JP5497468B2 - Electric deionized water production equipment - Google Patents

Electric deionized water production equipment Download PDF

Info

Publication number
JP5497468B2
JP5497468B2 JP2010027677A JP2010027677A JP5497468B2 JP 5497468 B2 JP5497468 B2 JP 5497468B2 JP 2010027677 A JP2010027677 A JP 2010027677A JP 2010027677 A JP2010027677 A JP 2010027677A JP 5497468 B2 JP5497468 B2 JP 5497468B2
Authority
JP
Japan
Prior art keywords
monolith
exchanger
organic porous
chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027677A
Other languages
Japanese (ja)
Other versions
JP2010284638A (en
Inventor
洋 井上
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2010027677A priority Critical patent/JP5497468B2/en
Publication of JP2010284638A publication Critical patent/JP2010284638A/en
Application granted granted Critical
Publication of JP5497468B2 publication Critical patent/JP5497468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、半導体製造分野、医薬製造分野、原子力や火力などの発電分野、食品工業などの各種の産業又は研究所施設において使用される、省電力スケール発生防止型電気式脱イオン水製造装置に関するものである。   The present invention relates to an electric deionized water production apparatus that prevents generation of power-saving scale and is used in various industries or laboratory facilities such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry, etc. Is.

脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られているが、この方法ではイオン交換樹脂がイオンで飽和されたときに薬剤によって再生を行う必要があり、このような処理操作上の不利な点を解消するため、薬剤による再生が全く不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。   As a method for producing deionized water, there is conventionally known a method in which deionized water is passed through an ion exchange resin to be treated. In this method, regeneration is performed with a drug when the ion exchange resin is saturated with ions. In order to eliminate such disadvantages in processing operations, a method for producing deionized water by an electric deionization method which does not require any regeneration by a chemical agent has been established and has been put into practical use.

この電気式脱イオン水製造装置は、一側のカチオン交換膜、他側のアニオン交換膜で区画される1つの脱塩室に、イオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなるものであり、電圧を印加しながら脱塩室に被処理水を流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を得るものである。   In this electric deionized water production apparatus, one demineralization chamber defined by one side cation exchange membrane and the other side anion exchange membrane is filled with an ion exchanger to form a demineralization chamber. Concentration chambers are provided on both sides of the desalting chamber via an exchange membrane and an anion exchange membrane, and these desalting chambers and concentration chambers are arranged between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode. In addition, the water to be treated flows into the desalting chamber while applying a voltage, and the concentrated water flows into the concentration chamber to remove impurity ions in the water to be treated, thereby obtaining deionized water.

しかしながら、従来の電気式脱イオン水製造装置は、濃縮室の電気抵抗値が大きく、このため定格電流を通電するに要する電圧が高くなり、その結果消費電力が嵩むという問題があった。上述のように、電気式脱イオン水製造装置においては薬液による再生は不要であるため、その運転コストは消費電力によって決定される。交流を直流に変換する際の整流ロスを除けば、電気式脱イオン水製造装置における消費電力は、前記両電極間の直流電流×電圧で表される。   However, the conventional electric deionized water production apparatus has a problem that the electric resistance value of the concentrating chamber is large, so that the voltage required to pass the rated current increases, resulting in increased power consumption. As described above, in the electric deionized water production apparatus, regeneration with a chemical solution is unnecessary, and thus the operating cost is determined by power consumption. Except for the rectification loss when converting alternating current to direct current, the power consumption in the electrical deionized water production apparatus is expressed as direct current x voltage between the electrodes.

ここで、直流電流は、被処理水が含有するイオンの量と種類および要求される処理水質によって決定される。即ち、電気式脱イオン水製造装置においては、脱塩室でイオン交換体に捕捉されたイオンを電気的泳動によって連続的に濃縮水側に排出する必要があり、イオンを泳動せしめるに必要な一定以上の電流は、電気式脱イオン水製造装置がその性能を正常に発揮するために必須のものである。よって、通常の場合、電気式脱イオン水製造装置では、その運転条件において必要な最低電流値を上回る一定の電流値を保持する定電流運転が行われており、これを低減して消費電力の節約を図ることはできない。   Here, the direct current is determined by the amount and type of ions contained in the water to be treated and the required quality of the treated water. That is, in the electric deionized water production apparatus, it is necessary to continuously discharge ions captured by the ion exchanger in the desalting chamber to the concentrated water side by electrophoretic migration, which is necessary for causing ions to migrate. The above current is indispensable for the electric deionized water production apparatus to exhibit its performance normally. Therefore, in the normal case, the electric deionized water production apparatus performs constant current operation that maintains a constant current value that exceeds the minimum current value required under the operation conditions, and this is reduced to reduce power consumption. There is no saving.

これに対して電圧は、両電極間に配設された電極室、濃縮室、脱塩室、およびこれらを隔離するイオン交換膜の電気抵抗によって生じる電位差の総和であり、該室を構成するイオン交換体やイオン交換膜の性能や対イオンの種類、また該室内水が含有するイオンの種類と量などに依存する。中でも、濃縮室の電気抵抗は、他の電気式脱イオン水製造装置の構成要素に比して大きい。即ち、電極室は通常装置両端に1室ずつしか存在しない上にその内部のイオン強度が比較的高く、また、イオン交換膜や脱塩室は両電極間に通常複数配設されているが、イオン交換膜はそれ自体がイオン交換基を有する導電性固体であり、脱塩室もその内部に導電性固体であるイオン交換体が充填されているので、これらによる電気抵抗は比較的小さい。これに対して、濃縮室は両電極間に複数配設され、かつ従来の電気式脱イオン水製造装置では濃縮室には導電性の充填物が充填されていないので、その導電性は該室内水が保有するイオンのみによっているために電気抵抗が大きく、装置全体の電気抵抗上昇の主要因となっていた。   On the other hand, the voltage is the sum of the potential differences generated by the electric resistance of the electrode chamber, the concentrating chamber, the desalting chamber, and the ion-exchange membrane that separates these electrodes between the two electrodes. It depends on the performance of the exchanger and ion exchange membrane, the type of counter ion, and the type and amount of ions contained in the indoor water. Especially, the electrical resistance of a concentration chamber is large compared with the component of other electric deionized water manufacturing apparatuses. That is, there is usually only one electrode chamber at both ends of the apparatus, and the ionic strength inside thereof is relatively high, and a plurality of ion exchange membranes and desalting chambers are usually provided between the two electrodes. Since the ion exchange membrane itself is a conductive solid having an ion exchange group, and the desalting chamber is filled with an ion exchanger which is a conductive solid, the electrical resistance due to these is relatively small. On the other hand, a plurality of concentrating chambers are disposed between both electrodes, and in the conventional electric deionized water production apparatus, the concentrating chamber is not filled with a conductive filler. The electric resistance is large because it is based only on the ions held by water, and this is the main cause of the increase in the electric resistance of the entire apparatus.

また、従来の電気式脱イオン水製造装置では、流入する被処理水の硬度が高い場合、電気式脱イオン水製造装置の濃縮室において炭酸カルシウムや水酸化マグネシウム等のスケールが発生するという問題があった。スケールが発生すると、その部分での電気抵抗が上昇し、電流が流れにくくなる。すなわち、スケール発生が無い場合と同等の電流を流すためには電圧を上昇させる必要があり、消費電力が増加する。また、スケールの付着場所次第では、濃縮室内で電流密度が異なり、脱塩室内において電流の不均一化が生じる。また、スケール付着量がさらに増加すると、通水差圧が上昇すると共に、電圧がさらに上昇し、装置の最大電圧値を超えた場合は電流値が低下することとなる。この場合、イオン除去に必要な大きさの電流が流せなくなり、処理水質の低下を招く。さらには、成長したスケールがイオン交換膜内にまで侵食し、最終的にはイオン交換膜を破ってしまう。   Further, in the conventional electric deionized water production apparatus, when the hardness of the incoming water to be treated is high, there is a problem that scales such as calcium carbonate and magnesium hydroxide are generated in the concentration chamber of the electric deionized water production apparatus. there were. When the scale occurs, the electrical resistance at that portion increases, and current does not flow easily. That is, in order to pass the same current as when no scale is generated, it is necessary to increase the voltage, resulting in an increase in power consumption. In addition, depending on the place where the scale is attached, the current density differs in the concentration chamber, and current non-uniformity occurs in the desalting chamber. Moreover, when the amount of scale adhesion further increases, the water flow differential pressure increases and the voltage further increases. When the maximum voltage value of the apparatus is exceeded, the current value decreases. In this case, a current of a magnitude necessary for ion removal cannot be flowed, and the quality of treated water is deteriorated. Furthermore, the grown scale erodes into the ion exchange membrane and eventually breaks the ion exchange membrane.

特開2003−230886号公報には、上述の濃縮室に由来する電気抵抗値を低減させ、かつスケール発生を防止するために、濃縮室にも連続気泡構造を有する有機多孔質イオン交換体を充填した電気式脱イオン水製造装置が提案されている。   Japanese Patent Laid-Open No. 2003-230886 is filled with an organic porous ion exchanger having an open-cell structure in the concentrating chamber in order to reduce the electric resistance value derived from the concentrating chamber and prevent the generation of scale. An electrical deionized water production apparatus has been proposed.

これらの濃縮室に連続気泡構造の有機多孔質イオン交換体を充填した電気式脱イオン水製造装置では、該有機多孔質イオン交換体の導電性のために電気抵抗が低減され、また、濃縮室におけるイオンの偏在に起因するカルシウムイオンやマグネシウムイオンと、炭酸イオンや水酸化物イオンとの溶解度積を超えた濃度での局部的な混合が回避されるため、スケール発生を防止することができる。なお、特開2003−230886号公報の電気式脱イオン水製造装置で使用する有機多孔質イオン交換体の製造の詳細は特開2002−306976号公報に開示されている。   In the electric deionized water production apparatus in which these concentrating chambers are filled with an organic porous ion exchanger having an open cell structure, the electrical resistance is reduced due to the conductivity of the organic porous ion exchanger, and the concentrating chamber Since local mixing at a concentration exceeding the solubility product of calcium ions and magnesium ions, and carbonate ions and hydroxide ions due to the uneven distribution of ions in can be avoided, scale generation can be prevented. Details of the production of the organic porous ion exchanger used in the electric deionized water production apparatus disclosed in Japanese Patent Application Laid-Open No. 2003-230886 are disclosed in Japanese Patent Application Laid-Open No. 2002-306976.

特開2003−230886号公報JP 2003-230886 A 特開2002−306976号公報JP 2002-306976 A 特開2009−62512号公報JP 2009-62512 A 特開2009−67982号公報JP 2009-67982 A

しかしながら、特開2003−230886号公報に記載の有機多孔質イオン交換体は、モノリスの共通の開口(メソポア)が1〜1,000μmと記載されているものの、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水時の圧力損失が大きいという問題があった。また、開口の平均径を20μm近傍のものにすると、全細孔容積もそれに伴い大きくなるため、体積当たりのイオン交換容量が低下し、導電性が不十分となるという問題があった。   However, the organic porous ion exchanger described in Japanese Patent Application Laid-Open No. 2003-230886 describes a monolith common opening (mesopore) of 1 to 1,000 μm, but has a total pore volume of 5 ml / g or less. For monoliths with a small pore volume, the amount of water droplets in the water-in-oil emulsion needs to be reduced, so that the common opening becomes small, and those having an average diameter of 20 μm or more cannot be manufactured. For this reason, there existed a problem that the pressure loss at the time of water flow was large. Further, when the average diameter of the openings is around 20 μm, the total pore volume is increased accordingly, so that there is a problem that the ion exchange capacity per volume is lowered and the conductivity becomes insufficient.

導電性が不十分であると、電気抵抗の低減効果が十分ではないため、濃縮室の厚みを小さく設定する必要があり、スケール防止効果が充分に得られないという問題があった。濃縮室にイオン交換体を充填した場合のスケール防止機構は、以下の通りである。即ち、濃縮室内のアニオン交換体充填領域では、アニオン交換膜を透過したアニオンは濃縮水中に移動せず、導電性の高い該アニオン交換体を通り、カチオン交換膜まで移動し、ここで初めて濃縮水中に移動する。同様に、カチオン交換体充填領域では、カチオン交換膜を透過したカチオンが濃縮水に移動せず、導電性の高い該カチオン交換体を通り、アニオン交換膜まで移動し、ここで初めて濃縮水中に移動する。このため、濃縮室においてスケール発生原因となる液中のカルシウムイオンやマグネシウムイオンなどと、炭酸イオンや水酸化物イオンなどのそれぞれの高濃度領域は、濃縮室両端に離間されたアニオン交換膜およびカチオン交換膜近傍となり、溶解度積を超えた濃度での混合が回避されてスケール発生を防止することが出来る。上記のスケール防止機構より明らかなように、濃縮室において充分なスケール防止効果を得るには、濃縮室両端に離間されたアニオン交換膜およびカチオン交換膜の距離、即ち濃縮室の厚みを充分に大きく取る必要がある。しかしながら、従来の濃縮室に充填される連続気泡構造のイオン交換体では、上述のように電気抵抗の低減効果が充分でなく、このため濃縮室の厚みを充分に大きく取ることができず、スケール防止効果を充分に得られないという問題があった。また、濃縮室に装填されるモノリスにおいて、連続気泡構造(連続マクロポア)とは異なる新たな構造のモノリスの登場も望まれていた。   If the conductivity is insufficient, the effect of reducing the electrical resistance is not sufficient, so that the thickness of the concentration chamber needs to be set small, and there is a problem that the scale prevention effect cannot be obtained sufficiently. The scale prevention mechanism when the concentration chamber is filled with an ion exchanger is as follows. That is, in the anion exchanger packed region in the concentration chamber, the anion that has permeated through the anion exchange membrane does not move into the concentrated water, passes through the highly conductive anion exchanger, and moves to the cation exchange membrane. Move to. Similarly, in the cation exchanger packed region, cations that have permeated through the cation exchange membrane do not move to the concentrated water, pass through the highly conductive cation exchanger, and move to the anion exchange membrane. To do. For this reason, calcium ions, magnesium ions, etc. in the liquid that cause scale generation in the concentration chamber, and high-concentration regions such as carbonate ions and hydroxide ions are separated from both ends of the concentration chamber by anion exchange membranes and cations. In the vicinity of the exchange membrane, mixing at a concentration exceeding the solubility product is avoided, and scale generation can be prevented. As is clear from the above scale prevention mechanism, in order to obtain a sufficient scale prevention effect in the concentration chamber, the distance between the anion exchange membrane and the cation exchange membrane separated at both ends of the concentration chamber, that is, the thickness of the concentration chamber is sufficiently large. I need to take it. However, in the conventional ion exchanger having an open cell structure filled in the concentration chamber, the effect of reducing the electric resistance is not sufficient as described above, and therefore the thickness of the concentration chamber cannot be made sufficiently large. There was a problem that the prevention effect could not be sufficiently obtained. In addition, in the monolith loaded in the concentrating chamber, the appearance of a monolith with a new structure different from the open cell structure (continuous macropore) has been desired.

従って、本発明の目的は、電気抵抗の低減またはスケール発生の問題を、電気式脱イオン水製造装置(以下、単に「EDI」とも言う。)の濃縮室の構造面から解決し、電気抵抗の低減が図れると共に、長期間の連続運転においても、濃縮室内にスケールが発生しない電気式脱イオン水製造装置を提供することにある。   Accordingly, an object of the present invention is to solve the problem of reduction of electric resistance or generation of scale from the structural aspect of the concentration chamber of an electric deionized water production apparatus (hereinafter also simply referred to as “EDI”). An object of the present invention is to provide an electric deionized water production apparatus that can be reduced and that does not generate scale in the concentrating chamber even during long-term continuous operation.

