JP5290604B2 - Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter - Google Patents

Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Download PDF

Info

Publication number
JP5290604B2
JP5290604B2 JP2008081834A JP2008081834A JP5290604B2 JP 5290604 B2 JP5290604 B2 JP 5290604B2 JP 2008081834 A JP2008081834 A JP 2008081834A JP 2008081834 A JP2008081834 A JP 2008081834A JP 5290604 B2 JP5290604 B2 JP 5290604B2
Authority
JP
Japan
Prior art keywords
organic porous
monolith
ion exchange
monolithic organic
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008081834A
Other languages
Japanese (ja)
Other versions
JP2009067982A (en
Inventor
洋 井上
彰 中村
仁 高田
聡 近藤
弘次 山中
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008081834A priority Critical patent/JP5290604B2/en
Publication of JP2009067982A publication Critical patent/JP2009067982A/en
Application granted granted Critical
Publication of JP5290604B2 publication Critical patent/JP5290604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic organic porous body which is chemically stable and hydrophobic, has pores having high continuity and nearly uniform size, and exhibits low pressure drop during permeation of a fluid, and to provide a monolithic organic porous ion exchanger which has a large ion exchange capacity per volume in addition to the properties, and methods for manufacturing them and a chemical filter. <P>SOLUTION: The monolithic organic porous ion exchanger is a co-continuous structure which is composed of: three-dimensionally continuous skeletons which are formed of an aromatic vinyl polymer containing a cross-linking structure unit in an amount of 0.3-5.0 mol% based on all constitutive units each having an ion exchange group and have thickness of 1-60 &mu;m; and three dimensionally continuous pores formed among the skeletons and having diameters of 10-100 &mu;m, and the monolithic organic porous ion exchanger has a total pore volume of 0.5-5 mL/g and ion exchange capacity of &ge;0.3 mg-equivalent/mL per volume in a moist condition, and includes ion exchange groups uniformly distributed therein. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、吸着剤あるいはクロマトグラフィー用充填剤や脱イオン水製造装置等に用いられるイオン交換体として有用な共連続構造を有するモノリス状有機多孔質体、モノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルターに関するものである。   The present invention relates to a monolithic organic porous body, a monolithic organic porous ion exchanger having a co-continuous structure useful as an ion exchanger used in an adsorbent, a chromatography filler, a deionized water production apparatus, and the like, And a chemical filter.

特開2002−306976号には、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて、連続マクロポア構造のモノリス状有機多孔質体を得る製造方法が開示されている。上記方法で得られる有機多孔質体やそれにイオン交換基を導入した有機多孔質イオン交換体は、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。   In JP-A-2002-306976, an oil-soluble monomer not containing an ion exchange group, a surfactant, water and a polymerization initiator as necessary are mixed to obtain a water-in-oil emulsion, which is polymerized. A production method for obtaining a monolithic organic porous body having a continuous macropore structure is disclosed. The organic porous material obtained by the above method and the organic porous ion exchanger into which an ion exchange group is introduced are useful as an ion exchanger used in an adsorbent, a chromatography filler, a deionized water production apparatus, and the like. .

しかし、該有機多孔質イオン交換体は、全細孔容積を低下させて水湿潤状態での体積当りのイオン交換容量を大きくすると共通の開口となるメソポアが著しく小さくなり、更に全細孔容積を低下させていくと共通の開口が消失するといったその構造上の制約から、実用的に要求される低い圧力損失を達成しようとすると体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させていくと圧力損失が増加するといった欠点を有していた。   However, in the organic porous ion exchanger, when the total pore volume is reduced to increase the ion exchange capacity per volume in a water-wet state, the mesopores that become common openings are remarkably reduced, and the total pore volume is further reduced. Due to the structural limitation that the common opening disappears as it is reduced, the ion exchange capacity per volume decreases when trying to achieve the practically required low pressure loss, and the exchange capacity per volume increases. As a result, the pressure loss increased.

また、特開2004−321930号公報には、連続気泡構造のモノリス状有機多孔質イオン交換体を吸着層として用いるケミカルフィルターが開示されている。このケミカルフィルターによれば、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なものである。   Japanese Patent Application Laid-Open No. 2004-321930 discloses a chemical filter using a monolithic organic porous ion exchanger having an open cell structure as an adsorption layer. According to this chemical filter, the ability to adsorb and remove gaseous pollutants can be maintained even if the gas permeation rate is high, and even if the amount of gaseous pollutants is extremely small, it can be removed.

一方、有機多孔質体の構造として、三次元的に連続した骨格相と、その骨格相間に三次元的に連続した空孔相とからなり、両相が絡み合った共連続構造が知られている。特開2007-154083号公報には、マイクロメートルサイズの平均直径を有し、三次元網目状に連続した細孔と有機物質に富む骨格相からなる共連続構造をもつ粒子凝集型でない有機高分子ゲル状のアフィニティー担体であって、当該アフィニティー担体が、架橋剤としての、少なくとも二官能性以上のビニルモノマー化合物、メタクリレート化合物及びアクリレート化合物の少なくともいずれか1種と、一官能性親水性モノマーとの共重合体であり、しかも、前記アフィニティー担体における前記架橋剤と前記一官能性親水性モノマーの体積比率が100〜10:0〜90であるアフィニティー担体が開示されている。このアフィニティー担体は、モノリス構造を維持するために、骨格の架橋密度を高くしている。また、このアフィニティー担体は、非特異的吸着を十分に抑制する親水的特性を有している。また、N. Tsujioka et al., Macromolecules2005,38, 9901には、共連続構造を有し、エポキシ樹脂からなるモノリス状有機多孔質体が開示されている。
特開2007-154083号公報(請求項1) 特開2004−321930号公報(請求項1)
On the other hand, as a structure of an organic porous body, a co-continuous structure in which a three-dimensional continuous skeleton phase and a three-dimensional continuous pore phase between the skeleton phases are intertwined is known. . Japanese Patent Application Laid-Open No. 2007-154083 discloses a non-particle-aggregated organic polymer having a micrometer-sized average diameter and having a co-continuous structure consisting of a three-dimensional network-like pore and a skeleton phase rich in organic substances A gel-like affinity carrier, wherein the affinity carrier comprises at least one of at least one of bifunctional or higher vinyl monomer compounds, methacrylate compounds and acrylate compounds as a crosslinking agent, and a monofunctional hydrophilic monomer. An affinity carrier that is a copolymer and has a volume ratio of 100 to 10: 0 to 90 of the cross-linking agent and the monofunctional hydrophilic monomer in the affinity carrier is disclosed. This affinity carrier has a high crosslinking density of the skeleton in order to maintain the monolith structure. Further, this affinity carrier has a hydrophilic property that sufficiently suppresses non-specific adsorption. Also, N. Tsujioka et al., Macromolecules 2005, 38, 9901 discloses a monolithic organic porous body having a co-continuous structure and made of an epoxy resin.
JP 2007-154083 A (Claim 1) JP 2004-321930 A (Claim 1)

しかしながら、特開2007-154083号公報において、実際に得られているアフィニティー担体はナノメートルサイズの細孔であるため、流体を透過させる際の圧力損失が高く、低圧力損失下で大流量の水を処理する必要のある脱イオン水製造装置に充填し、イオン交換体とすることは困難であった。また、アフィニティー担体は親水性であるため、疎水性物質の吸着剤として用いるためには、表面の疎水処理等の煩雑且つコストアップを伴う操作が必要であるという問題があった。また、エポキシ樹脂へのイオン交換基等の官能基の導入は容易ではないという問題もあった。   However, in Japanese Patent Application Laid-Open No. 2007-154083, since the affinity carrier actually obtained is nanometer-sized pores, the pressure loss when allowing the fluid to permeate is high, and a large flow rate of water under low pressure loss. It was difficult to fill a deionized water production apparatus that needs to be treated into an ion exchanger. In addition, since the affinity carrier is hydrophilic, there is a problem that a complicated operation such as a hydrophobic treatment on the surface is necessary to use it as an adsorbent for a hydrophobic substance. There is also a problem that it is not easy to introduce functional groups such as ion exchange groups into the epoxy resin.

このため、化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低いモノリス状有機多孔質体の開発が望まれていた。また、上記特性に加えて更に、体積当りのイオン交換容量が大きいモノリス状有機多孔質イオン交換体の開発が望まれていた。また、従来にも増してガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。   For this reason, it is chemically stable hydrophobic, has high continuity of pores, and its size is not biased, and the pressure when a continuous pore is large and allows fluid such as water or gas to pass through. Development of a monolithic organic porous body with low loss has been desired. In addition to the above characteristics, it has been desired to develop a monolithic organic porous ion exchanger having a large ion exchange capacity per volume. In addition, it has been desired to develop a chemical filter having a higher ability to adsorb and remove gaseous pollutants than ever before.

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いモノリス状有機多孔質体、更に上記特性に加えて更に、体積当りのイオン交換容量の大きいモノリス状有機多孔質イオン交換体およびそれらの製造方法を提供することにある。また、本発明の他の目的は、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なケミカルフィルターを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, is chemically stable hydrophobic, has high continuity of pores, and has no bias in its size. Another object of the present invention is to provide a monolithic organic porous body having a low pressure loss during fluid permeation, a monolithic organic porous ion exchanger having a large ion exchange capacity per volume in addition to the above characteristics, and a method for producing the same. . Another object of the present invention is to provide a chemical filter that can retain the adsorption and removal ability of gaseous pollutants even when the gas permeation rate is high, and can be removed even if the amount of gaseous pollutants is extremely small. is there.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、芳香族ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、三次元的に連続した芳香族ビニルポリマー骨格と、その骨格相間に三次元的に連続した空孔とからなり、両相が絡み合った共連続構造の疎水性モノリスが得られること、この共連続構造のモノリスは、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いこと、更にこの共連続構造の骨格が太いためイオン交換基を導入すれば、体積当りのイオン交換容量の大きなモノリス状有機多孔質イオン交換体が得られること、該モノリス状有機多孔質イオン交換体は、イオン交換が迅速かつ均一でイオン交換帯長さが圧倒的に短く、更に、体積当りの吸着容量やイオン交換容量が大きい、連続空孔が大きいため圧力損失が格段に小さい、機械的強度が高く、ハンドリング性に優れ、更に気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能である等、従来のモノリス状有機多孔質イオン交換体が達成できなかった、優れた特性を兼備していることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, in the presence of a monolithic organic porous material (intermediate) having a large pore volume obtained by the method described in JP-A-2002-306976. When the aromatic vinyl monomer and the crosslinking agent are allowed to stand in a specific organic solvent, the aromatic vinyl polymer skeleton is composed of a three-dimensionally continuous aromatic vinyl polymer skeleton and three-dimensionally continuous pores between the skeleton phases. It is possible to obtain a hydrophobic monolith with a co-continuous structure in which both phases are intertwined. This monolith with a co-continuous structure has high continuity of pores, no bias in its size, and low pressure loss during fluid permeation. Further, since the skeleton of this co-continuous structure is thick, if an ion exchange group is introduced, a monolithic organic porous ion exchanger having a large ion exchange capacity per volume can be obtained, and the monolithic organic porous ion exchanger , Ion exchange is quick and uniform, ion exchange zone length is overwhelmingly short, adsorption capacity per unit volume and ion exchange capacity are large, continuous pores are large, pressure loss is extremely small, mechanical strength is High monolithic organic porosity that is excellent in handling properties, can maintain adsorption / removal capability of gaseous pollutants even when the gas permeation rate is high, and can be removed even with extremely small amounts of gaseous pollutants. The present invention has been completed by finding out that the quality ion exchanger could not be achieved and having excellent characteristics.

すなわち、本発明は、全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであるモノリス状有機多孔質体を提供するものである。   That is, the present invention provides a three-dimensionally continuous skeleton having a thickness of 0.8 to 40 μm made of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units, A monolithic organic porous body having a total pore volume of 0.5 to 5 ml / g, which is a co-continuous structure composed of three-dimensionally continuous pores having a diameter of 8 to 80 μm between the skeletons. It is to provide.

