JP5021540B2 - Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter - Google Patents

Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Download PDF

Info

Publication number
JP5021540B2
JP5021540B2 JP2008081917A JP2008081917A JP5021540B2 JP 5021540 B2 JP5021540 B2 JP 5021540B2 JP 2008081917 A JP2008081917 A JP 2008081917A JP 2008081917 A JP2008081917 A JP 2008081917A JP 5021540 B2 JP5021540 B2 JP 5021540B2
Authority
JP
Japan
Prior art keywords
organic porous
monolith
porous body
skeleton
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008081917A
Other languages
Japanese (ja)
Other versions
JP2009108294A (en
Inventor
洋 井上
彰 中村
仁 高田
聡 近藤
弘次 山中
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008081917A priority Critical patent/JP5021540B2/en
Publication of JP2009108294A publication Critical patent/JP2009108294A/en
Application granted granted Critical
Publication of JP5021540B2 publication Critical patent/JP5021540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolith-like organic porous material having high mechanical strength, high contact efficiency with liquid in permeating the liquid and low pressure loss in permeating the liquid, and suitable as an absorber having high absorption capacity, and to provide a monolith-like organic porous ion exchanger and a method for producing thereof. <P>SOLUTION: The monolith-like organic porous material is a composite structural body comprising the organic porous material consisting of a continuous skeleton phase and a continuous pore phase, and a large number of particle bodies having 2-20 &mu;m diameter and adhered to the skeleton surface of the organic porous material or a large number of protrusion bodies formed on the skeleton surface of the organic porous material and having 2-20 &mu;m max. size, and has &ge;1 mm thickness, 8-100 &mu;m average pore diameter and 0.5-5 ml/g whole micropore volume. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、吸着剤や脱イオン水製造装置等に用いられるイオン交換体として有用なモノリス状有機多孔質体、これを用いたモノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルターに関するものである。   The present invention relates to a monolithic organic porous body useful as an ion exchanger used in an adsorbent, a deionized water production apparatus, etc., a monolithic organic porous ion exchanger using the same, a production method thereof, and a chemical filter Is.

特開2002−306976号には、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて、連続マクロポア構造のモノリス状有機多孔質体を得る製造方法が開示されている。上記方法で得られる有機多孔質体やそれにイオン交換基を導入した有機多孔質イオン交換体は、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。   In JP-A-2002-306976, an oil-soluble monomer not containing an ion exchange group, a surfactant, water and a polymerization initiator as necessary are mixed to obtain a water-in-oil emulsion, which is polymerized. A production method for obtaining a monolithic organic porous body having a continuous macropore structure is disclosed. The organic porous material obtained by the above method and the organic porous ion exchanger into which an ion exchange group is introduced are useful as an ion exchanger used in an adsorbent, a chromatography filler, a deionized water production apparatus, and the like. .

しかし、該有機多孔質イオン交換体は、流体透過時の流体との接触効率が若干低いため、吸着剤として用いた時に低濃度領域での吸着能力が低下傾向にある、1ng/l以下の超微量イオンの吸着剤として用いた場合、イオン交換帯長さの増大に伴って動的イオン交換容量が低下する等の欠点を有していた。   However, since the organic porous ion exchanger has a slightly low contact efficiency with the fluid at the time of fluid permeation, the adsorption capacity in a low concentration region tends to decrease when used as an adsorbent. When used as an adsorbent for trace amounts of ions, it has drawbacks such as a decrease in dynamic ion exchange capacity as the ion exchange zone length increases.

一方、上記連続マクロポア構造以外の構造を有するモノリス状有機多孔質体やモノリス状有機多孔質イオン交換体としては、粒子凝集型構造を有する多孔質体が特表平7−501140号等に開示されている。しかし、この方法で得られた多孔質体は、比表面積が大きく流体透過時の流体との接触効率も高いが、連続した空孔が最大でも約2μmと小さく、低圧で大流量の処理を行うことが要求される工業規模の脱イオン水製造装置等に用いることはできなかった。更に、粒子凝集型構造を有する多孔質体は機械的強度が低く、所望の大きさに切り出してカラムやセルに充填する際に破損しやすい等、ハンドリング性に劣るものであった。   On the other hand, as monolithic organic porous bodies and monolithic organic porous ion exchangers having a structure other than the above-described continuous macropore structure, porous bodies having a particle aggregation type structure are disclosed in JP 7-501140 A and the like. ing. However, the porous body obtained by this method has a large specific surface area and a high contact efficiency with the fluid during fluid permeation, but the continuous pores are as small as about 2 μm at the maximum, and a high flow rate treatment is performed at a low pressure. Therefore, it could not be used for an industrial scale deionized water production apparatus or the like. Furthermore, the porous body having a particle aggregation type structure has low mechanical strength, and is inferior in handling properties, such as being easily damaged when cut into a desired size and packed in a column or cell.

有機多孔質体の構造として、三次元的に連続した骨格相と、その骨格相間に三次元的に連続した空孔相とからなり、両相が絡み合った共連続構造が知られている。特開2007-154083号公報には、マイクロメートルサイズの平均直径を有し、三次元網目状に連続した細孔と有機物質に富む骨格相からなる共連続構造をもつ粒子凝集型でない有機高分子ゲル状のアフィニティー担体であって、当該アフィニティー担体が、架橋剤としての、少なくとも二官能性以上のビニルモノマー化合物、メタクリレート化合物及びアクリレート化合物の少なくともいずれか1種と、一官能性親水性モノマーとの共重合体であり、しかも、前記アフィニティー担体における前記架橋剤と前記一官能性親水性モノマーの体積比率が100〜10:0〜90であるアフィニティー担体が開示されている。このアフィニティー担体は、モノリス構造を維持するために、骨格の架橋密度を高くしている。また、このアフィニティー担体は、非特異的吸着を十分に抑制する親水的特性を有している。また、N. Tsujioka et al., Macromolecules2005, 38, 9901には、共連続構造を有し、エポキシ樹脂からなるモノリス状有機多孔質体が開示されている。   As a structure of an organic porous body, a co-continuous structure in which a three-dimensionally continuous skeleton phase and a three-dimensionally continuous pore phase between the skeleton phases are intertwined and both phases are entangled is known. Japanese Patent Application Laid-Open No. 2007-154083 discloses a non-particle-aggregated organic polymer having an average diameter of a micrometer size and having a co-continuous structure composed of pores continuous in a three-dimensional network and a skeleton phase rich in organic substances. A gel-like affinity carrier, wherein the affinity carrier comprises at least one of at least one of bifunctional or higher vinyl monomer compounds, methacrylate compounds and acrylate compounds as a crosslinking agent, and a monofunctional hydrophilic monomer. An affinity carrier that is a copolymer and has a volume ratio of 100 to 10: 0 to 90 of the cross-linking agent and the monofunctional hydrophilic monomer in the affinity carrier is disclosed. This affinity carrier has a high crosslinking density of the skeleton in order to maintain the monolith structure. Further, this affinity carrier has a hydrophilic property that sufficiently suppresses non-specific adsorption. In addition, N. Tsujioka et al., Macromolecules 2005, 38, 9901 discloses a monolithic organic porous body having a co-continuous structure and made of an epoxy resin.

なお、特開2004−321930号公報には、連続気泡構造のモノリス状有機多孔質イオン交換体を吸着層として用いるケミカルフィルターが開示されている。このケミカルフィルターによれば、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なものである。
特開2002−306976号 特開2007-154083号公報(請求項1) 特開2004−321930号公報
JP 2004-321930 A discloses a chemical filter using a monolithic organic porous ion exchanger having an open cell structure as an adsorption layer. According to this chemical filter, the ability to adsorb and remove gaseous pollutants can be maintained even if the gas permeation rate is high, and even if the amount of gaseous pollutants is extremely small, it can be removed.
JP 2002-306976 A JP 2007-154083 A (Claim 1) JP 2004-321930 A

しかしながら、特開2007-154083号公報において、実際に得られているアフィニティー担体はナノメートルサイズの細孔であるため、流体を透過させる際の圧力損失が高く、低圧力損失下で大流量の水を処理する必要のある脱イオン水製造装置に充填し、イオン交換体とすることは困難であった。また、アフィニティー担体は親水性であるため、疎水性物質の吸着剤として用いるためには、表面の疎水処理等の煩雑且つコストアップを伴う操作が必要であるという問題があった。また、エポキシ樹脂へのイオン交換基等の官能基の導入は容易ではないという問題もあった。   However, in Japanese Patent Application Laid-Open No. 2007-154083, since the affinity carrier actually obtained is nanometer-sized pores, the pressure loss when allowing the fluid to permeate is high, and a large flow rate of water under low pressure loss. It was difficult to fill a deionized water production apparatus that needs to be treated into an ion exchanger. In addition, since the affinity carrier is hydrophilic, there is a problem that a complicated operation such as a hydrophobic treatment on the surface is necessary to use it as an adsorbent for a hydrophobic substance. There is also a problem that it is not easy to introduce functional groups such as ion exchange groups into the epoxy resin.

このため、機械的強度が高く、流体透過時の流体との接触効率が高く、連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低いモノリス状有機多孔質体やモノリス状有機多孔質イオン交換体の開発が望まれていた。また、従来にも増してガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。   For this reason, it is a monolithic organic porous body that has high mechanical strength, high contact efficiency with fluid during fluid permeation, and large continuous pores and low pressure loss when fluid such as water or gas is permeated. Development of monolithic organic porous ion exchangers has been desired. In addition, it has been desired to develop a chemical filter having a higher ability to adsorb and remove gaseous pollutants than ever before.

一方、MR型イオン交換樹脂が、巨大網目構造を持つ共重合体中に、マクロポアと小さな球状ゲル粒子の集塊の間に形成されるミクロポアを持つ粒子複合構造を呈するものとして知られている。しかしながら、MR型イオン交換樹脂のミクロポアを形成する粒子の径は最大でも1μmであり、1μmを超える粒子あるいは突起が表面に固着して存在する複合型の有機モノリスは未だ知られていない。   On the other hand, MR type ion exchange resins are known to exhibit a particle composite structure having a micropore formed between agglomerates of macropores and small spherical gel particles in a copolymer having a huge network structure. However, the diameter of the particles forming the micropores of the MR type ion exchange resin is 1 μm at the maximum, and a composite organic monolith in which particles or protrusions exceeding 1 μm are fixed on the surface is not yet known.

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、機械的強度が高く、流体透過時の流体との接触効率が高く、流体透過時の圧力損失が低く、吸着容量の大きな吸着剤として好適なモノリス状有機多孔質体、また機械的強度が高く、流体透過時の流体との接触効率が高く、流体透過時の圧力損失が低いモノリス状有機多孔質イオン交換体及びそれらの製造方法を提供することにある。また、本発明の目的は、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なケミカルフィルターを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and has high mechanical strength, high contact efficiency with fluid during fluid permeation, and low pressure loss during fluid permeation, Monolithic organic porous material suitable as an adsorbent with a large adsorption capacity, monolithic organic porous ion exchange with high mechanical strength, high contact efficiency with fluid during fluid permeation, and low pressure loss during fluid permeation It is to provide a body and a method for producing them. It is another object of the present invention to provide a chemical filter that can retain the adsorption and removal ability of gaseous pollutants even when the gas permeation rate is high, and can be removed even if the amount of gaseous pollutants is extremely small.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られるモノリスの中、比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、特定の条件下、ビニルモノマーと架橋剤を特定有機溶媒中で静置重合すれば、有機多孔質体を構成する骨格表面上に直径2〜20μmの多数の粒子体が固着する又は突起体が形成された複合構造を有するモノリスを製造できること、また、該複合構造型モノリスやそれにイオン交換基を導入した複合モノリスイオン交換体は、吸着やイオン交換が迅速かつ極めて均一である、圧力損失が小さい、骨格内部は連続空孔構造を維持しているため機械的強度が高く、ハンドリング性に優れ、更に気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能である等、従来のモノリス状有機多孔質体やモノリス状有機多孔質イオン交換体が達成できなかった、優れた特性を兼備していることなどを見出し、本発明を完成するに至った。   Under such circumstances, as a result of intensive studies, the present inventors have determined that a monolithic organic porous material (intermediate) having a relatively large pore volume among monoliths obtained by the method described in JP-A-2002-306976. ) In the presence of), the vinyl monomer and the crosslinking agent are allowed to stand in a specific organic solvent, and a large number of particles having a diameter of 2 to 20 μm are fixed on the surface of the skeleton constituting the organic porous material. In addition, a monolith having a composite structure with protrusions formed can be produced, and the composite monolith ion exchanger having an ion exchange group introduced therein can be adsorbed and ion-exchanged quickly and extremely uniformly. , Pressure loss is small, the inside of the skeleton maintains a continuous pore structure, high mechanical strength, excellent handling, and gaseous pollutants even at high gas permeation rates Excellent properties that could not be achieved by conventional monolithic organic porous materials or monolithic organic porous ion exchangers, such as the ability to retain adsorption and removal, and even removal of gaseous pollutants, even in extremely small amounts. As a result, the present invention has been completed.

すなわち、本発明は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径2〜20μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される最大径が2〜20μmの多数の突起体との複合構造体であって、厚み1mm以上、孔の平均直径8〜100μm、全細孔容積0.5〜5ml/gであるモノリス状有機多孔質体を提供するものである。   That is, the present invention relates to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles having a diameter of 2 to 20 μm fixed to the skeleton surface of the organic porous body, or the skeleton of the organic porous body. A composite structure with a large number of protrusions having a maximum diameter of 2 to 20 μm formed on the surface, having a thickness of 1 mm or more, an average pore diameter of 8 to 100 μm, and a total pore volume of 0.5 to 5 ml / g A monolithic organic porous material is provided.

また、本発明は連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される最大径が4〜40μmの多数の突起体との複合構造体であって、厚み1mm以上、孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。   The present invention also relates to an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body, or a skeleton surface of the organic porous body. It is a composite structure with a large number of protrusions having a maximum diameter of 4 to 40 μm formed on the top, and has a thickness of 1 mm or more, an average diameter of pores of 10 to 150 μm, and a total pore volume of 0.5 to 5 ml / g. Monolithic organic porous ion exchange characterized by having an ion exchange capacity per volume in a water-wet state of 0.2 mg equivalent / ml or more and having ion exchange groups uniformly distributed in the composite structure Provide the body.