かかる実情において、本発明者らは、鋭意検討を行った結果、特開2003−230886号公報や特開2002−306976号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、特定の条件下、ビニルモノマーと架橋剤を有機溶媒中で静置重合すれば、有機多孔質体を構成する骨格表面上に直径2〜20μmの多数の粒子体が固着する又は突起体が形成された複合構造を有するモノリスが得られること、この複合モノリスにイオン交換基を導入した複合モノリスイオン交換体は、EDIの濃縮室の充填物とすれば、EDI運転時の電気抵抗を十分に低減でき、このため電圧を低下させて、消費電力即ち運転コストを低減でき、更に通水差圧を下げることができることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, have obtained a monolithic organic material having a relatively large pore volume obtained by the methods described in JP2003-230886A and JP2002-306976A. If the vinyl monomer and the crosslinking agent are allowed to stand in an organic solvent under specific conditions in the presence of the porous body (intermediate), a large number of 2 to 20 μm in diameter is formed on the surface of the skeleton constituting the organic porous body. If a monolith having a composite structure in which the particle bodies are fixed or a protrusion is formed is obtained, and the composite monolith ion exchanger having ion exchange groups introduced into the composite monolith is used as a packing in the EDI concentration chamber The electric resistance at the time of EDI operation can be sufficiently reduced, so that the voltage can be lowered, the power consumption, that is, the operation cost can be reduced, and the water flow differential pressure can be further reduced. Which resulted in the completion of the invention.

すなわち、本発明は、陰極に配置されるカチオン交換膜、及び陽極に配置されるアニオン交換膜で区画される室に、イオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体のみを充填して形成されることを特徴とする電気式脱イオン水製造装置を提供するものである。 That is, the present invention provides a desalination chamber in which a chamber partitioned by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side is filled with an ion exchanger, Concentration chambers are provided on both sides of the desalting chamber via a membrane and an anion exchange membrane, and these desalting chambers and concentrating chambers are arranged between an anode chamber having an anode and a cathode chamber having a cathode. In the deionized water production apparatus, the concentrating chamber includes an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body. A composite structure of a large number of protrusions having a size of 4 to 40 μm formed on the skeleton surface of the organic porous body, and having an average pore diameter of 10 to 150 μm and a total pore volume of 0 in a wet state of water. .5-5 ml / g, ion exchange per volume in water-wet condition There is provided an electrodeionization water production apparatus characterized in that it is formed by filling only monolithic organic porous ion exchanger is capacity 0.2mg equivalent / ml or more.

また、本発明は、陰極に配置されるカチオン交換膜、陽極に配置されるアニオン交換膜、及び当該カチオン交換膜と当該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体のみを充填して形成されることを特徴とする電気式脱イオン水製造装置を提供するものである。 Further, the present invention is partitioned by a cation exchange membrane disposed on the cathode side , an anion exchange membrane disposed on the anode side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane 2 A small desalting chamber is filled with an ion exchanger to form a desalting chamber, and a concentration chamber is provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. In an electric deionized water production apparatus comprising an anode chamber having an anode and a cathode chamber having a cathode, wherein the concentrating chamber has an organic porous body composed of a continuous skeleton phase and a continuous pore phase. And a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or a large number of protrusions having a size of 4 to 40 μm formed on the skeleton surface of the organic porous body A structure having an average pore diameter of 10 to 15 in a wet state with water Filled only with monolithic organic porous ion exchanger with 0 μm, total pore volume of 0.5-5 ml / g and ion exchange capacity per volume in water-wet state of 0.2 mg equivalent / ml or more An electric deionized water production apparatus is provided.

本発明によれば、有機多孔質イオン交換体の高い導電性のために、濃縮室由来の電気抵抗が低減され、装置運転時の電圧を低減して消費電力を節減し、運転コストを削減することが出来る。また、通水差圧を下げることができる。   According to the present invention, due to the high conductivity of the organic porous ion exchanger, the electrical resistance derived from the concentration chamber is reduced, the voltage during operation of the device is reduced, the power consumption is reduced, and the operating cost is reduced. I can do it. Moreover, the water flow differential pressure can be lowered.

参考例1で得られたモノリスの倍率100のSEM画像である。4 is a SEM image of a monolith obtained in Reference Example 1 at a magnification of 100. FIG. 参考例1で得られたモノリスの倍率300のSEM画像である。3 is a SEM image of a monolith obtained in Reference Example 1 at a magnification of 300. 参考例1で得られたモノリスの倍率3000のSEM画像である。3 is an SEM image of the monolith obtained in Reference Example 1 at a magnification of 3000. 参考例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms on the surface of the monolith cation exchanger obtained in Reference Example 1. FIG. 参考例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing a distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger obtained in Reference Example 1. FIG. 参考例2で得られたモノリスの倍率100のSEM画像である。10 is a SEM image of a monolith obtained in Reference Example 2 at a magnification of 100. 参考例2で得られたモノリスの倍率600のSEM画像である。6 is an SEM image of a monolith obtained in Reference Example 2 at a magnification of 600. 参考例2で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Reference Example 2 at a magnification of 3000. 参考例3で得られたモノリスの倍率600のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 3 at a magnification of 600. 参考例3で得られたモノリスの倍率3000のSEM画像である。10 is an SEM image of the monolith obtained in Reference Example 3 at a magnification of 3000. 参考例4で得られたモノリスの倍率3000のSEM画像である。10 is a SEM image of the monolith obtained in Reference Example 4 at a magnification of 3000. 参考例5で得られたモノリスの倍率100のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 5 at a magnification of 100. 参考例5で得られたモノリスの倍率3000のSEM画像である。10 is a SEM image of the monolith obtained in Reference Example 5 at a magnification of 3000. 参考例6で得られたモノリスの倍率100のSEM画像である。10 is a SEM image of a monolith obtained in Reference Example 6 at a magnification of 100. 参考例6で得られたモノリスの倍率600のSEM画像である。10 is an SEM image of a monolith obtained in Reference Example 6 at a magnification of 600. 参考例6で得られたモノリスの倍率3000のSEM画像である。10 is an SEM image of the monolith obtained in Reference Example 6 at a magnification of 3000. 本発明の実施の形態における電気式脱イオン水製造装置の模式図である。It is a schematic diagram of the electric deionized water manufacturing apparatus in embodiment of this invention. 脱塩室モジュールおよび濃縮室の構造を説明する図である。It is a figure explaining the structure of a desalination chamber module and a concentration chamber. の電気式脱イオン水製造装置を簡略的に示した図である。It is the figure which showed simply the electric-type deionized water manufacturing apparatus. 濃縮室における不純物イオンの移動を説明する図である。It is a figure explaining the movement of the impurity ion in a concentration chamber. 濃縮室における不純物イオンの濃度分布を示す図である。It is a figure which shows concentration distribution of the impurity ion in a concentration chamber. 有機多孔質イオン交換体無充填の濃縮室(従来型)における不純物イオンの濃度分布を示す図である。It is a figure which shows the density | concentration distribution of the impurity ion in the concentration chamber (conventional type) without an organic porous ion exchanger filling. 本発明の他の実施の形態における電気式脱イオン水製造装置の模式図である。It is a schematic diagram of the electric deionized water manufacturing apparatus in other embodiment of this invention. 突起体の模式的な断面図である。It is typical sectional drawing of a protrusion.

本実施の形態における電気式脱イオン水製造装置について、図17を参照にして説明する。図17は電気式脱イオン水製造装置の1例を示す模式図である。図17に示すように、カチオン交換膜3、中間イオン交換膜5及びアニオン交換膜4を離間して交互に配置し、カチオン交換膜3と中間イオン交換膜5で形成される空間内にイオン交換体8を充填して第1小脱塩室d1、d、d、dを形成し、中間イオン交換膜5とアニオン交換膜4で形成される空間内にイオン交換体8を充填して第2小脱塩室d、d、d、dを形成し、第1小脱塩室dと第2小脱塩室dで脱塩室D、第1小脱塩室dと第2小脱塩室dで脱塩室D、第1小脱塩室dと第2小脱塩室dで脱塩室D、第1小脱塩室d第2小脱塩室dで脱塩室Dとする。また、脱塩室D、Dのそれぞれ隣に位置するアニオン交換膜4とカチオン交換膜3で形成されるイオン交換体8aを充填した部分は濃縮水を流すための濃縮室1とする。これを順次併設して図中、左より脱塩室D、濃縮室1、脱塩室D、濃縮室1、脱塩室D、濃縮室1、脱塩室Dを形成する。また、脱塩室Dの左にカチオン交換膜3を経て陰極室2aを、脱塩室Dの右にアニオン交換膜4を経て陽極室2bをそれぞれ設ける。また、中間イオン交換膜5を介して隣り合う2つの小脱塩室において、第2小脱塩室の処理水流出ライン12は第1小脱塩室の被処理水流入ライン13に連接されている。 The electric deionized water production apparatus in the present embodiment will be described with reference to FIG. FIG. 17 is a schematic view showing an example of an electrical deionized water production apparatus. As shown in FIG. 17, the cation exchange membrane 3, the intermediate ion exchange membrane 5, and the anion exchange membrane 4 are alternately arranged apart from each other, and ion exchange is performed in the space formed by the cation exchange membrane 3 and the intermediate ion exchange membrane 5. The first small desalting chambers d 1 , d 3 , d 5 , and d 7 are formed by filling the body 8, and the space formed by the intermediate ion exchange membrane 5 and the anion exchange membrane 4 is filled with the ion exchanger 8. Thus, the second small desalting chambers d 2 , d 4 , d 6 , and d 8 are formed, and the first small desalting chamber d 1 and the second small desalting chamber d 2 form the desalting chamber D 1 , first small Desalination chamber D 3 and second small desalination chamber d 4 are desalted chamber D 2 , and first small desalination chamber d 5 and second small desalination chamber d 6 are desalted chamber D 3 and first small desalination chamber 6. The chamber d 7 is the second small desalting chamber d 8 and is designated as the desalting chamber D 4 . The portion filled with the ion exchanger 8a formed by the anion exchange membrane 4 and the cation exchange membrane 3 located next to each of the desalting chambers D 2 and D 3 is a concentration chamber 1 for flowing concentrated water. Drawing sequentially features this depletion chamber D 1 from the left, concentrating chamber 1, desalting D 2, concentrating chamber 1, depletion chamber D 3, concentrating chamber 1, to form a depletion chamber D 4. Further, the cathode chamber 2a through the cation exchange membrane 3 to the left of the depletion chamber D 1, provided respectively anode chamber 2b through the anion exchange membrane 4 to the right of the depletion chamber D 4. Further, in two small desalting chambers adjacent via the intermediate ion exchange membrane 5, the treated water outflow line 12 of the second small desalting chamber is connected to the treated water inflow line 13 of the first small desalting chamber. Yes.

このような脱塩室は、図18に示すように、2つの枠体21、22と3つのイオン交換膜3、5、4によって形成される脱イオンモジュール20からなる。即ち、第1枠体21の一側の面にカチオン交換膜3を封着し、第1枠体21の内部空間にイオン交換体を充填し、次いで、第1枠体21の他方の面に中間イオン交換膜5を封着して第1小脱塩室を形成する。次に中間イオン交換膜5を挟み込むように第2枠体22を封着し、第2枠体22の内部空間にイオン交換体を充填し、次いで、第2枠体22の他方の面にアニオン交換膜4を封着して第2小脱塩室を形成する。第1脱塩室および第2小脱塩室に充填されるイオン交換体としては、特に制限されないが、被処理水が最初に流入する第2小脱塩室にはアニオン交換体を充填し、次いで、第2小脱塩室の流出水が流入する第1小脱塩室にはアニオン交換体とカチオン交換体の混合イオン交換体を充填することが、アニオン成分を多く含む被処理水、特に、シリカ、炭酸等の弱酸成分を多く含む被処理水を充分に処理することが出来る点で好ましい。符号23は枠体補強用のリブである。   As shown in FIG. 18, such a demineralization chamber includes a deionization module 20 formed by two frames 21 and 22 and three ion exchange membranes 3, 5, and 4. That is, the cation exchange membrane 3 is sealed on one surface of the first frame body 21, the internal space of the first frame body 21 is filled with an ion exchanger, and then the other surface of the first frame body 21 is filled. The intermediate ion exchange membrane 5 is sealed to form a first small desalting chamber. Next, the second frame 22 is sealed so as to sandwich the intermediate ion exchange membrane 5, the ion exchanger is filled in the internal space of the second frame 22, and then the other surface of the second frame 22 is filled with an anion. The exchange membrane 4 is sealed to form a second small desalting chamber. The ion exchanger filled in the first desalting chamber and the second small desalting chamber is not particularly limited, but the second small desalting chamber into which treated water first flows is filled with an anion exchanger, Next, the first small desalting chamber into which the effluent of the second small desalting chamber flows is filled with a mixed ion exchanger of an anion exchanger and a cation exchanger. It is preferable in that the water to be treated containing a large amount of weak acid components such as silica and carbonic acid can be sufficiently treated. Reference numeral 23 denotes a rib for reinforcing the frame.

本発明において、EDIの濃縮室1には、複合構造のモノリス状有機多孔質イオン交換体が充填される。本明細書中、「モノリス状有機多孔質体」を単に「複合モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「複合モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   In the present invention, the EDI concentration chamber 1 is filled with a monolithic organic porous ion exchanger having a composite structure. In this specification, “monolithic organic porous body” is simply “composite monolith”, “monolithic organic porous ion exchanger” is simply “composite monolithic ion exchanger”, and “monolithic organic porous intermediate”. "Body" is also simply called "monolith intermediate".

<複合モノリスイオン交換体の説明>
複合モノリスイオン交換体は、複合モノリスにイオン交換基を導入することで得られるものであり、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体との複合構造体であるか、又は連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布している。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
<Description of composite monolith ion exchanger>
A composite monolith ion exchanger is obtained by introducing an ion exchange group into a composite monolith, and is fixed to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and the skeleton surface of the organic porous body. An organic porous body consisting of a continuous skeleton phase and a continuous pore phase, and a size formed on the skeleton surface of the organic porous body. A composite structure with a large number of protrusions having a thickness of 4 to 40 μm, and having an average pore diameter of 10 to 150 μm and a total pore volume of 0.5 to 5 ml / g in a water wet state, The ion exchange capacity per volume is 0.2 mg equivalent / ml or more, and the ion exchange groups are uniformly distributed in the composite structure. In the present specification, “particle bodies” and “projections” may be collectively referred to as “particle bodies”.

有機多孔質体の連続骨格相と連続空孔相(乾燥体)は、SEM画像により観察することができる。有機多孔質体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。有機多孔質体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。   The continuous skeleton phase and the continuous pore phase (dried body) of the organic porous body can be observed by an SEM image. Examples of the basic structure of the organic porous material include a continuous macropore structure and a co-continuous structure. The skeletal phase of the organic porous material appears as a columnar continuum, a concave wall continuum, or a composite thereof, and has a shape that is clearly different from a particle shape or a protrusion shape.

有機多孔質体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体(以下、「第1の有機多孔質イオン交換体」とも言う。)及び水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第2の有機多孔質イオン交換体」とも言う。)が挙げられる。   As a preferable structure of the organic porous body, a continuous macropore structure (hereinafter referred to as “first organic porous ion”) in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 30 to 150 μm in a wet state. And a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state, and three-dimensional continuous having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. A co-continuous structure (hereinafter, also referred to as “second organic porous ion exchanger”).

第1の有機多孔質イオン交換体の場合、有機多孔質体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口(メソポア)となる連続マクロポア構造体である。複合モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、複合モノリス全体が膨潤するため、乾燥状態の複合モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。   In the case of the first organic porous ion exchanger, the organic porous body is a continuous macropore structure in which bubble-shaped macropores are overlapped with each other, and the overlapping portions form openings (mesopores) having an average diameter of 30 to 150 μm in a wet state. It is. The average diameter of the opening of the composite monolith ion exchanger is larger than the average diameter of the opening of the composite monolith in a dry state because the entire composite monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of water flow is increased, which is not preferable. If the average diameter of the openings is too large, contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable.

なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態の複合モノリスの空孔又は開口の平均直径及び乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、水銀圧入法により測定される値である。また、本発明では、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy1(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔又は開口の平均直径がz1(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔又は開口の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔又は開口の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。   In the present invention, the average diameter of the openings of the dry monolith intermediate, the average diameter of the pores or openings of the dry composite monolith, and the average diameter of the holes or openings of the dry composite monolith ion exchanger are: It is a value measured by the mercury intrusion method. In the present invention, the average diameter of the pores or openings of the composite monolith ion exchanger in the wet state is calculated by multiplying the average diameter of the pores or openings of the composite monolith ion exchanger in the dry state by the swelling rate. Value. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x1 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. And y1 (mm), and the average diameter of the pores or openings when the dry monolithic ion exchanger is measured by mercury porosimetry is z1 (μm) The average diameter (μm) of the holes or openings of the exchanger is calculated by the following formula “average diameter of holes or openings (μm) = z1 × (x1 / y1) of the composite monolith ion exchanger in a water-wet state”. The Also, the average diameter of the pores or openings of the dry composite monolith before introduction of the ion exchange group, and the water-wetting composite monolith ion relative to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith When the swelling ratio of the exchanger is known, the average diameter of the pores or openings of the composite monolith in the dry state is multiplied by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water wet state. You can also.

第2の有機多孔質体イオン交換体の場合、有機多孔質体は、水湿潤状態で平均直径が1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔を有する共連続構造である。三次元的に連続した空孔の直径が10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、濃縮水と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となるため好ましくない。   In the case of the second organic porous body ion exchanger, the organic porous body has a three-dimensionally continuous skeleton having an average diameter of 1 to 60 μm in a water-wet state, and an average diameter between the skeletons in a water-wet state. It is a co-continuous structure having three-dimensionally continuous pores of 10 to 100 μm. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss during fluid permeation increases, which is not preferable. If the diameter exceeds 100 μm, contact between the concentrated water and the organic porous ion exchanger is not preferable. As a result, the ion exchange characteristics become non-uniform, which is not preferable.

上記共連続構造の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態の複合モノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy2(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、複合モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「複合モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記共連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy3(mm)であり、この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの骨格の平均太さ、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの骨格の平均太さに、膨潤率を乗じて、複合モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、共連続構造を形成する骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the co-continuous structure pores in the water-wet state is a value calculated by multiplying the average diameter of the pores of the composite monolith ion exchanger in the dry state measured by a known mercury intrusion method and the swelling ratio. It is. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x2 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y2 (mm), and the average diameter of the pores when the dried monolithic ion exchanger is measured by mercury porosimetry is z2 (μm), the pores of the composite monolith ion exchanger The average diameter (μm) in the water-wet state is calculated by the following formula: “Average diameter (μm) of the pores of the composite monolith ion exchanger in the water-wet state = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dry composite monolith before introduction of the ion exchange group, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange group is introduced into the dry composite monolith Can be calculated by multiplying the average diameter of the pores of the composite monolith in the dry state by the swelling ratio to calculate the average diameter of the pores of the composite monolith ion exchanger in the water-wet state. The average thickness of the skeleton of the co-continuous structure in the wet state is determined by performing SEM observation of the composite monolith ion exchanger in the dry state at least three times and measuring the thickness of the skeleton in the obtained image. The average value is calculated by multiplying the swelling ratio. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x3 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Y3 (mm), SEM observation of this dried composite monolith ion exchanger was performed at least three times, the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the composite monolith ion exchanger in the water-wet state” (Μm) = z3 × (x3 / y3) ”. Further, the average thickness of the skeleton of the dry composite monolith before the introduction of the ion exchange groups, and the water-wet composite monolith ion exchanger with respect to the dry composite monolith when the ion exchange groups are introduced into the dry composite monolith Can be calculated by multiplying the average thickness of the skeleton of the composite monolith in the dry state by the swell ratio to the water-wet state of the skeleton of the composite monolith ion exchanger. The skeleton forming the co-continuous structure is rod-shaped and has a circular cross-sectional shape, but may have a cross-section with different diameters such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、三次元的に連続した骨格の平均直径が1μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、60μmを超えると、イオン交換特性の均一性が失われるため好ましくない。   Further, if the average diameter of the three-dimensionally continuous skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 60 μm, the uniformity of ion exchange characteristics is lost. Absent.

複合モノリスイオン交換体の水湿潤状態での孔の平均直径の好ましい値は10〜120μmである。複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は30〜120μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜90μmである。   A preferable value of the average diameter of the pores of the composite monolith ion exchanger in a wet state with water is 10 to 120 μm. When the organic porous body constituting the composite monolith ion exchanger is the first organic porous body, the preferred pore diameter of the composite monolith ion exchanger is 30 to 120 μm, and the organic porous body constituting the composite monolith ion exchanger In the case of the second organic porous body, a preferable value of the pore diameter of the composite monolith ion exchanger is 10 to 90 μm.

本発明に係る複合モノリスイオン交換体において、水湿潤状態での粒子体の直径及び突起体の大きさは、4〜40μm、好ましくは4〜30μm、特に好ましくは4〜20μmである。なお、本発明において、粒子体及び突起体は、共に骨格表面に突起状に観察されるものであり、粒状に観察されるものを粒子体と称し、粒状とは言えない突起状のものを突起体と称する。図24に、突起体の模式的な断面図を示す。図24中の(A)〜(E)に示すように、骨格表面61から突き出している突起状のものが突起体62であり、突起体62には、(A)に示す突起体62aのように粒状に近い形状のもの、(B)に示す突起体62bのように半球状のもの、(C)に示す突起体62cのように骨格表面の盛り上がりのようなもの等が挙げられる。また、他には、突起体61には、(D)に示す突起体62dのように、骨格表面61の平面方向よりも、骨格表面61に対して垂直方向の方が長い形状のものや、(E)に示す突起体62eのように、複数の方向に突起した形状のものもある。また、突起体の大きさは、SEM観察したときのSEM画像で判断され、個々の突起体のSEM画像での幅が最も大きくなる部分の長さを指す。   In the composite monolith ion exchanger according to the present invention, the diameter of the particles and the size of the protrusions in a wet state are 4 to 40 μm, preferably 4 to 30 μm, and particularly preferably 4 to 20 μm. In the present invention, both the particles and the protrusions are observed as protrusions on the surface of the skeleton, and the particles observed are referred to as particles, and the protrusions that are not granular are protrusions. Called the body. FIG. 24 shows a schematic cross-sectional view of the protrusion. As shown to (A)-(E) in FIG. 24, the protrusion-shaped thing protruded from the skeleton surface 61 is the protrusion 62, and the protrusion 62 is like the protrusion 62a shown to (A). The shape close to a granular shape, a hemispherical shape like a projection 62b shown in (B), and a swell of the skeleton surface like a projection 62c shown in (C). In addition, the protrusion 61 has a shape that is longer in the direction perpendicular to the skeleton surface 61 than in the plane direction of the skeleton surface 61, like the protrusion 62d shown in FIG. There is a thing of the shape which protruded in the several direction like the protrusion 62e shown to (E). Further, the size of the protrusions is determined by the SEM image when observed by SEM, and indicates the length of the portion where the width of each protrusion is the largest in the SEM image.

本発明に係る複合モノリスイオン交換体において、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上、好ましくは80%以上である。なお、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合は、全粒子体等の個数に占める水湿潤状態で4〜40μmの粒子体等の個数割合を指す。また、骨格相の表面は全粒子体等により40%以上、好ましくは50%以上被覆されている。なお、粒子体等による骨格層の表面の被覆割合は、SEMにより表面観察にしたときのSEM画像上の面積割合、つまり、表面を平面視したときの面積割合を指す。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体と複合モノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなってしまうため好ましくない。なお、全粒子体等とは、水湿潤状態で4〜40μmの粒子体等以外の大きさの範囲の粒子体及び突起体も全て含めた、骨格層の表面に形成されている全ての粒子体及び突起体を指す。   In the composite monolith ion exchanger according to the present invention, the proportion of 4 to 40 μm particles in a wet state in water is 70% or more, preferably 80% or more. In addition, the ratio which 4-40 micrometers particle bodies etc. occupy in the water wet state in all the particle bodies etc. points out the number ratio of 4-40 micrometers particle bodies etc. in the water wet state which occupy the number of all particle bodies. Further, the surface of the skeletal phase is covered by 40% or more, preferably 50% or more by the whole particles. The coverage ratio of the surface of the skeleton layer with particles or the like refers to the area ratio on the SEM image when the surface is observed by SEM, that is, the area ratio when the surface is viewed in plan. If the size of the particle covering the wall surface or the skeleton deviates from the above range, the effect of improving the contact efficiency between the fluid and the skeleton surface of the composite monolith ion exchanger and the inside of the skeleton is not preferable. In addition, all the particulate bodies etc. are all the particulate bodies formed on the surface of the skeleton layer including all the particulate bodies and protrusions in the size range other than the 4-40 μm particulate bodies in the wet state. And a protrusion.

上記複合モノリスイオン交換体の骨格表面に付着した粒子体等の水湿潤状態での直径又は大きさは、乾燥状態の複合モノリスイオン交換体のSEM画像の観察により得られる粒子体等の直径又は大きさに、乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値、又はイオン交換基導入前の乾燥状態の複合モノリスのSEM画像の観察により得られる粒子体等の直径又は大きさに、イオン交換基導入前後の膨潤率を乗じて算出した値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx4(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy4(mm)であり、この乾燥状態の複合モノリスイオン交換体をSEM観察したときのSEM画像中の粒子体等の直径又は大きさがz4(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)=z4×(x4/y4)」で算出される。そして、乾燥状態の複合モノリスイオン交換体のSEM画像中に観察される全ての粒子体等の直径又は大きさを測定して、その値を基に、1視野のSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出する。この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、全視野において、SEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出して、直径又は大きさが4〜40μmにある粒子体等が観察されるか否かを確認し、全視野において確認された場合、複合モノリスイオン交換体の骨格表面上に、直径又は大きさが水湿潤状態で4〜40μmにある粒子体が形成されていると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出し、各視野毎に、全粒子体等に占める水湿潤状態で4〜40μmの粒子体等の割合を求め、全視野において、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合が70%以上であった場合には、複合モノリスイオン交換体の骨格表面に形成されている全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上であると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等による骨格層の表面の被覆割合を求め、全視野において、全粒子体等による骨格層の表面の被覆割合が40%以上であった場合には、複合モノリスイオン交換体の骨格層の表面が全粒子体等により被覆されている割合が40%以上であると判断する。また、イオン交換基導入前の乾燥状態の複合モノリスの粒子体等の直径又は大きさと、その乾燥状態のモノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率とがわかる場合は、乾燥状態の複合モノリスの粒子体等の直径又は大きさに、膨潤率を乗じて、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさを算出して、上記と同様にして、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合、粒子体等による骨格層の表面の被覆割合を求めることもできる。   The diameter or size of the particles attached to the surface of the skeleton of the composite monolith ion exchanger in the water-wet state is the diameter or size of the particles obtained by observing the SEM image of the composite monolith ion exchanger in the dry state. Further, the value calculated by multiplying the swelling rate when the dry state is changed to the wet state, or the diameter or size of the particulates obtained by observing the SEM image of the composite monolith in the dry state before introducing the ion exchange group And a value calculated by multiplying the swelling ratio before and after introduction of the ion exchange group. Specifically, the diameter of the composite monolith ion exchanger in the water wet state is x4 (mm), the diameter of the composite monolith ion exchanger in the dry state obtained by drying the composite monolith ion exchanger in the water wet state. Is y4 (mm), and the diameter or size of the particles in the SEM image of the dried composite monolith ion exchanger observed by SEM is z4 (μm). The diameter or size (μm) of the particles of the monolith ion exchanger is expressed by the following formula: “diameter or size (μm) of the particles of the composite monolith ion exchanger in a water-wet state” = z4 × (x4 / y4) Is calculated. Then, the diameter or size of all particles observed in the SEM image of the composite monolith ion exchanger in the dry state is measured, and based on the value, all particles in one field of view SEM image, etc. The diameter or size of the water in a wet state is calculated. The SEM observation of the dried composite monolith ion exchanger is performed at least three times, and the diameter or size of the whole particle in the SEM image in the water-wet state is calculated in all fields of view. It is confirmed whether or not a particle body or the like at 4 to 40 μm is observed, and when it is confirmed in the entire visual field, the diameter or size is 4 to 40 μm in a wet state on the skeleton surface of the composite monolith ion exchanger. It is determined that the particle body at is formed. Further, according to the above, the diameter or size in the water wet state of all particles in the SEM image is calculated for each visual field, and the particle size of 4 to 40 μm in the water wet state occupying in the whole particles for each visual field. When the proportion of the particles, etc. is 40% or more in the wet state in all the particles in the entire visual field, the skeleton surface of the composite monolith ion exchanger is obtained. It is determined that the proportion of 4 to 40 μm particles in the wet state is 70% or more in all particles formed in the above. Further, according to the above, the coverage ratio of the surface of the skeletal layer with all particles in the SEM image was determined for each field of view, and the coverage ratio of the surface of the skeleton layer with all particles in all fields was 40% or more. In this case, it is determined that the ratio of the surface of the skeleton layer of the composite monolith ion exchanger covered with all the particulates is 40% or more. In addition, the diameter or size of the particles of the composite monolith in the dry state before the introduction of the ion exchange group and the composite monolith ion exchange in the wet state with respect to the dry composite monolith when the ion exchange group is introduced into the monolith in the dry state If the swelling rate of the body is known, the diameter or size of the particles of the composite monolith in the dry state is multiplied by the swelling rate to obtain the diameter or size of the particles of the composite monolith ion exchanger in the water wet state. In the same manner as described above, the diameter or size of the particles of the composite monolith ion exchanger in the water wet state, the ratio of the particles of 4 to 40 μm in the water wet state, etc. in the total particles, etc. In addition, the coverage ratio of the surface of the skeleton layer with particle bodies can be obtained.

粒子体等による骨格相表面の被覆率が40%未満であると、流体と複合モノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり、イオン交換挙動の均一性が損なわれてしまうため好ましくない。上記粒子体等による被覆率の測定方法としては、モノリス(乾燥体)のSEM画像による画像解析方法が挙げられる。   When the coverage of the skeletal phase surface with particles and the like is less than 40%, the effect of improving the contact efficiency between the fluid and the inside of the skeleton of the composite monolith ion exchanger and the skeleton surface is reduced, and the uniformity of the ion exchange behavior is reduced. Since it will be damaged, it is not preferable. Examples of the method for measuring the coverage with the particulates include an image analysis method using a monolith (dry body) SEM image.

また、複合モノリスイオン交換体の全細孔容積は、複合モノリスの全細孔容積と同様である。すなわち、複合モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格相が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。なお、複合モノリス(モノリス中間体、複合モノリス、複合モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the composite monolith ion exchanger is the same as the total pore volume of the composite monolith. That is, even when the ion exchange group is introduced into the composite monolith to swell and increase the opening diameter, the total pore volume hardly changes because the skeletal phase is thick. If the total pore volume is less than 0.5 ml / g, the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. Note that the total pore volume of the composite monolith (monolith intermediate, composite monolith, composite monolith ion exchanger) is the same both in the dry state and in the water wet state.

なお、複合モノリスイオン交換体に水を透過させた際の圧力損失は、複合モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the composite monolith ion exchanger is the same as the pressure loss when water is permeated through the composite monolith.

本発明の複合モノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3〜1.8mg当量/mlのイオン交換容量を有する。体積当りのイオン交換容量が0.2mg当量/ml未満であると、導電性が低下し、電気抵抗が増大してしまうため好ましくない。なお、本発明の複合モノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が複合モノリスの骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格の表面のみに導入された有機多孔質体のイオン交換容量は、有機多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The composite monolith ion exchanger of the present invention has an ion exchange capacity per volume in a water-wet state of 0.2 mg equivalent / ml or more, preferably 0.3 to 1.8 mg equivalent / ml. If the ion exchange capacity per volume is less than 0.2 mg equivalent / ml, the conductivity decreases and the electrical resistance increases, which is not preferable. In addition, the ion exchange capacity per weight in the dry state of the composite monolith ion exchanger of the present invention is not particularly limited, but since the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the composite monolith, 5 mg equivalent / g. The ion exchange capacity of the organic porous material in which the ion exchange group is introduced only on the surface of the skeleton cannot be determined depending on the kind of the organic porous material or the ion exchange group, but is 500 μg equivalent / g at most.