また、本発明は、全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであって、下記工程;イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行うIII工程、を行うことで得られることを特徴とするモノリス状有機多孔質体を提供するものである。   The present invention also includes a three-dimensionally continuous skeleton having a thickness of 0.8 to 40 μm and comprising an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units, A co-continuous structure composed of three-dimensionally continuous pores having a diameter of 8 to 80 μm between the skeletons, the total pore volume being 0.5 to 5 ml / g, and the following steps: ion exchange Preparing a water-in-oil emulsion by stirring a mixture of oil-free monomers, surfactants and water free of groups, and then polymerizing the water-in-oil emulsion to a total pore volume of greater than 16 ml / g; Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure of 30 ml / g or less, an aromatic vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an aromatic vinyl monomer or a crosslinking agent Dissolves but aroma A polymer formed by polymerization of an aromatic vinyl monomer is prepared by preparing a mixture comprising an organic solvent that does not dissolve and a polymerization initiator, Step II, the mixture obtained in Step II is left standing, and a monolithic form obtained in Step I The present invention provides a monolithic organic porous material obtained by performing the step III in which polymerization is carried out in the presence of the organic porous intermediate.

また、本発明は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。   The present invention also provides a three-dimensional thickness of 1 to 60 μm in thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups have been introduced. A co-continuous structure composed of a continuous skeleton and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and has a total pore volume of 0.5 to 5 ml / g, Monolithic organic porous ion characterized in that the ion exchange capacity per volume in a wet state is 0.3 mg equivalent / ml or more, and the ion exchange groups are uniformly distributed in the porous ion exchanger An exchange is provided.

また、本発明は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。   The present invention also provides a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer that does not contain an ion exchange group, a surfactant, and water, and then polymerizes the water-in-oil emulsion to form all pores. Step I to obtain a monolithic organic porous intermediate having a continuous macropore structure having a volume of more than 16 ml / g and not more than 30 ml / g, aromatic vinyl monomer, whole oil having at least two or more vinyl groups in one molecule In a soluble monomer, a mixture of an organic solvent and a polymerization initiator that dissolves 0.3 to 5 mol% of a crosslinking agent, an aromatic vinyl monomer and a crosslinking agent but does not dissolve a polymer formed by polymerization of the aromatic vinyl monomer. Step II to be prepared, the mixture obtained in Step II is allowed to stand, and polymerization is carried out in the presence of the monolithic organic porous intermediate obtained in Step I to form a co-continuous structure. That step III, there is provided a method of manufacturing a monolithic organic porous material and performing.

また、本発明は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にイオン交換基を導入するIV工程、を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法を提供するものである。   The present invention also provides a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer that does not contain an ion exchange group, a surfactant, and water, and then polymerizes the water-in-oil emulsion to form all pores. Step I to obtain a monolithic organic porous intermediate having a continuous macropore structure having a volume of more than 16 ml / g and not more than 30 ml / g, aromatic vinyl monomer, whole oil having at least two or more vinyl groups in one molecule In a soluble monomer, a mixture of an organic solvent and a polymerization initiator that dissolves 0.3 to 5 mol% of a crosslinking agent, an aromatic vinyl monomer and a crosslinking agent but does not dissolve a polymer formed by polymerization of the aromatic vinyl monomer. Step II to be prepared, the mixture obtained in Step II is allowed to stand, and polymerization is carried out in the presence of the monolithic organic porous intermediate obtained in Step I to obtain a co-continuous structure. Obtaining step III, there is provided a method of manufacturing a monolithic organic porous ion exchanger which is characterized in that the IV process, for introducing ion exchange groups into the resulting co-continuous structure in the step III.

また、本発明は、前記モノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter using the monolithic organic porous material as an adsorption layer.

また、本発明は、前記モノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter characterized in that the monolithic organic porous ion exchanger is used as an adsorption layer.

本発明の共連続構造のモノリス状有機多孔質体は、三次元的に連続した空孔の連続性が高くてその大きさに偏りがなく、また空孔が大きいため、被処理水を低圧、大流量で長期間通水することが可能であり、更に三次元的に連続した骨格が骨太であるため、吸着容量にも優れている。したがって、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた吸着特性を生かして、合成吸着剤では対応できなかった微量成分の吸着除去等新しい用途分野への応用が可能となる。   The monolithic organic porous body having a co-continuous structure according to the present invention has high continuity of three-dimensionally continuous pores and is not biased in size, and the pores are large. It is possible to pass water at a large flow rate for a long period of time, and since the three-dimensional continuous skeleton is thick, it has an excellent adsorption capacity. Therefore, not only can the synthetic adsorbents used in the past be replaced, but it can also be applied to new application fields such as adsorption removal of trace components that could not be handled by synthetic adsorbents by taking advantage of its excellent adsorption characteristics. It becomes.

また、本発明のモノリス状有機多孔質イオン交換体は、水湿潤状態での体積当りのイオン交換容量が大きく、かつ三次元的に連続した空孔が大きいため、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。また、空孔の連続性が高くてその大きさに偏りがないためイオンの吸着挙動が極めて均一であり、イオン交換帯長さが極めて短く、理論段数も高い。また、超純水中の超微量イオンの吸着特性にも優れているため、クロマトグラフィー用充填剤や超純水製造装置に充填するイオン交換体として好適に用いることができる。   In addition, the monolithic organic porous ion exchanger of the present invention has a large ion exchange capacity per volume in a water-wet state and large three-dimensional continuous pores, so that the water to be treated has a low pressure and a large flow rate. It can be used for a long period of time, and can be suitably used by filling it into a two-bed three-column pure water production apparatus or an electric deionized water production apparatus. Further, since the continuity of the vacancies is high and the size thereof is not biased, the ion adsorption behavior is extremely uniform, the ion exchange zone length is extremely short, and the number of theoretical plates is also high. Moreover, since it is excellent also in the adsorption | suction characteristic of the ultra-trace amount ion in ultrapure water, it can use suitably as an ion exchanger with which the filler for chromatography and an ultrapure water manufacturing apparatus are filled.

また、本発明の製造方法によれば、前記モノリス状有機多孔質イオン交換体又は前記モノリス状有機多孔質イオン交換体を簡易に且つ再現性良く製造することができる。   Moreover, according to the manufacturing method of this invention, the said monolithic organic porous ion exchanger or the said monolithic organic porous ion exchanger can be manufactured simply and with sufficient reproducibility.

また、本発明のケミカルフィルターは、吸着層として用いる細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。   In addition, the chemical filter of the present invention has a remarkably large pore volume and specific surface area used as an adsorption layer, and ion exchange groups are introduced at a high density on the surface and inside thereof. The ability to adsorb and remove gaseous pollutants can be maintained, and even gaseous trace contaminants can be removed.

本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   In the present specification, “monolithic organic porous body” is simply “monolith”, “monolithic organic porous ion exchanger” is simply “monolith ion exchanger”, and “monolithic organic porous intermediate”. Is also simply referred to as “monolith intermediate”.

(モノリスの説明)
本発明の共連続構造を有するモノリスの基本構造は、太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔が配置された構造である。すなわち、共連続構造は図1の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造10である。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。また、骨格が太いため機械的強度が高い。
(Description of monolith)
The basic structure of the monolith having a co-continuous structure of the present invention is a three-dimensional continuous skeleton having a thickness of 0.8 to 40 μm and three-dimensional continuous pores having a diameter of 8 to 80 μm between the skeletons. Is a structure in which is arranged. That is, as shown in the schematic diagram of FIG. 1, the co-continuous structure is a structure 10 in which a continuous skeleton phase 1 and a continuous vacancy phase 2 are intertwined and each of them is three-dimensionally continuous. The continuous pores 2 have higher continuity of the pores than the conventional open-cell monolith and particle aggregation type monolith, and the size thereof is not biased. Therefore, it is possible to achieve extremely uniform ion adsorption behavior. Moreover, since the skeleton is thick, the mechanical strength is high.

三次元的に連続した空孔の直径が8μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、80μmを超えると、流体とモノリスとの接触が不十分となり、その結果、吸着特性が低下してしまうため好ましくない。上記三次元的に連続した空孔の大きさは、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。   If the diameter of the three-dimensional continuous holes is less than 8 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If it exceeds 80 μm, the contact between the fluid and the monolith becomes insufficient. This is not preferable because the adsorption characteristics are deteriorated. The size of the three-dimensionally continuous pores can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by mercury porosimetry.

本発明のモノリスにおいて、共連続構造体の骨格の太さは0.8〜40μm、好ましくは1〜30μmである。骨格の太さが0.8μm未満であると、体積当りの吸着容量が低下したり、機械的強度が低下するため好ましくなく、一方、40μmを超えると、吸着特性の均一性が失われるため好ましくない。モノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定して算出すればよい。   In the monolith of the present invention, the thickness of the skeleton of the co-continuous structure is 0.8 to 40 μm, preferably 1 to 30 μm. If the thickness of the skeleton is less than 0.8 μm, it is not preferable because the adsorption capacity per volume decreases and mechanical strength decreases. On the other hand, if the thickness exceeds 40 μm, the uniformity of the adsorption characteristics is lost. Absent. The thickness of the skeleton of the monolith may be calculated by performing SEM observation at least three times and measuring the thickness of the skeleton in the obtained image.

また、本発明のモノリスは、0.5〜5ml/gの全細孔容積を有する。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、流体の処理量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りの吸着容量が低下してしまうため好ましくない。本発明のモノリスは、棒状骨格の太さ、空孔の径及び全細孔容積が上記範囲にあり、これを吸着剤として用いた場合、流体との接触面積が大きく、かつ流体の円滑な流通が可能となるため、優れた性能が発揮できる。   The monolith of the present invention has a total pore volume of 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area becomes smaller, and the fluid throughput decreases. This is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the adsorption capacity per volume decreases, which is not preferable. The monolith of the present invention has a rod-like skeleton thickness, pore diameter, and total pore volume within the above ranges, and when used as an adsorbent, it has a large contact area with the fluid and allows smooth fluid flow. Therefore, excellent performance can be demonstrated.

なお、モノリスに水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.5MPa/m・LVの範囲、特に0.01〜0.1MPa/m・LVである。   The pressure loss when water is allowed to permeate through the monolith is the pressure loss when water is passed through a column filled with 1 m of a porous body at a water flow velocity (LV) of 1 m / h (hereinafter referred to as “differential pressure coefficient”). In this case, it is in the range of 0.005 to 0.5 MPa / m · LV, particularly 0.01 to 0.1 MPa / m · LV.

本発明のモノリスにおいて、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the monolith of the present invention, the material constituting the skeleton of the co-continuous structure contains 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of cross-linked structural units in all the structural units. It is an aromatic vinyl polymer and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is used because of its ease of forming a co-continuous structure, ease of introduction of ion exchange groups, high mechanical strength, and high stability against acids and alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

本発明のモノリスは、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りの吸着容量が極端に低下してしまうため好ましくない。該モノリスの厚みは、好適には3mm〜1000mmである。また、本発明のモノリスは、構造の均一性が高いため機械的強度が高い。   The monolith of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. If the thickness is less than 1 mm, the adsorption capacity per porous body is extremely lowered, which is not preferable. The thickness of the monolith is preferably 3 mm to 1000 mm. In addition, the monolith of the present invention has high mechanical strength due to its high structural uniformity.

本発明のモノリスを吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、該モノリスを当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。   When the monolith of the present invention is used as an adsorbent, for example, a cylindrical column or a square column is filled with the monolith cut into a shape that can be inserted into the column as an adsorbent, and this is filled with benzene, toluene, phenol. If the water to be treated containing a hydrophobic substance such as paraffin is allowed to flow, the hydrophobic substance is efficiently adsorbed to the adsorbent.