また、本発明は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、
を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。
The present invention also provides a water-in-oil type by stirring a mixture of an oil-soluble monomer containing no ion exchange group, a first crosslinking agent having at least two vinyl groups in one molecule, a surfactant and water. Preparation of the emulsion, followed by polymerization of the water-in-oil emulsion to obtain a monolithic organic porous intermediate of continuous macropore structure with a total pore volume of 5 to 30 ml / g, step I, vinyl monomer, in one molecule Preparation of a mixture comprising an organic solvent and a polymerization initiator that dissolves a second crosslinking agent having at least two or more vinyl groups, a vinyl monomer or a second crosslinking agent but not a polymer formed by polymerization of the vinyl monomer II Process,
Step III, in which the mixture obtained in Step II is allowed to stand still and in the presence of the monolithic organic porous intermediate obtained in Step I, Step III
When producing a monolithic organic porous body, the following (1) to (5):
(1) The polymerization temperature in step III is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator;
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I;
(3) The vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I;
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more;
(5) The concentration of the vinyl monomer used in the step II is 30% by weight or less in the mixture of the step II; the step II or the step III is performed under a condition satisfying at least one of the conditions A method for producing a monolithic organic porous body is provided.

また、本発明は前記製造方法で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程を行なうことを特徴とするモノリス状有機多孔質イオン交換体の製造方法を提供するものである。   The present invention also provides a method for producing a monolithic organic porous ion exchanger characterized by performing an IV step of introducing an ion exchange group into the monolithic organic porous material obtained by the production method. is there.

また、本発明は、前記モノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter using the monolithic organic porous material as an adsorption layer.

また、本発明は、前記モノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter characterized in that the monolithic organic porous ion exchanger is used as an adsorption layer.

本発明の複合モノリス状多孔質体は、有機多孔質体を構成する骨格相の骨格表面が特定の大きさの多数の粒子体で被覆されるか又は多数の突起体が形成された複合構造を有しているため、流体透過時の流体とモノリスとの接触効率が高く、吸着が迅速かつ極めて均一である、圧力損失が小さい、骨格構造は連続空孔構造を維持しているため機械的強度が高く、ハンドリング性に優れている。従って、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた吸着特性を生かして、合成吸着剤では対応できなかった微量成分の吸着除去等新しい用途分野への応用が可能となる。   The composite monolithic porous body of the present invention has a composite structure in which the skeleton surface of the skeleton phase constituting the organic porous body is coated with a large number of particles having a specific size or a large number of protrusions are formed. High contact efficiency between fluid and monolith during fluid permeation, fast and extremely uniform adsorption, low pressure loss, and skeletal structure maintains a continuous pore structure, so mechanical strength High and easy to handle. Therefore, not only can the synthetic adsorbents used in the past be replaced, but it can also be applied to new application fields such as adsorption removal of trace components that could not be handled by synthetic adsorbents by taking advantage of its excellent adsorption characteristics. It becomes.

また、本発明の複合モノリス状多孔質イオン交換体は、前記複合モノリス状多孔質体と同様の複合構造を有しているため、イオン交換が迅速かつ極めて均一である、機械的強度が高い、被処理水を低圧、大流量で長期間通水することが可能であるといった特長を有しており、2床3塔式純水製造装置や超純水製造装置、電気式脱イオン水製造装置に充填して用いたり、ケミカルフィルター用吸着剤として好適に用いることができる。   In addition, the composite monolithic porous ion exchanger of the present invention has a composite structure similar to that of the composite monolithic porous body, so that the ion exchange is quick and extremely uniform, and the mechanical strength is high. It has the feature that it is possible to pass the water to be treated for a long time at a low pressure and a large flow rate, and it has a two-bed three-column pure water production device, an ultrapure water production device, an electric deionized water production device. It can be suitably used as a chemical filter adsorbent.

本明細書中、「モノリス状有機多孔質体」を単に「複合モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「複合モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   In this specification, “monolithic organic porous body” is simply “composite monolith”, “monolithic organic porous ion exchanger” is simply “composite monolithic ion exchanger”, and “monolithic organic porous intermediate”. "Body" is also simply called "monolith intermediate".

(複合モノリスの説明)
本発明の複合モノリスは連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する多数の粒子体又は該有機多孔質体の骨格表面上に形成される多数の突起体との複合構造体である。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
(Description of composite monolith)
The composite monolith of the present invention is formed on an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles fixed to the skeleton surface of the organic porous body, or a skeleton surface of the organic porous body. It is a composite structure with a large number of protrusions. In the present specification, “particle bodies” and “projections” may be collectively referred to as “particle bodies”.

有機多孔質体の連続骨格相と連続空孔相は、SEM画像により観察することができる。有機多孔質体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。有機多孔質体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。   The continuous skeleton phase and the continuous pore phase of the organic porous body can be observed by SEM images. Examples of the basic structure of the organic porous material include a continuous macropore structure and a co-continuous structure. The skeletal phase of the organic porous material appears as a columnar continuum, a concave wall continuum, or a composite thereof, and has a shape that is clearly different from a particle shape or a protrusion shape.

有機多孔質体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体(以下、「第1の有機多孔質体」とも言う。)及び太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第2の有機多孔質体」とも言う。)が挙げられる。   A preferred structure of the organic porous body is a continuous macropore structure (hereinafter referred to as “first organic porous body”) in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 20 to 200 μm. ) And a three-dimensionally continuous skeleton having a thickness of 0.8 to 40 μm, and a three-dimensionally continuous pore having a diameter of 8 to 80 μm between the skeletons (hereinafter referred to as “first” 2 is also referred to as “organic porous body 2”).

第1の有機多孔質体において、開口の平均直径の好ましい値は20〜150μm、特に20〜100μmであり、直径が40〜400μmのマクロポアと該開口で形成される気泡内が流路となる。連続マクロポア構造は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。開口の平均直径が20μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体と複合モノリスとの接触が不十分となり、その結果、吸着特性が低下してしまうため好ましくない。上記開口の平均直径は、SEM画像の観察結果又は水銀圧入法により得られた細孔分布曲線の極大値である。   In the first organic porous body, a preferable value of the average diameter of the openings is 20 to 150 μm, particularly 20 to 100 μm, and the pores formed by the macropores having a diameter of 40 to 400 μm and the openings serve as flow paths. The continuous macropore structure is preferably a uniform structure having the same macropore size and aperture diameter, but is not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do. If the average diameter of the openings is less than 20 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the average diameter of the openings is too large, the contact between the fluid and the composite monolith becomes insufficient. This is not preferable because the adsorption characteristics are deteriorated. The average diameter of the opening is the maximum value of the pore distribution curve obtained by the observation result of the SEM image or the mercury intrusion method.

第2の有機多孔質において、三次元的に連続した空孔の大きさが8μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、80μmを超えると、流体とモノリスとの接触が不十分となり、その結果、吸着挙動が不均一となったり低濃度の被吸着物質の吸着効率が低下したりするため好ましくない。上記三次元的に連続した空孔の大きさは、SEM画像の観察結果又は水銀圧入法により得られた細孔分布曲線の極大値である。また、共連続構造体の骨格の太さは0.8〜40μm、好ましくは1〜30μmである。骨格の太さが0.8μm未満であると、体積当りの吸着容量が低下する、機械的強度が低下するといった欠点が生じるため好ましくなく、一方、40μmを超えると、吸着特性の均一性が失わるため好ましくない。   In the second organic porous material, if the size of the three-dimensionally continuous pores is less than 8 μm, it is not preferable because the pressure loss at the time of fluid permeation increases, and if it exceeds 80 μm, the fluid and the monolith As a result, the adsorption behavior becomes inhomogeneous and the adsorption behavior of the substance to be adsorbed at a low concentration decreases. The size of the three-dimensionally continuous pores is the maximum value of the pore distribution curve obtained by the observation result of the SEM image or the mercury intrusion method. Further, the thickness of the skeleton of the co-continuous structure is 0.8 to 40 μm, preferably 1 to 30 μm. If the thickness of the skeleton is less than 0.8 μm, the adsorption capacity per volume is lowered and the mechanical strength is disadvantageously reduced. On the other hand, if the thickness exceeds 40 μm, the uniformity of the adsorption characteristics is lost. Therefore, it is not preferable.

上記有機多孔質体の骨格の太さ及び開口の直径は、有機多孔質体のSEM画像観察を少なくとも3回行い、得られた画像中の骨格の直径及び開口を測定して算出すればよい。   The thickness of the skeleton of the organic porous body and the diameter of the opening may be calculated by performing SEM image observation of the organic porous body at least three times and measuring the diameter and opening of the skeleton in the obtained image.

本発明の複合モノリスにおいて、有機多孔質体の骨格表面に固着する直径2〜20μmの多数の粒子体及び骨格表面上に形成される最大径が2〜20μmの多数の突起体はSEM画像により観察することができる。粒子体等は骨格相の表面と一体化しており、粒子状に観察されるものを粒子体と言い、粒子の一部が表面に埋没してもはや粒子とは言えないものを突起体と言う。骨格相の表面は粒子体等により40%以上、好ましくは50%以上が被覆されたものが好適である。   In the composite monolith of the present invention, a large number of particles having a diameter of 2 to 20 μm adhering to the skeleton surface of the organic porous material and a large number of protrusions having a maximum diameter of 2 to 20 μm formed on the skeleton surface are observed by SEM images. can do. Particles and the like are integrated with the surface of the skeletal phase, and those observed in the form of particles are referred to as particles, and those that are partly embedded in the surface and can no longer be called particles are referred to as protrusions. The surface of the skeletal phase is preferably coated with 40% or more, preferably 50% or more, with a particle or the like.

粒子体の直径及び突起体の最大径の好ましい値は3〜15μm、特に3〜10μmであり、全粒子体等中、3〜5μmの粒子体等が占める割合は70%以上、特に80%以上である。また、粒子体は粒子体同士が集塊して凝集体を形成していてもよい。この場合、粒子体の直径は個々の粒子のものを言う。また、突起体に粒子体が固着した複合突起体であってもよい。複合突起体の場合、上記直径及び最大径は個々の突起体の値及び粒子体の値を言う。   A preferable value of the diameter of the particle body and the maximum diameter of the protrusion is 3 to 15 μm, particularly 3 to 10 μm, and the ratio of the 3 to 5 μm particle body in all the particle bodies is 70% or more, particularly 80% or more. It is. Further, the particle bodies may be aggregated to form an aggregate. In this case, the diameter of the particle body refers to that of an individual particle. Further, it may be a composite protrusion in which the particle body is fixed to the protrusion. In the case of a composite protrusion, the above-mentioned diameter and maximum diameter refer to the values of individual protrusions and the values of particle bodies.

骨格相の表面を被覆している粒子体等の大きさが上記範囲を逸脱すると、流体と複合モノリス骨格表面及び骨格内部との接触効率を改善する効果が小さくなる傾向にあるため好ましくない。また、粒子による骨格表面の被覆率が40%未満であると、流体と複合モノリス骨格表面及び骨格内部との接触効率を改善する効果が小さくなり、吸着挙動の均一性が損なわる傾向にあるため好ましくない。上記粒子体等の大きさや被覆率は、モノリスのSEM画像を画像解析することで得られる。   If the size of the particles covering the surface of the skeletal phase deviates from the above range, the effect of improving the contact efficiency between the fluid and the surface of the composite monolith skeleton and the inside of the skeleton tends to be small. Also, if the coverage of the skeleton surface with particles is less than 40%, the effect of improving the contact efficiency between the fluid and the surface of the composite monolith skeleton and the inside of the skeleton is reduced, and the uniformity of the adsorption behavior tends to be impaired. It is not preferable. The size and coverage of the above-mentioned particle bodies and the like can be obtained by image analysis of a monolith SEM image.

また、本発明の複合モノリスは、0.5〜5ml/g、好適には0.8〜4ml/gの全細孔容積を有するものである。全細孔容積が小さ過ぎると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が大き過ぎると、体積当りの吸着容量が低下してしまうため好ましくない。本発明の複合モノリスは、粒子体等がモノリス構造を形成する骨格相の壁面や表面に固着した複合構造であるため、これを吸着剤として用いた場合、流体との接触効率が高く、かつ流体の円滑な流通が可能となるため、優れた性能が発揮できる。   The composite monolith of the present invention has a total pore volume of 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is too small, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. On the other hand, if the total pore volume is too large, the adsorption capacity per volume decreases, which is not preferable. The composite monolith of the present invention is a composite structure in which particles and the like are fixed to the wall and surface of the skeletal phase forming the monolith structure. Therefore, when this is used as an adsorbent, the contact efficiency with the fluid is high, and the fluid Therefore, it is possible to exhibit excellent performance.

複合モノリスの孔径は平均直径8〜100μm、好ましくは10〜80μmである。複合モノリスを構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスの孔径の好ましい値は10〜80μm、複合モノリスを構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスの孔径の好ましい値は10〜60μmである。複合モノリスの孔径が上記範囲で且つ粒子体等の径が上記範囲内であると、流体と複合モノリス骨格表面及び骨格内部との接触効率が向上する。また、複合モノリスの孔径は水銀圧入法により得られた細孔分布曲線の極大値である。   The pore diameter of the composite monolith is an average diameter of 8 to 100 μm, preferably 10 to 80 μm. When the organic porous body constituting the composite monolith is the first organic porous body, the preferred value of the pore size of the composite monolith is 10 to 80 μm, and the organic porous body constituting the composite monolith is the second organic porous body. In this case, a preferable value of the pore size of the composite monolith is 10 to 60 μm. When the pore size of the composite monolith is in the above range and the diameter of the particles is in the above range, the contact efficiency between the fluid and the surface of the composite monolith skeleton and the inside of the skeleton is improved. The pore size of the composite monolith is the maximum value of the pore distribution curve obtained by the mercury intrusion method.

本発明の複合モノリスは、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りの吸着容量が極端に低下してしまうため好ましくない。該複合モノリスの厚みは、好適には3mm〜1000mmである。また、本発明の複合モノリスは、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。   The composite monolith of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. If the thickness is less than 1 mm, the adsorption capacity per porous body is extremely lowered, which is not preferable. The thickness of the composite monolith is preferably 3 mm to 1000 mm. Moreover, the composite monolith of the present invention has high mechanical strength because the basic structure of the skeleton is a continuous pore structure.

本発明の複合モノリスを吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、該複合モノリスを当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。   When the composite monolith of the present invention is used as an adsorbent, for example, a cylindrical column or a square column is filled with an adsorbent obtained by cutting the composite monolith into a shape that can be inserted into the column. When the water to be treated containing a hydrophobic substance such as phenol or paraffin is passed, the hydrophobic substance is efficiently adsorbed on the adsorbent.

なお、複合モノリスに水を透過させた際の圧力損失は、複合モノリスを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.1MPa/m・LVの範囲、特に0.005〜0.05MPa/m・LVであることが好ましい。   The pressure loss when water is allowed to permeate through the composite monolith is the pressure loss when water is passed through the column filled with 1 m of the composite monolith at a water passage speed (LV) of 1 m / h (hereinafter referred to as “differential pressure coefficient”). In other words, it is preferably in the range of 0.005 to 0.1 MPa / m · LV, particularly 0.005 to 0.05 MPa / m · LV.