本発明の複合モノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。   Examples of the ion exchange group to be introduced into the composite monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group; a quaternary ammonium group and a tertiary amino group. And anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group.

本発明の複合モノリスイオン交換体において、導入されたイオン交換基は、複合モノリスの骨格の表面のみならず、骨格相内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格相の表面および骨格相の内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、複合モノリスの表面のみならず、骨格相の内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the composite monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the skeleton of the composite monolith but also inside the skeleton phase. Here, “the ion exchange groups are uniformly distributed” means that the distribution of the ion exchange groups is uniformly distributed at least on the order of μm on the surface of the skeleton phase and inside the skeleton phase. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, when the ion exchange groups are uniformly distributed not only on the surface of the composite monolith but also inside the skeleton phase, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be prevented. Durability is improved.

本発明の複合モノリスイオン交換体は、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りのイオン交換容量が極端に低下してしまうため好ましくない。該複合モノリスイオン交換体の厚みは、好適には3mm〜1000mmである。また、本発明の複合モノリスイオン交換体は、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。   The composite monolith ion exchanger of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. When the thickness is less than 1 mm, the ion exchange capacity per porous body is extremely reduced, which is not preferable. The thickness of the composite monolith ion exchanger is preferably 3 mm to 1000 mm. In addition, the composite monolith ion exchanger of the present invention has high mechanical strength because the basic structure of the skeleton is a continuous pore structure.

本発明の複合モノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、III工程で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程、を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことにより得られる。
The composite monolith ion exchanger of the present invention is obtained by stirring a mixture of an oil-soluble monomer containing no ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a surfactant and water. Preparing a water-in-oil emulsion and then polymerizing the water-in-oil emulsion to obtain a monolithic organic porous intermediate having a continuous macropore structure with a total pore volume of 5 to 30 ml / g, vinyl monomer, A mixture comprising a second crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer or the second crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II for preparing the compound II. The mixture obtained in Step II is allowed to stand, and polymerization is performed in the presence of the monolithic organic porous intermediate obtained in Step I II When the monolithic organic porous material is produced by performing the IV step of introducing an ion exchange group into the monolithic organic porous material obtained in the steps I and III, the following (1) to (5):
(1) The polymerization temperature in step III is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator;
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I;
(3) The vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I;
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more;
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II; obtained by performing Step II or Step III under conditions that satisfy at least one of the conditions .

(モノリス中間体の製造方法)
本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。
(Method for producing monolith intermediate)
In the method for producing a monolith according to the present invention, in the step I, an oil-soluble monomer not containing an ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a mixture of a surfactant and water are stirred. In this step, a water-in-oil emulsion is prepared, and then the water-in-oil emulsion is polymerized to obtain a monolith intermediate having a continuous macropore structure having a total pore volume of 5 to 30 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。   Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more.

一分子中に少なくとも2個以上のビニル基を有する第1架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第1架橋剤は、機械的強度の高さから、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第1架橋剤の使用量は、ビニルモノマーと第1架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%、更に0.3〜3モル%であることが好ましい。第1架橋剤の使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   Examples of the first crosslinking agent having at least two or more vinyl groups in one molecule include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and ethylene glycol dimethacrylate. These crosslinking agents can be used singly or in combination of two or more. A preferred first cross-linking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength. The amount of the first crosslinking agent used is 0.3 to 10 mol%, particularly 0.3 to 5 mol%, and more preferably 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the first crosslinking agent. Is preferred. If the amount of the first crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate- Examples include acidic sodium sulfite.

イオン交換基を含まない油溶性モノマー、第1架橋剤、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、第1架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   There is no particular limitation on the mixing method when mixing the oil-soluble monomer containing no ion exchange group, the first cross-linking agent, the surfactant, water and the polymerization initiator to form a water-in-oil emulsion, A method of mixing components all at once, an oil-soluble monomer, a first crosslinking agent, a surfactant, an oil-soluble component that is an oil-soluble polymerization initiator, and a water-soluble component that is water or a water-soluble polymerization initiator For example, a method in which each component is mixed after being uniformly dissolved separately can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, particles or the like are formed on the surface of the skeleton phase of the continuous macropore structure using the structure of the monolith intermediate as a template, or particles or the like are formed on the surface of the skeleton phase of the co-continuous structure. Or The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the porous body becomes brittle and the flexibility is lost, which is not preferable.

モノリス中間体の全細孔容積は、5〜30ml/g、好適には6〜28ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5〜1:35とすればよい。   The total pore volume of the monolith intermediate is 5-30 ml / g, preferably 6-28 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer tends to be non-uniform, and in some cases, the structure collapses, which is not preferable. In order to set the total pore volume of the monolith intermediate in the above numerical range, the ratio (weight) of the monomer to water may be set to approximately 1: 5 to 1:35.

このモノマーと水との比を、概ね1:5〜1:20とすれば、モノリス中間体の全細孔容積が5〜16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第1の有機多孔質体のものが得られる。また、該配合比率を、概ね1:20〜1:35とすれば、モノリス中間体の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第2の有機多孔質体のものが得られる。   When the ratio of this monomer to water is approximately 1: 5 to 1:20, a monolith intermediate having a total pore volume of 5 to 16 ml / g and a continuous macropore structure can be obtained and obtained through Step III. The obtained composite monolithic organic porous body is the first organic porous body. Further, if the blending ratio is approximately 1:20 to 1:35, a monolith intermediate having a total pore volume of more than 16 ml / g and a continuous macropore structure of 30 ml / g or less can be obtained. The organic porous body of the composite monolith obtained through the above is obtained as the second organic porous body.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜100μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、水の流路が均一に形成されにくくなるため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-100 micrometers in a dry state in a monolith intermediate. When the average diameter of the openings is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss at the time of passing water becomes large, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and it becomes difficult to form a water flow path uniformly. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

(複合モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Production method of composite monolith)
Step II is an organic solvent in which a vinyl monomer, a second cross-linking agent having at least two vinyl groups in one molecule, a vinyl monomer or a second cross-linking agent dissolves, but a polymer formed by polymerization of the vinyl monomer does not dissolve. And a step of preparing a mixture comprising a polymerization initiator. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体を形成できず、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous body, it is preferable because the particles cannot be formed in the skeleton of the produced monolith, and the ion exchange capacity per volume after introduction of the ion exchange groups is reduced. Absent. On the other hand, if the amount of vinyl monomer added exceeds 40 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

II工程で用いられる第2架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。第2架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら第2架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第2架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第2架橋剤の使用量は、ビニルモノマーと第2架橋剤の合計量に対して0.3〜20モル%、特に0.3〜10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   As the second crosslinking agent used in Step II, one having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the second crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These 2nd crosslinking agents can be used individually by 1 type or in combination of 2 or more types. A preferred second crosslinking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength and stability to hydrolysis. The amount of the second crosslinking agent used is preferably 0.3 to 20 mol%, particularly 0.3 to 10 mol%, based on the total amount of the vinyl monomer and the second crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 20 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

II工程で用いられる有機溶媒は、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が5〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the vinyl monomer and the second cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. It is. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain (poly) ethers such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol Chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane, etc .; Ethyl acetate, isopropyl acetate, cellosolve acetate, ethyl propionate, etc. Ethers, and the like. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 5 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 5% by weight, the polymerization rate is lowered, which is not preferable. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと第2架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and second crosslinking agent. .

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下、重合を行い、複合モノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと第2架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の特定の骨格構造を有するモノリスが得られる。   In step III, the mixture obtained in step II is allowed to stand, and in the presence of the monolith intermediate obtained in step I, polymerization is performed to obtain a composite monolith. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a second cross-linking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic material is obtained. A porous body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the specific skeleton described above is lost. A monolith having a structure is obtained.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the monolith after polymerization does not receive any pressure from the inner wall of the vessel and enters the reaction vessel without any gap, so that the monolith is not distorted and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a specific skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, or the like is used as an initiator, an inert atmosphere What is necessary is just to heat-polymerize at 20-100 degreeC for 1 to 48 hours in the lower sealed container. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the crosslinking agent are polymerized in the skeleton to form the specific skeleton structure. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolith having a specific skeleton structure.

上述の複合モノリスを製造する際に、下記(1)〜(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、本発明の特徴的な構造である、骨格表面に粒子体等が形成された複合モノリスを製造することができる。   When the above-mentioned composite monolith is produced, the skeleton, which is the characteristic structure of the present invention, is obtained by performing the II step or the III step under the conditions satisfying at least one of the following conditions (1) to (5). A composite monolith having particles or the like formed on the surface can be produced.

(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
(1) The polymerization temperature in step III is a temperature that is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator.
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I.
(3) The vinyl monomer used in step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in step I.
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more.
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II.

(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
(Description of (1) above)
The 10-hour half temperature is a characteristic value of the polymerization initiator, and if the polymerization initiator to be used is determined, the 10-hour half temperature can be known. Moreover, if there exists desired 10-hour half temperature, the polymerization initiator applicable to it can be selected. In step III, the polymerization rate is lowered by lowering the polymerization temperature, and particles and the like can be formed on the surface of the skeleton phase. The reason for this is that the monomer concentration drop inside the skeleton phase of the monolith intermediate becomes gradual, and the monomer distribution rate from the liquid phase part to the monolith intermediate decreases, so the surplus monomer is on the surface of the skeleton layer of the monolith intermediate. It is thought that it was concentrated in the vicinity and polymerized in situ.

重合温度の好ましいものは、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5〜20℃低い範囲に設定することが好ましい。   The preferred polymerization temperature is a temperature that is at least 10 ° C. lower than the 10-hour half-life temperature of the polymerization initiator used. Although the lower limit of the polymerization temperature is not particularly limited, the polymerization rate decreases as the temperature decreases, and the polymerization time becomes unacceptably long. Therefore, the polymerization temperature is 5 to 20 ° C. with respect to the 10-hour half temperature. It is preferable to set to a low range.

((2)の説明)
II工程で用いる第2架橋剤のモル%を、I工程で用いる第1架橋剤のモル%の2倍以上に設定して重合すると、本発明の複合モノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
(Description of (2))
When the mol% of the second cross-linking agent used in Step II is set to be twice or more of the mol% of the first cross-linking agent used in Step I, the composite monolith of the present invention is obtained. The reason for this is that the compatibility between the monolith intermediate and the polymer produced by impregnation polymerization is reduced and phase separation proceeds, so the polymer produced by impregnation polymerization is excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, It is considered that irregularities such as particles are formed on the surface. In addition, mol% of a crosslinking agent is a crosslinking density mol%, Comprising: The amount of crosslinking agents (mol%) with respect to the total amount of a vinyl monomer and a crosslinking agent is said.

II工程で用いる第2架橋剤モル%の上限は特に制限されないが、第2架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。好ましい第2架橋剤モル%の倍数は2倍〜10倍である。一方、I工程で用いる第1架橋剤モル%をII工程で用いられる第2架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、本発明の複合モノリスは得られない。   The upper limit of the second crosslinker mol% used in step II is not particularly limited, but if the second crosslinker mol% is extremely large, cracks occur in the monolith after polymerization, and the brittleness of the monolith proceeds and flexibility is increased. This is not preferable because it causes a problem that the amount of ion exchange groups to be lost is reduced. A preferred multiple of the second crosslinking agent mol% is 2 to 10 times. On the other hand, even when the mol% of the first cross-linking agent used in step I is set to be twice or more the mol% of the second cross-linking agent used in step II, the formation of particles on the surface of the skeleton phase does not occur. The composite monolith of the present invention cannot be obtained.

((3)の説明)
II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、本発明の複合モノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマー、すなわち、I工程で用いたモノリス中間体形成に用いたモノマー以外のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
(Explanation of (3))
When the vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I, the composite monolith of the present invention is obtained. For example, if the structures of vinyl monomers are slightly different, such as styrene and vinyl benzyl chloride, a composite monolith having particles or the like formed on the surface of the skeleton phase is generated. In general, two types of homopolymers obtained from two types of monomers that are slightly different in structure are not compatible with each other. Therefore, a monomer having a structure different from that of the monomer used for forming the monolith intermediate used in Step I, that is, a monomer other than the monomer used for forming the monolith intermediate used in Step I is used in Step II to polymerize in Step III. The monomer used in Step II is uniformly distributed and impregnated into the monolith intermediate, but when the polymerization proceeds and the polymer is produced, the produced polymer is not compatible with the monolith intermediate. Separation proceeds, and the produced polymer is considered to be excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, and irregularities such as particles are formed on the surface of the skeleton phase.

((4)の説明)
II工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、本発明の複合モノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
(Explanation of (4))
When the organic solvent used in step II is a polyether having a molecular weight of 200 or more, the composite monolith of the present invention is obtained. Polyethers have a relatively high affinity with monolith intermediates, especially low molecular weight cyclic polyethers are good solvents for polystyrene, and low molecular weight chain polyethers are not good solvents but have considerable affinity. . However, as the molecular weight of the polyether increases, the affinity with the monolith intermediate dramatically decreases and shows little affinity with the monolith intermediate. When such a solvent having poor affinity is used as the organic solvent, diffusion of the monomer into the skeleton of the monolith intermediate is inhibited, and as a result, the monomer is polymerized only near the surface of the skeleton of the monolith intermediate. It is considered that particles and the like are formed on the phase surface and irregularities are formed on the skeleton surface.

ポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200〜100000、特に好ましくは200〜10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。   The upper limit of the molecular weight of the polyether is not particularly limited as long as it is 200 or more. However, when the molecular weight is too high, the viscosity of the mixture prepared in the step II becomes high, and it is difficult to impregnate the monolith intermediate. Therefore, it is not preferable. The molecular weight of the preferred polyether is 200 to 100,000, particularly preferably 200 to 10,000. The terminal structure of the polyether may be an unmodified hydroxyl group, etherified with an alkyl group such as a methyl group or an ethyl group, or esterified with acetic acid, oleic acid, lauric acid, stearic acid, or the like. It may be made.

((5)の説明)
II工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、本発明の複合モノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10〜30重量%に設定することが好ましい。
(Explanation of (5))
When the concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture in Step II, the composite monolith of the present invention is obtained. By reducing the monomer concentration in the step II, the polymerization rate is reduced, and for the same reason as the above (1), particles and the like can be formed on the surface of the skeleton phase, and irregularities can be formed on the surface of the skeleton phase. . Although the lower limit of the monomer concentration is not particularly limited, the polymerization rate decreases as the monomer concentration decreases and the polymerization time becomes unacceptably long, so the monomer concentration may be set to 10 to 30% by weight. preferable.

III工程で得られた複合モノリスは、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する多数の粒子体又は該有機多孔質体の骨格表面上に形成される多数の突起体との複合構造体である。有機多孔質体の連続骨格相と連続空孔相は、SEM画像により観察することができる。有機多孔質体の基本構造は、連続マクロポア構造か、共連続構造である。   The composite monolith obtained in the step III includes an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles fixed to the skeleton surface of the organic porous body, or a skeleton surface of the organic porous body. It is a composite structure with a number of protrusions formed on it. The continuous skeleton phase and the continuous pore phase of the organic porous body can be observed by SEM images. The basic structure of the organic porous body is a continuous macropore structure or a co-continuous structure.

複合モノリスにおける連続マクロポア構造は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態での平均直径20〜100μmの開口となるものであり、複合モノリスにおける共連続構造体は、平均の太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に乾燥で平均直径が8〜80μmの三次元的に連続した空孔とからなるものである。   The continuous macropore structure in the composite monolith is such that bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 20 to 100 μm in a dry state. The bicontinuous structure in the composite monolith has an average thickness. Is composed of a three-dimensionally continuous skeleton of 0.8 to 40 μm in a dry state and three-dimensionally continuous pores having an average diameter of 8 to 80 μm by drying between the skeletons.