(モノリスイオン交換体の説明)
次ぎに、本発明のモノリスイオン交換体について説明する。モノリスイオン交換体において、モノリスと同一構成要素については説明を省略し、異なる点について主に説明する。モノリスイオン交換体は、イオン交換基が導入された太さが1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μm、好ましくは15〜90μm、特に20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。モノリスイオン交換体の骨格の太さ及び空孔の直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質イオン交換体や粒子凝集型モノリス状有機多孔質イオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。三次元的に連続した空孔の直径がが10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、流体と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となったり長微量イオンの捕捉能力が低下したりするため好ましくない。
(Description of monolith ion exchanger)
Next, the monolith ion exchanger of the present invention will be described. In the monolith ion exchanger, the description of the same components as those of the monolith is omitted, and different points are mainly described. The monolith ion exchanger has a three-dimensional continuous skeleton having an ion exchange group introduced therein and having a thickness of 1 to 60 μm, preferably 3 to 58 μm, and a diameter of 10 to 100 μm, preferably 15 to 90 μm between the skeletons. In particular, it is a co-continuous structure composed of three-dimensionally continuous pores of 20 to 80 μm. The thickness of the skeleton of the monolith ion exchanger and the diameter of the pores are larger than the thickness of the skeleton of the monolith and the diameter of the pores because the entire monolith swells when an ion exchange group is introduced into the monolith. These continuous pores have higher continuity of pores and are not biased in size compared to conventional open-cell monolithic organic porous ion exchangers and particle-aggregated monolithic organic porous ion exchangers. Therefore, extremely uniform ion adsorption behavior can be achieved. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the diameter exceeds 100 μm, contact between the fluid and the organic porous ion exchanger is not preferable. As a result, the ion exchange characteristics become non-uniform and the trapping ability of long trace ions decreases, which is not preferable.

また、骨格の太さが1μm未満であると、体積当りのイオン交換容量が低下する、機械的強度が低下する等の欠点が生じるため好ましくなく、一方、骨格の太さが大き過ぎると、イオン交換特性の均一性が失われ、イオン交換帯長さが長くなってしまうため好ましくない。上記連続構造体の空孔の直径は、イオン交換基導入前のモノリスの空孔の直径に、イオン交換基導入前後のモノリスの膨潤率を乗じて算出する方法及びSEM画像を公知の方法で解析する方法が挙げられる。また、骨格の太さは、イオン交換基導入前のモノリスのSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それにイオン交換基導入前後のモノリスの膨潤率を乗じて算出する方法及びSEM画像を公知の方法で解析する方法が挙げられる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   In addition, if the thickness of the skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases and the mechanical strength decreases, which is not preferable. On the other hand, if the skeleton thickness is too large, Since the uniformity of the exchange characteristics is lost and the ion exchange zone length becomes long, it is not preferable. The diameter of the pores of the continuous structure is calculated by multiplying the diameter of the pores of the monolith before the introduction of the ion exchange groups by the swelling ratio of the monolith before and after the introduction of the ion exchange groups, and the SEM image is analyzed by a known method The method of doing is mentioned. Also, the thickness of the skeleton is determined by performing SEM observation of the monolith before introduction of the ion exchange group at least three times, measuring the thickness of the skeleton in the obtained image, and determining the swelling rate of the monolith before and after introduction of the ion exchange group. The method of multiplying and calculating and the method of analyzing an SEM image by a well-known method are mentioned. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

モノリスイオン交換体は、3次元的に連続した棒状骨格の太さが10μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、100μmを超えると、イオン交換特性の均一性が失われるため好ましくない。モノリスイオン交換体の壁部の定義及び測定方法などは、モノリスと同様である。   Monolithic ion exchangers are not preferred when the thickness of a three-dimensionally continuous rod-like skeleton is less than 10 μm, because the ion exchange capacity per volume decreases, and when it exceeds 100 μm, the uniformity of ion exchange characteristics Is not preferable because it is lost. The definition and measurement method of the wall of the monolith ion exchanger are the same as those of the monolith.

また、モノリスイオン交換体の全細孔容積は、モノリスの全細孔容積と同様である。すなわち、モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格部が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、流体との接触が極めて均一で接触面積も大きく、かつ低圧力損失下で流体の透過が可能となるため、イオン交換体として優れた性能を発揮することができる。   The total pore volume of the monolith ion exchanger is the same as the total pore volume of the monolith. That is, even when the ion exchange group is introduced into the monolith and swells to increase the opening diameter, the total pore volume hardly changes because the skeleton is thick. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. If the three-dimensional continuous pore size and total pore volume are within the above ranges, contact with the fluid is extremely uniform, the contact area is large, and the fluid can be permeated under low pressure loss. It can exhibit excellent performance as an ion exchanger.

なお、モノリスイオン交換体に水を透過させた際の圧力損失は、モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the monolith ion exchanger is the same as the pressure loss when water is permeated through the monolith.

本発明のモノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上、好ましくは0.4〜1.8mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。体積当りのイオン交換容量が0.3mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。なお、本発明のモノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The monolith ion exchanger of the present invention has an ion exchange capacity per volume in a water-wet state of 0.3 mg equivalent / ml or more, preferably 0.4 to 1.8 mg equivalent / ml. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, since the monolith ion exchanger of the present invention has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, it is possible to dramatically increase the ion exchange capacity per volume while keeping the pressure loss low. If the ion exchange capacity per volume is less than 0.3 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water is not preferred. In addition, although the ion exchange capacity per weight in the dry state of the monolith ion exchanger of the present invention is not particularly limited, since the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the porous body, 5 mg equivalent / g. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface of the skeleton cannot be determined unconditionally depending on the kind of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

本発明のモノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of the ion exchange group introduced into the monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric ester group; a quaternary ammonium group, a tertiary amino group, Examples include anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

本発明のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、モノリスの骨格表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “the ion exchange groups are uniformly distributed” means that the distribution of the ion exchange groups is uniformly distributed at least on the order of μm on the skeleton surface and inside the skeleton. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. Further, when the ion exchange groups are uniformly distributed not only on the skeleton surface of the monolith but also inside the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and Durability against shrinkage is improved.

本発明のモノリスは、上記I工程〜III工程を行なうことにより得られる。本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   The monolith of the present invention can be obtained by performing the above steps I to III. In the method for producing a monolith according to the present invention, step I comprises preparing a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer not containing an ion exchange group, a surfactant and water, and then a water-in-oil emulsion. Is a step of obtaining a monolith intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and not more than 30 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

(モノリス中間体の製造方法)
イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。
(Method for producing monolith intermediate)
Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Specific examples of these monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene Diene monomers such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethyl methacrylate Sill, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. Among these monomers, preferred are aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and its content is 0.3 to 5 mol%, preferably 0.3 to the total oil-soluble monomer. 3 mol% is preferable in that a mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide, hydrogen peroxide-ferrous chloride Sodium persulfate-sodium acid sodium sulfite and the like.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル未満とすることが好ましい。   The monolith intermediate obtained in step I is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 5 mol%, preferably 0.3 to 3 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is as small as 16 to 20 ml / g in the present invention, the cross-linking structural unit is preferably less than 3 mol in order to form a co-continuous structure.

モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、棒状骨格を太らせ均一な連続骨格構造のモノリスを得ることができる。   The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the rod-like skeleton can be thickened to obtain a monolith having a uniform continuous skeleton structure.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には6〜25ml/gである。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を鋳型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を本発明の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。   The total pore volume of the monolith intermediate is more than 16 ml / g and not more than 30 ml / g, preferably 6-25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large, so that the skeleton constituting the monolith structure is primary from the two-dimensional wall surface. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a template. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the ion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within the specific range of the present invention, the ratio of monomer to water may be about 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が5〜100μmである。開口の平均直径が5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、流体とモノリスやモノリスイオン交換体との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers. If the average diameter of the openings is less than 5 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, resulting in insufficient contact between the fluid and the monolith or monolith ion exchanger, resulting in adsorption characteristics or ion exchange. This is not preferable because the characteristics deteriorate. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

(モノリスの製造方法)
II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Monolith manufacturing method)
In Step II, the aromatic vinyl monomer and the total oil-soluble monomer having at least two vinyl groups in one molecule dissolve 0.3 to 5 mol% of the crosslinking agent, the aromatic vinyl monomer and the crosslinking agent. This is a process for preparing a mixture comprising an organic solvent and a polymerization initiator that do not dissolve the polymer produced by polymerization of the aromatic vinyl monomer. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。   The aromatic vinyl monomer used in Step II is not particularly limited as long as it is a lipophilic aromatic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. It is preferable to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate coexisting in the system. Specific examples of these vinyl monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl, vinyl naphthalene and the like. These monomers can be used alone or in combination of two or more. Aromatic vinyl monomers preferably used in the present invention are styrene, vinyl benzyl chloride and the like.

これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量が多孔質体に対して5倍未満であると、棒状骨格を太くできず体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、連続空孔の径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The amount of these aromatic vinyl monomers added is 5 to 50 times, preferably 5 to 40 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of aromatic vinyl monomer added is less than 5 times that of the porous material, the rod-like skeleton cannot be made thick, and the adsorption capacity per volume and the ion exchange capacity per volume after introduction of ion exchange groups are reduced. It is not preferable. On the other hand, if the amount of the aromatic vinyl monomer added exceeds 50 times, the diameter of the continuous pores becomes small, and the pressure loss at the time of fluid permeation increases, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of vinyl monomer and crosslinking agent (total oil-soluble monomer). When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. This is not preferable because a problem arises in that the amount of introduction of is reduced. In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.

II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain structures such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (Poly) ethers; chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane; ethyl acetate, isopropyl acetate, cellosolve acetate, propionic acid Esters such as chill and the like. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration becomes less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the scope of the present invention, which is not preferable. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、芳香族ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but it can be used in a range of about 0.01 to 5% with respect to the total amount of aromatic vinyl monomer and crosslinking agent. .

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、骨太骨格のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。   In step III, the mixture obtained in step II is allowed to stand and in the presence of the monolith intermediate obtained in step I, and the continuous macropore structure of the monolith intermediate is changed to a co-continuous structure. This is a step of obtaining a monolith having a thick bone skeleton. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a specific continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned co-polymerization structure is lost. A monolith with a continuous structure is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) having a large total pore volume is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the monolith structure is changed from a two-dimensional wall surface to a one-dimensional rod-like skeleton to form a monolithic organic porous body having a co-continuous structure.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の共連続構造のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Among these, the monolith with a co-continuous structure after polymerization is not pressed from the inner wall of the container and enters the reaction vessel without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. is there. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 5 to 50 times, preferably 5 to 40 times the weight of the aromatic vinyl monomer added to the monolith intermediate. It is preferable to blend them as described above. Thereby, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and a thick skeleton is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that is allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して共連続構造のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolith having a co-continuous structure.

(モノリスイオン交換体の製造方法)
次に、本発明のモノリスイオン交換体の製造方法について説明する。該モノリスイオン交換体の製造方法としては、特に制限はないが、上記の方法によりモノリスを製造した後、イオン交換基を導入する方法が、得られるモノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。
(Method for producing monolithic ion exchanger)
Next, the manufacturing method of the monolith ion exchanger of this invention is demonstrated. The production method of the monolith ion exchanger is not particularly limited, but the method of introducing the ion exchange group after producing the monolith by the above method can strictly control the porous structure of the obtained monolith ion exchanger. This is preferable.