本発明の複合モノリスにおいて、連続空孔構造の骨格相を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくなく、特に、イオン交換体の場合にはイオン交換基導入量が減少してしまうため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続空孔構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the composite monolith of the present invention, the material constituting the skeleton phase of the continuous pore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, it is not preferable because the mechanical strength is insufficient. On the other hand, if it exceeds 10 mol%, the embrittlement of the porous body proceeds and flexibility is lost. In particular, in the case of an ion exchanger, the amount of ion exchange groups introduced is decreased, which is not preferable. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalesce is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking of aromatic vinyl polymers is based on the ease of forming a continuous pore structure, the ease of introducing ion-exchange groups, the high mechanical strength, and the high stability to acids and alkalis. A polymer is preferable, and a styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

本発明の複合モノリスにおいて、有機多孔質体の骨格相を構成する材料と骨格相の表面に形成される粒子体等とは、同じ組織が連続した同一材料のもの、同じではない組織が連続する互いが異なる材料のものなどが挙げられる。同じではない組織が連続する互いが異なる材料のものとしては、ビニルモノマーの種類が互いに異なる材料の場合、ビニルモノマーや架橋剤の種類は同じであっても互いの配合割合が異なる材料の場合などが挙げられる。   In the composite monolith of the present invention, the material constituting the skeletal phase of the organic porous body and the particles formed on the surface of the skeletal phase are of the same material in which the same structure is continuous, or a structure that is not the same. Examples of the materials are different from each other. For materials with different structures with different continuous structures, such as materials with different types of vinyl monomers, materials with different blending ratios even if the types of vinyl monomers and crosslinking agents are the same, etc. Is mentioned.

(複合モノリスイオン交換体の説明)
次に、本発明の複合モノリスイオン交換体について説明する。複合モノリスイオン交換体において、複合モノリスと同一構成要素についてはその説明を省略し、異なる点について主に説明する。複合モノリスイオン交換体は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される最大径が4〜40μmの多数の突起体との複合構造体であって、厚み1mm以上、孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布している。
(Description of composite monolith ion exchanger)
Next, the composite monolith ion exchanger of the present invention will be described. In the composite monolith ion exchanger, the description of the same components as those of the composite monolith is omitted, and different points are mainly described. The composite monolith ion exchanger is composed of an organic porous body composed of a continuous skeleton phase and a continuous pore phase, a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body, or the organic porous body. A composite structure with a large number of protrusions having a maximum diameter of 4 to 40 μm formed on the skeleton surface, having a thickness of 1 mm or more, an average pore diameter of 10 to 150 μm, and a total pore volume of 0.5 to 5 ml / g The ion exchange capacity per volume in a wet state of water is 0.2 mg equivalent / ml or more, and the ion exchange groups are uniformly distributed in the composite structure.

有機多孔質体が第1の有機多孔質体の場合、有機多孔質体は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30〜300μm、好ましくは30〜200μm、特に35〜150μmの開口(メソポア)となる連続マクロポア構造体である。複合モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、複合モノリス全体が膨潤するため、複合モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。上記開口の平均直径は、SEM画像の観察結果に乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値又はイオン交換基導入前の複合モノリスの平均直径に、イオン交換基導入前後の膨潤率を乗じて算出した値を指す。   When the organic porous material is the first organic porous material, the organic porous material has bubble-like macropores that overlap each other, and the overlapping portion has an average diameter of 30 to 300 μm, preferably 30 to 200 μm, particularly 35 to 150 μm. It is a continuous macropore structure which becomes an opening (mesopore). The average diameter of the opening of the composite monolith ion exchanger is larger than the average diameter of the opening of the composite monolith because the entire composite monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the average diameter of the openings is too large, the contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable. The average diameter of the opening is the value calculated by multiplying the observation result of the SEM image by the swelling ratio when the dry state is changed to the wet state, or the average diameter of the composite monolith before the introduction of the ion exchange group before and after the introduction of the ion exchange group. It is a value calculated by multiplying the swelling ratio.

有機多孔質体が第2の有機多孔質体の場合、有機多孔質体は、直径が1〜50μmの三次元的に連続した骨格と、その骨格間に10〜100μmの三次元的に連続した空孔を有する共連続構造である。三次元的に連続した空孔の大きさが10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、流体と複合モノリスイオン交換体との接触が不十分となり、その結果、イオン交換挙動が不均一となってイオン交換帯長さが増大したり、低濃度イオンの捕捉効率が低下したりするため好ましくない。上記三次元的に連続した空孔の大きさとは、SEM画像の観察結果に乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値又はイオン交換基導入前の複合モノリスの連続細孔の大きさに、イオン交換基導入前後の膨潤率を乗じて算出した値である。   When the organic porous body is the second organic porous body, the organic porous body has a three-dimensionally continuous skeleton having a diameter of 1 to 50 μm and a three-dimensionally continuous 10 to 100 μm between the skeletons. It is a co-continuous structure with pores. If the size of the three-dimensionally continuous pores is less than 10 μm, the pressure loss during fluid permeation increases, which is not preferable. If it exceeds 100 μm, contact between the fluid and the composite monolith ion exchanger is not preferable. As a result, the ion exchange behavior becomes non-uniform and the ion exchange zone length increases, and the trapping efficiency of low-concentration ions decreases. The size of the three-dimensional continuous pores is a value calculated by multiplying the observation result of the SEM image by the swelling rate when the dry state changes to the wet state, or the continuous fineness of the composite monolith before introducing the ion exchange group. This is a value calculated by multiplying the pore size by the swelling rate before and after the introduction of the ion exchange group.

また、三次元的に連続した骨格の直径が1μm未満であると、体積当りのイオン交換容量が低下する、機械的強度が低下するといった欠点が生じるため好ましくなく、一方、50μmを超えると、イオン交換特性の均一性が失わるため好ましくない。上記複合モノリスイオン交換体の骨格の直径は、SEM画像の観察結果に乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値又はイオン交換基導入前のモノリスの骨格直径に、イオン交換基導入前後の膨潤率を乗じて算出した値である。   Moreover, if the diameter of the three-dimensionally continuous skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume is lowered and the mechanical strength is lowered. On the other hand, if it exceeds 50 μm, This is not preferable because the uniformity of the exchange characteristics is lost. The diameter of the skeleton of the composite monolith ion exchanger is calculated by multiplying the observation result of the SEM image by the swelling ratio when the dry state is changed to the wet state, or the skeleton diameter of the monolith before the introduction of the ion exchange group. It is a value calculated by multiplying the swelling ratio before and after introduction of the exchange group.

複合モノリスイオン交換体の孔の平均直径は10〜150μm、好ましくは10〜120μmである。複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜120μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜90μmである。   The average diameter of the pores of the composite monolith ion exchanger is 10 to 150 μm, preferably 10 to 120 μm. When the organic porous body constituting the composite monolith ion exchanger is the first organic porous body, the preferred value of the pore size of the composite monolith ion exchanger is 10 to 120 μm, and the organic porous body constituting the composite monolith ion exchanger In the case of the second organic porous body, a preferable value of the pore diameter of the composite monolith ion exchanger is 10 to 90 μm.

本発明の複合モノリスイオン交換体において、粒子体の直径及び突起体の最大径は、4〜40μm、好ましい値は4〜30μm、特に4〜20μmであり、全粒子体等中、4〜10μmの粒子体等が占める割合は70%以上、特に80%以上である。また、骨格相の表面は粒子体等により40%以上、好ましくは50%以上被覆されている。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体と複合モノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなってしまうため好ましくない。上記複合モノリスイオン交換体の骨格表面に付着した粒子体等の直径又は最大径は、SEM画像の観察結果に乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値又はイオン交換基導入前の複合モノリスの粒子直径に、イオン交換基導入前後の膨潤率を乗じて算出した値である。   In the composite monolith ion exchanger of the present invention, the diameter of the particle body and the maximum diameter of the protrusion are 4 to 40 μm, preferably 4 to 30 μm, particularly 4 to 20 μm. The proportion occupied by the particles is 70% or more, particularly 80% or more. Further, the surface of the skeletal phase is covered with particle bodies or the like for 40% or more, preferably 50% or more. If the size of the particle covering the wall surface or the skeleton deviates from the above range, the effect of improving the contact efficiency between the fluid and the skeleton surface of the composite monolith ion exchanger and the inside of the skeleton is not preferable. The diameter or maximum diameter of the particles attached to the skeleton surface of the composite monolith ion exchanger is a value calculated by multiplying the observation result of the SEM image by the swelling rate when the dry state changes to the wet state, or the ion exchange group It is a value calculated by multiplying the particle diameter of the composite monolith before introduction by the swelling ratio before and after introduction of the ion exchange group.

粒子体等による骨格相表面の被覆率が40%未満であると、流体と複合モノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり、イオン交換挙動の均一性が損なわれてしまうため好ましくない。上記粒子体等による被覆率の測定方法としては、モノリスのSEM画像による画像解析方法が挙げられる。   When the coverage of the skeletal phase surface with particles and the like is less than 40%, the effect of improving the contact efficiency between the fluid and the inside of the skeleton of the composite monolith ion exchanger and the skeleton surface is reduced, and the uniformity of the ion exchange behavior is reduced. Since it will be damaged, it is not preferable. Examples of the method for measuring the coverage with the above-mentioned particle bodies include an image analysis method using a monolith SEM image.

また、複合モノリスイオン交換体の全細孔容積は、複合モノリスの全細孔容積と同様である。すなわち、複合モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格相が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。   The total pore volume of the composite monolith ion exchanger is the same as the total pore volume of the composite monolith. That is, even when the ion exchange group is introduced into the composite monolith to swell and increase the opening diameter, the total pore volume hardly changes because the skeletal phase is thick. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable.

なお、複合モノリスイオン交換体に水を透過させた際の圧力損失は、複合モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the composite monolith ion exchanger is the same as the pressure loss when water is permeated through the composite monolith.

本発明の複合モノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3〜1.8mg当量/mlのイオン交換容量を有する。体積当りのイオン交換容量が0.2mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。なお、本発明の複合モノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が複合モノリスの骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格の表面のみに導入された有機多孔質体のイオン交換容量は、有機多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The composite monolith ion exchanger of the present invention has an ion exchange capacity per volume in a water-wet state of 0.2 mg equivalent / ml or more, preferably 0.3 to 1.8 mg equivalent / ml. If the ion exchange capacity per volume is less than 0.2 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water is not preferred. In addition, the ion exchange capacity per weight in the dry state of the composite monolith ion exchanger of the present invention is not particularly limited, but since the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the composite monolith, 5 mg equivalent / g. The ion exchange capacity of the organic porous material in which the ion exchange group is introduced only on the surface of the skeleton cannot be determined depending on the kind of the organic porous material or the ion exchange group, but is 500 μg equivalent / g at most.

本発明の複合モノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of the ion exchange group to be introduced into the composite monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group; a quaternary ammonium group and a tertiary amino group. And anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

本発明の複合モノリスイオン交換体において、導入されたイオン交換基は、複合モノリスの骨格の表面のみならず、骨格相内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格相の表面および骨格相の内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、複合モノリスの表面のみならず、骨格相の内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the composite monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the skeleton of the composite monolith but also inside the skeleton phase. Here, “the ion exchange groups are uniformly distributed” means that the distribution of the ion exchange groups is uniformly distributed at least on the order of μm on the surface of the skeleton phase and inside the skeleton phase. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, when the ion exchange groups are uniformly distributed not only on the surface of the composite monolith but also inside the skeleton phase, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be prevented. Durability is improved.

本発明の複合モノリスは、上記I工程〜III工程を行なうことにより得られる。本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   The composite monolith of the present invention can be obtained by performing the above steps I to III. In the method for producing a monolith according to the present invention, in the step I, an oil-soluble monomer not containing an ion exchange group, a first crosslinking agent having at least two or more vinyl groups in one molecule, a mixture of a surfactant and water are stirred. In this step, a water-in-oil emulsion is prepared, and then the water-in-oil emulsion is polymerized to obtain a monolith intermediate having a continuous macropore structure having a total pore volume of 5 to 30 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

(モノリス中間体の製造方法)
イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。
(Method for producing monolith intermediate)
Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more.

一分子中に少なくとも2個以上のビニル基を有する第1架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第1架橋剤は、機械的強度の高さから、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第1架橋剤の使用量は、ビニルモノマーと第1架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%、更に0.3〜3モル%であることが好ましい。第1架橋剤の使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   Examples of the first crosslinking agent having at least two or more vinyl groups in one molecule include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and ethylene glycol dimethacrylate. These crosslinking agents can be used singly or in combination of two or more. A preferred first cross-linking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength. The amount of the first crosslinking agent used is 0.3 to 10 mol%, particularly 0.3 to 5 mol%, and more preferably 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the first crosslinking agent. Is preferred. If the amount of the first crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate- Examples include acidic sodium sulfite.

イオン交換基を含まない油溶性モノマー、第1架橋剤、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、第1架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   There is no particular limitation on the mixing method when mixing the oil-soluble monomer containing no ion exchange group, the first cross-linking agent, the surfactant, water and the polymerization initiator to form a water-in-oil emulsion, A method of mixing components all at once, an oil-soluble monomer, a first crosslinking agent, a surfactant, an oil-soluble component that is an oil-soluble polymerization initiator, and a water-soluble component that is water or a water-soluble polymerization initiator For example, a method in which each component is mixed after being uniformly dissolved separately can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, particles or the like are formed on the surface of the skeleton phase of the continuous macropore structure using the structure of the monolith intermediate as a template, or particles or the like are formed on the surface of the skeleton phase of the co-continuous structure. Or The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the porous body becomes brittle and the flexibility is lost, which is not preferable.

モノリス中間体の全細孔容積は、5〜30ml/g、好適には6〜28ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5〜1:35とすればよい。   The total pore volume of the monolith intermediate is 5-30 ml / g, preferably 6-28 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer tends to be non-uniform, and in some cases, the structure collapses, which is not preferable. In order to set the total pore volume of the monolith intermediate in the above numerical range, the ratio (weight) of the monomer to water may be set to approximately 1: 5 to 1:35.