IV工程は、III工程で得られた複合モノリスにイオン交換基を導入する工程である。この導入方法によれば、得られる複合モノリスイオン交換体の多孔構造を厳密にコントロールできる。   Step IV is a step of introducing an ion exchange group into the composite monolith obtained in step III. According to this introduction method, the porous structure of the obtained composite monolith ion exchanger can be strictly controlled.

上記複合モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;複合モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;複合モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。   The method for introducing an ion exchange group into the composite monolith is not particularly limited, and a known method such as polymer reaction or graft polymerization can be used. For example, as a method of introducing a sulfonic acid group, if the composite monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid, or fuming sulfuric acid; radical initiating groups uniformly on the composite monolith And a method of grafting sodium styrene sulfonate or acrylamido-2-methylpropane sulfonic acid by introducing a chain transfer group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, the sulfonic acid group is converted by functional group conversion. The method etc. which introduce | transduce are mentioned. In addition, as a method of introducing a quaternary ammonium group, if the composite monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method of producing monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine; uniformly introducing a radical initiating group or chain transfer group into the monolith on the skeleton surface and inside the skeleton, and N, N, N- Examples include a method of graft polymerization of trimethylammonium ethyl acrylate or N, N, N-trimethylammonium propylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like.

複合モノリスイオン交換体の濃縮室への充填方法としては、特に制限されず、陰イオン交換体単床、陽イオン交換体単床、陰イオン交換体単床および陽イオン交換体単床が濃縮水流入方向に対して交互に2床以上積層される複床、および陰イオン交換体単床と陽イオン交換体単床が濃縮水流入方向に直交する方向に対して交互に積層される列状床などを例示することができ、このうち、陰イオン交換体単床および陽イオン交換体単床が濃縮水流入方向に対して交互に2床以上積層される複床が、後述するように、スケールが発生し難い構造となる点で好ましい。図18に示される濃縮室1は、1側のアニオン交換膜4と、他側のカチオン交換膜3で、定型寸法に切断された有機多孔質イオン交換体81、82を挟み込んで作製される。図18では、有機多孔質イオン交換体は、上側の有機多孔質陰イオン交換体81と下側の有機多孔質陽イオン交換体82の2床の積層床8aからなる。すなわち、平板積層型の電気式脱イオン水製造装置の濃縮室内に、1枚の有機多孔質陽イオン交換体81と有機多孔質陽イオン交換体81と同じ大きさの1枚の有機多孔質陰イオン体82の2床を積層充填する場合、2床で形成される有機多孔質イオン交換体の縦横寸法は略両側のイオン交換膜3、4と同じであり、厚み寸法wが濃縮室内の厚みとなる。また、有機多孔質イオン交換体の充填形態が複床の場合、濃縮室の流出入方向に対して積層充填される有機多孔質イオン交換体の順序としては、特に制限されず、濃縮水入口側から有機多孔質陽イオン交換体、有機多孔質陰イオン交換体の順序でも、その逆でも、いずれでもよい。また、異なるイオン交換体同士の端面部分は、大きな隙間が生じない限りは、端面同士が当接あるいは近接させて、積層充填される。このように、濃縮室内に、有機多孔質イオン交換体を均質に積層充填すれば、当該濃縮室を区画する両側のイオン交換膜同士の電気的導通が得られ、イオンの移動が行われ、濃縮水中のイオン濃度勾配を低減することができる。また、これら有機多孔質イオン交換体の形状としては、上記の板状物に制限されず、ブロック状物および不定形状物を1または2以上組合せたものが使用できる。このうち、板状物またはブロック状物が、低電気抵抗を確実に達成できるとともに、製作が容易となる点で好ましい。   The method for filling the concentrating chamber with the composite monolith ion exchanger is not particularly limited, and the anion exchanger single bed, the cation exchanger single bed, the anion exchanger single bed and the cation exchanger single bed are concentrated water. A double bed in which two or more beds are alternately stacked in the inflow direction, and a row bed in which an anion exchanger single bed and a cation exchanger single bed are alternately stacked in the direction perpendicular to the concentrated water inflow direction. Among them, among these, a double bed in which two or more anion exchanger single beds and cation exchanger single beds are alternately stacked in the concentrated water inflow direction is a scale as described later. It is preferable at the point from which it becomes a structure which does not generate | occur | produce easily. The concentrating chamber 1 shown in FIG. 18 is produced by sandwiching organic porous ion exchangers 81 and 82 cut into regular dimensions between an anion exchange membrane 4 on one side and a cation exchange membrane 3 on the other side. In FIG. 18, the organic porous ion exchanger is composed of two laminated beds 8 a, an upper organic porous anion exchanger 81 and a lower organic porous cation exchanger 82. That is, one organic porous cation exchanger 81 and one organic porous anion having the same size as the organic porous cation exchanger 81 are placed in the concentrating chamber of a flat plate type electric deionized water production apparatus. When two beds of ion bodies 82 are stacked and packed, the vertical and horizontal dimensions of the organic porous ion exchanger formed of the two beds are substantially the same as the ion exchange membranes 3 and 4 on both sides, and the thickness dimension w is the thickness in the concentration chamber. It becomes. In addition, when the packing form of the organic porous ion exchanger is a multiple bed, the order of the organic porous ion exchanger to be stacked and packed in the inflow / outflow direction of the concentration chamber is not particularly limited. To an organic porous cation exchanger and an organic porous anion exchanger, or vice versa. In addition, end surfaces of different ion exchangers are stacked and filled so that the end surfaces are in contact with or close to each other unless a large gap is generated. In this way, if the organic porous ion exchanger is uniformly stacked and packed in the concentration chamber, electrical conduction between the ion exchange membranes on both sides that define the concentration chamber is obtained, and ions are transferred and concentrated. The ion concentration gradient in water can be reduced. Further, the shape of these organic porous ion exchangers is not limited to the above-mentioned plate-like material, and a combination of one or two or more block-like materials and irregular shapes can be used. Among these, a plate-like object or a block-like object is preferable in that it can reliably achieve low electrical resistance and can be easily manufactured.

複合モノリスイオン交換体は、連続骨格相と連続空孔相からなる多孔構造の空孔とは異なる別途に形成される流路を有していてもよい。すなわち、第1のモノリスイオン交換体には、前記マクロポアと前記開口(メソポア)で形成される連続気泡とは異なる別途の流路を更に設け、濃縮室の通水差圧を低減させることもできる。また、第2のモノリスイオン交換体には、共連続構造とは異なる別途の流路を更に設け、濃縮室の通水差圧を低減させることもできる。該別途の流路としては、特に制限されないが、例えば、濃縮水流入方向に平行して形成される1以上の貫通穴状の流路、濃縮水流入方向に平行または直行する連続溝で形成される櫛状の流路、濃縮水が濃縮室内を蛇行するように配慮した方向性のないジグザグ状の流路、およびメッシュ状の流路などが挙げられる。これらの流路は、濃縮水流入口から濃縮水流出口まで連続するものであっても、不連続のものであってもよい。これらの流路は、連続気泡構造を形成する重合時に容器形状を選択することにより形成でき、また、重合後の連続気泡構造を加工して形成することもできる。流路の径または隙間寸法は、通常、1〜5mm程度である。更に、別途の流路、すなわち、隙間を確保し、かつ連続気泡構造を有する有機多孔質イオン交換体の物理的強度を補強するために、ポリオレフィン系高分子の斜交網などを有機多孔質イオン交換体と共存させて充填してもよい。   The composite monolith ion exchanger may have a flow path that is formed separately from a porous structure composed of a continuous skeleton phase and a continuous pore phase. That is, the first monolith ion exchanger can be further provided with a separate flow path different from the open cells formed by the macropores and the openings (mesopores) to reduce the water flow differential pressure in the concentration chamber. . Further, the second monolith ion exchanger can be further provided with a separate flow path different from the co-continuous structure to reduce the water flow differential pressure in the concentration chamber. The separate flow path is not particularly limited, and for example, it is formed of one or more through-hole-shaped flow paths formed in parallel with the concentrated water inflow direction, or continuous grooves parallel or perpendicular to the concentrated water inflow direction. Comb-shaped flow paths, zigzag flow paths having no directivity so that concentrated water meanders in the concentration chamber, and mesh-shaped flow paths. These flow paths may be continuous from the concentrated water inlet to the concentrated water outlet or may be discontinuous. These flow paths can be formed by selecting a container shape at the time of polymerization for forming an open cell structure, and can also be formed by processing the open cell structure after polymerization. The diameter or gap size of the flow channel is usually about 1 to 5 mm. Furthermore, in order to reinforce the physical strength of the organic porous ion exchanger having a separate flow path, that is, a gap and having an open cell structure, an oblique network of polyolefin-based polymer is used as the organic porous ion. It may be filled together with the exchanger.

濃縮室の厚みは、0.2〜15mm、好ましくは0.5〜12mm、さらに好ましくは、3〜10mmとすることが好ましい。従来つまり濃縮室にイオン交換体無充填の場合、濃縮室の厚みは、電気抵抗が大きくなるため、大きくは採れず、その上限値はせいぜい2〜3mmであったところ、本発明においては、その数倍もの厚みを採ることができるため、スケールの発生は確実に抑制できる。濃縮室の厚みが0.2mm未満であると、例え、連続気泡構造を有する有機多孔質イオン交換体の陰イオン交換体単床とメッシュ状の陽イオン交換体単床を充填しても、スケール発生防止効果が得られ難くなり、通水差圧も上昇しやすい。また、15mmを超えると、装置全体の厚みが大きくなり好ましくない。   The thickness of the concentration chamber is 0.2 to 15 mm, preferably 0.5 to 12 mm, and more preferably 3 to 10 mm. Conventionally, in the case where the concentration chamber is not filled with an ion exchanger, the thickness of the concentration chamber cannot be taken large because the electric resistance is large, and the upper limit value is at most 2 to 3 mm. Since the thickness of several times can be taken, generation | occurrence | production of a scale can be suppressed reliably. If the thickness of the concentration chamber is less than 0.2 mm, for example, even if an anion exchanger single bed of an organic porous ion exchanger having an open cell structure and a mesh-like cation exchanger single bed are filled, the scale Occurrence prevention effects are difficult to obtain, and the water flow differential pressure tends to increase. Moreover, when it exceeds 15 mm, the thickness of the whole apparatus becomes large and is not preferable.

前記電気式脱イオン水製造装置は、通常以下のように運転される。すなわち、陰極6と陽極7間に直流電流を通じ、また被処理水流入ライン11から被処理水が流入するとともに、濃縮水流入ライン15から濃縮水が流入し、かつ陰極水流入ライン17a、陽極水流入ライン17bからそれぞれ陰極水、陽極水が流入する。被処理水流入ライン11から流入した被処理水は第2小脱塩室d、d、d、dを流下し、イオン交換体8の充填層を通過する際に不純物イオンが除去される。更に、第2小脱塩室の処理水流入ライン12を通った流出水は、第1小脱塩室の被処理水流入ライン13を通って第1小脱塩室d流下し、ここでもイオン交換体8の充填層を通過する際に不純物イオンが除去され脱イオン水が脱イオン水流出ライン14から得られる。また、濃縮水流入ライン15から流入した濃縮水は各濃縮室1を上昇し、カチオン交換膜3及びアニオン交換膜4を介して移動してくる不純物イオン、更には後述するように、濃縮室内の有機多孔質イオン体を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮室流出ライン16から流出され、更に陰極水流入ライン17aから流入した陰極水は陰極水流出ライン18aから流出され、陽極水流入ライン17bから流入した陽極水は、陽極水流出ライン18bから流出される。上述の操作によって、被処理水中の不純物イオンは電気的に除去される。 The electric deionized water production apparatus is usually operated as follows. That is, a direct current is passed between the cathode 6 and the anode 7, and water to be treated flows from the treated water inflow line 11, and concentrated water flows from the concentrated water inflow line 15, and the cathode water inflow line 17 a and the anode water Cathode water and anode water flow in from the inflow line 17b, respectively. To-be-treated water flowing from the to-be-treated water inflow line 11 flows down the second small desalination chambers d 2 , d 4 , d 6 and d 8 , and impurity ions are removed when passing through the packed bed of the ion exchanger 8. Is done. Furthermore, the effluent water that has passed through the treated water inflow line 12 of the second small desalting chamber passes through the treated water inflow line 13 of the first small desalting chamber, and thus the first small desalting chamber d 1 d 3 d 5 d. 7 flows down, and again, when passing through the packed bed of the ion exchanger 8, impurity ions are removed and deionized water is obtained from the deionized water outflow line. Concentrated water that has flowed in from the concentrated water inflow line 15 rises in each concentration chamber 1 and moves through the cation exchange membrane 3 and the anion exchange membrane 4, as well as in the concentration chamber, as will be described later. Cathode water that has received impurity ions moving through the organic porous ionic body, flows out from the concentration chamber outflow line 16 as concentrated water enriched with impurity ions, and further flows in from the cathode water inflow line 17a is the cathode water outflow line. The anode water that has flowed out of 18a and has flowed in from the anode water inflow line 17b flows out of the anode water outflow line 18b. By the above operation, impurity ions in the water to be treated are electrically removed.

次に、本発明の電気式脱イオン水製造装置の濃縮室におけるスケール発生防止作用を、図19〜図21を参照して説明する。図19は図17の電気式脱イオン水製造装置を更に簡略的に示した図、図20及び図21は図19の電気式脱イオン水製造装置の濃縮室における不純物イオンの移動を説明する図をそれぞれ示す。図19において、被処理水が最初に流入する第2小脱塩室d、d、dにはアニオン交換体(A)を充填し、第2小脱塩室の流出水が流入する第1小脱塩室d、d、dにはカチオン交換体とアニオン交換体の混合イオン交換体(M)を充填し、4つの濃縮室1には濃縮室の流出入方向に沿って、流出側から流入側へ順に、3次元網目状の連続気泡構造を有する有機多孔質陰イオン交換体単床(A)と同じ連続気泡構造の有機多孔質陽イオン交換体単床(C)を交互に4床充填してある。 Next, the scale generation preventing effect in the concentration chamber of the electric deionized water production apparatus of the present invention will be described with reference to FIGS. 19 is a diagram showing the electric deionized water production apparatus of FIG. 17 in a simplified manner, and FIGS. 20 and 21 are diagrams for explaining the movement of impurity ions in the concentration chamber of the electric deionized water production apparatus of FIG. Respectively. In FIG. 19, the second small desalting chambers d 2 , d 4 , and d 6 into which treated water first flows are filled with an anion exchanger (A), and the effluent from the second small desalting chamber flows. The first small desalting chambers d 1 , d 3 , and d 5 are filled with a mixed ion exchanger (M) of a cation exchanger and an anion exchanger, and the four concentration chambers 1 are arranged along the flow direction of the concentration chamber. In order from the outflow side to the inflow side, the organic porous cation exchanger single bed (C) having the same open cell structure as the organic porous anion exchanger single bed (A) having a three-dimensional network-like open cell structure Are alternately packed in 4 beds.