上記モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   There is no restriction | limiting in particular as a method to introduce | transduce an ion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; A method of grafting a sodium styrenesulfonate or acrylamido-2-methylpropanesulfonic acid by introducing a mobile group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, a sulfonic acid group is introduced by functional group conversion. And the like. As a method for introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolith by the above method and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

本発明のモノリスイオン交換体は、共連続構造のモノリスにイオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、本発明のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。   The monolith ion exchanger of the present invention swells to be 1.4 to 1.9 times larger than that of the monolith, for example, because the ion exchange group is introduced into the bilithic monolith. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Accordingly, the monolith ion exchanger of the present invention has a high mechanical strength because it has a thick bone skeleton even though the size of three-dimensionally continuous pores is remarkably large. In addition, since the skeleton is thick, it is possible to increase the ion exchange capacity per volume in a wet state of water, and it is possible to pass water to be treated for a long period of time at a low pressure and a large flow rate. It can be suitably used by filling an apparatus or an electric deionized water production apparatus.

本発明のケミカルフィルターは、上記モノリス、該モノリスに貫通孔を設けたもの、モノリスイオン交換体又は該モノリスイオン交換体に貫通孔を設けたもの、さらには、すでに公知のイオン交換樹脂やイオン交換繊維を用いた吸着層と上記モノリスを組み合わせたものを吸着層として備えるものであれば、フィルターの構成に特に制限はないが、通常、吸着層と該吸着層を支持する支持枠体(ケーシング)とで構成される。該支持枠体は吸着層を支持すると共に、既存設備(設置場所)との接合を司る機能を有する。支持部材の被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。吸着層の形状としては、特に制限されず、所定の厚みを有するブロック形状、薄板を複数枚重ね合わせた積層形状、定形状又は不定形状の粒状物を多数充填した充填構造などが挙げられる。また、吸着層からガス状有機系汚染物質が極微量発生する恐れのある場合、あるいは被処理気体中の有機性ガス状汚染物質の濃度が高い場合には、吸着層の下流側に物理吸着層を付設することが、下流側の物理吸着層で上流側の吸着層で除去できなかった残部のガス状有機系汚染物質を確実に除去できる点で好適である。   The chemical filter of the present invention includes the monolith, a monolith provided with a through hole, a monolith ion exchanger or a monolith ion exchanger provided with a through hole, and a known ion exchange resin or ion exchange. The structure of the filter is not particularly limited as long as it includes a combination of an adsorption layer using fibers and the above monolith as an adsorption layer, but usually the adsorption layer and a support frame (casing) that supports the adsorption layer It consists of. The support frame supports the adsorbing layer and has a function of managing joining with existing equipment (installation location). The gas distribution portion of the support member is made of a material such as stainless steel, aluminum, or plastic that is not degassed. The shape of the adsorbing layer is not particularly limited, and examples thereof include a block shape having a predetermined thickness, a laminated shape in which a plurality of thin plates are stacked, and a packed structure in which a large number of regular or irregular shaped particles are filled. In addition, when there is a possibility that trace amounts of gaseous organic pollutants may be generated from the adsorption layer, or when the concentration of organic gaseous pollutants in the gas to be treated is high, a physical adsorption layer is provided downstream of the adsorption layer. It is preferable that the remaining gaseous organic pollutant that could not be removed by the upstream adsorption layer in the downstream physical adsorption layer can be reliably removed.

本発明のケミカルフィルターの比表面積は1〜20m/g、好ましくは2〜18m/gである。比表面積が小さ過ぎると、処理能力が低下するため好ましくなく、大き過ぎると、モノリスあるいはモノリスイオン交換体の強度が著しく低下するため、好ましくない。比表面積を上記範囲とするには、芳香族ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、モノリス製造の際、芳香族ビニルモノマーの添加量をモノリス中間体に対して重量で5〜50倍とし、該芳香族ビニルモノマー濃度が30〜80重量%となるように有機溶媒で希釈して重合すればよい。比表面積は水銀圧入法で測定することができる。 The specific surface area of the chemical filter of the present invention is 1 to 20 m 2 / g, preferably 2 to 18 m 2 / g. If the specific surface area is too small, it is not preferable because the processing capacity is lowered, and if it is too large, the strength of the monolith or monolith ion exchanger is remarkably reduced. In order to make the specific surface area within the above range, it depends on the aromatic vinyl monomer, the cross-linking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally. The polymerization may be performed by diluting with an organic solvent so that the aromatic vinyl monomer concentration is 30 to 80% by weight. The specific surface area can be measured by a mercury intrusion method.

該物理吸着層としては、脱臭用途に使用できる吸着剤が使用できる。具体的には、活性炭、活性炭素繊維及びゼオライトなどが挙げられる。該吸着剤は、比表面積が200m2/g以上の多孔質体が好ましく、比表面積が500m2/g以上の多孔質体がさらに好ましい。また、該物理吸着層から物理吸着剤などが飛散する恐れのある場合には、該物理吸着層の下流側に通気性を有するカバー材を配置することが好ましい。カバー材としては、有機高分子材料からなる不織布及び多孔質膜、並びにアルミニウム及びステンレス製のメッシュ等が挙げられる。これらの中、有機高分子材料からなる不織布や多孔質膜は低圧力損失で気体を透過でき、且つ微粒子捕集能力が高いため、特に好適である。 As the physical adsorption layer, an adsorbent that can be used for deodorization can be used. Specific examples include activated carbon, activated carbon fiber, and zeolite. The adsorbent is preferably a porous body having a specific surface area of 200 m 2 / g or more, and more preferably a porous body having a specific surface area of 500 m 2 / g or more. In addition, when there is a possibility that a physical adsorbent or the like is scattered from the physical adsorption layer, it is preferable to arrange a cover material having air permeability on the downstream side of the physical adsorption layer. Examples of the cover material include a nonwoven fabric and a porous film made of an organic polymer material, and a mesh made of aluminum and stainless steel. Among these, non-woven fabrics and porous membranes made of organic polymer materials are particularly suitable because they can permeate gas with low pressure loss and have a high particulate collection ability.

貫通孔は所定の厚みを有するブロック形状のモノリス又はモノリスイオン交換体において、通気方向に延びるように複数個形成するのがよい。貫通孔を設けることにより、通気差圧を更に低下させることができる。モノリス又はモノリスイオン交換体に貫通孔を設けたものを吸着層として使用する場合、見かけのモノリスに占める貫通孔の空隙率は20〜50%、好ましくは25〜40%である。貫通孔の空隙率が低すぎると、通気差圧の低下傾向が小さくなり、貫通孔の空隙率が高すぎると、ガス状汚染物質の除去効率が低下する。   In the block-shaped monolith or monolith ion exchanger having a predetermined thickness, a plurality of through holes are preferably formed so as to extend in the ventilation direction. By providing the through hole, the air pressure difference can be further reduced. When a monolith or a monolith ion exchanger provided with through holes is used as the adsorption layer, the porosity of the through holes in the apparent monolith is 20 to 50%, preferably 25 to 40%. If the porosity of the through hole is too low, the tendency of the air pressure difference to decrease is reduced, and if the porosity of the through hole is too high, the removal efficiency of the gaseous pollutant decreases.

本発明のケミカルフィルターは、半導体産業や医療用等に用いられるクリーンルームやクリーンベンチ等の高度清浄空間を形成するため、クリーンルーム内の空気や雰囲気中に含まれる有機系又は無機系のガス状汚染物質及びその他の汚染物質をイオン交換又は吸着により除去する。ガス状汚染物質及びその他の汚染物質としては、二酸化硫黄、塩酸、フッ酸、硝酸等の酸性ガス、アンモニア等の塩基性ガス、塩化アンモニウム等の塩類、フタル酸エステル系に代表される各種可塑剤、フェノール系及びリン系の酸化防止剤、ベンゾトリアゾール系などの紫外線吸収剤、リン系及びハロゲン系の難燃剤等が挙げられる。酸性ガス、塩基性ガス及び塩類はイオン交換により除去でき、各種可塑剤、酸化防止剤、紫外線吸収剤及び難燃剤は強い極性を有するため、吸着により除去することができる。   The chemical filter of the present invention is an organic or inorganic gaseous pollutant contained in the air or atmosphere in a clean room in order to form a highly clean space such as a clean room or clean bench used in the semiconductor industry or medical applications. And other contaminants are removed by ion exchange or adsorption. Gaseous pollutants and other pollutants include acid gases such as sulfur dioxide, hydrochloric acid, hydrofluoric acid, and nitric acid, basic gases such as ammonia, salts such as ammonium chloride, and various plasticizers represented by phthalate esters And phenolic and phosphorus antioxidants, ultraviolet absorbers such as benzotriazole, phosphorus and halogen flame retardants, and the like. Acid gas, basic gas and salts can be removed by ion exchange, and various plasticizers, antioxidants, ultraviolet absorbers and flame retardants have strong polarity and can be removed by adsorption.

本発明のケミカルフィルターの使用条件としては、公知の条件で行なうことができる。使用雰囲気の湿度としては、相対湿度で30〜80%程度である。気体透過速度としては、特に制限されないが、例えば0.1〜10m/sの範囲である。従来の粒状イオン交換樹脂を吸着層として使用する場合、気体透過速度は0.3〜0.5m/s程度であるが、本発明のケミカルフィルターによれば、気体透過速度が5〜10m/sのように速くても、共連続構造でありイオン交換容量が大きく且つ効率良くイオン交換が行なわれるため、ガス状汚染物質を吸着除去できる。また、被処理空気中の汚染物質濃度において、従来のケミカルフィルターによれば、適用範囲はアンモニアの場合、通常0.1〜10μg/m、塩化水素の場合、通常5〜50ng/m、二酸化硫黄の場合、通常0.1〜10μg/m、フタル酸エステルの場合、通常0.1〜5μg/mであるが、本発明のケミカルフィルターによれば、上記範囲に加えて、アンモニア100ng/m以下、塩化水素5ng/m以下、二酸化硫黄100ng/m以下、フタル酸エステル100ng/m以下の極微量濃度であっても十分除去できる。なお、吸着層として用いるモノリスイオン交換体は、使用に際しては、従来のイオン交換樹脂の場合と同様、得られたモノリスイオン交換体を公知の再生方法により処理して用いる。すなわち、モノリスカチオン交換体は、酸処理により酸型として用い、モノリスアニオン交換体は、アルカリ処理によりOH型として用いる。また、ケミカルフィルター処理気体が使用雰囲気の湿度になるよう、予めケミカルフィルターをその使用空間における平衡水分率となる水分保有量にしておくことが、慣らし運転を省略できる点で好ましい。本発明のケミカルフィルターをブロック状で用い、気体透過速度が5〜10m/sの場合、ブロック状の吸着層の通気方向の長さは概ね50〜200mmである。 The use conditions of the chemical filter of the present invention can be performed under known conditions. The humidity of the use atmosphere is about 30 to 80% in relative humidity. Although it does not restrict | limit especially as a gas permeation | transmission speed | rate, For example, it is the range of 0.1-10 m / s. When a conventional granular ion exchange resin is used as the adsorption layer, the gas permeation rate is about 0.3 to 0.5 m / s, but according to the chemical filter of the present invention, the gas permeation rate is 5 to 10 m / s. Even if it is as fast as this, since it is a co-continuous structure, the ion exchange capacity is large and ion exchange is performed efficiently, gaseous contaminants can be adsorbed and removed. Further, the concentration of contaminants in the air to be processed, according to the conventional chemical filter, the applicable range in the case of ammonia, usually 0.1-10 / m 3, the case of hydrogen chloride, typically 5-50 ng / m 3, In the case of sulfur dioxide, it is usually 0.1 to 10 μg / m 3 , and in the case of phthalate ester, it is usually 0.1 to 5 μg / m 3 , but according to the chemical filter of the present invention, in addition to the above range, ammonia Even a trace concentration of 100 ng / m 3 or less, hydrogen chloride 5 ng / m 3 or less, sulfur dioxide 100 ng / m 3 or less, and phthalate ester 100 ng / m 3 or less can be sufficiently removed. In addition, the monolith ion exchanger used as an adsorption layer is used by processing the obtained monolith ion exchanger by a known regeneration method as in the case of conventional ion exchange resins. That is, the monolith cation exchanger is used as an acid form by acid treatment, and the monolith anion exchanger is used as an OH form by alkali treatment. In addition, it is preferable that the chemical filter is previously set to a moisture content that provides an equilibrium moisture content in the use space so that the chemical filter treatment gas has a humidity of the use atmosphere in terms of omitting the break-in operation. When the chemical filter of the present invention is used in a block shape and the gas permeation rate is 5 to 10 m / s, the length of the block-shaped adsorption layer in the ventilation direction is approximately 50 to 200 mm.