このモノマーと水との比を、概ね1:5〜1:20とすれば、モノリス中間体の全細孔容積が5〜16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第1の有機多孔質体のものが得られる。また、該配合比率を、概ね1:20〜1:35とすれば、モノリス中間体の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第2の有機多孔質体のものが得られる。   When the ratio of this monomer to water is approximately 1: 5 to 1:20, a monolith intermediate having a total pore volume of 5 to 16 ml / g and a continuous macropore structure can be obtained and obtained through Step III. The obtained composite monolithic organic porous body is the first organic porous body. Further, if the blending ratio is approximately 1:20 to 1:35, a monolith intermediate having a total pore volume of more than 16 ml / g and a continuous macropore structure of 30 ml / g or less can be obtained. The organic porous body of the composite monolith obtained through the above is obtained as the second organic porous body.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が20〜200μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られる複合モノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られる複合モノリスの開口径が大きくなりすぎ、流体と複合モノリスや複合モノリスイオン交換体との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate. If the average diameter of the openings is less than 20 μm, the opening diameter of the composite monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss at the time of fluid permeation increases, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the composite monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the fluid and the composite monolith or composite monolith ion exchanger becomes insufficient, resulting in adsorption characteristics. In addition, the ion exchange characteristics deteriorate, which is not preferable. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

(複合モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Production method of composite monolith)
Step II is an organic solvent in which a vinyl monomer, a second cross-linking agent having at least two vinyl groups in one molecule, a vinyl monomer or a second cross-linking agent dissolves, but a polymer formed by polymerization of the vinyl monomer does not dissolve. And a step of preparing a mixture comprising a polymerization initiator. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体を形成できず、体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, particles cannot be formed in the skeleton of the produced monolith, and the adsorption capacity per volume and the ion exchange capacity per volume after the introduction of ion exchange groups are reduced. Since it becomes small, it is not preferable. On the other hand, if the amount of vinyl monomer added exceeds 40 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

II工程で用いられる第2架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。第2架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら第2架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第2架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第2架橋剤の使用量は、ビニルモノマーと第2架橋剤の合計量に対して0.3〜20モル%、特に0.3〜10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。   As the second crosslinking agent used in Step II, one having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the second crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These 2nd crosslinking agents can be used individually by 1 type or in combination of 2 or more types. A preferred second crosslinking agent is an aromatic polyvinyl compound such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl because of its high mechanical strength and stability to hydrolysis. The amount of the second crosslinking agent used is preferably 0.3 to 20 mol%, particularly 0.3 to 10 mol%, based on the total amount of the vinyl monomer and the second crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 20 mol%, the monolith becomes more brittle and the flexibility is lost, and the amount of ion exchange groups introduced decreases, which is not preferable.

II工程で用いられる有機溶媒は、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が10〜30重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が10重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が30重量%を超えると、本発明の特徴である骨格相表面の凹凸が形成されなくなるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the vinyl monomer and the second cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. It is. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain (poly) ethers such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol Chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane, etc .; Ethyl acetate, isopropyl acetate, cellosolve acetate, ethyl propionate, etc. Ethers, and the like. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 10 to 30% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 10% by weight, the polymerization rate decreases, which is not preferable. On the other hand, when the vinyl monomer concentration exceeds 30% by weight, the unevenness on the surface of the skeleton phase, which is a feature of the present invention, is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと第2架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and second crosslinking agent. .

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下、重合を行い、複合モノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと第2架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の特定の骨格構造を有するモノリスが得られる。   In step III, the mixture obtained in step II is allowed to stand, and in the presence of the monolith intermediate obtained in step I, polymerization is performed to obtain a composite monolith. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a second cross-linking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic material is obtained. A porous body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the specific skeleton described above is lost. A monolith having a structure is obtained.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the monolith after polymerization does not receive any pressure from the inner wall of the vessel and enters the reaction vessel without any gap, so that the monolith is not distorted and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a specific skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, or the like is used as an initiator, an inert atmosphere What is necessary is just to heat-polymerize at 20-100 degreeC for 1 to 48 hours in the lower sealed container. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the crosslinking agent are polymerized in the skeleton to form the specific skeleton structure. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolith having a specific skeleton structure.

上述の複合モノリスを製造する際に、下記(1)〜(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、本発明の特徴的な構造である、骨格表面に粒子体等が形成された複合モノリスを製造することができる。   When the above-mentioned composite monolith is produced, the skeleton, which is the characteristic structure of the present invention, is obtained by performing the II step or the III step under the conditions satisfying at least one of the following conditions (1) to (5). A composite monolith having particles or the like formed on the surface can be produced.

(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
(1) The polymerization temperature in step III is a temperature that is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator.
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I.
(3) The vinyl monomer used in step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in step I.
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more.
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II.

(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
(Description of (1) above)
The 10-hour half temperature is a characteristic value of the polymerization initiator, and if the polymerization initiator to be used is determined, the 10-hour half temperature can be known. Moreover, if there exists desired 10-hour half temperature, the polymerization initiator applicable to it can be selected. In step III, the polymerization rate is lowered by lowering the polymerization temperature, and particles and the like can be formed on the surface of the skeleton phase. The reason for this is that the monomer concentration drop inside the skeleton phase of the monolith intermediate becomes gradual, and the monomer distribution rate from the liquid phase part to the monolith intermediate decreases, so the surplus monomer is on the surface of the skeleton layer of the monolith intermediate. It is thought that it was concentrated in the vicinity and polymerized in situ.

重合温度の好ましいものは、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5〜20℃低い範囲に設定することが好ましい。   The preferred polymerization temperature is a temperature that is at least 10 ° C. lower than the 10-hour half-life temperature of the polymerization initiator used. Although the lower limit of the polymerization temperature is not particularly limited, the polymerization rate decreases as the temperature decreases, and the polymerization time becomes unacceptably long. Therefore, the polymerization temperature is 5 to 20 ° C. with respect to the 10-hour half temperature. It is preferable to set to a low range.

((2)の説明)
II工程で用いる第2架橋剤のモル%を、I工程で用いる第1架橋剤のモル%の2倍以上に設定して重合すると、本発明の複合モノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
(Description of (2))
When the mol% of the second cross-linking agent used in Step II is set to be twice or more of the mol% of the first cross-linking agent used in Step I, the composite monolith of the present invention is obtained. The reason for this is that the compatibility between the monolith intermediate and the polymer produced by impregnation polymerization is reduced and phase separation proceeds, so the polymer produced by impregnation polymerization is excluded in the vicinity of the surface of the skeleton phase of the monolith intermediate, It is considered that irregularities such as particles are formed on the surface. In addition, mol% of a crosslinking agent is a crosslinking density mol%, Comprising: The amount of crosslinking agents (mol%) with respect to the total amount of a vinyl monomer and a crosslinking agent is said.

II工程で用いる第2架橋剤モル%の上限は特に制限されないが、第2架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。好ましい第2架橋剤モル%の倍数は2倍〜10倍である。一方、I工程で用いる第1架橋剤モル%をII工程で用いられる第2架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、本発明の複合モノリスは得られなかった。   The upper limit of the second crosslinker mol% used in step II is not particularly limited, but if the second crosslinker mol% is extremely large, cracks occur in the monolith after polymerization, and the brittleness of the monolith proceeds and flexibility is increased. This is not preferable because it causes a problem that the amount of ion exchange groups to be lost is reduced. A preferred multiple of the second crosslinking agent mol% is 2 to 10 times. On the other hand, even when the mol% of the first cross-linking agent used in step I is set to be twice or more the mol% of the second cross-linking agent used in step II, the formation of particles on the surface of the skeleton phase does not occur. The composite monolith of the present invention was not obtained.

((3)の説明)
II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、本発明の複合モノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
(Explanation of (3))
When the vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I, the composite monolith of the present invention is obtained. For example, if the structures of vinyl monomers are slightly different, such as styrene and vinyl benzyl chloride, a composite monolith having particles or the like formed on the surface of the skeleton phase is generated. In general, two types of homopolymers obtained from two types of monomers that are slightly different in structure are not compatible with each other. Therefore, when a monomer having a structure different from that used for forming the monolith intermediate used in Step I is used in Step II and polymerization is performed in Step III, the monomer used in Step II is uniformly distributed to the monolith intermediate. Although impregnation occurs, when polymerization proceeds and a polymer is produced, the produced polymer is incompatible with the monolith intermediate, so phase separation proceeds, and the produced polymer is near the surface of the skeleton phase of the monolith intermediate. It is considered that irregularities such as particles are formed on the surface of the skeleton phase.

((4)の説明)
II工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、本発明の複合モノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
(Explanation of (4))
When the organic solvent used in step II is a polyether having a molecular weight of 200 or more, the composite monolith of the present invention is obtained. Polyethers have a relatively high affinity with monolith intermediates, especially low molecular weight cyclic polyethers are good solvents for polystyrene, and low molecular weight chain polyethers are not good solvents but have considerable affinity. . However, as the molecular weight of the polyether increases, the affinity with the monolith intermediate dramatically decreases and shows little affinity with the monolith intermediate. When such a solvent having poor affinity is used as the organic solvent, diffusion of the monomer into the skeleton of the monolith intermediate is inhibited, and as a result, the monomer is polymerized only near the surface of the skeleton of the monolith intermediate. It is considered that particles and the like are formed on the phase surface and irregularities are formed on the skeleton surface.

ポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200〜100000、特に好ましくは200〜10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。   The upper limit of the molecular weight of the polyether is not particularly limited as long as it is 200 or more. However, when the molecular weight is too high, the viscosity of the mixture prepared in the step II becomes high, and it is difficult to impregnate the monolith intermediate. Therefore, it is not preferable. The molecular weight of the preferred polyether is 200 to 100,000, particularly preferably 200 to 10,000. The terminal structure of the polyether may be an unmodified hydroxyl group, etherified with an alkyl group such as a methyl group or an ethyl group, or esterified with acetic acid, oleic acid, lauric acid, stearic acid, or the like. It may be made.

((5)の説明)
II工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、本発明の複合モノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10〜30重量%に設定することが好ましい。
(Explanation of (5))
When the concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture in Step II, the composite monolith of the present invention is obtained. By reducing the monomer concentration in the step II, the polymerization rate is reduced, and for the same reason as the above (1), particles and the like can be formed on the surface of the skeleton phase, and irregularities can be formed on the surface of the skeleton phase. . Although the lower limit of the monomer concentration is not particularly limited, the polymerization rate decreases as the monomer concentration decreases and the polymerization time becomes unacceptably long, so the monomer concentration may be set to 10 to 30% by weight. preferable.

(複合モノリスイオン交換体の製造方法)
次に、本発明の複合モノリスイオン交換体の製造方法について説明する。該複合モノリスイオン交換体の製造方法としては、特に制限はないが、上記の方法により複合モノリスを製造した後、イオン交換基を導入する方法が、得られる複合モノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。
(Production method of composite monolith ion exchanger)
Next, the manufacturing method of the composite monolith ion exchanger of this invention is demonstrated. The production method of the composite monolith ion exchanger is not particularly limited, but the method of introducing the ion exchange group after producing the composite monolith by the above method strictly restricts the porous structure of the obtained composite monolith ion exchanger. It is preferable in that it can be controlled.

上記複合モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;複合モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;複合モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   The method for introducing an ion exchange group into the composite monolith is not particularly limited, and a known method such as polymer reaction or graft polymerization can be used. For example, as a method of introducing a sulfonic acid group, if the composite monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid, or fuming sulfuric acid; radical initiating groups uniformly on the composite monolith And a method of grafting sodium styrene sulfonate or acrylamido-2-methylpropane sulfonic acid by introducing a chain transfer group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, the sulfonic acid group is converted by functional group conversion. The method etc. which introduce | transduce are mentioned. In addition, as a method of introducing a quaternary ammonium group, if the composite monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method of producing monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine; uniformly introducing a radical initiating group or chain transfer group into the monolith on the skeleton surface and inside the skeleton, and N, N, N- Examples include a method of graft polymerization of trimethylammonium ethyl acrylate or N, N, N-trimethylammonium propylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolith by the above method and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

本発明のケミカルフィルターは、上記複合モノリス、該複合モノリスに貫通孔を設けたもの、複合モノリスイオン交換体又は該複合モノリスイオン交換体に貫通孔を設けたもの、さらには、すでに公知のイオン交換樹脂やイオン交換繊維を用いた吸着層と上記モノリスを組み合わせたものを吸着層として備えるものであれば、フィルターの構成に特に制限はないが、通常、吸着層と該吸着層を支持する支持枠体(ケーシング)とで構成される。該支持枠体は吸着層を支持すると共に、既存設備(設置場所)との接合を司る機能を有する。支持部材の被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。吸着層の形状としては、特に制限されず、所定の厚みを有するブロック形状、薄板を複数枚重ね合わせた積層形状、定形状又は不定形状の粒状物を多数充填した充填構造などが挙げられる。また、吸着層からガス状有機系汚染物質が極微量発生する恐れのある場合、あるいは被処理気体中の有機性ガス状汚染物質の濃度が高い場合には、吸着層の下流側に物理吸着層を付設することが、下流側の物理吸着層で上流側の吸着層で除去できなかった残部のガス状有機系汚染物質を確実に除去できる点で好適である。   The chemical filter of the present invention includes the composite monolith, a composite monolith provided with a through hole, a composite monolith ion exchanger or a composite monolith ion exchanger provided with a through hole, and a known ion exchange The structure of the filter is not particularly limited as long as it includes a combination of an adsorption layer using a resin or ion exchange fiber and the above monolith as an adsorption layer, but usually the adsorption layer and a support frame that supports the adsorption layer It is composed of a body (casing). The support frame supports the adsorbing layer and has a function of managing joining with existing equipment (installation location). The gas distribution portion of the support member is made of a material such as stainless steel, aluminum, or plastic that is not degassed. The shape of the adsorbing layer is not particularly limited, and examples thereof include a block shape having a predetermined thickness, a laminated shape in which a plurality of thin plates are stacked, and a packed structure in which a large number of regular or irregular shaped particles are filled. In addition, when there is a possibility that trace amounts of gaseous organic pollutants may be generated from the adsorption layer, or when the concentration of organic gaseous pollutants in the gas to be treated is high, a physical adsorption layer is provided downstream of the adsorption layer. It is preferable that the remaining gaseous organic pollutant that could not be removed by the upstream adsorption layer in the downstream physical adsorption layer can be reliably removed.

本発明のケミカルフィルターの比表面積は1〜20m/g、好ましくは2〜18m/gである。比表面積が小さ過ぎると、処理能力が低下するため好ましくなく、大き過ぎると、複合モノリス又は複合モノリスイオン交換体の強度が著しく低下するため、好ましくない。比表面積を上記範囲とするには、前記製造方法における(1)〜(5)の条件下で重合を行えばよい。比表面積は水銀圧入法で測定することができる。 The specific surface area of the chemical filter of the present invention is 1 to 20 m 2 / g, preferably 2 to 18 m 2 / g. If the specific surface area is too small, it is not preferable because the processing ability is lowered, and if it is too large, the strength of the composite monolith or the composite monolith ion exchanger is remarkably reduced, which is not preferable. In order to make the specific surface area within the above range, polymerization may be carried out under the conditions (1) to (5) in the production method. The specific surface area can be measured by a mercury intrusion method.

該物理吸着層としては、脱臭用途に使用できる吸着剤が使用できる。具体的には、活性炭、活性炭素繊維及びゼオライトなどが挙げられる。該吸着剤は、比表面積が200m2/g以上の多孔質体が好ましく、比表面積が500m2/g以上の多孔質体がさらに好ましい。また、該物理吸着層から物理吸着剤などが飛散する恐れのある場合には、該物理吸着層の下流側に通気性を有するカバー材を配置することが好ましい。カバー材としては、有機高分子材料からなる不織布及び多孔質膜、並びにアルミニウム及びステンレス製のメッシュ等が挙げられる。これらの中、有機高分子材料からなる不織布や多孔質膜は低圧力損失で気体を透過でき、且つ微粒子捕集能力が高いため、特に好適である。 As the physical adsorption layer, an adsorbent that can be used for deodorization can be used. Specific examples include activated carbon, activated carbon fiber, and zeolite. The adsorbent is preferably a porous body having a specific surface area of 200 m 2 / g or more, and more preferably a porous body having a specific surface area of 500 m 2 / g or more. In addition, when there is a possibility that a physical adsorbent or the like is scattered from the physical adsorption layer, it is preferable to arrange a cover material having air permeability on the downstream side of the physical adsorption layer. Examples of the cover material include a nonwoven fabric and a porous film made of an organic polymer material, and a mesh made of aluminum and stainless steel. Among these, non-woven fabrics and porous membranes made of organic polymer materials are particularly suitable because they can permeate gas with low pressure loss and have a high particulate collection ability.

貫通孔は所定の厚みを有するブロック形状の複合モノリス又は複合モノリスイオン交換体において、通気方向に延びるように複数個形成するのがよい。貫通孔を設けることにより、通気差圧を更に低下させることができる。複合モノリス又は複合モノリスイオン交換体に貫通孔を設けたものを吸着層として使用する場合、見かけの複合モノリスに占める貫通孔の空隙率は20〜50%、好ましくは25〜40%である。貫通孔の空隙率が低すぎると、通気差圧の低下傾向が小さくなり、貫通孔の空隙率が高すぎると、ガス状汚染物質の除去効率が低下する。   In the block-shaped composite monolith or composite monolith ion exchanger having a predetermined thickness, a plurality of through holes are preferably formed so as to extend in the ventilation direction. By providing the through hole, the air pressure difference can be further reduced. When a composite monolith or a composite monolith ion exchanger provided with through holes is used as the adsorption layer, the porosity of the through holes in the apparent composite monolith is 20 to 50%, preferably 25 to 40%. If the porosity of the through hole is too low, the tendency of the air pressure difference to decrease is reduced, and if the porosity of the through hole is too high, the removal efficiency of the gaseous pollutant decreases.

本発明のケミカルフィルターは、半導体産業や医療用等に用いられるクリーンルームやクリーンベンチ等の高度清浄空間を形成するため、クリーンルーム内の空気や雰囲気中に含まれる有機系又は無機系のガス状汚染物質及びその他の汚染物質をイオン交換又は吸着により除去する。ガス状汚染物質及びその他の汚染物質としては、二酸化硫黄、塩酸、フッ酸、硝酸等の酸性ガス、アンモニア等の塩基性ガス、塩化アンモニウム等の塩類、フタル酸エステル系に代表される各種可塑剤、フェノール系及びリン系の酸化防止剤、ベンゾトリアゾール系などの紫外線吸収剤、リン系及びハロゲン系の難燃剤等が挙げられる。酸性ガス、塩基性ガス及び塩類はイオン交換により除去でき、各種可塑剤、酸化防止剤、紫外線吸収剤及び難燃剤は強い極性を有するため、吸着により除去することができる。   The chemical filter of the present invention is an organic or inorganic gaseous pollutant contained in the air or atmosphere in a clean room in order to form a highly clean space such as a clean room or clean bench used in the semiconductor industry or medical applications. And other contaminants are removed by ion exchange or adsorption. Gaseous pollutants and other pollutants include acid gases such as sulfur dioxide, hydrochloric acid, hydrofluoric acid, and nitric acid, basic gases such as ammonia, salts such as ammonium chloride, and various plasticizers represented by phthalate esters And phenolic and phosphorus antioxidants, ultraviolet absorbers such as benzotriazole, phosphorus and halogen flame retardants, and the like. Acid gas, basic gas and salts can be removed by ion exchange, and various plasticizers, antioxidants, ultraviolet absorbers and flame retardants have strong polarity and can be removed by adsorption.

本発明のケミカルフィルターの使用条件としては、公知の条件で行なうことができる。使用雰囲気の湿度としては、相対湿度で30〜80%程度である。気体透過速度としては、特に制限されないが、例えば0.1〜10m/sの範囲である。従来の粒状イオン交換樹脂を吸着層として使用する場合、気体透過速度は0.3〜0.5m/s程度であるが、本発明のケミカルフィルターによれば、気体透過速度が5〜10m/sのように速くても、骨格部が連続マクロポア構造または共連続構造でありイオン交換容量が大きく且つ効率良くイオン交換が行なわれるため、ガス状汚染物質を吸着除去できる。また、被処理空気中の汚染物質濃度において、従来のケミカルフィルターによれば、適用範囲はアンモニアの場合、通常0.1〜10μg/m、塩化水素の場合、通常5〜50ng/m、二酸化硫黄の場合、通常0.1〜10μg/m、フタル酸エステルの場合、通常0.1〜5μg/mであるが、本発明のケミカルフィルターによれば、上記範囲に加えて、アンモニア100ng/m以下、塩化水素5ng/m以下、二酸化硫黄100ng/m以下、フタル酸エステル100ng/m以下の極微量濃度であっても十分除去できる。なお、吸着層として用いる複合モノリスイオン交換体は、使用に際しては、従来のイオン交換樹脂の場合と同様、得られた複合モノリスイオン交換体を公知の再生方法により処理して用いる。すなわち、複合モノリス陽イオン交換体は、酸処理により酸型として用い、複合モノリス陰イオン交換体は、アルカリ処理によりOH型として用いる。また、ケミカルフィルター処理気体が使用雰囲気の湿度になるよう、予めケミカルフィルターをその使用空間における平衡水分率となる水分保有量にしておくことが、慣らし運転を省略できる点で好ましい。本発明のケミカルフィルターをブロック状で用い、気体透過速度が5〜10m/sの場合、ブロック状の吸着層の通気方向の長さは概ね50〜200mmである。 The use conditions of the chemical filter of the present invention can be performed under known conditions. The humidity of the use atmosphere is about 30 to 80% in relative humidity. Although it does not restrict | limit especially as a gas permeation | transmission speed | rate, For example, it is the range of 0.1-10 m / s. When a conventional granular ion exchange resin is used as the adsorption layer, the gas permeation rate is about 0.3 to 0.5 m / s, but according to the chemical filter of the present invention, the gas permeation rate is 5 to 10 m / s. Even at such a high speed, the skeletal part has a continuous macropore structure or a co-continuous structure, and the ion exchange capacity is large and ion exchange is performed efficiently, so that gaseous pollutants can be adsorbed and removed. Further, the concentration of contaminants in the air to be processed, according to the conventional chemical filter, the applicable range in the case of ammonia, usually 0.1-10 / m 3, the case of hydrogen chloride, typically 5-50 ng / m 3, In the case of sulfur dioxide, it is usually 0.1 to 10 μg / m 3 , and in the case of phthalate ester, it is usually 0.1 to 5 μg / m 3 , but according to the chemical filter of the present invention, in addition to the above range, ammonia Even a trace concentration of 100 ng / m 3 or less, hydrogen chloride 5 ng / m 3 or less, sulfur dioxide 100 ng / m 3 or less, and phthalate ester 100 ng / m 3 or less can be sufficiently removed. In addition, the composite monolith ion exchanger used as an adsorption layer is used by processing the obtained composite monolith ion exchanger by a known regeneration method as in the case of conventional ion exchange resins. That is, the composite monolith cation exchanger is used as an acid form by acid treatment, and the composite monolith anion exchanger is used as an OH form by alkali treatment. In addition, it is preferable that the chemical filter is previously set to a moisture content that provides an equilibrium moisture content in the use space so that the chemical filter treatment gas has a humidity of the use atmosphere in terms of omitting the break-in operation. When the chemical filter of the present invention is used in a block shape and the gas permeation rate is 5 to 10 m / s, the length of the block-shaped adsorption layer in the ventilation direction is approximately 50 to 200 mm.

本発明のケミカルフィルターは、吸着層として用いる複合モノリス又は複合モノリスイオン交換体の細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。すなわち、従来の粒状のイオン交換樹脂は、粒子内部のイオン交換が遅く、イオン交換容量の全てが有効に使用されない。例えば粒径500μmの粒状イオン交換樹脂の場合、効率よく吸着が行なわれる範囲が表面から100μmと仮定すると、表面層の体積分率は約50%であり、効率よく吸着が行なわれる範囲のイオン交換容量は約半分となる。一方、本発明に係る複合モノリスイオン交換体は壁の厚みが2〜10μmであるため、全てのイオン交換基が効率よく使用される。   In the chemical filter of the present invention, the pore volume and specific surface area of the composite monolith or composite monolith ion exchanger used as the adsorption layer are remarkably large, and ion exchange groups are introduced at a high density on the surface or inside thereof. Even if the permeation speed is high, the adsorption removal ability of gaseous pollutants can be maintained, and even if the amount of gaseous pollutants is extremely small, it can be removed. That is, the conventional granular ion exchange resin has a slow ion exchange inside the particles, and the entire ion exchange capacity is not used effectively. For example, in the case of a granular ion exchange resin having a particle diameter of 500 μm, assuming that the range in which the efficient adsorption is performed is 100 μm from the surface, the volume fraction of the surface layer is about 50%, and the ion exchange in the range in which the efficient adsorption is performed. The capacity is about half. On the other hand, since the composite monolith ion exchanger according to the present invention has a wall thickness of 2 to 10 μm, all ion exchange groups are efficiently used.

本発明のケミカルフィルターの吸着層に用いるモノリス状多孔質イオン交換体はイオン交換体長さについても、従来の粒状イオン交換樹脂に比べて約1/4と非常に小さく、同じ体積の吸着層を用いても寿命が長くなる。   The monolithic porous ion exchanger used for the adsorption layer of the chemical filter of the present invention is also about 1/4 of the ion exchanger length as compared with the conventional granular ion exchange resin, and uses the same volume of the adsorption layer. Even the life is extended.

本発明のケミカルフィルターは、送風機ユニットと組み合わせて又は送風機ユニットに組み込まれて使用することができる。送風機ユニットとしては、特に制限はないが、通常、軸流ファンまたはブロアを送風源とする送風機と、その出力を調節するコントローラーと、該送風機と該コントローラーを収める第1ケーシングと、該ケーシングに連結される微粒子除去用のHEPAまたはULPAフィルターと、HEPAまたはULPAフィルターを収める第2ケーシングからなる。第1ケーシング及び第2ケーシングの被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。微粒子除去用フィルターのろ材についても特に制限はなく、一般的なガラス繊維やPTFEを用いることができる。クリーンルーム等で用いる場合には、ボロンや有機物を放出しないガラス繊維やPTFEがなお好ましい。   The chemical filter of the present invention can be used in combination with a blower unit or incorporated in a blower unit. Although there is no restriction | limiting in particular as an air blower unit, Usually, it is connected to the air blower which uses an axial fan or a blower as an air supply source, the controller which adjusts the output, the air blower, the 1st casing which accommodates the controller, and the casing The HEPA or ULPA filter for removing fine particles and a second casing that houses the HEPA or ULPA filter. The to-be-processed gas distribution parts of the first casing and the second casing are made of a material such as stainless steel, aluminum, or plastic that is not degassed. The filter medium for the particulate removal filter is not particularly limited, and general glass fiber or PTFE can be used. When used in a clean room or the like, glass fiber or PTFE that does not release boron or organic matter is still more preferable.

本発明のケミカルフィルターは微粒子除去用のHEPAまたはULPAフィルターの上流側に付設される。本発明のケミカルフィルターと送風機ユニットを組み合わせる形態としては、互いのケーシング同士を接続して一体化して使用する方法が挙げられる。本発明のケミカルフィルターを送風機ユニットに組み込む形態としては、吸着層を送風機ユニットに組み込む形態である。ケミカルフィルターを送風機ユニットに組み込む形態において、送風機とケミカルフィルターの位置は、どちらが上流側にきてもよい。本発明のケミカルフィルターを送風機ユニットとを組み合わせて使用すれば、ガス状汚染物質と微粒子を共に除去できる点で好ましい。   The chemical filter of the present invention is attached upstream of the HEPA or ULPA filter for removing fine particles. As a form which combines the chemical filter and blower unit of this invention, the method of connecting and mutually using casings is mentioned. As a form which incorporates the chemical filter of this invention in a fan unit, it is a form which incorporates an adsorption layer in a fan unit. In the form in which the chemical filter is incorporated in the blower unit, either the blower or the chemical filter may be located upstream. Use of the chemical filter of the present invention in combination with a blower unit is preferable in that both gaseous pollutants and fine particles can be removed.

本発明においては、複合モノリス又は複合モノリスイオン交換体をケミカルフィルターの吸着層として用いるため、大きな流路と均一に導入されたイオン交換基により、静圧の小さな小型の送風機においても効率よく被処理気体中の不純物を除去できる。また、体積当たりのイオン交換容量、比表面積が非常に大きく均一にイオン交換基が導入されているため、除去率の向上と長寿命化が図れる。   In the present invention, since the composite monolith or the composite monolith ion exchanger is used as the adsorption layer of the chemical filter, the large flow path and the uniformly introduced ion exchange group enable efficient treatment even in a small fan with a small static pressure. Impurities in the gas can be removed. Further, since the ion exchange capacity per volume and the specific surface area are very large and the ion exchange groups are uniformly introduced, the removal rate can be improved and the life can be extended.

実施例
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
EXAMPLES Next, the present invention will be specifically described with reference to examples. However, this is merely an example and does not limit the present invention.

(I工程;モノリス中間体の製造)
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は15.8ml/gであった。
(Step I; production of monolith intermediate)
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the opening (mesopore) where the macropores and macropores of the monolith intermediate overlap was 40 μm, and the total pore volume was 15.8 ml / g.

(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、3.2g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of composite monolith)
Next, 36.0 g of styrene, 4.0 g of divinylbenzene, 60 g of 1-decanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). The 10-hour half-life temperature of 2,2′-azobis (2,4-dimethylvaleronitrile) used as the polymerization initiator was 51 ° C. The amount of divinylbenzene used is 6.6 mol% with respect to the total amount of styrene and divinylbenzene used in Step II, while the crosslink density of the monolith intermediate is 1.3 mol%, and the crosslink density ratio is 5.1 times. Met. Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 3.2 g was collected. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 73 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1〜図3に示す。図1〜図3のSEM画像は、倍率が異なるものであり、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1〜図3から明らかなように、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、粒子被覆率は80%であった。また、粒径2〜5μmの粒子体が全体の粒子体に占める割合は90%であった。   The results of observing the internal structure of the composite monolith (dried body) composed of the styrene / divinylbenzene copolymer thus obtained by SEM are shown in FIGS. The SEM images in FIG. 1 to FIG. 3 have different magnifications, and are images at arbitrary positions on a cut surface obtained by cutting a monolith at an arbitrary position. As apparent from FIGS. 1 to 3, the composite monolith has a continuous macropore structure, and the surface of the skeletal phase constituting the continuous macropore structure is coated with particles having an average particle diameter of 4 μm. The rate was 80%. Moreover, the ratio for which the particle size of 2-5 micrometers accounted for the whole particle size was 90%.

また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は16μm、全細孔容積は2.3ml/gであった。その結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、有機溶媒、I工程で得られたモノリス中間体を示す。また、粒子体等は粒子で示した。   Moreover, the average diameter of the opening of the composite monolith measured by mercury porosimetry was 16 μm, and the total pore volume was 2.3 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows the vinyl monomer, the crosslinking agent, the organic solvent used in Step II, and the monolith intermediate obtained in Step I in order from the left. Further, the particle bodies and the like are shown as particles.

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は19.6gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸98.9gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 19.6 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 98.9 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a composite monolith cation exchanger.

得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ21μmであり、モノリスと同様の方法で求めた骨格表面の粒子被覆率は80%、被覆粒子の平均粒径は5μm、全細孔容積は2.3ml/gであった。また、粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.057MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、イオン交換帯長さは9mmであり、著しく短い値を示した。結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.3 times, and the ion exchange capacity per volume was 1.11 mg equivalent / ml in a water wet state. The average diameter of the opening of the organic porous ion exchanger in the water-wet state is 21 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state, and is obtained by the same method as for the monolith. The particle coverage on the skeleton surface was 80%, the average particle size of the coated particles was 5 μm, and the total pore volume was 2.3 ml / g. Moreover, the ratio for which the particle body with a particle size of 3-7 micrometers occupied to the whole particle body was 90%. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.057 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Further, the length of the ion exchange zone was 9 mm, showing a remarkably short value. The results are summarized in Table 2.

次に、複合モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the composite monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 4 and 5, the left and right photographs correspond to each other. FIG. 4 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 5 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 4 and 5, it can be seen that the sulfonic acid groups are uniformly introduced on the skeleton surface of the cation exchanger and inside the skeleton (cross-sectional direction).

実施例2〜5
(複合モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度と使用量及び重合温度を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図6〜図13に示す。図6〜図8は実施例2、図9及び図10は実施例3、図11は実施例4、図12及び図13は実施例5のものである。なお、実施例2については架橋密度比(2.5倍)、実施例3については有機溶媒の種類(PEG;分子量400)、実施例4についてはビニルモノマー濃度(28.0%)、実施例5については重合温度(40℃;重合開始剤の10時間半減温度より11℃低い)について、本発明の製造条件を満たす条件で製造した。図6〜図13から実施例3〜5の複合モノリスの骨格表面に付着しているものは粒子体というよりは突起体であった。突起体の「粒子平均径」は突起体の最大径の平均径である。図6〜図13及び表2から、実施例2〜6のモノリス骨格表面に付着している粒子の平均径は3〜8μm、粒子被覆率は50〜95%であった。また、実施例2が粒径3〜6μmの粒子体が全体の粒子体に占める割合は80%、実施例3が粒径3〜10μmの突起体が全体の粒子体に占める割合は80%、実施例4が粒径2〜5μmの粒子体が全体の粒子体に占める割合は90%、実施例5が粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。
Examples 2-5
(Manufacture of composite monolith)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density and the amount used, and the polymerization temperature are shown in Table 1. A monolith was produced in the same manner as in Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. 6 to 8 are of the second embodiment, FIGS. 9 and 10 are of the third embodiment, FIG. 11 is of the fourth embodiment, and FIGS. 12 and 13 are of the fifth embodiment. In Example 2, the crosslinking density ratio (2.5 times), in Example 3, the type of organic solvent (PEG; molecular weight 400), in Example 4, vinyl monomer concentration (28.0%), Example For No. 5, the polymerization temperature (40 ° C .; 11 ° C. lower than the 10-hour half-life temperature of the polymerization initiator) was produced under conditions satisfying the production conditions of the present invention. From FIG. 6 to FIG. 13, what adhered to the skeleton surface of the composite monoliths of Examples 3 to 5 were protrusions rather than particles. The “particle average diameter” of the protrusion is the average diameter of the maximum diameter of the protrusion. From FIG. 6 to FIG. 13 and Table 2, the average diameter of the particles adhering to the monolith skeleton surface of Examples 2 to 6 was 3 to 8 μm, and the particle coverage was 50 to 95%. Further, in Example 2, the proportion of particles having a particle diameter of 3 to 6 μm occupying the entire particles is 80%, and in Example 3, the proportion of protrusions having a particle diameter of 3 to 10 μm is occupying the entire particles. In Example 4, the proportion of particles having a particle diameter of 2 to 5 μm in the total particles was 90%, and in Example 5, the proportion of particles having a particle diameter of 3 to 7 μm in the total particles was 90%. .

(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、それぞれ実施例1と同様の方法でクロロ硫酸と反応させ、複合モノリスカチオン交換体を製造した。その結果を表2に示す。実施例2〜5における複合モノリスカチオン交換体の連続細孔の平均直径は21〜52μmであり、骨格表面に付着している粒子体等の平均径は5〜17μm、粒子被覆率も50〜95%と高く、差圧係数も0.010〜0.057MPa/m・LVと小さい上に、イオン交換帯長さも8〜12mmと著しく小さな値であった。また、粒径5〜10μmの粒子体が全体の粒子体に占める割合は90%であった。
(Production of complex monolith cation exchanger)
The composite monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a composite monolith cation exchanger. The results are shown in Table 2. The average diameter of the continuous pores of the composite monolith cation exchanger in Examples 2 to 5 is 21 to 52 μm, the average diameter of the particles attached to the skeleton surface is 5 to 17 μm, and the particle coverage is also 50 to 95. %, The differential pressure coefficient was as small as 0.010 to 0.057 MPa / m · LV, and the ion exchange zone length was as extremely small as 8 to 12 mm. Moreover, the ratio for which the particle body with a particle size of 5-10 micrometers occupied to the whole particle body was 90%.

実施例6
(複合モノリスの製造)
ビニルモノマーの種類とその使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図14〜図16に示す。実施例6の複合モノリスの骨格表面に付着しているものは突起体であった。実施例6のモノリスは、表面に形成された突起体の最大径の平均径が10μmであり、粒子被覆率は100%であった。また、粒径6〜12μmの粒子体が全体の粒子体に占める割合は80%であった。
Example 6
(Manufacture of composite monolith)
Table 1 shows the type and amount of vinyl monomer used, amount of crosslinking agent used, type and amount of organic solvent, monolith intermediate porous structure coexisting during polymerization in step III, crosslinking density and amount used. A monolith was produced in the same manner as in Example 1 except for the change. The results are shown in Tables 1 and 2. Moreover, the result of having observed the internal structure of composite monolith (dry body) by SEM is shown in FIGS. What adhered to the skeleton surface of the composite monolith of Example 6 was a protrusion. In the monolith of Example 6, the average diameter of the maximum diameter of the protrusions formed on the surface was 10 μm, and the particle coverage was 100%. Moreover, the ratio for which the particle body with a particle size of 6-12 micrometers occupied to the whole particle body was 80%.

(複合モノリスアニオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。複合モノリスの重量は17.9gであった。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液114.5gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、メタノールで洗浄してテトラヒドロフランを除き、更に純水で洗浄してモノリスアニオン交換体を得た。
(Production of complex monolith anion exchanger)
The composite monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the composite monolith was 17.9 g. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 114.5 g of a 30% trimethylamine aqueous solution, heated to react at 40 ° C. for 24 hours. After completion of the reaction, the resultant was washed with methanol to remove tetrahydrofuran, and further washed with pure water to obtain a monolith anion exchanger.

得られた複合アニオン交換体の反応前後の膨潤率は2.0倍であり、体積当りのイオン交換容量は、水湿潤状態で0.32mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の連続細孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ58μmであり、同様の方法で求めた突起体の平均径は20μm、粒子被覆率は100%、全細孔容積は2.1ml/gであった。また、イオン交換帯長さは16mmと非常に短い値を示した。なお、水を透過させた際の圧力損失の指標である差圧係数は、0.041MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。また、粒径12〜24μmの粒子体が全体の粒子体に占める割合は80%であった。その結果を表2にまとめて示す。   The obtained composite anion exchanger had a swelling ratio of 2.0 times before and after the reaction, and the ion exchange capacity per volume was 0.32 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the organic porous ion exchanger in the water wet state was 58 μm as estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state. The average body diameter was 20 μm, the particle coverage was 100%, and the total pore volume was 2.1 ml / g. The ion exchange zone length was as short as 16 mm. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.041 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Moreover, the ratio for which the particle body with a particle size of 12-24 micrometers occupied to the whole particle body was 80%. The results are summarized in Table 2.

次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

比較例1
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、不図示のSEM写真から骨格表面には粒子体や突起体の形成は全く認められなかった。表1及び表2から、本発明の特定の製造条件と逸脱する条件、すなわち、上記(1)〜(5)の要件から逸脱した条件下でモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Comparative Example 1
(Manufacture of monoliths)
Except for changing the usage amount of the vinyl monomer, the usage amount of the crosslinking agent, the type and usage amount of the organic solvent, and the usage amount of the monolith intermediate coexisting during the polymerization in Step III to the blending amounts shown in Table 1, Example 1 and A monolith was produced in a similar manner. The results are shown in Tables 1 and 2. From the SEM photograph (not shown), the formation of particles and protrusions was not observed at all on the skeleton surface. From Table 1 and Table 2, when a monolith is produced under conditions deviating from the specific production conditions of the present invention, that is, conditions deviating from the requirements (1) to (5) above, particle formation on the surface of the monolith skeleton is caused. It turns out that it is not recognized.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、実施例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは26mmであり、実施例と比較して大きな値であった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 26 mm, which was a large value compared to the examples.

比較例2〜4
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、比較例2については架橋密度比(0.2倍)、比較例3については有機溶媒の種類(2-(2-メトキシエトキシ)エタノール;分子量120)、比較例4については重合温度(50℃;重合開始剤の10時間半減温度より1℃低い)について、本発明の製造条件を満たさない条件で製造した。結果を表2に示す。比較例2、4、5のモノリスについては骨格表面での粒子生成はなかった。また、比較例3では単離した生成物は透明であり、多孔構造が崩壊、消失していた。
Comparative Examples 2-4
(Manufacture of monoliths)
The amount of vinyl monomer used, the amount of crosslinking agent used, the type and amount of organic solvent used, the porous structure of the monolith intermediate that coexists during polymerization in step III, the crosslinking density, and the amount used were changed to the amounts shown in Table 1. Produced a monolith in the same manner as in Example 1. The results are shown in Tables 1 and 2. For Comparative Example 2, the crosslinking density ratio (0.2 times), for Comparative Example 3, the type of organic solvent (2- (2-methoxyethoxy) ethanol; molecular weight 120), and for Comparative Example 4, the polymerization temperature (50 And 1 ° C. lower than the 10-hour half-life temperature of the polymerization initiator). The results are shown in Table 2. For the monoliths of Comparative Examples 2, 4, and 5, no particles were formed on the skeleton surface. In Comparative Example 3, the isolated product was transparent, and the porous structure was collapsed and disappeared.

(モノリスカチオン交換体の製造)
比較例3を除き、上記の方法で製造した有機多孔質体を、比較例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。その結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは23〜26mmであり、実施例と比較して大きな値であった。
(Production of monolith cation exchanger)
Except for Comparative Example 3, the organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Comparative Example 1 to produce a monolith cation exchanger. The results are shown in Table 2. The obtained monolith cation exchanger had an ion exchange zone length of 23 to 26 mm, which was a large value compared to the examples.

比較例5
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の使用量、III工程で重合時に共存させるモノリス中間体の多孔構造および使用量を表1に示す配合量に変更した以外は、比較例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示すが、本発明の特定の製造条件を逸脱してモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
Comparative Example 5
(Manufacture of monoliths)
Comparative Example 1 except that the amount of vinyl monomer used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of monolith intermediate coexisting during polymerization in step III and the amount used were changed to the amounts shown in Table 1. A monolith was produced in the same manner as described above. The results are shown in Tables 1 and 2, and it can be seen that when a monolith is produced outside the specific production conditions of the present invention, no particle formation is observed on the surface of the monolith skeleton.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。結果を表2に示が、得られたモノリスアニオン交換体のイオン交換帯長さは47mmであり、実施例と比較して大きな値であった。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated. The results are shown in Table 2. The obtained monolith anion exchanger had an ion exchange zone length of 47 mm, which was a large value compared to the examples.

実施例7
(複合モノリスカチオン交換体の製造)
複合モノリスの製造において、厚さ20mmの円盤に代えて、I工程の試薬量を2倍にしてモノリス中間体を製造し、厚さ50mmとしたこと、II工程の試薬量を3倍にしたこと、複合モノリスカチオン交換体製造時の複合モノリス厚さ15mmを50mmとしたこと、ジクロロメタン使用量を1500mlから5000mlとしたこと、クロロ硫酸使用量を98.9gから329gとしたこと以外は実施例1に準拠した方法により複合モノリスカチオン交換体を製造した。
Example 7
(Production of complex monolith cation exchanger)
In the production of a composite monolith, instead of a 20 mm thick disk, the amount of reagent in the I step was doubled to produce a monolith intermediate to a thickness of 50 mm, and the amount of reagent in the II step was tripled Example 1 except that the composite monolith thickness 15 mm during production of the composite monolith cation exchanger was 50 mm, the amount of dichloromethane used was 1500 ml to 5000 ml, and the amount of chlorosulfuric acid was 98.9 g to 329 g. A composite monolith cation exchanger was produced by a compliant method.

(複合モノリスカチオン交換体を用いた塩基性ガスの吸着)
上記方法で得られた複合モノリスカチオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られた複合モノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、アンモニア濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法でアンモニウムイオンの定量を行った。その結果、空気中のアンモニア濃度は50ng/m未満であり、完全にアンモニアを除去できた。
(Adsorption of basic gas using composite monolith cation exchanger)
The composite monolith cation exchanger obtained by the above method was immersed in 3N hydrochloric acid for 24 hours, and then sufficiently washed with pure water and dried. The obtained composite monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. When this filter was supplied with air with an ammonia concentration of 5,000 ng / m 3 at a surface wind speed of 0.5 m / s under a temperature and humidity condition of 25 ° C. and 40%, the permeating gas was measured as ultrapure water. Sampling was performed by the impinger method, and ammonium ions were quantified by ion chromatography. As a result, the ammonia concentration in the air was less than 50 ng / m 3 , and ammonia could be completely removed.

比較例6
製造例1(有機多孔質陽イオン交換体の製造)
スチレン38g、ジビニルベンゼン2.0g、ソルビタンモノオレート2.1gおよびアゾビスイソブチロニトリル0.1gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/アゾビスイソブチロニトリル混合物を360gの純水に添加し、遊星式攪拌装置である真空攪拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、底面直径と充填物の高さの比が1:1、公転回転数1000回転/分、自転回転数330回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、系を窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマー、水およびソルビタンモノオレエートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3モル%含有した有機多孔質体の内部構造をSEMにより観察した結果、当該有機多孔質体は連続気泡構造を有していた。
Comparative Example 6
Production Example 1 (Production of organic porous cation exchanger)
38 g of styrene, 2.0 g of divinylbenzene, 2.1 g of sorbitan monooleate and 0.1 g of azobisisobutyronitrile were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / azobisisobutyronitrile mixture is added to 360 g of pure water, and 13 using a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Under reduced pressure of 3 kPa, the mixture was stirred for 2 minutes at a ratio of the bottom surface diameter to the height of the packing of 1: 1, a revolution speed of 1000 revolutions / minute, and a rotation speed of 330 revolutions / minute to obtain a water-in-oil emulsion. After completion of emulsification, the system was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol to remove unreacted monomers, water and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. As a result of observing the internal structure of the organic porous material containing 3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained by SEM, the organic porous material has an open-cell structure. It was.

次いで上記有機多孔質体を切断して18gを分取し、ジクロロエタン2400mlを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸90gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗して有機多孔質陽イオン交換体を得た。この有機多孔質陽イオン交換体のイオン交換容量は、乾燥多孔質体換算で4.8mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基がμmオーダーで有機多孔質体に均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陽イオン交換体のメソポアの平均径は、30μm、全細孔容積は10.2ml/gであった。   Next, the organic porous material was cut to obtain 18 g, and after adding 2400 ml of dichloroethane and heating at 60 ° C. for 30 minutes, the mixture was cooled to room temperature, 90 g of chlorosulfuric acid was gradually added, and the mixture was reacted at room temperature for 24 hours. Thereafter, acetic acid was added, and the reaction product was poured into a large amount of water and washed with water to obtain an organic porous cation exchanger. The ion exchange capacity of this organic porous cation exchanger is 4.8 mg equivalent / g in terms of dry porous material, and the organic porous material has sulfonic acid groups on the order of μm by mapping sulfur atoms using EPMA. It was confirmed that it was introduced uniformly. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous cation exchanger had an average mesopore diameter of 30 μm and a total pore volume of 10.2 ml / g.

(有機多孔質陽イオン交換体を用いた塩基性ガスの吸着)
製造例1で製造した有機多孔質陽イオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに実施例7と同様の方法でアンモニア除去試験を行った結果、透過空気中のアンモニア濃度は120ng/mとなり、完全にアンモニアを除去することはできなかった。
(Adsorption of basic gas using organic porous cation exchanger)
The organic porous cation exchanger produced in Production Example 1 was immersed in 3N hydrochloric acid for 24 hours, then sufficiently washed with pure water and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. As a result of performing an ammonia removal test on this filter in the same manner as in Example 7, the ammonia concentration in the permeated air was 120 ng / m 3 , and ammonia could not be completely removed.

実施例8
複合モノリスカチオン交換体を3N塩酸中に浸漬する前に、内径2mmのSUS316製パイプにより、円柱状モノリスの見かけの円に対して、直径2mmの孔による空隙率が30%となるよう、軸方向に延びる貫通孔をあけた以外は、実施例7と同様の方法で貫通孔を有する複合モノリスカチオン交換体を得、更に実施例7と同様の方法で塩基性ガスの吸着を行った。その結果、面風速0.5m/sのときの通気差圧は80Paと非常に低圧損であり、空気中のアンモニア濃度は450ng/mであった。
Example 8
Before immersing the composite monolith cation exchanger in 3N hydrochloric acid, the SUS316 pipe with an inner diameter of 2 mm is used to make the porosity of the hole with a diameter of 2 mm relative to the apparent circle of the cylindrical monolith 30%. A composite monolith cation exchanger having through-holes was obtained in the same manner as in Example 7, except that a through-hole extending in the same manner as in Example 7 was used. Further, basic gas was adsorbed in the same manner as in Example 7. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 80 Pa, and the ammonia concentration in the air was 450 ng / m 3 .

比較例7
上記モノリス状有機多孔質カチオン交換体に代えて、比較例6の連続気泡型モノリス状有機多孔質カチオン交換体を使用したこと以外は、実施例8と同様の方法で貫通孔をあけると共に、塩基性ガスの吸着を行った。その結果、通気差圧は85Paであり、空気中のアンモニア濃度は850ng/mであった。
Comparative Example 7
In place of the monolithic organic porous cation exchanger, an open-cell monolithic organic porous cation exchanger of Comparative Example 6 was used, except that a through-hole was formed in the same manner as in Example 8, and a base was used. Adsorption of sex gas was performed. As a result, the aeration differential pressure was 85 Pa, and the ammonia concentration in the air was 850 ng / m 3 .

実施例9
(複合モノリスアニオン交換体の製造)
複合モノリスの製造において、厚さ20mmの円盤に代えて、I工程の試薬量を2倍にしてモノリス中間体を製造し、厚さ50mmとしたこと、II工程の試薬量を3倍としたこと、複合モノリスアニオン交換体製造時の複合モノリスの厚さ15mmを50mmとしたこと、テトラヒドロフラン使用量を1500mlから5000mlとしたこと、トリメチルアミン30%水溶液使用量を114.5gから381gとしたこと以外は実施例6に準拠して複合モノリスアニオン交換体を製造した。
Example 9
(Production of complex monolith anion exchanger)
In the production of a composite monolith, instead of a 20 mm thick disc, the amount of reagent in step I was doubled to produce a monolith intermediate to have a thickness of 50 mm, and the amount of reagent in step II was tripled , Except that the thickness of the composite monolith at the time of production of the composite monolith anion exchanger was set to 50 mm, the amount of tetrahydrofuran used was changed from 1500 ml to 5000 ml, and the amount of trimethylamine 30% aqueous solution was changed from 114.5 g to 381 g. A composite monolith anion exchanger was prepared according to Example 6.

(複合モノリスアニオン交換体を用いた酸性ガスの吸着)
上記方法で得られた複合モノリスアニオン交換体を1N水酸化ナトリウム水溶液中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られた複合モノリスアニオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、二酸化硫黄濃度5,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法で硫酸イオンの定量を行った。その結果、空気中の二酸化硫黄濃度は50ng/m未満であり、完全に二酸化硫黄を除去できた。
(Adsorption of acid gas using composite monolith anion exchanger)
The composite monolith anion exchanger obtained by the above method was immersed in a 1N aqueous sodium hydroxide solution for 24 hours, then sufficiently washed with pure water and dried. The obtained composite monolith anion exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. The permeated gas was sampled by the ultrapure water impinger method when air with a sulfur dioxide concentration of 5,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under the temperature and humidity conditions of 25 ° C. and 40%. Then, sulfate ion was quantified by ion chromatography. As a result, the sulfur dioxide concentration in the air was less than 50 ng / m 3 , and sulfur dioxide was completely removed.

比較例8
スチレンに代えてクロロメチルスチレンを用いたこと及びソルビタンモノオレートの量を4.5gに変更したこと以外は、比較例6と同様の方法でモノリス状有機多孔質体を製造した。この有機多孔質体を切断して15.0gを分取し、テトラヒドロフラン1500gを加え60℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、有機多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して有機多孔質陰イオン交換体を得た。この有機多孔質陰イオン交換体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであり、SIMSにより、トリメチルアンモニウム基が有機多孔質体にμmオーダーで均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陰イオン交換体のメソポアの平均径は、25μm、全細孔容積は9.8ml/gであった。得られたアニオン交換体を実施例9と同様の方法で二酸化硫黄の除去試験を行った。その結果、空気中の二酸化硫黄の濃度は200ng/mであり、完全に除去することはできなかった。
Comparative Example 8
A monolithic organic porous material was produced in the same manner as in Comparative Example 6 except that chloromethylstyrene was used instead of styrene and the amount of sorbitan monooleate was changed to 4.5 g. The organic porous material was cut to take 15.0 g, 1500 g of tetrahydrofuran was added and the mixture was heated at 60 ° C. for 30 minutes, then cooled to room temperature, and 195 g of a trimethylamine (30%) aqueous solution was gradually added. After reacting for 3 hours, the mixture was allowed to stand overnight at room temperature. After completion of the reaction, the organic porous material was taken out, washed with acetone, washed with water, and dried to obtain an organic porous anion exchanger. The ion exchange capacity of this organic porous anion exchanger is 3.7 mg equivalent / g in terms of dry porous body, and trimethylammonium groups are uniformly introduced into the organic porous body in the order of μm by SIMS. It was confirmed. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous anion exchanger had an average mesopore diameter of 25 μm and a total pore volume of 9.8 ml / g. The obtained anion exchanger was subjected to a sulfur dioxide removal test in the same manner as in Example 9. As a result, the concentration of sulfur dioxide in the air was 200 ng / m 3 and could not be completely removed.

実施例10
(複合モノリスを用いた有機性ガスの吸着)
実施例7に準拠して製造したモノリス状有機多孔質体を純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温度条件下、トルエン濃度1,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を固体吸着剤(TENAX−GR)を用いて捕集し、ガスクロマトグラフ質量分析法でトルエンの定量を行った。その結果、空気中のトルエン濃度は110ng/mとなり、約89%の除去率であった。
Example 10
(Adsorption of organic gas using composite monolith)
The monolithic organic porous material produced according to Example 7 was sufficiently washed with pure water and dried. The obtained monolithic organic porous material was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. Using this solid adsorbent (TENAX-GR) as the permeating gas when air with a toluene concentration of 1,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under a temperature condition of 25 ° C. and 40%. It was collected, and toluene was quantified by gas chromatography mass spectrometry. As a result, the toluene concentration in the air was 110 ng / m 3 and the removal rate was about 89%.

比較例9
比較例6に準じて連続気泡型モノリス状有機多孔質体を製造し、実施例10と同様に直径50mm、厚み50mmの円盤状ケミカルフィルターを作製した。
このフィルターを実施例10と同様の条件でトルエン除去試験を行った結果、透過空気中のアンモニア濃度は200ng/m3となり、除去率は約80%であり、実施例10よりも低い除去率となった。
Comparative Example 9
An open-cell monolithic organic porous material was produced according to Comparative Example 6, and a disc-shaped chemical filter having a diameter of 50 mm and a thickness of 50 mm was produced in the same manner as in Example 10.
This filter was subjected to a toluene removal test under the same conditions as in Example 10. As a result, the ammonia concentration in the permeated air was 200 ng / m 3 and the removal rate was about 80%, which was a lower removal rate than in Example 10. It was.

実施例11〜14
(複合モノリスカチオン交換体を用いた塩基性ガスの吸着)
実施例1の複合モノリスカチオン交換体に代えて、実施例2〜5の複合モノリスカチオン交換体をそれぞれ使用した以外は、実施例7と同様の方法によりケミカルフィルターを作成し、アンモニア含有空気の処理を行なった。すなわち、実施例2の複合モノリスカチオン交換体を使用したものが実施例11、実施例3の複合モノリスカチオン交換体を使用したものが実施例12、実施例4の複合モノリスカチオン交換体を使用したものが実施例13、実施例5の複合モノリスカチオン交換体を使用したものが実施例14である。その結果、空気中のアンモニア濃度は実施例11が50ng/m未満、実施例12が50ng/m未満、実施例13が50ng/m未満、実施例14が50ng/m未満であった。
Examples 11-14
(Adsorption of basic gas using composite monolith cation exchanger)
A chemical filter was prepared in the same manner as in Example 7 except that the composite monolith cation exchanger of Examples 2 to 5 was used instead of the composite monolith cation exchanger of Example 1, and the treatment of ammonia-containing air was performed. Was done. That is, what used the composite monolith cation exchanger of Example 2 used Example 11 and what used the composite monolith cation exchanger of Example 3 used Example 12 and the composite monolith cation exchanger of Example 4. In Example 13, the composite monolith cation exchanger of Example 13 and Example 5 was used. There result, the ammonia concentration in air Example 11 is less than 50 ng / m 3, below Example 12 50 ng / m 3, under Example 13 is 50 ng / m 3, Example 14 is less than 50 ng / m 3 It was.

実施例15
(モノリス状有機多孔質カチオン交換体を用いた高風速下での塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度2,000ng/mの空気としたこと、面風速0.5m/sに代えて、5.0m/sとしたこと以外は、実施例7と同様の方法でアンモニアの除去試験を行った。その結果、空気透過速度が速いにもかかわらず、透過空気中のアンモニア濃度は50ng/m未満であり、アンモニアを除去することができた。
Example 15
(Adsorption of basic gas under high wind speed using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 5,000 ng / m 3, it has an air ammonia concentration 2,000 ng / m 3, in place of the face velocity 0.5 m / s, except that a 5.0 m / s, An ammonia removal test was conducted in the same manner as in Example 7. As a result, despite the high air permeation rate, the ammonia concentration in the permeated air was less than 50 ng / m 3 , and ammonia could be removed.

実施例16
(モノリス状有機多孔質カチオン交換体を用いた極微量濃度塩基性ガスの吸着)
アンモニア濃度2,000ng/mの空気に代えて、アンモニア濃度100ng/mの空気とした以外は、実施例15と同様の方法でアンモニア除去の性能評価を行なった。その結果、透過気体中のアンモニア濃度は50ng/m未満であり、空気透過速度が5.0m/sと速くても、極微量のアンモニアを完全に除去することができた。
Example 16
(Adsorption of trace amount of basic gas using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 2,000 ng / m 3, except that the air concentration of ammonia 100 ng / m 3 were subjected to performance evaluation of ammonia removal in the same manner as in Example 15. As a result, the ammonia concentration in the permeated gas was less than 50 ng / m 3 , and even when the air permeation rate was as high as 5.0 m / s, a trace amount of ammonia could be completely removed.

実施例17
(モノリス状有機多孔質カチオン交換体を用いた高濃度塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度100μg/mの空気としたこと以外は、実施例7と同様の方法でアンモニア除去の寿命試験を行った。その結果、90%以上の浄化効率を維持できる期間は27日間であった。
Example 17
(Adsorption of high concentration basic gas using monolithic organic porous cation exchanger)
A life test for removing ammonia was conducted in the same manner as in Example 7 except that air having an ammonia concentration of 5,000 ng / m 3 was used instead of air having an ammonia concentration of 100 μg / m 3 . As a result, the period during which purification efficiency of 90% or more can be maintained was 27 days.

比較例10
比較例6と同様のケミカルフィルターを用いて、実施例17と同様のアンモニア除去の寿命試験を行った。その結果、90%以上の除去率を維持できる期間は10日間であった。
Comparative Example 10
Using the same chemical filter as in Comparative Example 6, the same life test for removing ammonia as in Example 17 was performed. As a result, the period during which the removal rate of 90% or more can be maintained was 10 days.

Figure 0005021540
Figure 0005021540

Figure 0005021540
Figure 0005021540

本発明のモノリス及びモノリスイオン交換体は、化学的に安定で機械的強度が高く、更に流体透過時の流体との接触効率が高く、流体透過時の圧力損失が低いといった特長を有しているため、ケミカルフィルター等のフィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;各種のクロマトグラフィー用充填剤;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。また、本発明のケミカルフィルターは、大きな細孔容積と比表面積を有し、またイオン交換基密度が高いため、高いガス状汚染物質除去能力を有しており、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、超微量ガス状汚染物質も除去可能である。そのため、既存の半導体産業や医療用クリーンルームを対象としたケミカルフィルターとして応用できるばかりでなく、今後、要求清浄度が10倍以上厳しくなると予想される半導体産業でのクリーンルーム向けケミカルフィルターとして特に有用である。   The monoliths and monolith ion exchangers of the present invention have features such as chemically stable and high mechanical strength, high contact efficiency with fluid during fluid permeation, and low pressure loss during fluid permeation. Therefore, filters and adsorbents such as chemical filters; ion exchangers used by filling 2-bed 3-tower pure water production equipment and electrical deionized water production equipment; various chromatographic packing materials; solid acid / base It is useful as a catalyst and can be applied to a wide range of applications. In addition, the chemical filter of the present invention has a large pore volume and specific surface area, and has a high ion exchange group density. Therefore, the chemical filter has a high ability to remove gaseous contaminants. The ability to adsorb and remove gaseous contaminants can be maintained, and ultra-trace gaseous contaminants can also be removed. Therefore, not only can it be applied as a chemical filter for the existing semiconductor industry and medical clean rooms, but it is particularly useful as a chemical filter for clean rooms in the semiconductor industry, where the required cleanliness is expected to become ten times more severe in the future. .

実施例1で得られたモノリスの倍率100のSEM画像である。2 is a SEM image of the monolith obtained in Example 1 at a magnification of 100. FIG. 実施例1で得られたモノリスの倍率300のSEM画像である。2 is an SEM image of the monolith obtained in Example 1 at a magnification of 300. FIG. 実施例1で得られたモノリスの倍率3000のSEM画像である。2 is an SEM image of the monolith obtained in Example 1 at a magnification of 3000. 実施例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms on the surface of the monolith cation exchanger obtained in Example 1. FIG. 実施例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger obtained in Example 1. FIG. 実施例2で得られたモノリスの倍率100のSEM画像である。4 is a SEM image of a monolith obtained in Example 2 at a magnification of 100. FIG. 実施例2で得られたモノリスの倍率600のSEM画像である。4 is a SEM image of a monolith obtained in Example 2 at a magnification of 600. FIG. 実施例2で得られたモノリスの倍率3000のSEM画像である。3 is a SEM image of the monolith obtained in Example 2 at a magnification of 3000. 実施例3で得られたモノリスの倍率600のSEM画像である。4 is a SEM image of a monolith obtained in Example 3 at a magnification of 600. FIG. 実施例3で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Example 3 at a magnification of 3000. 実施例4で得られたモノリスの倍率3000のSEM画像である。4 is an SEM image of the monolith obtained in Example 4 at a magnification of 3000. 実施例5で得られたモノリスの倍率100のSEM画像である。6 is a SEM image of a monolith obtained in Example 5 at a magnification of 100. FIG. 実施例5で得られたモノリスの倍率3000のSEM画像である。6 is an SEM image of the monolith obtained in Example 5 at a magnification of 3000. 実施例6で得られたモノリスの倍率100のSEM画像である。6 is an SEM image of a monolith obtained in Example 6 at a magnification of 100. FIG. 実施例6で得られたモノリスの倍率600のSEM画像である。6 is a SEM image of a monolith obtained in Example 6 at a magnification of 600. FIG. 実施例6で得られたモノリスの倍率3000のSEM画像である。6 is an SEM image of the monolith obtained in Example 6 at a magnification of 3000.

Claims (13)

連続骨格相と連続空孔相からなる有機多孔質体と、
該有機多孔質体の骨格表面に固着する直径2〜20μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される最大径が2〜20μmの多数の突起体との複合構造体であって、厚み1mm以上、孔の平均直径8〜100μm、全細孔容積0.5〜5ml/gであることを特徴とするモノリス状有機多孔質体。
An organic porous body composed of a continuous skeleton phase and a continuous pore phase;
A composite structure comprising a large number of particles having a diameter of 2 to 20 μm fixed to the skeleton surface of the organic porous body or a large number of protrusions having a maximum diameter of 2 to 20 μm formed on the skeleton surface of the organic porous body A monolithic organic porous material having a thickness of 1 mm or more, an average pore diameter of 8 to 100 μm, and a total pore volume of 0.5 to 5 ml / g.
前記有機多孔質体が、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であることを特徴とする請求項1記載のモノリス状有機多孔質体。   2. The monolithic organic porous body according to claim 1, wherein the organic porous body is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion is an opening having an average diameter of 20 to 200 μm. . 前記有機多孔質体が、太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であることを特徴とする請求項1記載のモノリス状有機多孔質体。   The organic porous body is a co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 0.8 to 40 μm and three-dimensionally continuous pores having a diameter of 8 to 80 μm between the skeletons. The monolithic organic porous body according to claim 1, wherein イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下、重合開始剤の10時間半減温度より、少なくとも5℃低い温度で重合を行うIII工程、を行うことで得られるモノリス状有機多孔質体。
Preparing a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer free of ion exchange groups, a first crosslinking agent having at least two or more vinyl groups in one molecule, a surfactant and water; I step of polymerizing a water-in-oil emulsion to obtain a monolithic organic porous intermediate having a continuous macropore structure with a total pore volume of 5 to 30 ml / g,
Vinyl monomer, second cross-linking agent having at least two or more vinyl groups in one molecule, organic solvent and polymerization initiator that dissolves vinyl monomer and second cross-linking agent but does not dissolve polymer formed by polymerization of vinyl monomer Step II to prepare a mixture consisting of
In the presence of the mixture obtained in Step II, and in the presence of the monolithic organic porous intermediate obtained in Step I, the polymerization is carried out at a temperature at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator. A monolithic organic porous material obtained by performing the III step.
連続骨格相と連続空孔相からなる有機多孔質体と、
該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される最大径が4〜40μmの多数の突起体との複合構造体であって、厚み1mm以上、孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。
An organic porous body composed of a continuous skeleton phase and a continuous pore phase;
A composite structure with a large number of particles having a diameter of 4 to 40 μm fixed to the skeleton surface of the organic porous body or a large number of protrusions having a maximum diameter of 4 to 40 μm formed on the skeleton surface of the organic porous body The thickness is 1 mm or more, the average diameter of the pores is 10 to 150 μm, the total pore volume is 0.5 to 5 ml / g, and the ion exchange capacity per volume in a water wet state is 0.2 mg equivalent / ml or more. A monolithic organic porous ion exchanger characterized in that ion exchange groups are uniformly distributed in the composite structure.
前記有機多孔質体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であることを特徴とする請求項5記載のモノリス状有機多孔質イオン交換体。   6. The monolith-like structure according to claim 5, wherein the organic porous body is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion forms an opening having an average diameter of 30 to 300 μm in a wet state. Organic porous ion exchanger. 前記有機多孔質体が、太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であることを特徴とする請求項5記載のモノリス状有機多孔質イオン交換体。   The organic porous body is a co-continuous structure composed of a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons. 6. The monolithic organic porous ion exchanger according to claim 5, wherein イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、
を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;
の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことを特徴とするモノリス状有機多孔質体の製造方法。
Preparing a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer free of ion exchange groups, a first crosslinking agent having at least two or more vinyl groups in one molecule, a surfactant and water; I step of polymerizing a water-in-oil emulsion to obtain a monolithic organic porous intermediate having a continuous macropore structure with a total pore volume of 5 to 30 ml / g,
Vinyl monomer, second cross-linking agent having at least two or more vinyl groups in one molecule, organic solvent and polymerization initiator that dissolves vinyl monomer and second cross-linking agent but does not dissolve polymer formed by polymerization of vinyl monomer Step II to prepare a mixture consisting of
Step III, in which the mixture obtained in Step II is allowed to stand still and in the presence of the monolithic organic porous intermediate obtained in Step I, Step III
When producing a monolithic organic porous body, the following (1) to (5):
(1) The polymerization temperature in step III is at least 5 ° C. lower than the 10-hour half-life temperature of the polymerization initiator;
(2) The mol% of the second cross-linking agent used in step II is at least twice the mol% of the first cross-linking agent used in step I;
(3) The vinyl monomer used in Step II is a vinyl monomer having a structure different from that of the oil-soluble monomer used in Step I;
(4) The organic solvent used in step II is a polyether having a molecular weight of 200 or more;
(5) The concentration of the vinyl monomer used in Step II is 30% by weight or less in the mixture of Step II;
A method for producing a monolithic organic porous body, wherein the step II or the step III is performed under a condition satisfying at least one of the above conditions.
請求項8の製造方法で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程を行なうことを特徴とするモノリス状有機多孔質イオン交換体の製造方法。   A method for producing a monolithic organic porous ion exchanger, comprising performing an IV step of introducing an ion exchange group into the monolithic organic porous material obtained by the production method according to claim 8. 請求項1〜4記載のモノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous material according to claim 1 as an adsorption layer. 請求項5〜7記載のモノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous ion exchanger according to claim 5 as an adsorption layer. 請求項1〜4記載のモノリス状有機多孔質体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter comprising a monolithic organic porous body according to claim 1, wherein a through-hole is provided as an adsorption layer. 請求項5〜7記載のモノリス状有機多孔質イオン交換体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   8. A chemical filter comprising a monolithic organic porous ion exchanger according to claim 5 provided with a through hole as an adsorption layer.
JP2008081917A 2007-10-11 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Active JP5021540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081917A JP5021540B2 (en) 2007-10-11 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007265302 2007-10-11
JP2007265302 2007-10-11
JP2008081917A JP5021540B2 (en) 2007-10-11 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Publications (2)

Publication Number Publication Date
JP2009108294A JP2009108294A (en) 2009-05-21
JP5021540B2 true JP5021540B2 (en) 2012-09-12

Family

ID=40777129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081917A Active JP5021540B2 (en) 2007-10-11 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Country Status (1)

Country Link
JP (1) JP5021540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
JP5465463B2 (en) * 2009-05-12 2014-04-09 オルガノ株式会社 Ion adsorption module and water treatment method
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
CN102348505B (en) * 2009-03-10 2014-07-02 奥加诺株式会社 Ion adsorption module and method of treating water
JP5411737B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ion adsorption module and water treatment method
JP5525754B2 (en) * 2009-05-01 2014-06-18 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5137896B2 (en) * 2009-05-12 2013-02-06 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment
JP5294477B2 (en) * 2009-05-12 2013-09-18 オルガノ株式会社 Solid acid catalyst
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
JP5421689B2 (en) * 2009-08-11 2014-02-19 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP6042277B2 (en) * 2012-07-10 2016-12-14 オルガノ株式会社 Platinum group metal supported catalyst and reactor
KR101711722B1 (en) * 2014-02-24 2017-03-03 서울대학교산학협력단 Manufacture system for adsorbent
JP7302185B2 (en) * 2018-08-28 2023-07-04 東ソー株式会社 Adsorption/absorbent consisting of polyvinyl chloride resin porous beads
EP3971156A4 (en) 2019-05-15 2023-02-01 Organo Corporation Method for forming carbon-carbon bond
JP7336898B2 (en) 2019-06-28 2023-09-01 オルガノ株式会社 Monolithic organic porous ion exchanger
JP7477374B2 (en) 2020-06-04 2024-05-01 オルガノ株式会社 Method for changing ion type of monolithic organic porous anion exchanger and method for producing monolithic organic porous anion exchanger
WO2021246198A1 (en) * 2020-06-04 2021-12-09 オルガノ株式会社 Method for changing ionic form of anion exchanger, and production method of anion exchanger
JP7477373B2 (en) 2020-06-04 2024-05-01 オルガノ株式会社 Method for changing ion type of monolithic organic porous anion exchanger and method for producing monolithic organic porous anion exchanger
JP2022107992A (en) 2021-01-12 2022-07-25 オルガノ株式会社 Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method
JP2022163533A (en) 2021-04-14 2022-10-26 オルガノ株式会社 Platinum group metal-supported catalyst column and carbon-carbon bond formation method
EP4324558A1 (en) 2021-04-14 2024-02-21 Organo Corporation Ion exchanger, method for producing ion exchanger, catalyst having platinum-group meal ion supported thereon, and method for forming carbon-carbon bond
JP2023000337A (en) 2021-06-17 2023-01-04 オルガノ株式会社 Catalytic hydrogenation reduction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428616B2 (en) * 2003-05-06 2010-03-10 オルガノ株式会社 Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP5019471B2 (en) * 2007-08-10 2012-09-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) * 2007-08-22 2013-09-18 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
WO2010070774A1 (en) * 2008-12-18 2010-06-24 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter

Also Published As

Publication number Publication date
JP2009108294A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290603B2 (en) Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5116724B2 (en) Ultrapure water production equipment
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP2013255921A (en) Ultrapure water producing apparatus
JP5685632B2 (en) Ion adsorption module and water treatment method
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
US20070175329A1 (en) Chemical filter
JP5465463B2 (en) Ion adsorption module and water treatment method
JP2010264347A (en) Electric deionized-water production device and deionized-water production method
JP2003166982A (en) Organic porous material, manufacturing method therefor, and organic porous ion exchanger
JP2004131517A (en) Method for producing organic porous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250