図20において、濃縮室1の多孔質陰イオン交換体単床領域1aでは、アニオン交換膜aを透過した炭酸イオンなどのアニオンは、濃縮水中に移動せず、導電性の高い有機多孔質陰イオン交換体Aを通り、カチオン交換膜cまで移動し、有機多孔質陰イオン交換体Aとカチオン交換膜cの当接部分101において初めて濃縮水中に移動する(図20中、右向き矢印)。このため、炭酸イオンなどのアニオンは、カチオン交換膜cに電気的に引き寄せられた状態で、濃縮室1から排出される。すなわち、有機多孔質陰イオン交換体単床領域1aにおける炭酸イオンなどのアニオンについて、濃縮水中の濃度勾配は図21のように分布する。一方、有機多孔質陰イオン交換体単床領域1aにおいて、カチオン交換膜cを透過したカルシウムイオンなどのカチオンは、濃縮水中を移動する。このため、カルシウムイオン濃度が最も高くなる部分において、スケールを形成する対イオンである炭酸イオンは、有機多孔質陰イオン交換体単床部分を移動するため、スケールを発生し難い。   In FIG. 20, in the porous anion exchanger single-bed region 1a of the concentration chamber 1, anions such as carbonate ions that have permeated through the anion exchange membrane a do not move into the concentrated water, and the organic porous anion having high conductivity. It moves through the exchanger A to the cation exchange membrane c, and moves into the concentrated water for the first time at the contact portion 101 between the organic porous anion exchanger A and the cation exchange membrane c (the arrow pointing to the right in FIG. 20). For this reason, anions such as carbonate ions are discharged from the concentration chamber 1 in a state of being electrically attracted to the cation exchange membrane c. That is, for anions such as carbonate ions in the organic porous anion exchanger single bed region 1a, the concentration gradient in the concentrated water is distributed as shown in FIG. On the other hand, in the organic porous anion exchanger single bed region 1a, cations such as calcium ions that have permeated the cation exchange membrane c move in the concentrated water. For this reason, in the part where the calcium ion concentration is the highest, the carbonate ion, which is the counter ion forming the scale, moves through the organic porous anion exchanger single-bed part, so that it is difficult to generate scale.

同様に、濃縮室1の有機多孔質陽イオン交換体単床領域1bでは、カチオン交換膜cを透過したカルシウムイオンなどのカチオンは濃縮水中に移動せず、導電性の高い有機多孔質陽イオン交換体Cを通り、アニオン交換膜aまで移動し、有機多孔質陽イオン交換体Cとアニオン交換膜aの当接部分102において、初めて濃縮水中に移動する(図20中、左向き矢印)。このため、カルシウムイオンなどのカチオンは、アニオン交換膜aに電気的に引き寄せられた状態で、濃縮室1から排出される。すなわち、有機多孔質陽イオン交換体単床領域1bにおけるカルシウムイオンなどのカチオンについて、濃縮水中の濃度は図21のように分布する。一方、アニオン交換膜aを透過した炭酸イオンなどのアニオンは、濃縮水中を移動する。このため、炭酸イオンの濃度が最も高くなる部分において、スケールを形成する対イオンであるカルシウムイオンは、有機多孔質陽イオン交換体単床部分を移動するため、スケールを発生し難い。このようなイオン移動は、マグネシウムイオン、水素イオン、水酸化物イオンにおいても同様である。また、濃縮室内部に有機多孔質陰イオン交換体単床領域1aと有機多孔質陽イオン交換体単床領域1bを積層することによって、有機多孔質陽イオン交換体が充填された部分に移動してきたアニオンは、導電性の低い濃縮水を移動するよりも、導電性の高いアニオン交換膜を伝わり、有機多孔質陰イオン交換体1aまで達し、ここで導電性の高い有機多孔質陰イオン交換体を移動する。このイオンの移動形態は、カチオンについても同様である。すなわち、濃縮水中を通って対面のイオン交換膜付近に移動するイオンは、ほとんどなく、ほとんどのイオンは有機多孔質陽イオン交換体、有機多孔質陰イオン交換体を通って対面のイオン交換膜付近まで移動する。   Similarly, in the organic porous cation exchanger single-bed region 1b of the concentration chamber 1, cations such as calcium ions that have permeated the cation exchange membrane c do not move into the concentrated water, and highly conductive organic porous cation exchange. It moves to the anion exchange membrane a through the body C, and moves into the concentrated water for the first time at the contact portion 102 between the organic porous cation exchanger C and the anion exchange membrane a (left arrow in FIG. 20). For this reason, cations such as calcium ions are discharged from the concentration chamber 1 in a state of being electrically attracted to the anion exchange membrane a. That is, the concentration in the concentrated water is distributed as shown in FIG. 21 for cations such as calcium ions in the organic porous cation exchanger single bed region 1b. On the other hand, anions such as carbonate ions that have passed through the anion exchange membrane a move in the concentrated water. For this reason, in the part where the density | concentration of a carbonate ion becomes the highest, since the calcium ion which is a counter ion which forms a scale moves the organic porous cation exchanger single bed part, it is hard to generate | occur | produce a scale. Such ion transfer is the same for magnesium ions, hydrogen ions, and hydroxide ions. In addition, by laminating the organic porous anion exchanger single bed region 1a and the organic porous cation exchanger single bed region 1b in the concentration chamber, the organic porous cation exchanger is moved to a portion filled with the organic porous cation exchanger. Rather than moving through concentrated water with low conductivity, the anion travels through the highly conductive anion exchange membrane and reaches the organic porous anion exchanger 1a, where the highly porous organic porous anion exchanger. To move. This ion movement is the same for cations. That is, almost no ions move to the vicinity of the facing ion exchange membrane through the concentrated water, and most of the ions pass through the organic porous cation exchanger, the organic porous anion exchanger and the vicinity of the facing ion exchange membrane. Move up.

従来つまり濃縮室にイオン交換体無充填の場合の電気式脱イオン水製造装置では、イオン交換体を再生する目的で印加している電流が水の電気分解を促進し、イオン交換体無充填の濃縮室のイオン交換膜表面でpHシフトを引き起こし、アニオン交換膜近傍ではpHが高く、カチオン交換膜近傍ではpHが低くなり、かつ図22に示すように炭酸イオンとカルシウムイオンがともに、高い濃度勾配で接することから、濃縮室側のアニオン交換膜表面でスケールが発生し易くなっていた。しかしながら、本例では、前述のごとく、濃縮水中のカチオン濃度が最も高いと思われるアニオン交換膜a表面近傍の濃縮水中には、高い濃度の炭酸イオンなどのアニオンが存在しないから、濃縮室内において、炭酸イオンとカルシウムイオンが結合して炭酸カルシウムを生成することがない(図21参照)。従って、本例の電気式脱イオン水製造装置を長時間連続運転しても、濃縮室にスケールが発生することはない。また、濃縮室1は密度の高いイオン交換基を充填層全体に均質に有する有機多孔質イオン交換体が充填されているので、導電性が高まり、運転電圧を低減して消費電力を節約できる。   Conventionally, in an electric deionized water production apparatus when the concentration chamber is not filled with an ion exchanger, the current applied for the purpose of regenerating the ion exchanger promotes the electrolysis of water, and the ion exchanger is not filled. A pH shift is caused on the surface of the ion exchange membrane in the concentrating chamber, the pH is high near the anion exchange membrane, the pH is low near the cation exchange membrane, and both the carbonate ion and calcium ion have a high concentration gradient as shown in FIG. Therefore, the scale is easily generated on the surface of the anion exchange membrane on the concentration chamber side. However, in this example, as described above, the concentrated water near the surface of the anion exchange membrane a which seems to have the highest cation concentration in the concentrated water does not contain anions such as carbonate ions with high concentration. Carbonate ions and calcium ions do not combine to produce calcium carbonate (see FIG. 21). Therefore, even if the electric deionized water production apparatus of this example is continuously operated for a long time, scale does not occur in the concentration chamber. Further, since the concentration chamber 1 is filled with an organic porous ion exchanger having a dense ion exchange group uniformly throughout the packed bed, the conductivity is increased, and the operating voltage can be reduced to save power consumption.

本発明において、被処理水の第1小脱塩室及び第2小脱塩室での流れ方向は、特に制限されず、上記実施の形態の他、第1小脱塩室と第2小脱塩室での流れ方向が異なっていても良い。また、被処理水が流入する小脱塩室は、上記実施の形態の他、まず、被処理水を第1小脱塩室に流入させ、流下した後、第1小脱塩室の流出水を第2小脱塩室に流入させても良い。また、濃縮水の流れ方向も適宜決定される。   In the present invention, the flow direction in the first small desalination chamber and the second small desalination chamber of the water to be treated is not particularly limited, and in addition to the above embodiment, the first small desalination chamber and the second small desalination chamber. The flow direction in the salt chamber may be different. In addition to the above embodiment, the small desalination chamber into which the water to be treated flows first flows the water to be treated into the first small desalination chamber and flows down, and then the effluent from the first small desalination chamber. May flow into the second small desalting chamber. Further, the flow direction of the concentrated water is also appropriately determined.

本発明の実施の形態における他の電気式脱イオン水製造装置を図23を参照して説明する。図23の電気式脱イオン水製造装置100は、図17に示される改良型電気式脱イオン水製造装置10における中間イオン交換膜のない従前型EDIであり、脱塩室内における被処理水の流れが1パスである。即ち、電気式脱イオン水製造装置100において、一側のカチオン交換膜101、及び他側のアニオン交換膜102で区画される室にイオン交換体103を充填して脱塩室104を構成し、カチオン交換膜101、アニオン交換膜102を介して脱塩室104の両側に濃縮室105を設け、これらの脱塩室104および濃縮室105を陽極110を備えた陽極室と陰極109を備えた陰極室の間に配置し、電圧を印加しながら脱塩室104に被処理水を流入し、次いで、濃縮室105に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を得る方法において、濃縮室105は、上記実施の形態例と同様の構成を採ることにより、同様の作用効果を奏する。尚、符号111は被処理水流入ライン、114は脱イオン水流出ライン、115は濃縮水流入ライン、116は濃縮水流出ライン、117は電極水流入ライン、118は電極水流出ラインをそれぞれ示す。また、本発明の電気式脱イオン水製造装置の形態としては、特に制限されず、スパイラル型、同心円筒型および平板積層型などのものが挙げられる。   Another electric deionized water production apparatus in the embodiment of the present invention will be described with reference to FIG. The electric deionized water production apparatus 100 in FIG. 23 is a conventional EDI without an intermediate ion exchange membrane in the improved electric deionized water production apparatus 10 shown in FIG. 17, and the flow of water to be treated in the demineralization chamber. Is one pass. That is, in the electrical deionized water production apparatus 100, a chamber partitioned by the cation exchange membrane 101 on one side and the anion exchange membrane 102 on the other side is filled with the ion exchanger 103 to form the demineralization chamber 104. Concentration chambers 105 are provided on both sides of the desalting chamber 104 via the cation exchange membrane 101 and the anion exchange membrane 102. The desalting chamber 104 and the concentration chamber 105 are provided with an anode chamber provided with an anode 110 and a cathode provided with a cathode 109. The water to be treated flows into the desalting chamber 104 while applying voltage, and then the concentrated water flows into the concentration chamber 105 to remove impurity ions in the water to be treated. In the obtaining method, the concentrating chamber 105 has the same function and effect by adopting the same configuration as in the above embodiment. In addition, the code | symbol 111 shows a to-be-processed water inflow line, 114 is a deionized water outflow line, 115 is a concentrated water inflow line, 116 is a concentrated water outflow line, 117 is an electrode water inflow line, 118 is an electrode water outflow line. In addition, the form of the electric deionized water production apparatus of the present invention is not particularly limited, and examples thereof include a spiral type, a concentric cylindrical type, and a flat plate laminated type.

本発明の脱イオン水製造方法に用いる被処理水としては、特に制限されず、例えば、井水、水道水、下水、工業用水、河川水、半導体製造工場の半導体デバイスなどの洗浄排水または濃縮室からの回収水などを逆浸透膜処理した透過水、また、半導体製造工場等のユースポイントで使用された回収水であって、逆浸透膜処理がされていない水が挙げられる。このようにして供給される被処理水の一部を濃縮水としても使用する場合、脱塩室に供給される被処理水及び濃縮室に供給される濃縮水を軟化後、使用することがスケール発生を更に抑制できる点で好ましい。軟化の方法は、特に制限されないが、ナトリウム形のイオン交換樹脂等を用いた軟化器が好適である。   The treated water used in the deionized water production method of the present invention is not particularly limited. For example, well water, tap water, sewage, industrial water, river water, washing waste water or concentration chambers for semiconductor devices in a semiconductor manufacturing factory, etc. Permeated water obtained by treating the recovered water from the reverse osmosis membrane, or recovered water used at a point of use such as a semiconductor manufacturing plant, which is not subjected to the reverse osmosis membrane treatment. When a part of the treated water supplied in this way is also used as concentrated water, it is scaled to use the treated water supplied to the desalting chamber and the concentrated water supplied to the concentrating chamber after softening. It is preferable in that generation can be further suppressed. The softening method is not particularly limited, but a softener using a sodium ion exchange resin or the like is suitable.

(実施例)
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。
(Example)
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

参考例1
(I工程;モノリス中間体の製造)
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は15.8ml/gであった。
Reference example 1
(Step I; production of monolith intermediate)
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 40 μm, and the total pore volume was 15.8 ml / g.

(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、3.2g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-
デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
Next, 36.0 g of styrene, 4.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 6.6 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, while the crosslink density of the monolith intermediate is 1.3 mol%, and the crosslink density ratio is 5.1 times. Met. Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 3.2 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 73 mm, and the styrene / divinylbenzene / 1-
After immersing in a decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture and degassing in a vacuum chamber, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1〜図3に示す。図1〜図3のSEM画像は、倍率が異なるものであり、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1〜図3から明らかなように、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は80%であった。また、粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%であった。   The results of observing the internal structure of the composite monolith (dried body) composed of the styrene / divinylbenzene copolymer thus obtained by SEM are shown in FIGS. The SEM images in FIGS. 1 to 3 are different in magnification, and are images at arbitrary positions on a cut surface obtained by cutting a monolith at an arbitrary position. As apparent from FIGS. 1 to 3, the composite monolith has a continuous macropore structure, and the surface of the skeletal phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 4 μm. The particle coverage of the skeleton surface by the body and the like was 80%. Moreover, the ratio for which the particle body with a particle size of 3-5 micrometers occupied to the whole particle body was 90%.

また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は16μm、全細孔容積は2.3ml/gであった。その結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、有機溶媒、I工程で得られたモノリス中間体を示す。また、粒子体等は粒子で示した。   Moreover, the average diameter of the opening of the composite monolith measured by mercury porosimetry was 16 μm, and the total pore volume was 2.3 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows the vinyl monomer, the crosslinking agent, the organic solvent used in Step II, and the monolith intermediate obtained in Step I in order from the left. Further, the particle bodies and the like are shown as particles.

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は19.6gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸98.9gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 19.6 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 98.9 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a composite monolith cation exchanger.

得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ21μmであり、同様の方法で求めた被覆粒子の平均粒径は5μmであった。なお、全粒子体等による骨格表面の粒子被覆率は80%、全細孔容積は2.3ml/gであった。また、粒径4〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.057MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、イオン交換帯長さは9mmであり、著しく短い値を示した。結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.3 times, and the ion exchange capacity per volume was 1.11 mg equivalent / ml in a water wet state. The average diameter of the openings of the organic porous ion exchanger in the water wet state was 21 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average particle size of the particles was 5 μm. The particle coverage of the skeletal surface with all particles was 80%, and the total pore volume was 2.3 ml / g. Moreover, the ratio for which the particle body of 4-7 micrometers of particle | grains accounts to the whole particle body was 90%. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.057 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Further, the length of the ion exchange zone was 9 mm, showing a remarkably short value. The results are summarized in Table 2.

次に、複合モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the composite monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 4 and 5, the left and right photographs correspond to each other. FIG. 4 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 5 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 4 and 5, it can be seen that the sulfonic acid groups are uniformly introduced on the skeleton surface of the cation exchanger and inside the skeleton (cross-sectional direction).

