含有する油中水滴型
エマルジョンを重合させ、次いで、未反応物を除去した
後、乾燥して前記有機多孔質体を製造する方法を提供す
るものである。かかる構成を採ることにより、前記有機
多孔質体を簡易に且つ確実に製造することができる。
The present invention (2) also provides an oil-soluble monomer containing no ion-exchange group, a precipitant which is a poor solvent for the polymer formed by polymerization of the oil-soluble monomer and which dissolves the oil-soluble monomer, a surfactant, and It is intended to provide a method for producing the above organic porous material by polymerizing a water-in-oil type emulsion containing water, removing unreacted materials, and then drying. By adopting such a configuration, the organic porous body can be easily and reliably manufactured.

【0007】また、本発明(3)は、互いにつながって
いるマクロポアとマクロポアの壁内に平均孔径が1〜1
000μmのメソポアを有する連続気泡構造を有し、前
記マクロポアと前記メソポアで形成される気泡構造の内
壁に、更に平均孔径が5〜800nmの非連続孔である
ミクロポアを有し、イオン交換容量が0.1μg当量/
g乾燥多孔質体以上である有機多孔質イオン交換体を提
供するものである。この有機多孔質イオン交換体は、例
えば、電気式脱イオン水製造装置のイオン交換膜間の空
間に充填し、脱塩室を構成させれば、膨潤、収縮に対す
る耐久性に優れ、且つ被処理水を低圧、大流量で通水す
ることが可能となる。
Further, in the present invention (3), the average pore diameter is 1 to 1 in the macropores and the walls of the macropores which are connected to each other.
It has an open cell structure having 000 μm mesopores, and further has micropores, which are discontinuous pores having an average pore diameter of 5 to 800 nm, on the inner wall of the cell structure formed by the macropores and the mesopores, and has an ion exchange capacity of 0. .1 μg equivalent /
g An organic porous ion exchanger having a dry porous body or more is provided. This organic porous ion exchanger is excellent in durability against swelling and shrinkage and can be treated by filling the space between the ion exchange membranes of an electric deionized water producing apparatus to form a desalting chamber. It is possible to pass water at a low pressure and a large flow rate.

【0008】[0008]

【発明の実施の形態】本発明の有機多孔質体および有機
多孔質イオン交換体の基本構造は、互いにつながってい
るマクロポアとマクロポアの壁内に平均孔径が1〜10
00μm、好ましくは5〜100μmのメソポアを有す
る連続気泡構造を有し、前記マクロポアと前記メソポア
で形成される気泡構造の内壁に、更に平均孔径が5〜8
00nm、好ましくは、5〜500nmの非連続孔であ
るミクロポアを有するものである。すなわち、連続気泡
構造は、通常、平均孔径2〜5000μmのマクロポア
とマクロポアが重なり合い、この重なる部分が共通の開
口となるメソポアを有するもので、その部分がオープン
ポア構造のものである。オープンポア構造は、液体や気
体を流せば該マクロポアと該メソポアで形成される気泡
構造内が流路となる。マクロポアとマクロポアの重なり
は、1個のマクロポアで1〜12個、多くのものは3〜
10個である。メソポアの平均孔径が1μm未満である
と、液体透過時または気体透過時の圧力損失が大きくな
ってしまうため好ましくない。一方、メソポアの平均孔
径が1000μmより大きいと、液体または気体と多孔
質イオン交換体との接触が不十分となり、その結果、吸
着特性やイオン交換特性が低下してしまうため好ましく
ない。有機多孔質体および有機多孔質イオン交換体の構
造が上記のような連続気泡構造をとることにより、マク
ロポア群やメソポア群を均一に形成できると共に、 F.S
vec,Science,273,205〜211(1996)などに記載されてい
るような粒子凝集型多孔質イオン交換体に比べて、細孔
容積を格段に大きくすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The basic structure of the organic porous material and the organic porous ion exchanger of the present invention is such that the average pore diameter is 1 to 10 in the macropores and the walls of the macropores which are connected to each other.
It has an open cell structure having mesopores of 00 μm, preferably 5 to 100 μm, and an average pore diameter of 5 to 8 is further formed on the inner wall of the cell structure formed of the macropores and the mesopores.
It has micropores that are discontinuous pores of 00 nm, preferably 5 to 500 nm. That is, the open-cell structure usually has macropores having an average pore diameter of 2 to 5000 μm and macropores that overlap with each other, and the overlapping portions have mesopores that serve as common openings, and that portion has an open pore structure. In the open pore structure, when a liquid or gas is made to flow, the inside of the bubble structure formed by the macropores and the mesopores becomes a flow path. The number of macropores that overlap is 1 to 12 per macropore, and 3 to 3 for most macropores.
It is ten. If the average pore diameter of the mesopores is less than 1 μm, the pressure loss during liquid permeation or gas permeation increases, which is not preferable. On the other hand, if the average pore diameter of the mesopores is larger than 1000 μm, the contact between the liquid or gas and the porous ion exchanger becomes insufficient, and as a result, the adsorption characteristics and the ion exchange characteristics deteriorate, which is not preferable. When the structure of the organic porous material and the organic porous ion exchanger has the above-described open cell structure, macropore groups and mesopore groups can be uniformly formed, and FS
The pore volume can be remarkably increased as compared with the particle aggregation type porous ion exchanger as described in vec, Science, 273, 205 to 211 (1996).

【0009】更に、前記平均孔径5〜800nmのミク
ロポアを気泡構造の内壁に導入することにより、比表面
積を格段に大きくすることができる。当該ミクロポアは
不定形状の微小凹凸により形成されるものであり、その
平均孔径は公知の水銀圧入法により求められる。ミクロ
ポアの平均孔径が5nm未満であると、比表面積があま
り大きくならないばかりでなく、クロマトグラフィー用
充填剤として用いた際にも優れた性能が得られにくいた
め好ましくない。一方、ミクロポアの平均孔径が800
nmを越えると、有機多孔質体や有機多孔質イオン交換
体の強度が低下してしまうため好ましくない。本発明の
有機多孔質体および有機多孔質イオン交換体の比表面積
は、多孔質体の全細孔容積の設定により大きく変化する
が、10〜500m2/gの範囲で任意に設定すること
ができる。本発明の有機多孔質体や有機イオン多孔質体
の比表面積は、従来の多孔質状合成吸着剤やイオン交換
樹脂では、せいぜい10m2/gであるから、それを超
える従来にはない高比表面積のものが使用できる。特
に、本発明の有機多孔質体を吸着剤として使用する場
合、比表面積が50〜500m2/gの範囲のものが吸
着効率が格段に向上する点で好適である。比表面積はB
ET法により求めることができる。
Furthermore, by introducing the micropores having an average pore diameter of 5 to 800 nm into the inner wall of the cell structure, the specific surface area can be remarkably increased. The micropores are formed by minute irregularities of indefinite shape, and the average pore diameter thereof is determined by the known mercury intrusion method. When the average pore size of the micropores is less than 5 nm, not only the specific surface area does not become so large, but also when used as a packing material for chromatography, it is difficult to obtain excellent performance, which is not preferable. On the other hand, the average pore size of the micropores is 800
When it exceeds nm, the strength of the organic porous material or the organic porous ion exchanger decreases, which is not preferable. The specific surface area of the organic porous material and the organic porous ion exchanger of the present invention largely varies depending on the setting of the total pore volume of the porous material, but it can be arbitrarily set within the range of 10 to 500 m 2 / g. it can. The specific surface area of the organic porous material or the organic ionic porous material of the present invention is at most 10 m 2 / g in the conventional porous synthetic adsorbent or ion exchange resin, and therefore exceeds the conventional high ratio. A surface area can be used. In particular, when the organic porous material of the present invention is used as an adsorbent, one having a specific surface area of 50 to 500 m 2 / g is suitable because the adsorption efficiency is remarkably improved. Specific surface area is B
It can be determined by the ET method.

【0010】また、該有機多孔質体および有機多孔質イ
オン交換体は、1〜50ml/gの全細孔容積を有する
ものである。全細孔容積が1ml/g未満であると、単
位断面積当りの透過液体または気体量が小さくなってし
まい、処理能力が低下してしまうため好ましくない。一
方、全細孔容積が50ml/gを超えると、該有機多孔
質体および有機多孔質イオン交換体の強度が著しく低下
してしまうため好ましくない。全細孔容積は、従来の多
孔質状合成吸着剤やイオン交換樹脂では、せいぜい0.
1〜0.9ml/gであるから、それを超える従来には
ない1〜50ml/g、好ましくは5〜50ml/gの
高細孔容積のものが使用できる。
The organic porous body and the organic porous ion exchanger have a total pore volume of 1 to 50 ml / g. If the total pore volume is less than 1 ml / g, the amount of permeated liquid or gas per unit cross-sectional area will be small, and the processing capacity will be reduced, such being undesirable. On the other hand, if the total pore volume exceeds 50 ml / g, the strength of the organic porous material and the organic porous ion exchanger will be significantly reduced, which is not preferable. The total pore volume of the conventional porous synthetic adsorbent and ion exchange resin is at most 0.
Since it is 1 to 0.9 ml / g, it is possible to use one having a high pore volume of 1 to 50 ml / g, preferably 5 to 50 ml / g, which has not been conventionally exceeded.

【0011】また、該有機多孔質体および有機多孔質イ
オン交換体の液体および気体の透過性は、液体の代表と
して水を、気体の代表として空気を用い、該有機多孔質
体および有機多孔質イオン交換体の厚みを10mmとし
た時の透過速度が、それぞれ100〜100000L/
分・m2・MPa、100〜50000m3/分・m2
MPaの範囲にあることが好ましい。透過速度、全細孔
容積および比表面積が上記範囲にあれば、これを吸着剤
やイオン交換体やクロマトグラフィー用充填剤として用
いた場合、液体または気体との接触面積が大きく、かつ
液体または気体の円滑な流通が可能となる上に、十分な
機械的強度を有しているため優れた性能が発揮できる。
連続気泡構造を形成する骨格部分の材料は、架橋構造を
有する有機ポリマー材料である。該ポリマー材料はポリ
マー材料を構成する全構成単位に対して、10〜90モ
ル%の架橋構造単位を含むことが好ましい。架橋構造単
位が10モル%未満であると、機械的強度が不足するた
め好ましくなく、一方、90モル%を越えると、イオン
交換基の導入が困難となり、イオン交換容量が低下して
しまうため好ましくない。
The liquid permeability and gas permeability of the organic porous body and the organic porous ion exchanger are determined by using water as a representative of liquid and air as a representative of gas. The permeation rate when the thickness of the ion exchanger is 10 mm is 100 to 100,000 L /
Min · m 2 · MPa, 100 to 50,000 m 3 / min · m 2 ·
It is preferably in the range of MPa. If the permeation rate, total pore volume and specific surface area are within the above ranges, when it is used as an adsorbent, an ion exchanger or a packing material for chromatography, the contact area with the liquid or gas is large and the liquid or gas is In addition to allowing smooth distribution, the excellent performance can be exhibited due to the sufficient mechanical strength.
The material of the skeleton portion forming the open cell structure is an organic polymer material having a crosslinked structure. The polymer material preferably contains 10 to 90 mol% of a crosslinked structural unit with respect to all the constituent units constituting the polymer material. If the cross-linking structural unit is less than 10 mol%, the mechanical strength will be insufficient, which is not preferable. On the other hand, if it exceeds 90 mol%, introduction of ion-exchange groups will be difficult and the ion-exchange capacity will decrease, which is preferable. Absent.

【0012】該ポリマー材料の種類に特に制限はなく、
例えば、ポリスチレン、ポリ(α-メチルスチレン)、
ポリビニルベンジルクロライド等のスチレン系ポリマ
ー;ポリエチレン、ポリプロピレン等のポリオレフィ
ン;ポリ塩化ビニル、ポリテトラフルオロエチレン等の
ポリ(ハロゲン化オレフィン);ポリアクリロニトリル
等のニトリル系ポリマー;ポリメタクリル酸メチル、ポ
リアクリル酸エチル等の(メタ)アクリル系ポリマー;
スチレン−ジビニルベンゼン共重合体、ビニルベンジル
クロライド−ジビニルベンゼン共重合体等が挙げられ
る。上記ポリマーは、単独のモノマーを重合させて得ら
れるホモポリマーでも、複数のモノマーを重合させて得
られるコポリマーであってもよく、また、二種類以上の
ポリマーがブレンドされたものであってもよい。これら
有機ポリマー材料の中で、イオン交換基導入の容易性と
機械的強度の高さから、スチレン−ジビニルベンゼン共
重合体やビニルベンジルクロライド−ジビニルベンゼン
共重合体が好ましい材料として挙げられる。本発明の有
機多孔質体または有機多孔質イオン交換体の連続気泡構
造は、SEMで観察できる。また、マクロポアの孔径お
よびメソポアの孔径もSEM観察により決定される。
The type of the polymer material is not particularly limited,
For example, polystyrene, poly (α-methylstyrene),
Styrene polymers such as polyvinylbenzyl chloride; polyolefins such as polyethylene and polypropylene; poly (halogenated olefins) such as polyvinyl chloride and polytetrafluoroethylene; nitrile polymers such as polyacrylonitrile; polymethyl methacrylate, polyethyl acrylate (Meth) acrylic polymers such as;
Examples thereof include styrene-divinylbenzene copolymer and vinylbenzyl chloride-divinylbenzene copolymer. The polymer may be a homopolymer obtained by polymerizing a single monomer, a copolymer obtained by polymerizing a plurality of monomers, or a blend of two or more kinds of polymers. . Among these organic polymer materials, a styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are mentioned as preferable materials because of easy introduction of ion exchange groups and high mechanical strength. The open cell structure of the organic porous material or organic porous ion exchanger of the present invention can be observed by SEM. The pore size of macropores and the pore size of mesopores are also determined by SEM observation.

【0013】本発明の有機多孔質体を吸着剤として使用
する場合、例えば、円筒型カラムや角型カラムに、有機
多孔質体を当該カラムに挿入できる形状に切り出したも
のを吸着剤として充填し、これにベンゼン、トルエン、
フェノール、パラフィン等の疎水性物質を含有する被処
理水を通水させれば、該吸着剤に前記疎水性物質が効率
よく吸着される。従来の多孔質状合成吸着剤の比表面積
および細孔容積が、大きいものでせいぜい10m2/g
および0.9ml/gであるから、本発明の吸着剤は従
来型吸着剤に比して、吸着能力で数倍以上のものを得る
ことができる。
When the organic porous material of the present invention is used as an adsorbent, for example, a cylindrical column or a rectangular column, which is cut into a shape capable of inserting the organic porous material into the column, is packed as the adsorbent. , Benzene, toluene,
By passing water to be treated containing a hydrophobic substance such as phenol or paraffin, the hydrophobic substance is efficiently adsorbed to the adsorbent. The specific surface area and pore volume of conventional porous synthetic adsorbents are large at most 10 m 2 / g
Since it is 0.9 ml / g, the adsorbent of the present invention can obtain adsorbent having several times or more adsorption ability as compared with the conventional adsorbent.

【0014】本発明の有機多孔質体をクロマトグラフィ
ー用充填剤として使用する場合、例えば、円筒型カラム
や角型カラムに、有機多孔質体を当該カラムに挿入でき
る形状に切り出したものを充填剤として充填し、これに
たんぱく質や酵素といった高分子化合物を含有する被処
理液を通液させれば、強度を保持しつつ、接触面積を大
きくとれるから、前記たんぱく質や酵素の高分子量成分
の分画が十分に行われる。従来の連続気泡構造の無機多
孔質体では、ミクロポアの孔径が最大で100nmであ
るから、本発明のクロマトグラフィー用充填剤は従来型
充填剤に比して、高分子成分の分画能力に優れたものを
得ることができる。クロマトグラフィーとしては、イオ
ンクロマトグラフィー、逆相液体クロマトグラフィーお
よび順相液体クロマトグラフィーを挙げることができ
る。
When the organic porous material of the present invention is used as a packing material for chromatography, for example, a packing material obtained by cutting an organic porous material into a shape capable of being inserted into the column or a rectangular column is used as the packing material. If the solution to be treated containing high-molecular compounds such as proteins and enzymes is passed through it, the contact area can be increased while maintaining strength. Is done well. In a conventional inorganic porous body having an open-cell structure, the pore size of the micropores is 100 nm at the maximum, so the packing material for chromatography of the present invention is superior to the conventional packing material in the fractionation ability of the polymer component. You can get what you want. Chromatography can include ion chromatography, reverse phase liquid chromatography and normal phase liquid chromatography.

【0015】本発明の有機多孔質イオン交換体は、0.
1μg当量/g乾燥多孔質体以上、好ましくは1.0μ
g当量/g乾燥多孔質体以上のイオン交換容量を有して
いるものである。イオン交換容量が0.1μg当量/g
乾燥多孔質体未満であると、イオン交換能が低下してし
まうため好ましくない。有機多孔質体に導入するイオン
交換基としては、スルホン酸基、カルボン酸基、イミノ
二酢酸、リン酸基、リン酸エステル基等のカチオン交換
基;四級アンモニウム基、三級アミノ基、二級アミノ
基、一級アミノ基、ポリエチレンイミン、第三スルホニ
ウム基、ホスホニウム基等のアニオン交換基;ベタイ
ン、スルホベタイン等の両性イオン交換基が挙げられ
る。
The organic porous ion exchanger of the present invention comprises
1 μg equivalent / g or more of dried porous body, preferably 1.0 μ
It has an ion exchange capacity equal to or more than g equivalent / g dry porous body. Ion exchange capacity is 0.1 μg equivalent / g
If the amount is less than that of the dry porous body, the ion exchange capacity will be reduced, which is not preferable. As the ion exchange group to be introduced into the organic porous material, cation exchange groups such as sulfonic acid group, carboxylic acid group, iminodiacetic acid, phosphoric acid group, and phosphoric acid ester group; quaternary ammonium group, tertiary amino group, secondary ion group Anion exchange groups such as primary amino group, primary amino group, polyethyleneimine, tertiary sulfonium group and phosphonium group; amphoteric ion exchange groups such as betaine and sulfobetaine.

【0016】本発明の有機多孔質体および有機多孔質イ
オン交換体は、互いにつながっているマクロポアとマク
ロポアの壁内に平均孔径が1〜1000μmのメソポア
を有する連続気泡構造を有し、前記マクロポアと前記メ
ソポアで形成される気泡構造の内壁に、更に平均孔径が
5〜800nmの非連続孔であるミクロポアを有するも
のであり、従来の粒子凝集型多孔質体とは全く異なる新
規な構造であり、多孔質体の強度を保持しつつ、細孔容積
や比表面積を格段に大きくすることができる。
The organic porous material and the organic porous ion exchanger of the present invention have a continuous cell structure having macropores connected to each other and mesopores having an average pore diameter of 1 to 1000 μm in the walls of the macropores. The inner wall of the cell structure formed of the mesopores further has micropores having non-continuous pores having an average pore diameter of 5 to 800 nm, which is a novel structure completely different from the conventional particle aggregation type porous body, The pore volume and the specific surface area can be remarkably increased while maintaining the strength of the porous body.

【0017】上記有機多孔質体の製造方法の一例を以下
に示す。すなわち、当該有機多孔質体は、イオン交換基
を含まない油溶性モノマー、該油溶性モノマーが重合し
てできるポリマーに対する貧溶媒でかつ油溶性モノマー
を溶解する沈殿剤、界面活性剤、水および必要に応じて
重合開始剤とを混合し、油中水滴型エマルジョンを調製
し、これを重合させて製造する。
An example of the method for producing the above organic porous material is shown below. That is, the organic porous material is an oil-soluble monomer containing no ion-exchange group, a precipitant that is a poor solvent for the polymer formed by polymerization of the oil-soluble monomer and that dissolves the oil-soluble monomer, a surfactant, water and necessary A water-in-oil type emulsion is prepared by mixing with a polymerization initiator according to the above and polymerized to produce.

【0018】イオン交換基を含まない油溶性モノマーと
しては、カルボン酸基、スルホン酸基、四級アンモニウ
ム基等のイオン交換基を含まず、水に対する溶解性が低
く、親油性のモノマーを指すものである。これらモノマ
ーの具体例としては、スチレン、α-メチルスチレン、
ビニルトルエン、ビニルベンジルクロライド、ジビニル
ベンゼン、エチレン、プロピレン、イソブテン、ブタジ
エン、イソプレン、クロロプレン、塩化ビニル、臭化ビ
ニル、塩化ビニリデン、テトラフルオロエチレン、アク
リロニトリル、メタクリロニトリル、酢酸ビニル、アク
リル酸メチル、アクリル酸エチル、アクリル酸ブチル、
アクリル酸2-エチルヘキシル、トリメチロールプロパン
トリアクリレート、ブタンジオールジアクリレート、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
プロピル、メタクリル酸ブチル、メタクリル酸2-エチル
ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸
ベンジル、メタクリル酸グリシジル、エチレングリコー
ルジメタクリレート等が挙げられる。これらモノマー
は、1種単独又は2種以上を組み合わせて使用すること
ができる。ただし、本発明においては、ジビニルベンゼ
ン、エチレングリコールジメタクリレート等の架橋性モ
ノマーを少なくとも油溶性モノマーの一成分として選択
し、その含有量を全油溶性モノマー中、10〜90モル
%、好ましくは12〜80モル%とすることが、後の工
程でイオン交換基量を多く導入するに際して必要な機械
的強度が得られる点で好ましい。
The oil-soluble monomer containing no ion-exchange group refers to a lipophilic monomer which does not contain an ion-exchange group such as a carboxylic acid group, a sulfonic acid group or a quaternary ammonium group and has low solubility in water. Is. Specific examples of these monomers include styrene, α-methylstyrene,
Vinyltoluene, vinylbenzyl chloride, divinylbenzene, ethylene, propylene, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, vinyl bromide, vinylidene chloride, tetrafluoroethylene, acrylonitrile, methacrylonitrile, vinyl acetate, methyl acrylate, acrylic Ethyl acid, butyl acrylate,
2-ethylhexyl acrylate, trimethylolpropane triacrylate, butanediol diacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate , Ethylene glycol dimethacrylate and the like. These monomers may be used alone or in combination of two or more. However, in the present invention, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 10 to 90 mol%, preferably 12 of all the oil-soluble monomers. It is preferably set to -80 mol% from the viewpoint of obtaining the mechanical strength necessary for introducing a large amount of ion exchange groups in the subsequent step.

【0019】該油溶性モノマーが重合してできるポリマ
ーに対する貧溶媒でかつ油溶性モノマーを溶解する沈殿
剤としては、油溶性モノマーの種類により種々選択する
ことができる。例えば、油溶性モノマーとしてスチレン
とジビニルベンゼンの混合物を用いた場合、沈殿剤とし
ては、ヘキサン、ヘプタン、オクタン、イソオクタン、
デカン等の脂肪族炭化水素;1-ブタノール、2-ブタノー
ル、2-メチル-2-ブタノール、メチルイソブチルカルビ
ノール等のアルコールを用いることができる。該沈殿剤
の添加量は、油溶性モノマー中のジビニルベンゼンの含
有量により変動するが、油溶性モノマーと沈殿剤の合計
量に対して10〜70%、好ましくは20〜60%の範
囲で選択することができる。上記沈殿剤の添加により、
例えば、スチレンとジビニルベンゼンの初期の重合体が
油溶性モノマーなどの油分に溶解し難くなり、その結
果、ミクロ粒子状で沈殿し、これらミクロ粒子状物が集
合体となり、表面に微小の凹凸を発現させる。沈殿剤の
添加量が多いと、多くのミクロポアを発現させるもの
の、強度が低下する傾向となり、少ないとミクロポアが
発現し難くなる。また、ミクロポアの孔径は、沈殿剤の
配合量を適宜選択することや架橋性モノマーと沈殿剤の
配合比率を適宜選択することで制御することができる。
上記ミクロポアを形成させる方法としては、上記沈殿剤
の添加以外に、例えば、油溶性モノマーの重合体である
直鎖状重合体を添加する方法、該油溶性モノマーが重合
してできるポリマーに対する良溶媒である膨潤化剤を上
記沈殿剤と共に添加する方法および上記直鎖状重合体と
膨潤化剤または沈殿剤を併用する方法が挙げられる。
The precipitating agent which is a poor solvent for the polymer formed by polymerizing the oil-soluble monomer and which dissolves the oil-soluble monomer can be variously selected depending on the kind of the oil-soluble monomer. For example, when a mixture of styrene and divinylbenzene is used as the oil-soluble monomer, the precipitant is hexane, heptane, octane, isooctane,
Aliphatic hydrocarbons such as decane; alcohols such as 1-butanol, 2-butanol, 2-methyl-2-butanol, and methylisobutylcarbinol can be used. The addition amount of the precipitant varies depending on the content of divinylbenzene in the oil-soluble monomer, but is selected in the range of 10 to 70%, preferably 20 to 60% with respect to the total amount of the oil-soluble monomer and the precipitant. can do. By adding the above precipitant,
For example, the initial polymer of styrene and divinylbenzene becomes difficult to dissolve in oil components such as oil-soluble monomers, and as a result, it precipitates in the form of microparticles, and these microparticulates form aggregates, with minute irregularities on the surface. Express. When the amount of the precipitant added is large, many micropores are expressed, but the strength tends to decrease, and when the amount is small, the micropores are hard to be expressed. Further, the pore size of the micropores can be controlled by appropriately selecting the compounding amount of the precipitating agent or appropriately selecting the compounding ratio of the crosslinkable monomer and the precipitating agent.
As a method of forming the micropores, in addition to the addition of the precipitating agent, for example, a method of adding a linear polymer which is a polymer of an oil-soluble monomer, a good solvent for a polymer formed by polymerization of the oil-soluble monomer And a method in which the linear polymer and the swelling agent or precipitating agent are used in combination.

【0020】界面活性剤は、イオン交換基を含まない油
溶性モノマーと水とを混合した際に、油中水滴型(W/
O)エマルジョンを形成できるものであれば特に制限は
なく、ソルビタンモノオレエート、ソルビタンモノラウ
レート、ソルビタンモノパルミテート、ソルビタンモノ
ステアレート、ソルビタントリオレエート、ポリオキシ
エチレンノニルフェニルエーテル、ポリオキシエチレン
ステアリルエーテル、ポリオキシエチレンソルビタンモ
ノオレエート等の非イオン界面活性剤;オレイン酸カリ
ウム、ドデシルベンゼンスルホン酸ナトリウム、スルホ
コハク酸ジオクチルナトリウム等の陰イオン界面活性
剤;ジステアリルジメチルアンモニウムクロライド等の
陽イオン界面活性剤;ラウリルジメチルベタイン等の両
性界面活性剤を用いることができる。これら界面活性剤
は、1種単独または2種類以上を組み合わせて使用する
ことができる。なお、油中水滴型エマルジョンとは、油
相が連続相となり、その中に水滴が分散しているエマル
ジョンを言う。上記界面活性剤の添加量は、油溶性モノ
マーの種類および目的とするエマルジョン粒子(マクロ
ポア)の大きさによって大幅に変動するため一概には言
えないが、油溶性モノマーと界面活性剤の合計量に対し
て約2〜70%の範囲で選択することができる。
The surfactant is a water-in-oil type (W / W) when an oil-soluble monomer containing no ion exchange group is mixed with water.
O) There is no particular limitation as long as it can form an emulsion, and sorbitan monooleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl. Nonionic surfactants such as ether and polyoxyethylene sorbitan monooleate; anionic surfactants such as potassium oleate, sodium dodecylbenzene sulfonate, dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride Agents: Amphoteric surfactants such as lauryl dimethyl betaine can be used. These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion is an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the above-mentioned surfactant added varies greatly depending on the type of the oil-soluble monomer and the size of the intended emulsion particles (macropores), so it cannot be said unequivocally, but the total amount of the oil-soluble monomer and the surfactant is On the other hand, it can be selected in the range of about 2 to 70%.

【0021】重合開始剤としては、熱及び光照射により
ラジカルを発生する化合物が好適に用いられる。重合開
始剤は水溶性であっても油溶性であっても良く、例え
ば、アゾビスイソブチロニトリル、アゾビスシクロヘキ
サンニトリル、アゾビスシクロヘキサンカルボニトリ
ル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモ
ニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸
性亜硫酸ナトリウム、テトラメチルチウラムジスルフィ
ド等が挙げられる。ただし、場合によっては、重合開始
剤を添加しなくても加熱のみや光照射のみで重合が進行
する系もあるため、そのような系では重合開始剤の添加
は不要である。
As the polymerization initiator, compounds that generate radicals by heat and light irradiation are preferably used. The polymerization initiator may be water-soluble or oil-soluble, and examples thereof include azobisisobutyronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, potassium persulfate, ammonium persulfate, and persulfate. Examples thereof include hydrogen oxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide. However, in some cases, even if the polymerization initiator is not added, there is a system in which the polymerization proceeds only by heating or only by irradiation of light, so that the addition of the polymerization initiator is not necessary in such a system.

【0022】イオン交換基を含まない油溶性モノマー、
沈殿剤、界面活性剤、水および重合開始剤とを混合し、
油中水滴型エマルジョンを形成させる際の混合方法とし
ては、特に制限はなく、各成分を一括して一度に混合す
る方法;油溶性モノマー、沈殿剤、界面活性剤および油
溶性重合開始剤である油溶性成分と、水や水溶性重合開
始剤である水溶性成分とを別々に均一溶解させた後、そ
れぞれの成分を混合する方法等が使用できる。エマルジ
ョンを形成させるための混合装置についても特に制限は
なく、通常のミキサーやホモジナイザー、高圧ホモジナ
イザー、自転・公転方式スーパーミキサー、真空攪拌脱
泡ミキサー等を用いることができ、目的のエマルジョン
粒径を得るのに適切な装置を選択すればよい。また、混
合条件についても特に制限はなく、目的のエマルジョン
粒径を得ることができる攪拌回転数や攪拌時間を、任意
に設定することができる。なお、上記油溶性成分と水溶
性成分の混合比は、重量比で(油溶性成分)/(水溶性
成分)=2/98〜50/50、好ましくは5/95〜
30/70の範囲で任意に設定することができる。
An oil-soluble monomer containing no ion exchange group,
Mix the precipitant, surfactant, water and polymerization initiator,
The mixing method for forming the water-in-oil emulsion is not particularly limited, and a method of mixing the components at once; an oil-soluble monomer, a precipitating agent, a surfactant and an oil-soluble polymerization initiator. A method in which an oil-soluble component and water or a water-soluble component which is a water-soluble polymerization initiator are separately and uniformly dissolved and then the respective components are mixed can be used. There is also no particular limitation on the mixing device for forming the emulsion, and an ordinary mixer, homogenizer, high-pressure homogenizer, rotation / revolution super mixer, vacuum stirring defoaming mixer, etc. can be used to obtain a desired emulsion particle size. An appropriate device can be selected for this. The mixing conditions are also not particularly limited, and the stirring rotation speed and stirring time with which the desired emulsion particle size can be obtained can be arbitrarily set. The mixing ratio of the oil-soluble component and the water-soluble component is (oil-soluble component) / (water-soluble component) = 2/98 to 50/50, preferably 5/95 to the weight ratio.
It can be arbitrarily set within the range of 30/70.

【0023】このようにして得られた油中水滴型エマル
ジョンを重合させる重合条件は、モノマーの種類、重合
開始剤系により様々な条件が選択できる。例えば、重合
開始剤としてアゾビスイソブチロニトリル、過酸化ベン
ゾイル、過硫酸カリウム等を用いたときには、不活性雰
囲気下の密封容器内において、30〜100℃で1〜4
8時間加熱重合させればよく、重合開始剤として過酸化
水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリ
ウム等を用いたときには、不活性雰囲気下の密封容器内
において、0〜30℃で1〜48時間重合させればよ
い。重合終了後、内容物を取り出し、必要であれば、未
反応モノマーと界面活性剤除去を目的に、イソプロパノ
ール等の溶剤で抽出して有機多孔質体を得る。すなわ
ち、油中水滴型エマルジョンのうち、油分が重合して骨
格構造を形成し、水滴部分が気泡構造部を形成すること
になる。
The polymerization conditions for polymerizing the water-in-oil emulsion thus obtained can be selected from various conditions depending on the type of monomer and the polymerization initiator system. For example, when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate, or the like is used as a polymerization initiator, it is 1 to 4 at 30 to 100 ° C. in a sealed container under an inert atmosphere.
It is sufficient to heat-polymerize for 8 hours, and when hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite or the like is used as a polymerization initiator, at 0 to 30 ° C. in a sealed container under an inert atmosphere. Polymerization may be performed for 1 to 48 hours. After the completion of the polymerization, the content is taken out, and if necessary, the organic porous material is obtained by extracting with a solvent such as isopropanol for the purpose of removing the unreacted monomer and the surfactant. That is, in the water-in-oil emulsion, the oil component is polymerized to form a skeleton structure, and the water droplet portion forms a bubble structure portion.

【0024】次に、本発明の有機多孔質イオン交換体の
製造方法について説明する。該有機多孔質イオン交換体
の製造方法としては、特に制限されず、イオン交換基を
含む成分を一段階で該有機多孔質イオン交換体とする方
法や、上記の方法等により有機多孔質体を製造した後、
イオン交換基を導入する方法などが挙げられる。このう
ち、有機多孔質体を製造した後、イオン交換基を導入す
る方法が、得られる有機多孔質イオン交換体の構造制御
を厳密にコントロールできる点で好ましい。
Next, a method for producing the organic porous ion exchanger of the present invention will be described. The method for producing the organic porous ion exchanger is not particularly limited, and a method of forming a component containing an ion exchange group into the organic porous ion exchanger in one step, or the organic porous material by the above method or the like is used. After manufacturing
Examples include a method of introducing an ion exchange group. Among these, the method of introducing an ion exchange group after producing the organic porous material is preferable in that the structure control of the obtained organic porous ion exchanger can be strictly controlled.

【0025】上記の有機多孔質体にイオン交換基を導入
する方法としては、特に制限はなく、高分子反応やグラ
フト重合等の公知の方法を用いることができる。例え
ば、スルホン酸基を導入する方法としては、有機多孔質
体がスチレン-ジビニルベンゼン共重合体等であればク
ロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方
法;エポキシ基を導入した有機多孔質体を亜硫酸ナトリ
ウム等と反応させてスルホン酸基を導入する方法;有機
多孔質体にラジカル開始基や連鎖移動基を導入し、スチ
レンスルホン酸ナトリウムやアクリルアミド−2−メチ
ルプロパンスルホン酸をグラフト重合する方法;同様に
グリシジルメタクリレートをグラフト重合した後、前述
と同様に、官能基変換によりスルホン酸基を導入する方
法等が挙げられる。また、四級アンモニウム基を導入す
る方法としては、有機多孔質体がスチレン-ジビニルベ
ンゼン共重合体等であればクロロメチルメチルエーテル
等によりクロロメチル基を導入した後、三級アミンと反
応させる方法;有機多孔質体をクロロメチルスチレンと
ジビニルベンゼンの共重合により製造し、三級アミンと
反応させる方法;有機多孔質体にラジカル開始基や連鎖
移動基を導入し、N,N,N−トリメチルアンモニウム
エチルアクリレートやN,N,N−トリメチルアンモニ
ウムプロピルアクリルアミドをグラフト重合する方法;
同様にグリシジルメタクリレートをグラフト重合した
後、官能基変換により四級アンモニウム基を導入する方
法等が挙げられる。また、ベタインを導入する方法とし
ては、上記の方法により有機多孔質体に三級アミンを導
入した後、モノヨード酢酸を反応させ導入する方法等が
挙げられる。なお、導入するイオン交換基としては、カ
ルボン酸基、イミノジ酢酸基、スルホン酸基、リン酸
基、リン酸エステル基等のカチオン交換基;四級アンモ
ニウム基、三級アミノ基、二級アミノ基、一級アミノ
基、ポリエチレンイミン、第三スルホニウム基、ホスホ
ニウム基等のアニオン交換基;ベタイン、スルホベタイ
ン等の両性イオン交換基が挙げられる。
The method for introducing an ion-exchange group into the above organic porous material is not particularly limited, and known methods such as polymer reaction and graft polymerization can be used. For example, as a method of introducing a sulfonic acid group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; Method of introducing sulfonic acid group by reacting porous body with sodium sulfite; introducing radical initiation group or chain transfer group into organic porous body and grafting sodium styrenesulfonate or acrylamido-2-methylpropanesulfonic acid Polymerization method; a method in which glycidyl methacrylate is similarly graft-polymerized and then a sulfonic acid group is introduced by functional group conversion in the same manner as described above. As a method of introducing a quaternary ammonium group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine A method of producing an organic porous material by copolymerization of chloromethylstyrene and divinylbenzene and reacting it with a tertiary amine; introducing a radical initiation group or a chain transfer group into the organic porous material, N, N, N-trimethyl A method of graft-polymerizing ammonium ethyl acrylate or N, N, N-trimethylammonium propyl acrylamide;
Similarly, a method of introducing a quaternary ammonium group by converting a functional group after graft-polymerizing glycidyl methacrylate can be mentioned. Examples of the method of introducing betaine include a method of introducing a tertiary amine into the organic porous material by the above-mentioned method and then reacting it with monoiodoacetic acid, and the like. The ion exchange group to be introduced is a cation exchange group such as a carboxylic acid group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group or a phosphoric acid ester group; a quaternary ammonium group, a tertiary amino group or a secondary amino group. Anion exchange groups such as primary amino group, polyethyleneimine, tertiary sulfonium group and phosphonium group; amphoteric ion exchange groups such as betaine and sulfobetaine.

【0026】本発明の有機多孔質イオン交換体を吸着剤
として使用する場合、前記有機多孔質体と同様に、例え
ば、円筒型カラムや角型カラムに、有機多孔質イオン交
換体を当該カラムに挿入できる形状に切り出したものを
吸着剤として充填し、これに糖液を通水させれば、該吸
着剤に色素が効率よく吸着される。
When the organic porous ion exchanger of the present invention is used as an adsorbent, similar to the organic porous material, for example, in a cylindrical column or a rectangular column, the organic porous ion exchanger is applied to the column. When the adsorbent is cut into a shape that can be inserted, and a sugar solution is passed through the adsorbent, the dye is efficiently adsorbed to the adsorbent.

【0027】本発明の有機多孔質イオン交換体をクロマ
トグラフィー用充填剤として使用する場合、前記有機多
孔質体と同様に、例えば、円筒型カラムや角型カラム
に、有機多孔質イオン交換体を当該カラムに挿入できる
形状に切り出したものを充填剤として充填し、これにイ
オンを含有した水溶液を通液させれば、強度を保持しつ
つ、接触面積を大きくとれるから、前記イオン成分の分
画が十分に行われる。クロマトグラフィーとしては、前
記有機多孔質体と同様に、イオンクロマトグラフィー、
逆相液体クロマトグラフィーおよび順相液体クロマトグ
ラフィーを挙げることができる。
When the organic porous ion-exchanger of the present invention is used as a packing material for chromatography, the organic porous ion-exchanger can be applied to, for example, a cylindrical column or a rectangular column as in the organic porous material. By packing as a packing material that is cut into a shape that can be inserted into the column, and passing an aqueous solution containing ions through it, the contact area can be increased while maintaining strength. Is done well. As the chromatography, similar to the organic porous material, ion chromatography,
Mention may be made of reverse phase liquid chromatography and normal phase liquid chromatography.

【0028】[0028]

【実施例】次に、実施例を挙げて本発明を具体的に説明
するが、これは単に例示であって、本発明を制限するもの
ではない。 実施例1(有機多孔質体の製造) スチレン32.91g、ジビニルベンゼン17.72
g、n-ヘプタン21.70g、ソルビタンモノオレエ
ート8.04gおよびアゾビスイソブチロニトリル(A
BIBN)0.29gを混合し、均一に溶解させた。次
に、当該スチレン/ジビニルベンゼン/n-ヘプタン/ソル
ビタンモノオレエート/アゾビスイソブチロニトリル混
合物を450mlの純水に添加し、ホモジナイザーを用
いて20000回転/分で2分間攪拌し、油中水滴型エマ
ルジョンを得た。乳化終了後、油中水滴型エマルジョン
をオートクレーブに移し、窒素で十分置換した後密封
し、静置下60℃で24時間重合させた。重合終了後、
内容物を取り出し、イソプロパノールで18時間ソック
スレー抽出し、未反応モノマー、n−ヘプタン、水およ
びソルビタンモノオレエートを除去した後、85℃で一
昼夜減圧乾燥した。この様にして得られたスチレン/ジ
ビニルベンゼン共重合体よりなる架橋成分を26モル%
含有した有機多孔質体の内部構造をSEMにより観察し
た結果を図1に示す。図1中、中央部分の「く」字状に
見える部分が骨格構造の気泡構造の内壁で、右上側及び
左側の暗い部分がメソポアである。また、メソポアの奥
側には骨格構造の気泡構造の内壁が見えている。このよ
うに、当該有機多孔質体は連続気泡構造を有しており、
平均孔径40μmのマクロポアの大部分が重なり合い、
マクロポアとマクロポアの重なりで形成されるメソポア
の孔径は1.6〜40.2μmの範囲にあり、平均孔径
は8.6μmであり、マクロポアとメソポアで形成され
る気泡構造の内壁には、不定形状の微小凹凸が観察され
た(図1の骨格構造部分の表面の凹凸)。この気泡構造の
内壁面の微小凹凸は水銀圧入法で求められる孔径が、1
2〜1,200nmの範囲にあり、平均孔径が480n
mの非連続孔であるミクロポアと定義できた。また、全
細孔容積は、5.0ml/g、BET比表面積は64m2
/gであった。
EXAMPLES Next, the present invention will be specifically described with reference to examples, but these are merely examples and do not limit the present invention. Example 1 (Production of Organic Porous Body) Styrene 32.91 g, divinylbenzene 17.72
g, n-heptane 21.70 g, sorbitan monooleate 8.04 g and azobisisobutyronitrile (A
BIBN) (0.29 g) was mixed and uniformly dissolved. Next, the styrene / divinylbenzene / n-heptane / sorbitan monooleate / azobisisobutyronitrile mixture was added to 450 ml of pure water, and the mixture was stirred at 20000 rpm for 2 minutes using a homogenizer, and then in oil. A water drop type emulsion was obtained. After completion of the emulsification, the water-in-oil emulsion was transferred to an autoclave, sufficiently replaced with nitrogen and then sealed, and allowed to stand and polymerize at 60 ° C. for 24 hours. After completion of polymerization
The contents were taken out and subjected to Soxhlet extraction with isopropanol for 18 hours to remove unreacted monomers, n-heptane, water and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. 26 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained
The result of observing the internal structure of the contained organic porous body by SEM is shown in FIG. In FIG. 1, the central part that looks like a V-shape is the inner wall of the skeletal cell structure, and the dark parts on the upper right and left are the mesopores. In addition, the inner wall of the skeletal bubble structure is visible behind mesopore. Thus, the organic porous body has an open cell structure,
Most of the macropores with an average pore size of 40 μm overlap and
The pore size of mesopores formed by overlapping macropores and macropores is in the range of 1.6 to 40.2 μm, the average pore size is 8.6 μm, and the inner wall of the bubble structure formed of macropores and mesopores has an irregular shape. The microscopic unevenness was observed (unevenness on the surface of the skeleton structure portion in FIG. 1). The minute irregularities on the inner wall surface of this bubble structure have a pore diameter of 1 determined by the mercury injection method.
It is in the range of 2 to 1,200 nm, and the average pore size is 480 n.
It can be defined as a micropore which is a discontinuous pore of m. The total pore volume is 5.0 ml / g and the BET specific surface area is 64 m 2.
It was / g.

【0029】実施例2〜4(有機多孔質体の製造) スチレン、ジビニルベンゼン、n-ヘプタン、ソルビタ
ンモノオレエートおよびアゾビスイソブチロニトリルの
仕込み量を表1に示す値に変更したことを除いて、実施
例1と同様の方法で有機多孔質体を製造した。結果を表
2にまとめて示すが、いずれの場合も有機多孔質体は図
1で示されるような気泡構造を有し、ミクロポアの導入
が確認でき、BET比表面積についても大きな値が得ら
れた。
Examples 2 to 4 (Production of organic porous material) The amounts of styrene, divinylbenzene, n-heptane, sorbitan monooleate and azobisisobutyronitrile charged were changed to the values shown in Table 1. Except for this, an organic porous material was produced in the same manner as in Example 1. The results are summarized in Table 2. In all cases, the organic porous material had a cell structure as shown in FIG. 1, introduction of micropores was confirmed, and a large value for BET specific surface area was obtained. .

【0030】実施例5 スチレン40.50gの代わりに、スチレン35.44
gおよびメタクリル酸グリシジル5.06gを用いたこ
と以外は、実施例2と同様の方法で有機多孔質体を製造
した。結果を表2にまとめて示す。得られた有機多孔質
体をSEM観察したところ、図1と同様の気泡構造を有
していること、すなわち、ミクロポアの導入が確認でき
た。
Example 5 Instead of 40.50 g of styrene, 35.44 of styrene was used.
g and 5.06 g of glycidyl methacrylate were used to produce an organic porous material in the same manner as in Example 2. The results are summarized in Table 2. When the obtained organic porous body was observed by SEM, it was confirmed that it had a cell structure similar to that shown in FIG. 1, that is, the introduction of micropores.

【0031】参考例1 n-ヘプタンを添加しなかったことおよびソルビタンモ
ノオレエートの添加量を表1に示す値に変更したことを
除いて、実施例4と同様の方法で有機多孔質体を製造し
た。結果を表2に示すが、BET比表面積は実施例4と
比較して、約1/6と小さく、ミクロポアの存在も認め
られなかった。
Reference Example 1 An organic porous material was prepared in the same manner as in Example 4 except that n-heptane was not added and the amount of sorbitan monooleate added was changed to the value shown in Table 1. Manufactured. The results are shown in Table 2. The BET specific surface area was as small as about 1/6 of that of Example 4, and the presence of micropores was not recognized.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表1及び2から、実施例の有機多孔質体
は、沈殿剤を添加しない参考例の有機多孔質体に比し
て、6〜10倍もの大きなBET比表面積を示すことが
判る。
From Tables 1 and 2, it can be seen that the organic porous materials of the examples have BET specific surface areas 6 to 10 times as large as those of the organic porous materials of the reference example to which the precipitating agent is not added.

【0035】実施例6(有機多孔質イオン交換体の製
造) 実施例4で製造した有機多孔質体を切断して11.5g
を分取し、ジクロロエタン800mlを加え60℃で3
0分加熱した後、室温まで冷却し、クロロ硫酸59.1
gを徐々に加え、室温で12時間反応させた。その後、
酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥
して多孔質カチオン交換体を得た。この多孔質体のイオ
ン交換容量は、乾燥多孔質体換算で4.4mg当量/g
であり、EPMAを用いた硫黄原子のマッピングによ
り、スルホン酸基が多孔質体に均一に導入されているこ
とを確認した。この有機多孔質イオン交換体の内部構造
は、連続気泡構造を有しており、平均孔径80μmのマ
クロポアの大部分が重なり合い、マクロポアとマクロポ
アの重なりで形成されるメソポアの孔径の平均値は1
0.0μm、全細孔容積は8.2ml/g、BET比表
面積は36m2/g、ミクロポアの孔径の平均値は80
nmであった。
Example 6 (Production of Organic Porous Ion Exchanger) The organic porous body produced in Example 4 was cut to give 11.5 g.
Was collected, 800 ml of dichloroethane was added, and the mixture was mixed at 60 ° C for 3
After heating for 0 minutes, the mixture was cooled to room temperature and chlorosulfuric acid was 59.1.
g was gradually added and reacted at room temperature for 12 hours. afterwards,
Acetic acid was added, the reaction product was poured into a large amount of water, washed with water, and dried to obtain a porous cation exchanger. The ion exchange capacity of this porous body is 4.4 mg equivalent / g in terms of dry porous body.
Therefore, it was confirmed by the mapping of the sulfur atom using EPMA that the sulfonic acid group was uniformly introduced into the porous body. The internal structure of this organic porous ion exchanger has an open cell structure, most of macropores having an average pore diameter of 80 μm overlap each other, and the average value of the pore diameter of mesopores formed by the overlap of macropores and macropores is 1
0.0 μm, total pore volume of 8.2 ml / g, BET specific surface area of 36 m 2 / g, average pore size of micropores is 80
was nm.

【0036】実施例7(有機多孔質イオン交換体の製
造) 実施例5で製造した有機多孔質体を切断して6.1gを
分取し、イソプロパノール中に浸漬し、細孔内をイソプ
ロパノールで置換した。次いで、上記多孔質体を亜硫酸
ナトリウム/イソプロパノール/水(重量比で10/1
5/75)混合溶液900ml中に浸漬し、室温で24
時間反応させた。反応終了後、有機多孔質体を水洗し、
イオン交換容量を測定した。イオン交換容量は、乾燥多
孔質体換算で220μg当量/g、湿潤多孔質体換算で
210μg当量/gであった。
Example 7 (Production of Organic Porous Ion Exchanger) The organic porous body produced in Example 5 was cut and 6.1 g was taken and immersed in isopropanol, and the inside of the pores was filled with isopropanol. Replaced. Then, the above porous body was treated with sodium sulfite / isopropanol / water (weight ratio 10/1).
5/75) Immersed in 900 ml of mixed solution and allowed to stand at room temperature for 24 hours.
Reacted for hours. After the reaction is completed, the organic porous body is washed with water,
The ion exchange capacity was measured. The ion exchange capacity was 220 μg equivalent / g in terms of dry porous body and 210 μg equivalent / g in terms of wet porous body.

【00037】実施例8(有機多孔質体の吸着剤として
の使用) 実施例1で製造した有機多孔質体を、底面が10mm×
10mm、高さ30mmの角柱状に切り出し、底面が1
0mm×10mm、高さ30mmの角型カラムに充填し
た。このカラムに濃度100μg/lの2エチル1ヘキサ
ノール水溶液1リットルを50ml/分の速度で供給
し、カラム通過後の水溶液を回収、2エチル1ヘキサノ
ール濃度を測定した。その結果、カラム通過後の水溶液
中の2エチル1ヘキサノール濃度は1μg/l以下であ
り、本例の有機多孔質体によって、定量的に吸着除去で
きることが確認された。
Example 8 (Use of Organic Porous Body as Adsorbent) The organic porous body produced in Example 1 had a bottom surface of 10 mm ×
Cut out into a prismatic shape with a height of 10 mm and a height of 30 mm, and the bottom surface is 1
It was packed in a square column having a size of 0 mm × 10 mm and a height of 30 mm. To this column, 1 liter of an aqueous solution of 2 ethyl 1-hexanol having a concentration of 100 μg / l was supplied at a rate of 50 ml / min, the aqueous solution after the column was recovered, and the concentration of 2 ethyl 1-hexanol was measured. As a result, the concentration of 2 ethyl 1-hexanol in the aqueous solution after passing through the column was 1 μg / l or less, and it was confirmed that the organic porous material of this example could be quantitatively adsorbed and removed.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
の有機多孔質体および有機多孔質イオン交換体は、大き
な細孔容積および比表面積を有し、更に、気体や液体の
透過性に優れるため、フィルターや吸着剤、既存のイオ
ン交換樹脂の代替、電気式脱イオン水製造装置の脱塩モ
ジュールの代替となる充填剤、各種クロマトグラフィー
用充填剤、固体酸や塩基触媒として有用であり、広範な
用途分野に応用することができる。
As is apparent from the above description, the organic porous material and the organic porous ion exchanger of the present invention have a large pore volume and a large specific surface area, and further have a high gas and liquid permeability. Due to its excellent properties, it is useful as a filter, an adsorbent, a substitute for existing ion-exchange resins, a substitute for a desalting module of an electric deionized water production device, a filler for various chromatography, and a solid acid or base catalyst. It can be applied to a wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた有機多孔質体のSEM写真
である。
1 is a SEM photograph of an organic porous body obtained in Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/28 B01J 20/28 A 20/30 20/30 C08F 2/32 C08F 2/32 // G01N 30/00 G01N 30/00 C J 30/60 30/60 A 30/88 30/88 C Fターム(参考) 4D017 BA04 CA13 CA17 DA03 4G066 AC14B AC17B AE10B BA23 EA01 FA08 FA21 4J011 LA02 LA03 LA04 LA09 LB09─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 20/28 B01J 20/28 A 20/30 20/30 C08F 2/32 C08F 2/32 // G01N 30 / 00 G01N 30/00 C J 30/60 30/60 A 30/88 30/88 C F term (reference) 4D017 BA04 CA13 CA17 DA03 4G066 AC14B AC17B AE10B BA23 EA01 FA08 FA21 4J011 LA02 LA03 LA04 LA09 LB09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 互いにつながっているマクロポアとマク
ロポアの壁内に平均孔径が1〜1000μmのメソポア
を有する連続気泡構造を有し、前記マクロポアと前記メ
ソポアで形成される気泡構造の内壁に、更に平均孔径が
5〜800nmの非連続孔であるミクロポアを有してい
ることを特徴とする有機多孔質体。
1. A continuous pore structure having macropores and mesopores having an average pore size of 1 to 1000 μm in the walls of the macropores and the macropores which are connected to each other, and the inner wall of the bubble structure formed by the macropores and the mesopores is further averaged. An organic porous material having micropores which are discontinuous pores having a pore diameter of 5 to 800 nm.
【請求項2】 吸着剤として使用することを特徴とする
請求項1記載の有機多孔質体。
2. The organic porous material according to claim 1, which is used as an adsorbent.
【請求項3】 クロマトグラフィー用充填剤として使用
することを特徴とする請求項1記載の有機多孔質体。
3. The organic porous material according to claim 1, which is used as a packing material for chromatography.
【請求項4】 イオン交換基を含まない油溶性モノマ
ー、該油溶性モノマーが重合してできるポリマーに対す
る貧溶媒で且つ油溶性モノマーを溶解する沈殿剤、界面
活性剤及び水を含有する油中水滴型エマルジョンを重合
させ、次いで、未反応物を除去した後、乾燥して請求項
1記載の有機多孔質体を製造する方法。
4. A water-in-oil droplet containing an oil-soluble monomer containing no ion exchange group, a precipitant which is a poor solvent for a polymer formed by polymerization of the oil-soluble monomer and which dissolves the oil-soluble monomer, a surfactant and water. The method for producing an organic porous material according to claim 1, wherein the type emulsion is polymerized, unreacted materials are removed, and then dried.
【請求項5】 互いにつながっているマクロポアとマク
ロポアの壁内に平均孔径が1〜1000μmのメソポア
を有する連続気泡構造を有し、前記マクロポアと前記メ
ソポアで形成される気泡構造の内壁に、更に平均孔径が
5〜800nmの非連続孔であるミクロポアを有し、イ
オン交換容量が0.1μg当量/g乾燥多孔質体以上で
あることを特徴とする有機多孔質イオン交換体。
5. The continuous pore structure having macropores and mesopores having an average pore diameter of 1 to 1000 μm in the walls of the macropores and the macropores which are connected to each other is further provided on the inner wall of the bubble structure formed by the macropores and the mesopores. An organic porous ion exchanger having micropores which are non-continuous pores having a pore diameter of 5 to 800 nm and an ion exchange capacity of 0.1 μg equivalent / g dry porous body or more.
【請求項6】 吸着剤として使用することを特徴とする
請求項5記載の有機多孔質イオン交換体。
6. The organic porous ion exchanger according to claim 5, which is used as an adsorbent.
【請求項7】 クロマトグラフィー用充填剤として使用
することを特徴とする請求項5記載の有機多孔質イオン
交換体。
7. The organic porous ion exchanger according to claim 5, which is used as a packing material for chromatography.
JP2002228616A 2001-09-18 2002-08-06 Organic porous ion exchanger Expired - Lifetime JP3957179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228616A JP3957179B2 (en) 2001-09-18 2002-08-06 Organic porous ion exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-283554 2001-09-18
JP2001283554 2001-09-18
JP2002228616A JP3957179B2 (en) 2001-09-18 2002-08-06 Organic porous ion exchanger

Publications (3)

Publication Number Publication Date
JP2003166982A true JP2003166982A (en) 2003-06-13
JP2003166982A5 JP2003166982A5 (en) 2005-09-02
JP3957179B2 JP3957179B2 (en) 2007-08-15

Family

ID=26622429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228616A Expired - Lifetime JP3957179B2 (en) 2001-09-18 2002-08-06 Organic porous ion exchanger

Country Status (1)

Country Link
JP (1) JP3957179B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099297A1 (en) * 2003-05-06 2004-11-18 Organo Corporation Graft-modified organic porous material and process for producing the same
JP2006167568A (en) * 2004-12-15 2006-06-29 Japan Organo Co Ltd Method and apparatus for detecting anion in solution
JP2006297244A (en) * 2005-04-19 2006-11-02 Japan Organo Co Ltd Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
JP2007530760A (en) * 2004-04-02 2007-11-01 ネクストテツク・ゲー・エム・ベー・ハー Method for producing composite absorbent material for chromatographic separation of biopolymers
JP2009191148A (en) * 2008-02-14 2009-08-27 Japan Organo Co Ltd Monolithic organic porous article, monolithic organic porous ion exchanger, method for producing the same, and chemical filter
JP2009221426A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolith-shaped organic porous body, manufacturing method, monolith-shaped organic porous ion exchanger
JP2011503293A (en) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー Porous polymer resin
JP2011240264A (en) * 2010-05-19 2011-12-01 Daicen Membrane Systems Ltd Method for producing purified water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034163B2 (en) * 2001-12-21 2008-01-16 オルガノ株式会社 Organic porous body, production method thereof, and organic porous ion exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202511A (en) * 1990-11-30 1992-07-23 Babcock Hitachi Kk Synthesis of finely granulated styrene-divinylbenzene copolymer and production of filler for liquid chromatography
JPH05133946A (en) * 1991-11-15 1993-05-28 Babcock Hitachi Kk Method of separation amino acids
JPH07501140A (en) * 1991-10-21 1995-02-02 コーネル・リサーチ・フアウンデーシヨン・インコーポレーテツド Column with macroporous polymer media
JPH08278299A (en) * 1989-07-06 1996-10-22 Perceptive Biosyst Inc Perfusive chromatography
WO1998059238A1 (en) * 1997-06-20 1998-12-30 Merck Patent Gmbh Holding device for monolithic sorbents
JPH11287791A (en) * 1998-04-01 1999-10-19 Naohiro Soga Capillary column
JP2000501175A (en) * 1995-11-24 2000-02-02 アマーシヤム・フアーマシア・バイオテツク・アー・ベー Chromatographic method and apparatus using a continuous macroporous organic matrix

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278299A (en) * 1989-07-06 1996-10-22 Perceptive Biosyst Inc Perfusive chromatography
JPH04202511A (en) * 1990-11-30 1992-07-23 Babcock Hitachi Kk Synthesis of finely granulated styrene-divinylbenzene copolymer and production of filler for liquid chromatography
JPH07501140A (en) * 1991-10-21 1995-02-02 コーネル・リサーチ・フアウンデーシヨン・インコーポレーテツド Column with macroporous polymer media
JPH05133946A (en) * 1991-11-15 1993-05-28 Babcock Hitachi Kk Method of separation amino acids
JP2000501175A (en) * 1995-11-24 2000-02-02 アマーシヤム・フアーマシア・バイオテツク・アー・ベー Chromatographic method and apparatus using a continuous macroporous organic matrix
WO1998059238A1 (en) * 1997-06-20 1998-12-30 Merck Patent Gmbh Holding device for monolithic sorbents
JPH11287791A (en) * 1998-04-01 1999-10-19 Naohiro Soga Capillary column

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099297A1 (en) * 2003-05-06 2004-11-18 Organo Corporation Graft-modified organic porous material and process for producing the same
JP2007530760A (en) * 2004-04-02 2007-11-01 ネクストテツク・ゲー・エム・ベー・ハー Method for producing composite absorbent material for chromatographic separation of biopolymers
JP2006167568A (en) * 2004-12-15 2006-06-29 Japan Organo Co Ltd Method and apparatus for detecting anion in solution
JP4671272B2 (en) * 2004-12-15 2011-04-13 オルガノ株式会社 Method and apparatus for detecting anion in liquid
JP2006297244A (en) * 2005-04-19 2006-11-02 Japan Organo Co Ltd Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
JP2011503293A (en) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー Porous polymer resin
US8710111B2 (en) 2007-11-09 2014-04-29 3M Innovative Properties Company Porous polymeric resins
US9725545B2 (en) 2007-11-09 2017-08-08 3M Innovative Properties Company Porous polymeric resins
JP2009191148A (en) * 2008-02-14 2009-08-27 Japan Organo Co Ltd Monolithic organic porous article, monolithic organic porous ion exchanger, method for producing the same, and chemical filter
JP2009221426A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolith-shaped organic porous body, manufacturing method, monolith-shaped organic porous ion exchanger
JP2011240264A (en) * 2010-05-19 2011-12-01 Daicen Membrane Systems Ltd Method for producing purified water

Also Published As

Publication number Publication date
JP3957179B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP3966501B2 (en) Ultrapure water production equipment
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP4011440B2 (en) Ion adsorption module and water treatment method
EP1527817A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
EP1321187B1 (en) Organic porous material and organic porous ion exchanger
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP4034163B2 (en) Organic porous body, production method thereof, and organic porous ion exchanger
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP5685632B2 (en) Ion adsorption module and water treatment method
JP4216142B2 (en) Method for producing aminated organic porous material
JP3957179B2 (en) Organic porous ion exchanger
KR20060003058A (en) Chemical filter
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5283893B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
EP1398331B1 (en) Method for preparing sulfonated organic porous material
JP3957182B2 (en) Method for producing sulfonated organic porous material
JP2004131517A (en) Method for producing organic porous material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3957179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term