本発明のケミカルフィルターは、吸着層として用いるモノリス又はモノリスイオン交換体の細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。すなわち、従来の粒状のイオン交換樹脂は、粒子内部のイオン交換が遅く、イオン交換容量の全てが有効に使用されない。例えば粒径500μmの粒状イオン交換樹脂の場合、効率よく吸着が行なわれる範囲が表面から100μmと仮定すると、表面層の体積分率は約50%であり、効率よく吸着が行なわれる範囲のイオン交換容量は約半分となる。一方、本発明に係るモノリスイオン交換体は壁の厚みが2〜10μmであるため、全てのイオン交換基が効率よく使用される。   In the chemical filter of the present invention, the monolith or monolith ion exchanger used as the adsorption layer has a remarkably large pore volume and specific surface area, and ion exchange groups are introduced at a high density on the surface and inside thereof. Even if it is fast, it can retain the adsorption removal capability of gaseous pollutants, and it can be removed even if the amount of gaseous pollutants is extremely small. That is, the conventional granular ion exchange resin has a slow ion exchange inside the particles, and the entire ion exchange capacity is not used effectively. For example, in the case of a granular ion exchange resin having a particle diameter of 500 μm, assuming that the range in which the efficient adsorption is performed is 100 μm from the surface, the volume fraction of the surface layer is about 50%, and the ion exchange in the range in which the efficient adsorption is performed. The capacity is about half. On the other hand, since the monolith ion exchanger according to the present invention has a wall thickness of 2 to 10 μm, all ion exchange groups are used efficiently.

本発明のケミカルフィルターの吸着層に用いるモノリスイオン交換体はイオン交換体長さについても、従来の粒状イオン交換樹脂に比べて約1/4と非常に小さく、同じ体積の吸着層を用いても寿命が長くなる。   The monolithic ion exchanger used for the adsorption layer of the chemical filter of the present invention is also about 1/4 of the ion exchanger length compared with the conventional granular ion exchange resin. Becomes longer.

本発明のケミカルフィルターは、送風機ユニットと組み合わせて又は送風機ユニットに組み込まれて使用することができる。送風機ユニットとしては、特に制限はないが、通常、軸流ファンまたはブロアを送風源とする送風機と、その出力を調節するコントローラーと、該送風機と該コントローラーを収める第1ケーシングと、該ケーシングに連結される微粒子除去用のHEPAまたはULPAフィルターと、HEPAまたはULPAフィルターを収める第2ケーシングからなる。第1ケーシング及び第2ケーシングの被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。微粒子除去用フィルターのろ材についても特に制限はなく、一般的なガラス繊維やPTFEを用いることができる。クリーンルーム等で用いる場合には、ボロンや有機物を放出しないガラス繊維やPTFEがなお好ましい。   The chemical filter of the present invention can be used in combination with a blower unit or incorporated in a blower unit. Although there is no restriction | limiting in particular as an air blower unit, Usually, it is connected to the air blower which uses an axial fan or a blower as an air supply source, the controller which adjusts the output, the air blower, the 1st casing which accommodates the controller, and the casing The HEPA or ULPA filter for removing fine particles and a second casing that houses the HEPA or ULPA filter. The to-be-processed gas distribution parts of the first casing and the second casing are made of a material such as stainless steel, aluminum, or plastic that is not degassed. The filter medium for the particulate removal filter is not particularly limited, and general glass fiber or PTFE can be used. When used in a clean room or the like, glass fiber or PTFE that does not release boron or organic matter is still more preferable.

本発明のケミカルフィルターは微粒子除去用のHEPAまたはULPAフィルターの上流側に付設される。本発明のケミカルフィルターと送風機ユニットを組み合わせる形態としては、互いのケーシング同士を接続して一体化して使用する方法が挙げられる。本発明のケミカルフィルターを送風機ユニットに組み込む形態としては、吸着層を送風機ユニットに組み込む形態である。ケミカルフィルターを送風機ユニットに組み込む形態において、送風機とケミカルフィルターの位置は、どちらが上流側にきてもよい。本発明のケミカルフィルターを送風機ユニットとを組み合わせて使用すれば、ガス状汚染物質と微粒子を共に除去できる点で好ましい。   The chemical filter of the present invention is attached upstream of the HEPA or ULPA filter for removing fine particles. As a form which combines the chemical filter and blower unit of this invention, the method of connecting and mutually using casings is mentioned. As a form which incorporates the chemical filter of this invention in a fan unit, it is a form which incorporates an adsorption layer in a fan unit. In the form in which the chemical filter is incorporated in the blower unit, either the blower or the chemical filter may be located upstream. Use of the chemical filter of the present invention in combination with a blower unit is preferable in that both gaseous pollutants and fine particles can be removed.

本発明においては、モノリス又はモノリスイオン交換体等をケミカルフィルターの吸着層として用いるため、大きな空孔と均一に導入されたイオン交換基により、静圧の小さな小型の送風機においても効率よく被処理気体中の不純物を除去できる。また、体積当たりのイオン交換容量、比表面積が非常に大きく均一にイオン交換基が導入されているため、除去率の向上と長寿命化が図れる。   In the present invention, since a monolith or a monolith ion exchanger is used as an adsorption layer of a chemical filter, the gas to be treated can be efficiently processed even in a small blower with a small static pressure by using large pores and ion exchange groups introduced uniformly. Impurities can be removed. Further, since the ion exchange capacity per volume and the specific surface area are very large and the ion exchange groups are uniformly introduced, the removal rate can be improved and the life can be extended.

実施例
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
EXAMPLES Next, the present invention will be specifically described with reference to examples. However, this is merely an example and does not limit the present invention.

(I工程;モノリス中間体の製造)
スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図2)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
(Step I; production of monolith intermediate)
5.4 g of styrene, 0.17 g of divinylbenzene, 1.4 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. When the internal structure of the monolith intermediate (dry body) obtained in this way was observed with an SEM image (FIG. 2), the wall section separating two adjacent macropores was very thin and rod-shaped, but the open cell structure The average diameter of the openings (mesopores) where the macropores overlap with each other as measured by the mercury intrusion method was 70 μm, and the total pore volume was 21.0 ml / g.

(共連続構造モノリスの製造)
次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monocontinuous monolith)
Subsequently, 76.0 g of styrene, 4.0 g of divinylbenzene, 120 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 40 mm to fractionate 4.1 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは10μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは17μm、全細孔容積は2.9ml/gであった。その結果を表1及び2にまとめて示す。表2中、骨格の太さは骨格の直径で表した。   When the internal structure of the monolith (dry body) containing 3.2 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained in this way was observed by SEM, the monolith had a skeleton and pores, respectively. It was a three-dimensional continuous structure with both phases intertwined. Moreover, the thickness of the skeleton measured from the SEM image was 10 μm. Further, the size of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 17 μm, and the total pore volume was 2.9 ml / g. The results are summarized in Tables 1 and 2. In Table 2, the thickness of the skeleton is represented by the diameter of the skeleton.

(共連続構造モノリス状カチオン交換体の製造)
上記の方法で製造したモノリスを、直径75mm、厚み約15mmの円盤状に切断した。モノリスの重量は18gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸99gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して共連続構造を有するモノリスカチオン交換体を得た。
(Production of co-continuous monolithic cation exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 75 mm and a thickness of about 15 mm. The weight of the monolith was 18 g. To this was added 1500 ml of dichloromethane, heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 99 g of chlorosulfuric acid, heated up and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a co-continuous structure.

得られたカチオン交換体を一部切り出し、乾燥させた後、その内部構造をSEMにより観察したところ、当該モノリスカチオン体は共連続構造を維持していることを確認した。そのSEM画像を図3に示す。また、該カチオン交換体の反応前後の膨潤率は1.4倍であり、体積当りのイオン交換容量は水湿潤状態で0.74mg当量/mlであった。水湿潤状態でのモノリスの連続空孔の大きさを、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ24μmであり、骨格の直径は14μm、全細孔容積は2.9ml/gであった。   A part of the obtained cation exchanger was cut out and dried, and then its internal structure was observed by SEM. As a result, it was confirmed that the monolith cation body maintained a co-continuous structure. The SEM image is shown in FIG. Moreover, the swelling ratio before and after the reaction of the cation exchanger was 1.4 times, and the ion exchange capacity per volume was 0.74 mg equivalent / ml in a water-wet state. The size of the continuous pores of the monolith in the water wet state was estimated from the value of the monolith and the swelling ratio of the cation exchanger in the water wet state to be 24 μm, the skeleton diameter was 14 μm, and the total pore volume was 2. It was 9 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は、0.052MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは16mmであり、市販の強酸性カチオン交換樹脂であるアンバーライトIR120B(ロームアンドハース社製)の値(320mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質カチオン交換体の値に比べても短かった。その結果を表2にまとめて示す。   In addition, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.052 MPa / m · LV, which is a low pressure loss with no practical problem. Furthermore, when the ion exchange zone length for sodium ions of the monolith cation exchanger was measured, the ion exchange zone length at LV = 20 m / h was 16 mm. Amberlite IR120B (a commercially available strong acid cation exchange resin) It was not only overwhelmingly shorter than the value (320 mm) manufactured by Rohm and Haas, but also shorter than the value of the monolithic porous cation exchanger having a conventional open cell structure. The results are summarized in Table 2.

次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4左側の写真中、左右傾斜して延びるものが骨格部であり、図5左側の写真中、2つの円形状は骨格の断面である。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 4 and 5, the left and right photographs correspond to each other. FIG. 4 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 5 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. In the photograph on the left side of FIG. 4, a part extending in a horizontal direction is a skeleton part, and in the photograph on the left side of FIG. 5, two circular shapes are cross sections of the skeleton. 4 and 5, it can be seen that the sulfonic acid groups are uniformly introduced on the skeleton surface of the cation exchanger and inside the skeleton (cross-sectional direction).

実施例2及び3
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法で共連続構造を有するモノリスを製造した。その結果を表1及び表2に示す。
Examples 2 and 3
(Manufacture of monolith with co-continuous structure)
The amount of styrene used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used were changed to the amounts shown in Table 1. Except for the above, a monolith having a co-continuous structure was produced in the same manner as in Example 1. The results are shown in Tables 1 and 2.

(共連続構造を有するモノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ実施例1と同様の方法でクロロ硫酸と反応させ、共連続構造を有するモノリスカチオン交換体を製造した。その結果を表2に示す。また、得られた共連続構造を有するモノリスカチオン交換体の内部構造を、SEM画像により観察した結果をそれぞれ図6及び図7に示す。表2から実施例2および3で得られたモノリスカチオン交換体は差圧係数が小さい、体積当りの交換容量が大きい、イオン交換帯長さが短いといった優れた特性を示した。また、実施例2のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger having a co-continuous structure)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolith cation exchanger having a co-continuous structure. The results are shown in Table 2. Moreover, the result of having observed the internal structure of the obtained monolith cation exchanger which has a co-continuous structure by the SEM image is shown in FIG.6 and FIG.7, respectively. From Table 2, the monolith cation exchangers obtained in Examples 2 and 3 exhibited excellent characteristics such as a small differential pressure coefficient, a large exchange capacity per volume, and a short ion exchange zone length. The monolith cation exchanger of Example 2 was also evaluated for mechanical properties.

(モノリスカチオン交換体の機械的特性評価)
実施例2で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ23kPa、15kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは50%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Example 2 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state and used as a test piece for the tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 23 kPa and 15 kPa, respectively, which were significantly larger than the conventional monolith cation exchanger. Further, the tensile elongation at break was 50%, which was a value larger than that of the conventional monolith cation exchanger.

実施例4
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法で共連続構造を有するモノリスを製造した。その結果を表1及び表2に示す。
Example 4
(Manufacture of monolith with co-continuous structure)
Except for changing the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used as shown in Table 1. A monolith having a co-continuous structure was produced in the same manner as in Example 1. The results are shown in Tables 1 and 2.

(共連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger having a co-open cell structure)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたアニオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は水湿潤状態で0.44mg当量/mlであった。水湿潤状態でのモノリスイオン交換体の連続空孔の直径を、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ29μmであり、骨格の太さは13μm、全細孔容積は、2.0ml/gであった。   The swelling ratio before and after the reaction of the obtained anion exchanger was 1.6 times, and the ion exchange capacity per volume was 0.44 mg equivalent / ml in a water-wet state. The diameter of the continuous pores of the monolith ion exchanger in the water wet state was estimated from the value of the monolith and the swelling ratio of the cation exchanger in the water wet state to be 29 μm, the thickness of the skeleton was 13 μm, and the total pore volume. Was 2.0 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は0.020MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは22mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質アニオン交換体の値に比べても短かった。その結果を表2にまとめて示す。また、得られた共連続構造を有するモノリスアニオン交換体の内部構造を、SEM画像により観察した結果を図8に示す。   Further, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.020 MPa / m · LV, which is a low pressure loss that does not impede practical use. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 22 mm, and amberlite which is a commercially available strong basic anion exchange resin. In addition to being overwhelmingly shorter than the value of IRA402BL (Rohm and Haas) (165 mm), it was also shorter than the value of a monolithic porous anion exchanger having a conventional open cell structure. The results are summarized in Table 2. Moreover, the result of having observed the internal structure of the obtained monolith anion exchanger which has a co-continuous structure by the SEM image is shown in FIG.

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の表面のみならず、内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the surface of the anion exchanger but also inside, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

比較例1
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
Comparative Example 1
(Manufacture of monolithic organic porous body having continuous macropore structure)
A monolithic organic porous body having a continuous macropore structure was produced according to the production method described in JP-A-2002-306976. That is, 19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of SMO and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolithic organic porous body having a continuous macropore structure.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した有機多孔質体の内部構造を、SEMにより観察した結果を図9に示す。図9から明らかなように、当該有機多孔質体は連続マクロポア構造を有している。また、SEM画像から測定した壁部の平均厚みは5μm、水銀圧入法により測定した当該有機多孔質体のマクロポとマクロポアの重なり部分(開口)の平均直径は29μm、全細孔容積は8.6ml/gであった。その結果を表1及び2にまとめて示す。表1及び2中、メソポア直径は開口の平均直径を意味する。   FIG. 9 shows the result of observing the internal structure of the organic porous material containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM. As is apparent from FIG. 9, the organic porous body has a continuous macropore structure. Moreover, the average thickness of the wall part measured from the SEM image is 5 μm, the average diameter of the overlapping part (opening) of the macropore and the macropore of the organic porous body measured by the mercury intrusion method is 29 μm, and the total pore volume is 8.6 ml. / g. The results are summarized in Tables 1 and 2. In Tables 1 and 2, the mesopore diameter means the average diameter of the openings.

(連続マクロポア構造を有するモノリスカチオン交換体の製造)
比較例1で製造した有機多孔質体を、直径70mm、厚み約15mmの円盤状に切断した。有機多孔質体の重量は6gであった。これにジクロロメタン1000mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸30gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.22mg当量/mlと実施例に比べて小さな値を示した。水湿潤状態での有機多孔質イオン交換体のメソポアの平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ46μmであり、骨格を構成する壁面の平均厚み8μm、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は0.013MPa/m・LVであった。結果を表3にまとめて示すが、差圧係数は実施例と同様に小さな値を示したが、体積当りのイオン交換容量は実施例よりかなり低く、イオン交換帯長さは実施例の約3倍と長かった。また、比較例1で得られたモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger having a continuous macropore structure)
The organic porous material produced in Comparative Example 1 was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. The weight of the organic porous material was 6 g. To this was added 1000 ml of dichloromethane, and the mixture was heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 30 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic porous cation exchanger having a continuous macropore structure. The swelling rate before and after the reaction of the obtained cation exchanger was 1.6 times, and the ion exchange capacity per volume was 0.22 mg equivalent / ml in a water-wet state, which was a small value compared to the examples. The average diameter of the mesopores of the organic porous ion exchanger in the water-wet state is 46 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state. The thickness was 8 μm and the total pore volume was 8.6 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.013 MPa / m · LV. The results are summarized in Table 3. The differential pressure coefficient showed a small value as in the example, but the ion exchange capacity per volume was considerably lower than in the example, and the ion exchange zone length was about 3 times that in the example. It was twice as long. The monolith cation exchanger obtained in Comparative Example 1 was also evaluated for mechanical properties.

(従来のモノリスカチオン交換体の機械的特性評価)
比較例1で得られたモノリスカチオン交換体について、実施例2の評価方法と同様の方法で引張試験を行った。その結果、引張強度、引張弾性率はそれぞれ28kPa、12kPaであり、実施例2のモノリスカチオン交換体に比べて低い値であった。また、引張破断伸びも17%であり、本発明のモノリスカチオン交換体よりも小さかった。
(Mechanical property evaluation of conventional monolith cation exchanger)
The monolith cation exchanger obtained in Comparative Example 1 was subjected to a tensile test by the same method as the evaluation method of Example 2. As a result, the tensile strength and the tensile modulus were 28 kPa and 12 kPa, respectively, which were lower values than the monolith cation exchanger of Example 2. The tensile elongation at break was 17%, which was smaller than that of the monolith cation exchanger of the present invention.

比較例2
(連続気泡構造を有するモノリス状有機多孔質体の製造)
スチレンの使用量、ジビニルベンゼンの使用量、SMOの使用量を表1に示す配合量に変更した以外は、比較例1と同様の方法で、従来技術により連続マクロポア構造を有するモノリス状有機多孔質体を製造した。その結果を表1及び2に示す。
Comparative Example 2
(Production of monolithic organic porous body having an open cell structure)
A monolithic organic porous material having a continuous macropore structure in the same manner as in Comparative Example 1 except that the amount of styrene used, the amount of divinylbenzene, and the amount of SMO used were changed to the amounts shown in Table 1. The body was manufactured. The results are shown in Tables 1 and 2.

(連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造した有機多孔質体を、実施例4と同様の方法でクロロメチル基を導入し、トリメチルアミンと反応させることで、従来技術により連続気泡構造を有するモノリスアニオン交換体を製造した。その結果を表2に示すが、差圧係数は実施例と同様に小さな値を示したが、体積当りのイオン交換容量は実施例より低く、イオン交換帯長さは実施例の約4倍と長かった。
(Production of monolith anion exchanger having an open cell structure)
A monolith anion exchanger having an open cell structure was produced by a conventional technique by introducing a chloromethyl group into the organic porous material produced by the above method and reacting with trimethylamine in the same manner as in Example 4. The results are shown in Table 2. The differential pressure coefficient showed a small value as in the example, but the ion exchange capacity per volume was lower than in the example, and the ion exchange zone length was about four times that in the example. It was long.

比較例3
II工程で用いる有機溶媒の種類をポリスチレンの良溶媒であるジオキサンに変更したことを除いて、実施例1と同様の方法で共連続構造を有するモノリスの製造を試みた。しかし、単離した生成物は透明であり、多孔構造の崩壊・消失が示唆された。確認のためSEM観察を行ったが、緻密構造しか観察されず、連続気泡構造は消失していた。
Comparative Example 3
An attempt was made to produce a monolith having a co-continuous structure in the same manner as in Example 1 except that the type of organic solvent used in Step II was changed to dioxane, which is a good solvent for polystyrene. However, the isolated product was transparent, suggesting collapse / disappearance of the porous structure. SEM observation was performed for confirmation, but only a dense structure was observed, and the open cell structure disappeared.

実施例5
(共連続構造モノリスの製造)
実施例1と同様の方法で共連続構造モノリスを製造した。
Example 5
(Manufacture of monocontinuous monolith)
A co-continuous structure monolith was produced in the same manner as in Example 1.

(共連続構造モノリスカチオン交換体の製造)
外径75mm、厚み約15mmの円盤に代えて、外径75mm、厚み50mmの円盤としたこと、ジクロロメタン1,500mlに代えて、5,000mlとしたこと、クロロ硫酸99gに代えて、330gとしたこと以外は、実施例1と同様の方法で共連続構造モノリスカチオン交換体を製造した。得られたモノリスカチオン交換体の反応前後の膨潤率、体積当りのイオン交換容量、水湿潤状態でのモノリスの連続空孔の大きさは実施例1と同じ値であった。
(Production of co-continuous monolith cation exchanger)
Instead of a disk having an outer diameter of 75 mm and a thickness of about 15 mm, a disk having an outer diameter of 75 mm and a thickness of 50 mm was used, 5,000 ml was substituted for 1,500 ml of dichloromethane, and 330 g was substituted for 99 g of chlorosulfuric acid. Except for this, a co-continuous monolith cation exchanger was produced in the same manner as in Example 1. The obtained monolith cation exchanger had the same swelling ratio before and after the reaction, the ion exchange capacity per volume, and the size of the continuous pores of the monolith in a water-wet state as in Example 1.

(共連続構造モノリスカチオン交換体を用いた塩基性ガスの吸着)
実施例5で得られた共連続構造モノリスカチオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、アンモニア濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法でアンモニウムイオンの定量を行った。その結果、空気中のアンモニア濃度は50ng/m未満であり、完全にアンモニアを除去できた。
(Adsorption of basic gas using bicontinuous monolith cation exchanger)
The co-continuous structure monolith cation exchanger obtained in Example 5 was immersed in 3N hydrochloric acid for 24 hours, and then sufficiently washed with pure water and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. When this filter was supplied with air with an ammonia concentration of 5,000 ng / m 3 at a surface wind speed of 0.5 m / s under a temperature and humidity condition of 25 ° C. and 40%, the permeating gas was measured as ultrapure water. Sampling was performed by the impinger method, and ammonium ions were quantified by ion chromatography. As a result, the ammonia concentration in the air was less than 50 ng / m 3 , and ammonia could be completely removed.

比較例4
製造例1(有機多孔質陽イオン交換体の製造)
スチレン38g、ジビニルベンゼン2.0g、ソルビタンモノオレート2.1gおよびアゾビスイソブチロニトリル0.1gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/アゾビスイソブチロニトリル混合物を360gの純水に添加し、遊星式攪拌装置である真空攪拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、底面直径と充填物の高さの比が1:1、公転回転数1000回転/分、自転回転数330回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、系を窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマー、水およびソルビタンモノオレエートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3モル%含有した有機多孔質体の内部構造をSEMにより観察した結果、当該有機多孔質体は連続気泡構造を有していた。
Comparative Example 4
Production Example 1 (Production of organic porous cation exchanger)
38 g of styrene, 2.0 g of divinylbenzene, 2.1 g of sorbitan monooleate and 0.1 g of azobisisobutyronitrile were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / azobisisobutyronitrile mixture is added to 360 g of pure water, and 13 using a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Under reduced pressure of 3 kPa, the mixture was stirred for 2 minutes at a ratio of the bottom surface diameter to the height of the packing of 1: 1, a revolution speed of 1000 revolutions / minute, and a rotation speed of 330 revolutions / minute to obtain a water-in-oil emulsion. After completion of emulsification, the system was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol to remove unreacted monomers, water and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. As a result of observing the internal structure of the organic porous material containing 3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained by SEM, the organic porous material has an open-cell structure. It was.

次いで上記有機多孔質体を切断して18gを分取し、ジクロロエタン2400mlを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸90gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗して有機多孔質陽イオン交換体を得た。この有機多孔質陽イオン交換体のイオン交換容量は、乾燥多孔質体換算で4.8mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基がμmオーダーで有機多孔質体に均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陽イオン交換体のメソポアの平均径は、30μm、全細孔容積は10.2ml/gであった。   Next, the organic porous material was cut to obtain 18 g, and after adding 2400 ml of dichloroethane and heating at 60 ° C. for 30 minutes, the mixture was cooled to room temperature, 90 g of chlorosulfuric acid was gradually added, and the mixture was reacted at room temperature for 24 hours. Thereafter, acetic acid was added, and the reaction product was poured into a large amount of water and washed with water to obtain an organic porous cation exchanger. The ion exchange capacity of this organic porous cation exchanger is 4.8 mg equivalent / g in terms of dry porous material, and the organic porous material has sulfonic acid groups on the order of μm by mapping sulfur atoms using EPMA. It was confirmed that it was introduced uniformly. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous cation exchanger had an average mesopore diameter of 30 μm and a total pore volume of 10.2 ml / g.

(有機多孔質陽イオン交換体を用いた塩基性ガスの吸着)
製造例1で製造した有機多孔質陽イオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに実施例5と同様の方法でアンモニア除去試験を行った結果、透過空気中のアンモニア濃度は120ng/mとなり、完全にアンモニアを除去することはできなかった。
(Adsorption of basic gas using organic porous cation exchanger)
The organic porous cation exchanger produced in Production Example 1 was immersed in 3N hydrochloric acid for 24 hours, then sufficiently washed with pure water and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. As a result of performing an ammonia removal test on this filter in the same manner as in Example 5, the ammonia concentration in the permeated air was 120 ng / m 3 , and ammonia could not be completely removed.

実施例6
モノリスカチオン交換体を3N塩酸中に浸漬する前に、内径2mmのSUS316製パイプにより、円柱状モノリスの見かけの円に対して、直径2mmの孔による空隙率が30%となるよう、軸方向に延びる貫通孔をあけた以外は、実施例5と同様の方法で貫通孔を有するモノリスカチオン交換体を得、更に実施例5と同様の方法で塩基性ガスの吸着を行った。その結果、面風速0.5m/sのときの通気差圧は80Paと非常に低圧損であり、空気中のアンモニア濃度は450ng/mであった。
Example 6
Before immersing the monolith cation exchanger in 3N hydrochloric acid, the SUS316 pipe with an inner diameter of 2 mm is used to make the porosity of the hole with a diameter of 2 mm to 30% with respect to the apparent circle of the cylindrical monolith in the axial direction. A monolith cation exchanger having through-holes was obtained in the same manner as in Example 5 except that the extending through-holes were opened, and further basic gas was adsorbed in the same manner as in Example 5. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 80 Pa, and the ammonia concentration in the air was 450 ng / m 3 .

比較例5
上記モノリス状有機多孔質カチオン交換体に代えて、比較例4の連続気泡型モノリス状有機多孔質カチオン交換体を使用したこと以外は、実施例5と同様の方法で貫通孔をあけると共に、塩基性ガスの吸着を行った。その結果、通気差圧は85Paであり、空気中のアンモニア濃度は850ng/mであった。
Comparative Example 5
In place of the monolithic organic porous cation exchanger, an open-cell monolithic organic porous cation exchanger of Comparative Example 4 was used, except that a through-hole was formed in the same manner as in Example 5, and a base was used. Adsorption of sex gas was performed. As a result, the aeration differential pressure was 85 Pa, and the ammonia concentration in the air was 850 ng / m 3 .

実施例7
(共連続構造モノリス状アニオン交換体の製造)
モノリスアニオン交換体の製造において厚さ15mmの円盤に代えて50mmとしたこと、ジメトキシメタン使用量を1400mlから4700mlとしたこと、四塩化スズの使用量を20mlから67mlとしたこと、クロロ硫酸の使用量を560mlから1870mlとしたこと、THF及びトリメチルアミン30%水溶液の使用量をそれぞれ1000mlから3400ml、600mlから2000mlとしたこと以外は、実施例4に準拠してモノリス状アニオン交換体を製造した。
Example 7
(Production of co-continuous monolithic anion exchanger)
The production of the monolith anion exchanger was changed to 50 mm instead of the 15 mm thick disk, the amount of dimethoxymethane was changed from 1400 ml to 4700 ml, the amount of tin tetrachloride was changed from 20 ml to 67 ml, the use of chlorosulfuric acid A monolithic anion exchanger was produced according to Example 4 except that the amount was changed from 560 ml to 1870 ml, and the amounts of THF and trimethylamine 30% aqueous solution were changed from 1000 ml to 3400 ml and from 600 ml to 2000 ml, respectively.

(共連続構造モノリス状アニオン交換体を用いた酸性ガスの吸着)
上記方法で得られたモノリス状アニオン交換体を1N水酸化ナトリウム水溶液中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質アニオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、二酸化硫黄濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法で硫酸イオンの定量を行った。その結果、空気中の二酸化硫黄濃度は50ng/m未満であり、完全に二酸化硫黄を除去できた。
(Adsorption of acid gas using bicontinuous monolithic anion exchanger)
The monolithic anion exchanger obtained by the above method was immersed in a 1N aqueous sodium hydroxide solution for 24 hours, and then sufficiently washed with pure water and dried. The resulting monolithic organic porous anion exchanger was allowed to stand for 48 hours at 25 ° C. and a relative humidity of 40%, then cut into a disk with a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to produce a chemical filter. did. The air permeation pressure was measured when air with a sulfur dioxide concentration of 5,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity, and the permeated gas was ultrapure. Sampling was performed by a water impinger method, and sulfate ions were quantified by an ion chromatography method. As a result, the sulfur dioxide concentration in the air was less than 50 ng / m 3 , and sulfur dioxide was completely removed.

比較例6
スチレンに代えてクロロメチルスチレンを用いたこと及びソルビタンモノオレートの量を4.5gに変更したこと以外は、比較例4と同様の方法で連続気泡型のモノリス状有機多孔質体を製造した。この有機多孔質体を切断して15.0gを分取し、テトラヒドロフラン1500gを加え60℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、有機多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して有機多孔質陰イオン交換体を得た。この有機多孔質陰イオン交換体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであり、SIMSにより、トリメチルアンモニウム基が有機多孔質体にμmオーダーで均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陰イオン交換体のメソポアの平均径は、25μm、全細孔容積は9.8ml/gであった。
Comparative Example 6
An open-celled monolithic organic porous body was produced in the same manner as in Comparative Example 4 except that chloromethylstyrene was used in place of styrene and the amount of sorbitan monooleate was changed to 4.5 g. The organic porous material was cut to take 15.0 g, 1500 g of tetrahydrofuran was added and the mixture was heated at 60 ° C. for 30 minutes, then cooled to room temperature, and 195 g of a trimethylamine (30%) aqueous solution was gradually added. After reacting for 3 hours, the mixture was allowed to stand overnight at room temperature. After completion of the reaction, the organic porous material was taken out, washed with acetone, washed with water, and dried to obtain an organic porous anion exchanger. The ion exchange capacity of this organic porous anion exchanger is 3.7 mg equivalent / g in terms of dry porous body, and trimethylammonium groups are uniformly introduced into the organic porous body in the order of μm by SIMS. It was confirmed. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous anion exchanger had an average mesopore diameter of 25 μm and a total pore volume of 9.8 ml / g.

得られたアニオン交換体を実施例7と同様の方法で二酸化硫黄の除去試験を行った。その結果、空気中の二酸化硫黄の濃度は200ng/mであり、完全に除去することはできなかった。 The obtained anion exchanger was subjected to a sulfur dioxide removal test in the same manner as in Example 7. As a result, the concentration of sulfur dioxide in the air was 200 ng / m 3 and could not be completely removed.

実施例8
(共連続構造モノリスを用いた有機性ガスの吸着)
実施例5に準拠して製造した共連続構造モノリス状有機多孔質体を純水で十分洗浄し、乾燥させた。得られた共連続構造モノリス状有機多孔質体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、トルエン濃度1,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を固体吸着剤(TENAX−GR)を用いて捕集し、ガスクロマトグラフ質量分析法でトルエンの定量を行った。その結果、空気中のトルエン濃度は110ng/mとなり、約89%の除去率であった。
Example 8
(Adsorption of organic gas using bicontinuous monolith)
The co-continuous structure monolithic organic porous material produced according to Example 5 was sufficiently washed with pure water and dried. The obtained co-continuous structure monolithic organic porous material was allowed to stand for 48 hours at 25 ° C. and a relative humidity of 40%, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and packed into a cylindrical column to obtain a chemical filter. Produced. A solid adsorbent (TENAX-GR) was used as the permeated gas when air with a toluene concentration of 1,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity. The toluene was quantified by gas chromatography mass spectrometry. As a result, the toluene concentration in the air was 110 ng / m 3 and the removal rate was about 89%.

比較例7
比較例4に準じて連続気泡型モノリス状有機多孔質体を製造し、実施例8と同様に直径50mm、厚み50mmの円盤状ケミカルフィルターを作製した。
Comparative Example 7
An open-cell monolithic organic porous material was produced according to Comparative Example 4, and a disc-shaped chemical filter having a diameter of 50 mm and a thickness of 50 mm was produced in the same manner as in Example 8.

このフィルターを実施例8と同様の条件でトルエン除去試験を行った結果、透過空気中のアンモニア濃度は200ng/mとなり、除去率は約80%であり、実施例8よりも低い除去率となった。 This filter was subjected to a toluene removal test under the same conditions as in Example 8. As a result, the ammonia concentration in the permeated air was 200 ng / m 3 and the removal rate was about 80%, which was a lower removal rate than in Example 8. became.

実施例9
(モノリス状有機多孔質カチオン交換体を用いた高風速下での塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度2,000ng/mの空気としたこと、面風速0.5m/sに代えて、5.0m/sとしたこと以外は、実施例5と同様の方法でアンモニアの除去試験を行った。その結果、空気透過速度が速いにもかかわらず、透過空気中のアンモニア濃度は50ng/m未満であり、アンモニアを除去することができた。
Example 9
(Adsorption of basic gas under high wind speed using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 5,000 ng / m 3, it has an air ammonia concentration 2,000 ng / m 3, in place of the face velocity 0.5 m / s, except that a 5.0 m / s, An ammonia removal test was performed in the same manner as in Example 5. As a result, despite the high air permeation rate, the ammonia concentration in the permeated air was less than 50 ng / m 3 , and ammonia could be removed.

実施例10
(モノリス状有機多孔質カチオン交換体を用いた極微量濃度塩基性ガスの吸着)
アンモニア濃度2,000ng/mの空気に代えて、アンモニア濃度100ng/mの空気とした以外は、実施例9と同様の方法でアンモニア除去の性能評価を行なった。その結果、透過気体中のアンモニア濃度は50ng/m未満であり、空気透過速度が5.0m/sと速くても、極微量のアンモニアを完全に除去することができた。
Example 10
(Adsorption of trace amount of basic gas using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 2,000 ng / m 3, except that the air concentration of ammonia 100 ng / m 3 were subjected to performance evaluation of ammonia removal in the same manner as in Example 9. As a result, the ammonia concentration in the permeated gas was less than 50 ng / m 3 , and even when the air permeation rate was as high as 5.0 m / s, a trace amount of ammonia could be completely removed.

実施例11
(モノリス状有機多孔質カチオン交換体を用いた高濃度塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度100μg/mの空気としたこと以外は、実施例5と同様の方法でアンモニア除去の寿命試験を行った。その結果、90%以上の浄化効率を維持できる期間は27日間であった。
Example 11
(Adsorption of high concentration basic gas using monolithic organic porous cation exchanger)
A life test for removing ammonia was conducted in the same manner as in Example 5 except that air having an ammonia concentration of 5,000 ng / m 3 was used instead of air having an ammonia concentration of 100 μg / m 3 . As a result, the period during which purification efficiency of 90% or more can be maintained was 27 days.

比較例8
比較例4と同様のケミカルフィルターを用いて、実施例11と同様のアンモニア除去の寿命試験を行った。その結果、90%以上の除去率を維持できる期間は10日間であった。
Comparative Example 8
Using the same chemical filter as in Comparative Example 4, the same life test for removing ammonia as in Example 11 was performed. As a result, the period during which the removal rate of 90% or more can be maintained was 10 days.

Figure 0005290604
Figure 0005290604

Figure 0005290604
Figure 0005290604

本発明のモノリス及びモノリスイオン交換体は疎水性で化学的に安定である。また、3次元的に連続する骨格が太く機械的強度が高く、特に体積当りのイオン交換容量が大きい。また、共連続構造中、3次元的に連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低く、更にイオン交換帯長さが格段に短いといった特長を有しているため、ケミカルフィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;各種のクロマトグラフィー用充填剤;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。   The monoliths and monolith ion exchangers of the present invention are hydrophobic and chemically stable. In addition, the three-dimensionally continuous skeleton is thick and the mechanical strength is high, and the ion exchange capacity per volume is particularly large. In addition, in the co-continuous structure, the three-dimensionally continuous pores are large, and the pressure loss when a fluid such as water or gas is permeated is low, and the length of the ion exchange zone is remarkably short. Therefore, chemical filters and adsorbents; ion exchangers used in two-bed, three-column pure water production equipment and electric deionized water production equipment; various chromatographic fillers; solid acid / base catalysts And can be applied to a wide range of application fields.

本発明のモノリスの共連続構造を模式的に示した図である。It is the figure which showed typically the co-continuous structure of the monolith of this invention. 実施例1で得られたモノリス中間体のSEM画像である。2 is a SEM image of the monolith intermediate obtained in Example 1. 実施例1で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。2 is an SEM image of a monolith cation exchanger having a co-continuous structure obtained in Example 1. FIG. 実施例1で得られた共連続構造を有するモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing a distribution state of sulfur atoms on the surface of a monolith cation exchanger having a co-continuous structure obtained in Example 1. FIG. 実施例1で得られた共連続構造を有するモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing a distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger having a co-continuous structure obtained in Example 1. FIG. 実施例2で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。3 is a SEM image of a monolith cation exchanger having a co-continuous structure obtained in Example 2. 実施例3で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。4 is a SEM image of a monolith cation exchanger having a co-continuous structure obtained in Example 3. 実施例4で得られた共連続構造を有するモノリスアニオン交換体のSEM画像である。4 is a SEM image of a monolith anion exchanger having a co-continuous structure obtained in Example 4. 比較例1で得られたモノリスのSEM写真である。2 is an SEM photograph of the monolith obtained in Comparative Example 1.

符号の説明Explanation of symbols

1 骨格相
2 空孔相
10 モノリス
1 Skeletal phase 2 Pore phase 10 Monolith

Claims (11)

全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであることを特徴とするモノリス状有機多孔質体。   Among all the structural units, a three-dimensionally continuous skeleton composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit and having a thickness of 0.8 to 40 μm, and a diameter between the skeletons A monolithic organic porous body, which is a co-continuous structure composed of three-dimensionally continuous pores of 8 to 80 µm, and has a total pore volume of 0.5 to 5 ml / g. 全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであって、下記工程;
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行うIII工程、を行うことで得られることを特徴とするモノリス状有機多孔質体。
Among all the structural units, a three-dimensionally continuous skeleton composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit and having a thickness of 0.8 to 40 μm, and a diameter between the skeletons A co-continuous structure consisting of three to three-dimensionally continuous pores of 8 to 80 μm, the total pore volume being 0.5 to 5 ml / g, and the following steps:
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to a total pore volume of 16 ml / g. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure exceeding 30 ml / g,
Aromatic vinyl monomers, crosslinkers having at least two vinyl groups in one molecule, organic solvents and polymers that dissolve aromatic vinyl monomers and crosslinkers but do not dissolve polymers formed by polymerization of aromatic vinyl monomers Step II for preparing a mixture of initiators,
A monolith obtained by performing the step III of performing polymerization in the presence of the mixture obtained in the step II while standing and in the presence of the monolithic organic porous intermediate obtained in the step I Organic porous body.
イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。   A three-dimensionally continuous skeleton having a thickness of 1 to 60 μm composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units having an ion exchange group introduced therein; A co-continuous structure comprising three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, the total pore volume being 0.5 to 5 ml / g, The monolithic organic porous ion exchanger is characterized in that the ion exchange capacity is 0.3 mg equivalent / ml or more and the ion exchange groups are uniformly distributed in the porous ion exchanger. 請求項2のモノリス状有機多孔質体にイオン交換基を導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。   An ion exchange group introduced into the monolithic organic porous material according to claim 2, wherein the ion exchange capacity per volume in a water-wet state is 0.3 mg equivalent / ml or more, and the ion exchange group is in the porous state. Monolithic organic porous ion exchanger characterized by being uniformly distributed in the porous ion exchanger. イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法。
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to a total pore volume of 16 ml / g. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure exceeding 30 ml / g,
Aromatic vinyl monomer, 0.3-5 mol% of cross-linking agent, aromatic vinyl monomer and cross-linking agent are dissolved in all oil-soluble monomer having at least two vinyl groups in one molecule, but aromatic vinyl monomer Step II for preparing a mixture comprising an organic solvent and a polymerization initiator in which the polymer produced by polymerization of the polymer does not dissolve,
It is characterized in that the step III obtained by carrying out the polymerization in the presence of the monolithic organic porous intermediate obtained in the step I while standing the mixture obtained in the step II to obtain a co-continuous structure is performed. A method for producing a monolithic organic porous body.
I工程で得られるモノリス状の有機多孔質中間体は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径5〜100μmの開口となる連続マクロポア構造体であることを特徴とする請求項5記載のモノリス状有機多孔質体の製造方法。   6. The monolithic organic porous intermediate obtained in the step I is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 5 to 100 μm. The manufacturing method of the monolithic organic porous body of description. イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、
該III工程で得られた共連続構造体にイオン交換基を導入するIV工程、
を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法。
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to a total pore volume of 16 ml / g. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure exceeding 30 ml / g,
Aromatic vinyl monomer, 0.3-5 mol% of cross-linking agent, aromatic vinyl monomer and cross-linking agent are dissolved in all oil-soluble monomer having at least two vinyl groups in one molecule, but aromatic vinyl monomer Step II for preparing a mixture comprising an organic solvent and a polymerization initiator in which the polymer produced by polymerization of the polymer does not dissolve,
Step III where the mixture obtained in Step II is allowed to stand and in the presence of the monolithic organic porous intermediate obtained in Step I to obtain a co-continuous structure,
An IV step for introducing an ion exchange group into the co-continuous structure obtained in the step III;
A process for producing a monolithic organic porous ion exchanger characterized in that
請求項1又は2記載のモノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous material according to claim 1 or 2 as an adsorption layer. 請求項3又は4記載のモノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルター。   5. A chemical filter using the monolithic organic porous ion exchanger according to claim 3 as an adsorption layer. 請求項1又は2記載のモノリス状有機多孔質体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using a monolithic organic porous material according to claim 1 or 2 provided with through holes as an adsorption layer. 請求項3又は4記載のモノリス状有機多孔質イオン交換体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using a monolithic organic porous ion exchanger according to claim 3 or 4 provided with through holes as an adsorbing layer.
JP2008081834A 2007-08-22 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Active JP5290604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081834A JP5290604B2 (en) 2007-08-22 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007215486 2007-08-22
JP2007215486 2007-08-22
JP2008081834A JP5290604B2 (en) 2007-08-22 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Publications (2)

Publication Number Publication Date
JP2009067982A JP2009067982A (en) 2009-04-02
JP5290604B2 true JP5290604B2 (en) 2013-09-18

Family

ID=40604576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081834A Active JP5290604B2 (en) 2007-08-22 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Country Status (1)

Country Link
JP (1) JP5290604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028370A (en) * 2009-03-10 2014-02-13 Japan Organo Co Ltd Ion adsorption module and water treatment method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021540B2 (en) * 2007-10-11 2012-09-12 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
US8710111B2 (en) 2007-11-09 2014-04-29 3M Innovative Properties Company Porous polymeric resins
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
CN102348505B (en) * 2009-03-10 2014-07-02 奥加诺株式会社 Ion adsorption module and method of treating water
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
JP5525754B2 (en) * 2009-05-01 2014-06-18 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5294477B2 (en) * 2009-05-12 2013-09-18 オルガノ株式会社 Solid acid catalyst
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5497468B2 (en) * 2009-05-13 2014-05-21 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5586979B2 (en) * 2009-05-14 2014-09-10 オルガノ株式会社 Electric deionized water production apparatus and operation method thereof
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
JP5421689B2 (en) * 2009-08-11 2014-02-19 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5567958B2 (en) * 2010-09-17 2014-08-06 オルガノ株式会社 Method for producing platinum group metal supported catalyst
JP5647842B2 (en) * 2010-09-17 2015-01-07 オルガノ株式会社 Pure water or ultrapure water production apparatus and production method
JP6042277B2 (en) * 2012-07-10 2016-12-14 オルガノ株式会社 Platinum group metal supported catalyst and reactor
JP2017119233A (en) * 2015-12-28 2017-07-06 オルガノ株式会社 Method of purifying organic solvent
WO2020230555A1 (en) 2019-05-15 2020-11-19 オルガノ株式会社 Method for forming carbon-carbon bond
JP7336898B2 (en) 2019-06-28 2023-09-01 オルガノ株式会社 Monolithic organic porous ion exchanger
WO2021246198A1 (en) * 2020-06-04 2021-12-09 オルガノ株式会社 Method for changing ionic form of anion exchanger, and production method of anion exchanger
JP2022107992A (en) 2021-01-12 2022-07-25 オルガノ株式会社 Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method
JP2022163533A (en) 2021-04-14 2022-10-26 オルガノ株式会社 Platinum group metal-supported catalyst column and carbon-carbon bond formation method
WO2022219953A1 (en) 2021-04-14 2022-10-20 オルガノ株式会社 Ion exchanger, method for producing ion exchanger, catalyst having platinum-group meal ion supported thereon, and method for forming carbon-carbon bond
JP2023000337A (en) 2021-06-17 2023-01-04 オルガノ株式会社 Catalytic hydrogenation reduction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428616B2 (en) * 2003-05-06 2010-03-10 オルガノ株式会社 Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP5019471B2 (en) * 2007-08-10 2012-09-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) * 2007-10-11 2012-09-12 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5131911B2 (en) * 2008-03-18 2013-01-30 オルガノ株式会社 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028370A (en) * 2009-03-10 2014-02-13 Japan Organo Co Ltd Ion adsorption module and water treatment method

Also Published As

Publication number Publication date
JP2009067982A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290603B2 (en) Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5698813B2 (en) Ultrapure water production equipment
JP5116724B2 (en) Ultrapure water production equipment
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP5685632B2 (en) Ion adsorption module and water treatment method
JP2009221426A (en) Monolith-shaped organic porous body, manufacturing method, monolith-shaped organic porous ion exchanger
JP2003246809A (en) Organic porous material, manufacturing method for it and organic porous ion exchanger
US20070175329A1 (en) Chemical filter
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP3957179B2 (en) Organic porous ion exchanger
JP2010284639A (en) Electric apparatus for producing deionized water and method for operating the apparatus
JP2004131517A (en) Method for producing organic porous material
JP3957182B2 (en) Method for producing sulfonated organic porous material
JP2010214221A (en) Solid acid catalyst
JP2013078769A (en) Solid acid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5290604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250