参考例2〜5
(複合モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度と使用量及び重合温度を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図6〜図13に示す。図6〜図8は参考例2、図9及び図10は参考例3、図11は参考例4、図12及び図13は参考例5のものである。なお、参考例2については架橋密度比(2.5倍)、参考例3については有機溶媒の種類(PEG;分子量400)、参考例4についてはビニルモノマー濃度(28.0%)、参考例5については重合温度(40℃;重合開始剤の10時間半減温度より11℃低い)について、本発明の製造条件を満たす条件で製造した。図6〜図13から参考例3〜5の複合モノリスの骨格表面に付着しているものは粒子体というよりは突起体であった。突起体の「粒子平均径」は突起体の大きさ(最大径)の平均径である。図6〜図13及び表2から、参考例2〜6のモノリス骨格表面に付着している粒子の平均径は3〜8μm、全粒子体等による骨格表面の粒子被覆率は50〜95%であった。また、参考例2が粒径3〜6μmの粒子体が全体の粒子体に占める割合は80%、参考例3が粒径3〜10μmの突起体が全体の粒子体に占める割合は80%、参考例4が粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%、参考例5が粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。
Reference Examples 2-5
(Manufacture of composite monolith)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density and the amount used, and the polymerization temperature are shown in Table 1. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. 6 to 8 are of Reference Example 2, FIGS. 9 and 10 are of Reference Example 3, FIG. 11 is of Reference Example 4, and FIGS. 12 and 13 are of Reference Example 5. For Reference Example 2, the crosslinking density ratio (2.5 times), for Reference Example 3, the type of organic solvent (PEG; molecular weight 400), for Reference Example 4, the vinyl monomer concentration (28.0%), Reference Example For No. 5, the polymerization temperature (40 ° C .; 11 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions satisfying the production conditions of the present invention. From FIG. 6 to FIG. 13, what adhered to the skeleton surface of the composite monoliths of Reference Examples 3 to 5 were protrusions rather than particles. The “particle average diameter” of the protrusion is the average diameter of the protrusions (maximum diameter). From FIG. 6 to FIG. 13 and Table 2, the average diameter of the particles adhering to the surface of the monolith skeleton of Reference Examples 2 to 6 is 3 to 8 μm, and the particle coverage of the skeleton surface by all particles is 50 to 95%. there were. In addition, the proportion of Reference Example 2 in which particles having a particle diameter of 3 to 6 μm occupy the entire particle body is 80%, and the ratio of Reference Example 3 in which protrusions having a particle diameter of 3 to 10 μm occupy the entire particle is 80%. In Reference Example 4, the proportion of particles having a particle diameter of 3 to 5 μm in the total particle body was 90%, and in Reference Example 5, the proportion of particles having a particle diameter of 3 to 7 μm in the entire particle body was 90%. .

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、それぞれ参考例1と同様の方法でクロロ硫酸と反応させ、複合モノリスカチオン交換体を製造した。その結果を表2に示す。参考例2〜5における複合モノリスカチオン交換体の連続細孔の平均直径は21〜52μmであり、骨格表面に付着している粒子体等の平均径は5〜13μm、全粒子体等による骨格表面の粒子被覆率も50〜95%と高く、差圧係数も0.010〜0.057MPa/m・LVと小さい上に、イオン交換帯長さも8〜12mmと著しく小さな値であった。また、粒径5〜10μmの粒子体が全体の粒子体に占める割合は90%であった。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a composite monolith cation exchanger. The results are shown in Table 2. The average diameter of the continuous pores of the composite monolith cation exchanger in Reference Examples 2 to 5 is 21 to 52 μm, the average diameter of the particles attached to the skeleton surface is 5 to 13 μm, the skeleton surface due to all the particles, etc. The particle coverage was as high as 50 to 95%, the differential pressure coefficient was as small as 0.010 to 0.057 MPa / m · LV, and the ion exchange zone length was as extremely small as 8 to 12 mm. Moreover, the ratio for which the particle body with a particle size of 5-10 micrometers occupied to the whole particle body was 90%.

参考例6
(複合モノリスの製造)
ビニルモノマーの種類とその使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図14〜図16に示す。参考例6の複合モノリスの骨格表面に付着しているものは突起体であった。参考例6のモノリスは、表面に形成された突起体の最大径の平均径が10μmであり、全粒子体等による骨格表面の粒子被覆率は100%であった。また、粒径6〜12μmの粒子体が全体の粒子体に占める割合は80%であった。
Reference Example 6
(Manufacture of composite monolith)
Table 1 shows the type and amount of vinyl monomer used, amount of crosslinking agent used, type and amount of organic solvent, monolith intermediate porous structure coexisting during polymerization in step III, crosslinking density and amount used. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. What adhered to the skeleton surface of the composite monolith of Reference Example 6 was a protrusion. In the monolith of Reference Example 6, the average diameter of the maximum diameter of the protrusions formed on the surface was 10 μm, and the particle coverage of the skeletal surface with all the particulates was 100%. Moreover, the ratio for which the particle body with a particle size of 6-12 micrometers occupied to the whole particle body was 80%.

(複合モノリスアニオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。複合モノリスの重量は17.9gであった。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液114.5gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、メタノールで洗浄してテトラヒドロフランを除き、更に純水で洗浄してモノリスアニオン交換体を得た。
(Production of complex monolith anion exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the composite monolith was 17.9 g. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 114.5 g of a 30% trimethylamine aqueous solution, heated to react at 40 ° C. for 24 hours. After completion of the reaction, the resultant was washed with methanol to remove tetrahydrofuran, and further washed with pure water to obtain a monolith anion exchanger.

得られた複合アニオン交換体の反応前後の膨潤率は2.0倍であり、体積当りのイオン交換容量は、水湿潤状態で0.32mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の連続細孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ58μmであり、同様の方法で求めた突起体の平均径は20μm、全粒子体等による骨格表面の粒子被覆率は100%、全細孔容積は2.1ml/gであった。また、イオン交換帯長さは16mmと非常に短い値を示した。なお、水を透過させた際の圧力損失の指標である差圧係数は、0.041MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。また、粒径12〜24μmの粒子体が全体の粒子体に占める割合は80%であった。その結果を表2にまとめて示す。   The obtained composite anion exchanger had a swelling ratio of 2.0 times before and after the reaction, and the ion exchange capacity per volume was 0.32 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the organic porous ion exchanger in the water wet state was 58 μm as estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state. The average diameter of the body was 20 μm, the particle coverage of the skeletal surface with all particles was 100% and the total pore volume was 2.1 ml / g. The ion exchange zone length was as short as 16 mm. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.041 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Moreover, the ratio for which the particle body with a particle size of 12-24 micrometers occupied to the whole particle body was 80%. The results are summarized in Table 2.

次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

参考例7
(モノリス中間体の製造)
参考例1と同様の方法で行いモノリス中間体を得た。
Reference Example 7
(Manufacture of monolith intermediates)
A monolith intermediate was obtained in the same manner as in Reference Example 1.

(複合モノリスの製造)
スチレン38.0g、ジビニルベンゼン2.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は3.3モル%であり、架橋密度比は2.5倍であった。次に上記モノリス中間体を直径70mm、厚さ約30mmの円盤状に切断して3.3gを分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
38.0 g of styrene, 2.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 3.3 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, with a crosslink density ratio of 2.5 times the crosslink density of the monolith intermediate of 1.3 mol%. Met. Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 30 mm to obtain 3.3 g. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径5μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は50%であった。また、粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は35μm、全細孔容積は3.8ml/gであった。   The internal structure of the monolith (dry body) containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was observed by SEM. The monolith has a continuous macropore structure, and the surface of the skeleton phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 5 μm, and the particle coverage of the skeleton surface by all particles is 50%. Met. Moreover, the ratio for which the particle body with a particle size of 3-7 micrometers occupied to the whole particle body was 90%. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 35 μm, and the total pore volume was 3.8 ml / g.

(複合モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of complex monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.5倍であり、体積当りのアニオン交換容量は水湿潤状態で0.72mg当量/mlであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ53μmであり、同様の方法で求めた被覆粒子の平均粒径は8μmであった。なお、全粒子体等による骨格表面の粒子被覆率は50%、全細孔容積は3.8ml/gであった。また、粒径4〜8μmの粒子体が全体の粒子体に占める割合は90%であった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.5 times, and the anion exchange capacity per volume was 0.72 mg equivalent / ml in a water-wet state. The average diameter of the openings of the monolith anion exchanger in the water wet state was estimated to be 53 μm from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and the average particle diameter of the coated particles determined by the same method The diameter was 8 μm. In addition, the particle | grain coverage of the frame | skeleton surface by all the particle bodies etc. was 50%, and the total pore volume was 3.8 ml / g. Moreover, the ratio for which the particle diameter of 4-8 micrometers was occupied to the whole particle body was 90%.

また、水を透過させた際の圧力損失の指標である差圧係数は、0.017MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは14mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短かった。   The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.017 MPa / m · LV, which is a low pressure loss that does not cause any practical problems. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 14 mm, and amberlite which is a commercially available strong basic anion exchange resin. It was overwhelmingly shorter than the value (165 mm) of IRA402BL (made by Rohm and Haas).

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that the chloride ions were uniformly distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. It was.

参考例8
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、不図示のSEM写真から骨格表面には粒子体や突起体の形成は全く認められなかった。表1及び表2から、本発明の特定の製造条件と逸脱する条件、すなわち、上記(1)〜(5)の要件から逸脱した条件下でモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Reference Example 8
(Manufacture of monoliths)
Except for changing the usage amount of the vinyl monomer, the usage amount of the crosslinking agent, the type and usage amount of the organic solvent, and the usage amount of the monolith intermediate coexisting during the polymerization in Step III to the blending amounts shown in Table 1, Example 1 and A monolith was produced in a similar manner. The results are shown in Tables 1 and 2. From the SEM photograph (not shown), the formation of particles and protrusions was not observed at all on the skeleton surface. From Table 1 and Table 2, when a monolith is produced under conditions deviating from the specific production conditions of the present invention, that is, conditions deviating from the requirements (1) to (5) above, particle formation on the surface of the monolith skeleton is caused. It turns out that it is not recognized.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、参考例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは26mmであり、参考例1〜7と比較して大きな値であった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 26 mm, which was a large value as compared with Reference Examples 1-7.

参考例9〜11
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例9については架橋密度比(0.2倍)、参考例10については有機溶媒の種類(2-(2-メトキシエトキシ)エタノール;分子量120)、参考例11については重合温度(50℃;重合開始剤の10時間半減温度より1℃低い)について、本発明の製造条件を満たさない条件で製造した。結果を表2に示す。参考例9、11のモノリスについては骨格表面での粒子生成はなかった。また、参考例10では単離した生成物は透明であり、多孔構造が崩壊、消失していた。
Reference Examples 9-11
(Manufacture of monoliths)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density, and the amount used were changed to the amounts shown in Table 1. Produced a monolith in the same manner as in Reference Example 1. The results are shown in Tables 1 and 2. For Reference Example 9, the crosslinking density ratio (0.2 times), for Reference Example 10, the type of organic solvent (2- (2-methoxyethoxy) ethanol; molecular weight 120), and for Reference Example 11, the polymerization temperature (50 C .: 1 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions that did not satisfy the production conditions of the present invention. The results are shown in Table 2. For the monoliths of Reference Examples 9 and 11, there was no particle formation on the skeleton surface. In Reference Example 10, the isolated product was transparent, and the porous structure was collapsed and disappeared.

(モノリスカチオン交換体の製造)
参考例10を除き、上記の方法で製造した有機多孔質体を、参考例8と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。その結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは23〜26mmであり、参考例1〜7と比較して大きな値であった。
(Production of monolith cation exchanger)
Except for Reference Example 10, the organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 8 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 23 to 26 mm, which was a large value as compared with Reference Examples 1 to 7.

参考例12
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の使用量、III工程で重合時に共存させるモノリス中間体の多孔構造および使用量を表1に示す配合量に変更した以外は、参考例8と同様の方法でモノリスを製造した。その結果を表1及び表2に示すが、本発明の特定の製造条件を逸脱してモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Reference Example 12
(Manufacture of monoliths)
Reference Example 8 except that the use amount of the vinyl monomer, the use amount of the crosslinking agent, the use amount of the organic solvent, the porous structure and the use amount of the monolith intermediate coexisting during the polymerization in Step III were changed to the blending amounts shown in Table 1. A monolith was produced in the same manner as described above. The results are shown in Tables 1 and 2, and it can be seen that when a monolith is produced outside the specific production conditions of the present invention, no particle formation is observed on the surface of the monolith skeleton.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。結果を表2に示が、得られたモノリスアニオン交換体のイオン交換帯長さは47mmであり、参考例1〜7と比較して大きな値であった。表1及び2中、メソポア直径及び細孔の値はそれぞれ平均値を示す。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated. The results are shown in Table 2. The obtained monolith anion exchanger had an ion exchange zone length of 47 mm, which was a large value compared to Reference Examples 1-7. In Tables 1 and 2, the mesopore diameter and pore value are average values.

参考例13
(多孔質カチオン交換体(公知)の製造)
スチレン27.7g、ジビニルベンゼン6.9g、アゾビスイソブチロニトリル0.14g及びソルビタンモノオレエート3.8gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を450mlの純水に添加し、ホモジナイザーを用いて2万回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、油中水滴型エマルジョンをステンレス製のオートクレーブに移し、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、40℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を14モル%含有した多孔質体5gを分取し、テトラクロロエタン500gを加え、60℃で30分加熱した後、室温まで冷却し、クロロ硫酸25gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥して多孔質カチオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、不図示のSEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度を測定したところ、14,000l/分・m・MPaであった。
Reference Example 13
(Production of porous cation exchanger (known))
27.7 g of styrene, 6.9 g of divinylbenzene, 0.14 g of azobisisobutyronitrile and 3.8 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 450 ml of pure water and stirred for 2 minutes at 20,000 rpm with a homogenizer, and a water-in-oil emulsion. Got. After emulsification, the water-in-oil emulsion was transferred to a stainless steel autoclave, sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol, unreacted monomer and sorbitan monooleate were removed, and dried under reduced pressure at 40 ° C. overnight. 5 g of a porous material containing 14 mol% of a crosslinking component composed of a styrene / divinylbenzene copolymer obtained in this manner was collected, 500 g of tetrachloroethane was added, and the mixture was heated at 60 ° C. for 30 minutes, and then to room temperature. After cooling, 25 g of chlorosulfuric acid was gradually added and reacted at room temperature for 24 hours. Thereafter, acetic acid was added, the reaction product was poured into a large amount of water, washed with water and dried to obtain a porous cation exchanger. The ion exchange capacity of this porous material is 4.0 mg equivalent / g in terms of dry porous material, and sulfonic acid groups are uniformly introduced into the porous material by mapping of sulfur atoms using EPMA. It was confirmed. Further, as a result of SEM observation (not shown), the internal structure of the porous body has an open cell structure, and most of the macropores having an average diameter of 30 μm are overlapped, and the mesopores formed by the overlap of the macropores and the macropores. The average diameter was 5 μm and the total pore volume was 10.1 ml / g. The porous body was cut out to a thickness of 10 mm, and the water permeation rate was measured. As a result, it was 14,000 l / min · m 2 · MPa.

参考例14
(多孔質アニオン交換体(公知)の製造)
スチレン27.7gの代わりに、p- クロロメチルスチレン18.0gを用い、ジビニルベンゼン17.3g、アゾビスイソブチロニトリル0.26gとした以外、実施例1と同様の油中水滴型エマルジョンの重合を行い、p−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を50モル%含有した多孔質体を製造した。この多孔質体5gを分取し、ジオキサン500gを加え80℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液65gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して多孔質アニオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で2.5mg当量/gであり、SIMSにより、トリメチルアンモニウム基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は4μm、全細孔容積は9.9ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度を測定したところ、12,000l/分・m・MPaであった。
Reference Example 14
(Production of porous anion exchanger (known))
A water-in-oil emulsion similar to that of Example 1 except that 18.0 g of p-chloromethylstyrene was used instead of 27.7 g of styrene, and 17.3 g of divinylbenzene and 0.26 g of azobisisobutyronitrile were used. Polymerization was performed to produce a porous body containing 50 mol% of a cross-linking component composed of a p-chloromethylstyrene / divinylbenzene copolymer. After separating 5 g of this porous material, adding 500 g of dioxane and heating at 80 ° C. for 30 minutes, the mixture was cooled to room temperature, 65 g of a trimethylamine (30%) aqueous solution was gradually added, and reacted at 50 ° C. for 3 hours. It was left overnight at room temperature. After completion of the reaction, the porous body was taken out, washed with acetone, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 2.5 mg equivalent / g in terms of dry porous material, and it was confirmed by SIMS that trimethylammonium groups were uniformly introduced into the porous material. Moreover, as a result of SEM observation, the internal structure of this porous body has an open cell structure, most of the macropores having an average diameter of 30 μm overlap, and the average diameter of the mesopores formed by the overlap of the macropores and the macropores. The value was 4 μm and the total pore volume was 9.9 ml / g. The porous body was cut out to a thickness of 10 mm, and the water permeation rate was measured. As a result, it was 12,000 l / min · m 2 · MPa.

下記装置仕様及び運転条件において、図23と同様の構成で6個の脱イオンモジュールを並設して構成される電気式脱イオン水製造装置を使用した。被処理水は、工業用水の逆浸透膜透過水を用い、その硬度は200μgCaCO/lであった。また、被処理水の一部を濃縮水及び電極水として使用した。運転時間は4000時間であり、同時間における抵抗率17.9MΩ-cmの処理水を得るための運転条件及び濃縮水の通水差圧(kPa)を表3に示す。 In the following apparatus specifications and operating conditions, an electric deionized water production apparatus configured by arranging six deionization modules in parallel with the same configuration as in FIG. 23 was used. The treated water was industrial water reverse osmosis membrane permeated water, and its hardness was 200 μg CaCO 3 / l. Moreover, some treated water was used as concentrated water and electrode water. The operation time is 4000 hours, and Table 3 shows the operation conditions for obtaining treated water having a resistivity of 17.9 MΩ-cm and the water flow differential pressure (kPa) of concentrated water.

<運転の条件>
・電気式脱イオン水製造装置;試作EDI
・脱塩室;幅300mm、高さ300mm、厚さ3mm
・脱塩室に充填したイオン交換樹脂;アニオン交換樹脂(A)とカチオン交換樹脂(C)の混合イオン交換樹脂(混合比は体積比でA:C=1:1)
・濃縮室;幅300mm、高さ300mm、厚さ5mm
・濃縮室充填イオン交換体;参考例7の有機多孔質陰イオン交換体単床と参考例2の有機多孔質陽イオン交換体単床を濃縮水の流出入方向に沿って交互に積層した4床
・装置全体の流量;0.5m/h
・濃縮室全体の流量:50L/h
<Operating conditions>
・ Electric deionized water production equipment; prototype EDI
・ Desalination chamber: width 300mm, height 300mm, thickness 3mm
-Ion exchange resin filled in the desalting chamber; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (C) (mixing ratio is A: C = 1: 1 by volume)
・ Concentration chamber: width 300mm, height 300mm, thickness 5mm
-Concentrated chamber filled ion exchanger; the organic porous anion exchanger single bed of Reference Example 7 and the organic porous cation exchanger single bed of Reference Example 2 were alternately stacked along the flow direction of concentrated water 4 Flow rate of the entire floor and equipment; 0.5 m 3 / h
・ Flow rate of the entire concentration chamber: 50 L / h

記装置仕様及び運転条件において、図17と同様の構成で3個の脱イオンモジュール(6個の小脱塩室)を並設して構成される電気式脱イオン水製造装置を使用した。被処理水は、工業用水の逆浸透膜透過水を用い、その硬度は200μgCaCO/lであった。また、被処理水の一部を濃縮水及び電極水として使用した。運転時間は4000時間であり、4000時間後の濃縮室内のスケール発生の有無を観察した。また、同時間における抵抗率17.9MΩ-cmの処理水を得るための運転条件及び濃縮水の通水差圧(kPa)を表3に示す。 In the apparatus specifications and operating conditions, an electric deionized water production apparatus comprising three deionization modules (six small demineralization chambers) arranged in parallel with the same configuration as in FIG. 17 was used. The treated water was industrial water reverse osmosis membrane permeated water, and its hardness was 200 μg CaCO 3 / l. Moreover, some treated water was used as concentrated water and electrode water. The operation time was 4000 hours, and the occurrence of scale in the concentration chamber after 4000 hours was observed. In addition, Table 3 shows operating conditions for obtaining treated water having a resistivity of 17.9 MΩ-cm at the same time and a water flow differential pressure (kPa) of concentrated water.

<運転の条件>
・電気式脱イオン水製造装置;試作EDI
・中間イオン交換膜;アニオン交換膜
・第1小脱塩室;幅300mm、高さ300mm、厚さ3mm
・第1小脱塩室に充填したイオン交換樹脂;アニオン交換樹脂(A)とカチオン交換樹脂(C)の混合イオン交換樹脂(混合比は体積比でA:C=1:1)
・第2小脱塩室;幅300mm、高さ300mm、厚さ8mm
・第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂
・濃縮室;幅300mm、高さ300mm、厚さ5mm
・濃縮室充填イオン交換体;参考例7の有機多孔質陰イオン交換体単床と参考例2の有機多孔質陽イオン交換体単床を濃縮水の流出入方向に沿って交互に積層した4床
・装置全体の流量;0.5m/h
・濃縮室全体の流量:50L/h
<Operating conditions>
・ Electric deionized water production equipment; prototype EDI
・ Intermediate ion exchange membrane; anion exchange membrane ・ first small desalination chamber; width 300 mm, height 300 mm, thickness 3 mm
-Ion exchange resin filled in the first small desalting chamber; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (C) (mixing ratio is A: C = 1: 1 by volume)
・ Second small desalination chamber: width 300mm, height 300mm, thickness 8mm
・ Second small desalination chamber filled ion exchange resin; anion exchange resin ・ concentration chamber; width 300 mm, height 300 mm, thickness 5 mm
-Concentrated chamber filled ion exchanger; the organic porous anion exchanger single bed of Reference Example 7 and the organic porous cation exchanger single bed of Reference Example 2 were alternately stacked along the flow direction of concentrated water 4 Flow rate of the entire floor and equipment; 0.5 m 3 / h
・ Flow rate of the entire concentration chamber: 50 L / h

比較例1
参考例7の有機多孔質陰イオン交換体に代えて、参考例14の有機多孔質陰イオン交換体としたこと、参考例2の有機多孔質陽イオン交換体単床に代えて、参考例13の有機多孔質陽イオン交換体としたこと以外は、実施例1と同様の方法で行った。その結果を表3に示す。
Comparative Example 1
It replaced with the organic porous anion exchanger of the reference example 7, and it was set as the organic porous anion exchanger of the reference example 14, it replaced with the organic porous cation exchanger single bed of the reference example 2, and reference example 13 The same procedure as in Example 1 was performed except that the organic porous cation exchanger was used. The results are shown in Table 3.

比較例2
参考例7の有機多孔質陰イオン交換体に代えて、参考例14の有機多孔質陰イオン交換体としたこと、参考例2の有機多孔質陽イオン交換体単床に代えて、参考例13の有機多孔質陽イオン交換体としたこと以外は、実施例2と同様の方法で行った。その結果を表3に示す。
Comparative Example 2
It replaced with the organic porous anion exchanger of the reference example 7, and it was set as the organic porous anion exchanger of the reference example 14, it replaced with the organic porous cation exchanger single bed of the reference example 2, and reference example 13 The same procedure as in Example 2 was performed except that the organic porous cation exchanger was used. The results are shown in Table 3.


D、D〜D、104 脱塩室
、d、d、d77 第1小脱塩室
、d、d、d第2小脱塩室
1、105 濃縮室
2 電極室
3、101 カチオン膜
4、102 アニオン膜
5 中間イオン交換膜
6、109 陰極
7、110 陽極
8、103 イオン交換体
8a 有機多孔質カチオン交換体単床と有機多孔質アニオン交換体単床の積層床
10、100 電気式脱イオン水製造装置
11、111 被処理水流入ライン
12 第2小脱塩室の処理水流出ライン
13 第1小脱塩室の被処理水流入ライン
14、114 脱イオン水流出ライン
15、115 濃縮水流入ライン
16、116 濃縮水流出ライン
17a、17b、117 電極水流入ライン
18a、18b、118 電極水流出ライン
20 脱イオンモジュール
101 炭酸イオンが濃縮水中に初めて移動する点
102 カルシウムイオンが濃縮水中に初めて移動する点
D, D 1 to D 4 , 104 Desalination chamber d 1 , d 3 , d 5 , d 77 First small desalination chamber d 2 , d 4 , d 6 , d 8 Second small desalination chamber 1 , 105 Concentration Chamber 2 Electrode chamber 3, 101 Cation membrane 4, 102 Anion membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 8a Organic porous cation exchanger single bed and organic porous anion exchanger single Laminated floors 10, 100 Electric deionized water production apparatus 11, 111 To-be-treated water inflow line 12 To-be-treated water inflow line 13 to the first small demineralization chamber 13, 114 Deionized water outflow lines 15, 115 Concentrated water inflow lines 16, 116 Concentrated water outflow lines 17a, 17b, 117 Electrode water inflow lines 18a, 18b, 118 Electrode water outflow line 20 Deionization module 101 Carbonate ions are concentrated Point 102 that moves for the first time in condensed water 102 Point that calcium ion moves for the first time in concentrated water

Claims (7)

陰極に配置されるカチオン交換膜、及び陽極に配置されるアニオン交換膜で区画される室に、イオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体のみを充填して形成されることを特徴とする電気式脱イオン水製造装置。 A chamber defined by a cation exchange membrane disposed on the cathode side and an anion exchange membrane disposed on the anode side is filled with an ion exchanger to form a desalting chamber, and the cation exchange membrane and the anion exchange membrane are An electric deionized water production apparatus in which concentrating chambers are provided on both sides of a desalting chamber, and these desalting chambers and concentrating chambers are disposed between an anode chamber having an anode and a cathode chamber having a cathode. The concentration chamber comprises an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or the organic porous body. A composite structure with a large number of protrusions having a size of 4 to 40 μm formed on the surface of the skeleton, and having an average pore diameter of 10 to 150 μm and a total pore volume of 0.5 to 5 ml / g in a wet state Ion exchange capacity per volume in a water-wet state 0.2 mg equivalent / An electric deionized water production apparatus characterized in that it is formed by filling only a monolithic organic porous ion exchanger of ml or more. 陰極に配置されるカチオン交換膜、陽極に配置されるアニオン交換膜、及び当該カチオン交換膜と当該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体のみを充填して形成されることを特徴とする電気式脱イオン水製造装置。 Two small desalination chambers partitioned by a cation exchange membrane disposed on the cathode side , an anion exchange membrane disposed on the anode side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane An ion exchanger is filled to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane, and the desalting chamber and the concentration chamber are provided with an anode. In an electric deionized water production apparatus arranged between an anode chamber and a cathode chamber provided with a cathode, the concentration chamber includes an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and the organic porous body A composite structure with a large number of particles having a diameter of 4 to 40 μm fixed to the surface of the body skeleton or a large number of protrusions having a size of 4 to 40 μm formed on the skeleton surface of the organic porous body, The average pore diameter in the water-wet state is 10 to 150 μm and the total pore volume A 0.5 to 5 ml / g, and being formed by filling only monolithic organic porous ion exchanger is an ion-exchange capacity 0.2mg equivalent / ml or more per volume of water wet Electric deionized water production equipment. 前記中間イオン交換膜と、前記陽極側のアニオン交換膜で区画される一方の小脱塩室に充填されるイオン交換体は、アニオン交換体であり、前記陰極側のカチオン交換膜と前記中間イオン交換膜で区画される他方の小脱塩室に充填されるイオン交換体は、カチオン交換体とアニオン交換体の混合体であることを特徴とする請求項2記載の電気式脱イオン水製造装置。 The ion exchanger filled in one small desalting chamber partitioned by the intermediate ion exchange membrane and the anode side anion exchange membrane is an anion exchanger, and the cathode side cation exchange membrane and the intermediate ion 3. The apparatus for producing electric deionized water according to claim 2, wherein the ion exchanger filled in the other small demineralization chamber partitioned by the exchange membrane is a mixture of a cation exchanger and an anion exchanger. . 前記有機多孔質体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体であることを特徴とする請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置。   The organic porous body is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion forms an opening having an average diameter of 30 to 150 µm in a wet state. The electric deionized water production apparatus according to claim 1. 前記有機多孔質体が、水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であることを特徴とする請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置。   The organic porous body is a three-dimensionally continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state, and a three-dimensionally continuous skeleton having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. It is a co-continuous structure which consists of a void | hole, The electrical deionized water manufacturing apparatus of any one of Claims 1-3 characterized by the above-mentioned. 前記モノリス状有機多孔質イオン交換体は、有機多孔質陽イオン交換体と有機多孔質陰イオン交換体の積層体であり、該有機多孔質陽イオン交換体と該有機多孔質陰イオン交換体が濃縮水の流出入方向に対して、交互に積層充填して形成されることを特徴とする請求項1〜5のいずれか1項に記載の電気式脱イオン水製造装置。   The monolithic organic porous ion exchanger is a laminate of an organic porous cation exchanger and an organic porous anion exchanger, and the organic porous cation exchanger and the organic porous anion exchanger are The electric deionized water production apparatus according to any one of claims 1 to 5, wherein the apparatus is formed by alternately laminating and filling the concentrated water in and out. 前記モノリス状有機多孔質イオン交換体は、前記連続骨格相と連続空孔相からなる有機多孔質体構造とは異なる別途に形成される流路を有することを特徴とする請求項1〜6のいずれか1項に記載の電気式脱イオン水製造装置。   The monolithic organic porous ion exchanger has a channel formed separately from an organic porous body structure composed of the continuous skeleton phase and the continuous pore phase. The electric deionized water production apparatus according to any one of the above.
JP2010027677A 2009-05-13 2010-02-10 Electric deionized water production equipment Expired - Fee Related JP5497468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027677A JP5497468B2 (en) 2009-05-13 2010-02-10 Electric deionized water production equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009116448 2009-05-13
JP2009116448 2009-05-13
JP2010027677A JP5497468B2 (en) 2009-05-13 2010-02-10 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2010284638A JP2010284638A (en) 2010-12-24
JP5497468B2 true JP5497468B2 (en) 2014-05-21

Family

ID=43540766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027677A Expired - Fee Related JP5497468B2 (en) 2009-05-13 2010-02-10 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP5497468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524062B2 (en) * 2010-12-29 2013-09-03 General Electric Company Electrodeionization device and method with improved scaling resistance
KR101796772B1 (en) 2016-03-22 2017-11-16 경상대학교산학협력단 Ion Exchange Membranes for Electro-adsorptive Deionization and Manufacturing Method Thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754680B1 (en) * 2001-04-13 2007-09-03 오르가노 가부시키가이샤 Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion-exchanger, and electric deionized water manufacturing device
JP4633955B2 (en) * 2001-04-13 2011-02-16 オルガノ株式会社 Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
JP3781361B2 (en) * 2002-02-08 2006-05-31 オルガノ株式会社 Electric deionized water production equipment
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5019471B2 (en) * 2007-08-10 2012-09-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) * 2007-08-22 2013-09-18 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5137896B2 (en) * 2009-05-12 2013-02-06 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
JP2010284638A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5383310B2 (en) Deionization module and electric deionized water production apparatus
JP3781361B2 (en) Electric deionized water production equipment
JP3773190B2 (en) Electric deionized water production equipment
KR101668132B1 (en) Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP5864649B2 (en) Electric deionized water production equipment
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP5864648B2 (en) Deionization module and electric deionized water production apparatus
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5030181B2 (en) Electric deionized water production equipment
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
JP5048712B2 (en) Electric deionized water production equipment
JP5431195B2 (en) Electric deionized water production equipment
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5431194B2 (en) Electric deionized water production equipment
JP5431197B2 (en) Electric deionized liquid production equipment
JP5497468B2 (en) Electric deionized water production equipment
KR102542839B1 (en) Ultrapure water production method, ultrapure water production system, and ion exchanger charging module
WO2010104007A1 (en) Deionization module and electric device for producing deionized water
JP5586979B2 (en) Electric deionized water production apparatus and operation method thereof
JP5525848B2 (en) Ion chromatography device column, suppressor and ion chromatography device
JP5030182B2 (en) Electric deionized liquid production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20131016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5497468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees