JP5131911B2 - Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger - Google Patents

Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger Download PDF

Info

Publication number
JP5131911B2
JP5131911B2 JP2008070097A JP2008070097A JP5131911B2 JP 5131911 B2 JP5131911 B2 JP 5131911B2 JP 2008070097 A JP2008070097 A JP 2008070097A JP 2008070097 A JP2008070097 A JP 2008070097A JP 5131911 B2 JP5131911 B2 JP 5131911B2
Authority
JP
Japan
Prior art keywords
continuous
organic porous
macrovoid
monolithic organic
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008070097A
Other languages
Japanese (ja)
Other versions
JP2009221428A (en
Inventor
彰 中村
洋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008070097A priority Critical patent/JP5131911B2/en
Publication of JP2009221428A publication Critical patent/JP2009221428A/en
Application granted granted Critical
Publication of JP5131911B2 publication Critical patent/JP5131911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、吸着装置、脱イオン水製造装置あるいはガス状汚染物質除去装置等に用いられる吸着剤またはイオン交換体として有用な連続マクロボイド構造の骨格部が共連続構造となる二重の多孔構造を有するモノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体に関するものである。   The present invention relates to a double porous structure in which the skeleton of a continuous macrovoid structure useful as an adsorbent or ion exchanger used in an adsorption device, deionized water production device or gaseous pollutant removal device is a co-continuous structure. The present invention relates to a monolithic organic porous material having a solid structure, a method for producing the same, and a monolithic organic porous ion exchanger.

互いにつながっているマクロポアとマクロポアの壁内に共通の開口を有する連続マクロポア構造を有するモノリス状有機多孔質体や、該多孔質体にイオン交換基を導入したモノリス状有機多孔質イオン交換体が、特開2002−306976号に開示されている。該有機多孔質体や有機多孔質イオン交換体は、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。   A monolithic organic porous body having a continuous macropore structure having a common opening in a macropore and a macropore wall connected to each other, and a monolithic organic porous ion exchanger having an ion exchange group introduced into the porous body, It is disclosed in JP-A-2002-306976. The organic porous material and organic porous ion exchanger are useful as ion exchangers used in adsorbents, chromatographic fillers, deionized water production apparatuses, and the like.

しかし、該有機多孔質イオン交換体は、その製造方法上の制約から全細孔容積を増加させて実用的に要求される低い圧力損失を達成しようとすると、骨格構造が細くなることで水湿潤状態での体積当りのイオン交換容量が著しく低下してしまう、逆に全細孔容積を低下させて骨格構造を太くすると、共通の開口となるメソポアが著しく小さくなり、圧力損失が著しく増加してしまうといった欠点を有していた。   However, when the organic porous ion exchanger increases the total pore volume due to restrictions on its production method and attempts to achieve a low pressure loss that is practically required, the skeletal structure becomes thin, resulting in water wetting. If the ion exchange capacity per volume in the state is significantly reduced, conversely, if the total pore volume is reduced and the skeletal structure is thickened, the mesopores that become common openings will be significantly reduced, and the pressure loss will be significantly increased. It had the disadvantage that it would end up.

また、有機多孔質体の構造として、三次元的に連続した骨格相とその骨格相間に三次元的に連続した空孔相とからなり、両相が絡み合った共連続構造が知られている。特開2007−154083号公報には、マイクロメートルサイズの平均直径を有し、三次元網目状に連続した細孔と有機物質に富む骨格相からなる共連続構造をもつ粒子凝集型でない有機高分子ゲル状のアフィニティー担体であって、当該アフィニティー担体が、架橋剤としての、少なくとも二官能性以上のビニルモノマー化合物、メタクリレート化合物及びアクリレート化合物の少なくともいずれか1種と、一官能性親水性モノマーとの共重合体であり、しかも、前記アフィニティー担体における前記架橋剤と前記一官能性親水性モノマーの体積比率が100〜10:0〜90であるアフィニティー担体が開示されている。このアフィニティー担体は、モノリス構造を維持するために、骨格の架橋密度を高くしている。また、このアフィニティー担体は、非特異的吸着を十分に抑制する親水的特性を有している。また、N. Tsujioka et al., Macromolecules2005, 38, 9901には、共連続構造を有し、エポキシ樹脂からなるモノリス状有機多孔質体が開示されている。   Further, as a structure of the organic porous body, a co-continuous structure in which a three-dimensionally continuous skeleton phase and a three-dimensionally continuous pore phase between the skeleton phases are intertwined and both phases are entangled is known. Japanese Patent Application Laid-Open No. 2007-154083 discloses a non-particle-aggregated organic polymer having a micrometer-sized average diameter and having a co-continuous structure composed of pores continuous in a three-dimensional network and a skeleton phase rich in organic substances. A gel-like affinity carrier, wherein the affinity carrier comprises at least one of at least one of bifunctional or higher vinyl monomer compounds, methacrylate compounds and acrylate compounds as a crosslinking agent, and a monofunctional hydrophilic monomer. An affinity carrier that is a copolymer and has a volume ratio of 100 to 10: 0 to 90 of the cross-linking agent and the monofunctional hydrophilic monomer in the affinity carrier is disclosed. This affinity carrier has a high crosslinking density of the skeleton in order to maintain the monolith structure. Further, this affinity carrier has a hydrophilic property that sufficiently suppresses non-specific adsorption. In addition, N. Tsujioka et al., Macromolecules 2005, 38, 9901 discloses a monolithic organic porous body having a co-continuous structure and made of an epoxy resin.

しかしながら、特開2007−154083号公報において、実際に得られているアフィニティー担体はナノメートルサイズの細孔であるため、流体を透過させる際の圧力損失が高く、低圧力損失下で大流量の水を処理する必要のある脱イオン水製造装置に充填し、イオン交換体とすることは困難であった。また、アフィニティー担体は親水性であるため、疎水性物質の吸着剤として用いるためには、表面の疎水処理等の煩雑且つコストアップを伴う操作が必要であるという問題があった。また、エポキシ樹脂へのイオン交換基等の官能基の導入は容易ではないという問題もあった。   However, in Japanese Patent Application Laid-Open No. 2007-154083, since the affinity carrier actually obtained is nanometer-sized pores, the pressure loss when allowing the fluid to permeate is high, and a large flow rate of water under low pressure loss. It was difficult to fill a deionized water production apparatus that needs to be treated into an ion exchanger. In addition, since the affinity carrier is hydrophilic, there is a problem that a complicated operation such as a hydrophobic treatment on the surface is necessary to use it as an adsorbent for a hydrophobic substance. There is also a problem that it is not easy to introduce functional groups such as ion exchange groups into the epoxy resin.

このため、化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、連続した空孔が大きく、水や気体等の流体を透過させた際の圧力損失が低いモノリス状有機多孔質体の開発が望まれていた。また、上記特性に加えて更に、体積当りのイオン交換容量が大きいモノリス状有機多孔質イオン交換体の開発が望まれていた。
特開2002−306976号 特開2007−154083号
For this reason, it is chemically stable and hydrophobic, has high continuity of pores, is not biased in size, has large continuous pores, and pressure when water or gas or other fluid is permeated Development of a monolithic organic porous body with low loss has been desired. In addition to the above characteristics, it has been desired to develop a monolithic organic porous ion exchanger having a large ion exchange capacity per volume.
JP 2002-306976 A JP2007-154083A

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、構造が均一で大きい連続マクロボイド構造を有し、水や気体等の流体を透過させた際の圧力損失が低い、吸着剤やイオン交換体として有用な新規構造のモノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and has a large continuous macrovoid structure with a uniform structure and pressure loss when a fluid such as water or gas is permeated. It is an object of the present invention to provide a monolithic organic porous material having a novel structure useful as an adsorbent or ion exchanger, a production method thereof, and a monolithic organic porous ion exchanger.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた架橋剤添加量の比較的少ない油中水滴型エマルジョンに、多数の粒子状テンプレートを存在させ静置重合を行い、その後粒子状テンプレートを除去することで、連続マクロボイド構造の骨格部が低架橋の骨格を有する連続マクロポア構造のもの(中間体)となり、更にこの有機多孔質中間体の存在下に、ビニルモノマーと少量の架橋剤を特定有機溶媒中で静置重合すれば、連続マクロボイド構造と共連続構造が共存する特異な構造のモノリスが得られること、この共連続構造のモノリスは、骨格が太いためイオン交換基を導入すれば、水湿潤状態での体積当りのイオン交換容量の著しい低下を招くことなく、水や気体等の流体を透過させた際の圧力損失を大幅に低減することが可能であることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies. As a result, a large number of particulate templates were added to the water-in-oil emulsion with a relatively small amount of the crosslinking agent obtained by the method described in JP-A-2002-306976. Is allowed to stand for polymerization, and then the particulate template is removed, so that the skeleton of the continuous macrovoid structure becomes a continuous macropore structure (intermediate) having a low-crosslinking skeleton. If a vinyl monomer and a small amount of a crosslinking agent are allowed to stand in a specific organic solvent in the presence of a solid, a monolith with a unique structure in which a continuous macrovoid structure and a co-continuous structure coexist can be obtained. Since the monolith of this type has a thick skeleton, if ion exchange groups are introduced, the flow rate of water, gas, etc. can be reduced without significantly reducing the ion exchange capacity per volume in a water-wet state. It found such that it is possible to greatly reduce the pressure loss at the time of not transmit, and have completed the present invention.

すなわち、本発明は、マクロボイド同士が重なり合い、この重なる部分が平均半径0.1〜25mmの開口となる連続マクロボイド構造の有機多孔質体であって、該連続マクロボイド構造の見かけ上の骨格部が、全構成単位中、架橋構造単位を0.3〜2.5モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に半径が4〜100μmの三次元的に連続した空孔とからなる共連続構造であり、前記マクロボイドの半径が、前記空孔の半径の倍以上であることを特徴とするモノリス状有機多孔質体を提供するものである。 That is, the present invention relates to an organic porous body having a continuous macrovoid structure in which macrovoids overlap each other, and the overlapping portion is an opening having an average radius of 0.1 to 25 mm, and the apparent skeleton of the continuous macrovoid structure A three-dimensionally continuous skeleton having a thickness of 0.8 to 40 μm composed of an aromatic vinyl polymer containing 0.3 to 2.5 mol% of a crosslinked structural unit among all the structural units, and between the skeletons A monolithic organic material having a three-dimensionally continuous hole having a radius of 4 to 100 μm, and the radius of the macrovoid is not less than five times the radius of the hole A porous body is provided.

また、本発明は、下記工程;芳香族ビニルモノマー、界面活性剤、水、架橋剤及び必要に応じて重合開始剤を、芳香族ビニルモノマー(M)と水(W)の重量比(M):(W)が1:49〜1:3、架橋剤がビニルモノマーと架橋剤の合計中、0.3〜2.5モル%となるように混合し、該混合物を撹拌して油中水滴型エマルジョンを調製するI工程、該油中水滴型エマルジョン中に多数の粒子状テンプレートを存在させ静置下重合するII工程、該重合体から該粒子状テンプレートを除去することで、連続マクロボイド構造と連続マクロポア構造が共存するモノリス状有機多孔質中間体を得るIII工程、芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤を、ビニルモノマーをモノリス状有機多孔質中間体に対して5〜50倍となる量で配合し、混合するIV工程、IV工程で得られた混合物を静置下、且つ該III工程で得られたモノリス状有機多孔質中間体の存在下に重合を行い、連続マクロボイド構造と共連続構造が共存する有機多孔質体を得るV工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。   In addition, the present invention includes the following steps: aromatic vinyl monomer, surfactant, water, crosslinking agent and, if necessary, polymerization initiator, weight ratio (M) of aromatic vinyl monomer (M) to water (W). : (W) 1: 49-1: 3, the cross-linking agent is mixed so that the total amount of vinyl monomer and cross-linking agent is 0.3-2.5 mol%, and the mixture is stirred to drop water in oil Step I for preparing a type emulsion, Step II for polymerizing under standing in the presence of a large number of particulate templates in the water-in-oil emulsion, and removing the particulate template from the polymer to form a continuous macrovoid structure Step III to obtain a monolithic organic porous intermediate that coexists with a continuous macropore structure, aromatic vinyl monomer, cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve, but polymer produced by polymerization of aromatic vinyl monomer is Melting The organic solvent and the polymerization initiator that are not mixed with the vinyl monomer in an amount that is 5 to 50 times the amount of the monolithic organic porous intermediate, are mixed, and the mixture obtained in the IV step and the IV step is left standing, And performing the polymerization in the presence of the monolithic organic porous intermediate obtained in step III, and performing step V to obtain an organic porous material in which a continuous macrovoid structure and a co-continuous structure coexist. A method for producing a monolithic organic porous material is provided.

また、本発明は、前記モノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基が導入されたものであって、水湿潤状態での体積当りのイオン交換容量が0.075mg当量/ml以上であることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。   In the present invention, an ion exchange group is introduced on the skeleton surface and inside the skeleton of the monolithic organic porous material, and the ion exchange capacity per volume in a water-wet state is 0.075 mg equivalent / ml. The present invention provides a monolithic organic porous ion exchanger characterized by the above.

本発明のモノリス状有機多孔質体は、その多孔構造が、連続マクロボイド構造と骨太の共連続構造を有する二重構造であるため、従来の連続マクロポア構造を有するモノリス状有機多孔質体に比べて、低圧、大流量の処理が可能で、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた流体透過特性を生かして、合成吸着剤では対応できなかった高粘性成分の吸着除去、ガス状汚染物質除去等新しい用途分野への応用が可能となる。また、本発明のモノリス状有機多孔質体の製造方法によれば、前記モノリス状有機多孔質体を簡易に且つ確実に製造することができる。また、本発明のモノリス状有機多孔質イオン交換体は、上記モノリス状有機多孔質体と略同じ構造を有するため、低圧、大流量の水処理が可能で、従来用いられてきたイオン交換樹脂を代替可能であるばかりでなく、その優れた流体透過特性を生かして、イオン交換樹脂では対応できなかった高粘性成分中のイオン除去、ケミカルフィルター等のガス状汚染物質除去装置に充填して好適に用いることができる。   The monolithic organic porous body of the present invention is a double structure having a continuous macrovoid structure and a thick joint structure, so that the porous structure is compared with a monolithic organic porous body having a conventional continuous macropore structure. In addition to being able to replace low-pressure, large-flow processing, the conventional synthetic adsorbents can be replaced. Application to new fields of application such as adsorption removal of gaseous substances and removal of gaseous pollutants becomes possible. Moreover, according to the method for producing a monolithic organic porous body of the present invention, the monolithic organic porous body can be produced easily and reliably. Moreover, since the monolithic organic porous ion exchanger of the present invention has substantially the same structure as the monolithic organic porous body, water treatment at a low pressure and a large flow rate is possible, and conventionally used ion exchange resins can be used. Not only can it be replaced, but it can also be suitably used by removing gas contaminants such as ion removal and chemical filters in high-viscosity components that could not be handled by ion-exchange resin by taking advantage of its excellent fluid permeability. Can be used.

本明細書中、「モノリス状有機多孔質体」及び「モノリス状有機多孔質イオン交換体」の両者を説明する際、単に「モノリス状多孔質体等」とも言う。また、「モノリス状有機多孔質中間体」を単に「モノリス中間体」と、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」とも言う。   In the present specification, when describing both “monolithic organic porous material” and “monolithic organic porous ion exchanger”, they are also simply referred to as “monolithic porous material etc.”. In addition, “monolithic organic porous intermediate” is simply “monolith intermediate”, “monolithic organic porous body” is simply “monolith”, and “monolithic organic porous ion exchanger” is simply “monolithic ion”. Also called “exchanger”.

本発明のモノリス状多孔質体等の基本構造は、互いに繋がっているマクロボイドとマクロボイドの該繋がり部分が所定の開口寸法となる連続マクロボイド構造の有機多孔質体であって、該連続マクロボイド構造の骨格部が、三次元的に連続した骨格と、該連続マクロボイド構造よりも小さな三次元的に連続した流路を形成する共連続構造である。すなわち、モノリス状多孔質体等中、連続マクロボイド構造において、液体や気体が低い圧力損失で流れる大きな流路を形成し、共連続構造において、液体や気体が浸透する該連続マクロボイドよりも小さな流路を形成する。なお、本明細書中、連続マクロボイド構造を形成する見かけ上の骨格部を「骨格部」と言い、共連続構造を形成する実質上の骨格部を「骨格」と言う。   The basic structure of the monolithic porous body or the like of the present invention is an organic porous body having a continuous macrovoid structure in which the macrovoids connected to each other and the connected portions of the macrovoids have a predetermined opening size, The skeleton portion of the void structure is a co-continuous structure in which a three-dimensional continuous skeleton and a three-dimensional continuous flow path smaller than the continuous macrovoid structure are formed. That is, in a monolithic porous body or the like, in a continuous macrovoid structure, a large flow path through which liquid or gas flows with low pressure loss is formed, and in a co-continuous structure, it is smaller than the continuous macrovoid through which liquid or gas permeates. A flow path is formed. In the present specification, an apparent skeleton part that forms a continuous macrovoid structure is referred to as a “skeleton part”, and a substantial skeleton part that forms a co-continuous structure is referred to as a “skeleton”.

本発明のモノリス状多孔質体等における連続マクロボイド構造は、図1の模式図に示すように、互いに繋がっているマクロボイド11とマクロボイド11の当該繋がり部分が半径0.1〜25mm、好ましくは0.5〜15mm、特に好ましくは、0.5〜10mmの開口12となる構造である。すなわち、連続マクロボイド構造Xは、通常、半径0.5〜50mmのマクロボイド11とマクロボイド11が重なり合い、この重なる部分が開口12となる構造を有するもので、その部分がオープンポア構造のものである。オープンポア構造は、液体や気体を流せば該マクロボイド11と該開口12で形成される大きな空孔構造内が主たる流路となる。すなわち、モノリス状多孔質体等においては、共連続構造の三次元的に連続した空孔2と連続マクロボイド構造Xのオープンポア構造が混在し且つ互いに繋がって流路を形成している。   As shown in the schematic diagram of FIG. 1, the continuous macrovoid structure in the monolithic porous body or the like of the present invention has a radius of 0.1 to 25 mm, preferably a connected portion of the macrovoid 11 and the macrovoid 11 connected to each other. Is a structure in which the opening 12 is 0.5 to 15 mm, particularly preferably 0.5 to 10 mm. That is, the continuous macrovoid structure X usually has a structure in which the macrovoids 11 and the macrovoids 11 having a radius of 0.5 to 50 mm overlap each other, and the overlapping portion becomes the opening 12, and this portion has an open pore structure. It is. In the open pore structure, when a liquid or gas is flowed, the inside of a large pore structure formed by the macro void 11 and the opening 12 becomes a main flow path. That is, in a monolithic porous body or the like, three-dimensionally continuous pores 2 having a continuous structure and an open pore structure having a continuous macrovoid structure X are mixed and connected to each other to form a flow path.

マクロボイド11とマクロボイド11の重なりは、1個のマクロボイド1で1〜2個、多くのものは3〜10個である。開口12の半径が0.1mm未満であると、液体または気体透過時の圧力損失が大きく、圧力損失を低減させるという十分な効果が得られにくいため好ましくない。一方、開口の半径が25mmを越えると、液体または気体と有機多孔質体や有機多孔質イオン交換体との接触が不十分になり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。マクロボイド11は、連続マクロボイド構造X中、概ね均一に分散されている。開口の半径が25mm近傍のものは、体積が大きな吸着剤やイオン交換体を製造する場合に適用される。また、本発明において、連続マクロボイド構造部分の好適な空隙率はモノリス状多孔質体等中、75%前後である。   The overlap of the macro void 11 and the macro void 11 is 1 to 2 for one macro void 1 and 3 to 10 for many. If the radius of the opening 12 is less than 0.1 mm, the pressure loss during liquid or gas permeation is large, and it is difficult to obtain a sufficient effect of reducing the pressure loss. On the other hand, if the radius of the opening exceeds 25 mm, the contact between the liquid or gas and the organic porous body or organic porous ion exchanger becomes insufficient, and as a result, the adsorption characteristics and ion exchange characteristics deteriorate. It is not preferable. The macro voids 11 are distributed substantially uniformly in the continuous macro void structure X. Those having an opening radius in the vicinity of 25 mm are applied when producing an adsorbent or ion exchanger having a large volume. Moreover, in this invention, the suitable porosity of a continuous macrovoid structure part is about 75% in a monolithic porous body etc.

マクロボイドの形状は特に制限はなく、例えば、立方体、直方体、楕円球状、真球状あるいは不定形状等が挙げられるが、この中、該マクロボイドが、静置下重合の後、粒子状テンプレートが除去されて形成されることから、均一充填の簡易性、該テンプレート除去後のモノリス状多孔質体等の共通開口構造の均一性の観点より、真球状が好ましい。   The shape of the macro void is not particularly limited, and examples thereof include a cube, a rectangular parallelepiped, an elliptic sphere, a true sphere, or an indefinite shape. Among these, the macro void is removed from the particulate template after standing polymerization. From the viewpoint of the uniformity of uniform filling and the uniformity of the common opening structure such as the monolithic porous body after removing the template, the spherical shape is preferable.

本発明のモノリス状多孔質体等における共連続構造は、太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に半径が4〜100μmの三次元的に連続した空孔が配置された構造である。すなわち、共連続構造は図1や図2の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造Yである。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。また、骨格が太いため機械的強度が高い。   The co-continuous structure in the monolithic porous body or the like of the present invention has a three-dimensional continuous skeleton having a thickness of 0.8 to 40 μm and a three-dimensional continuous space having a radius of 4 to 100 μm between the skeletons. This is a structure in which holes are arranged. That is, as shown in the schematic diagrams of FIGS. 1 and 2, the co-continuous structure is a structure Y in which the continuous skeleton phase 1 and the continuous pore phase 2 are intertwined and each of them is continuously three-dimensionally. The continuous pores 2 have higher continuity of the pores than the conventional open-cell monolith and particle aggregation type monolith, and the size thereof is not biased. Therefore, it is possible to achieve extremely uniform ion adsorption behavior. Moreover, since the skeleton is thick, the mechanical strength is high.

三次元的に連続した空孔の半径が4μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、骨格構造の密度が減少することで、体積当りのイオン交換容量が減少してしまい、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。上記三次元的に連続した空孔の大きさは、SEM画像あるいは水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。   If the radius of the three-dimensionally continuous pores is less than 4 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the radius exceeds 100 μm, the density of the skeletal structure decreases, resulting in a decrease in volume per volume. The ion exchange capacity decreases, and as a result, the adsorption characteristics and ion exchange characteristics deteriorate, which is not preferable. The size of the three-dimensionally continuous pores can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by an SEM image or a mercury intrusion method.

共連続構造体の骨格の太さは0.8〜40μm、好ましくは1〜30μmである。骨格の太さが0.8μm未満であると、体積当りの吸着容量が低下したり、機械的強度が低下するため好ましくなく、一方、40μmを超えると、吸着特性の均一性が失われるため好ましくない。モノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定して算出すればよい。   The thickness of the skeleton of the co-continuous structure is 0.8 to 40 μm, preferably 1 to 30 μm. If the thickness of the skeleton is less than 0.8 μm, it is not preferable because the adsorption capacity per volume decreases and mechanical strength decreases. On the other hand, if the thickness exceeds 40 μm, the uniformity of the adsorption characteristics is lost. Absent. The thickness of the skeleton of the monolith may be calculated by performing SEM observation at least three times and measuring the thickness of the skeleton in the obtained image.

また、本発明のモノリスの共連続構造は、全細孔容積が0.5〜5ml/gであることが好ましい。全細孔容積が0.5ml/g未満であると、単位断面積当りの通水量が小さくなってしまい、流体が流れ難くなるため好ましくない。一方、全細孔容積が5ml/gを超えると、骨格部分のポリマーの占める割合が低下し、体積当りのイオン交換容量が減少してしまい、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。   The monolith co-continuous structure of the present invention preferably has a total pore volume of 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the amount of water flow per unit cross-sectional area becomes small, which makes it difficult for the fluid to flow. On the other hand, when the total pore volume exceeds 5 ml / g, the proportion of the polymer in the skeleton part decreases, and the ion exchange capacity per volume decreases, resulting in a decrease in adsorption characteristics and ion exchange characteristics. Therefore, it is not preferable.

本発明のモノリス状多孔質体等において、マクロボイド11の平均半径は、共連続構造の三次元的に連続した空孔2の半径の2倍以上、好ましくは2〜250000倍、特に5〜10000倍、更に10〜1000倍である。マクロボイドの平均半径が共連続構造の三次元的に連続した空孔の平均半径の2倍未満であると、液体または気体透過時の圧力損失が大きく、圧力損失を低減させるという十分な効果が得られにくいため好ましくない。また、マクロボイドの半径が大き過ぎると、液体または気体と有機多孔質体や有機多孔質イオン交換体との接触が不十分になり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。マクロボイドと共連続構造の三次元的に連続した空孔の半径はSEM写真等において明確に認識できる。このため、それらの平均半径はSEM写真等における少なくとも任意の10点、好ましくは任意の20点の半径を抽出してその平均を取ればよい。なお、マクロボイドの形状が真球状以外の形状の場合、真球状に換算して比較する。   In the monolithic porous body or the like of the present invention, the average radius of the macrovoids 11 is at least twice the radius of the three-dimensionally continuous pores 2 of the co-continuous structure, preferably 2 to 250,000 times, particularly 5 to 10,000. Times, and further 10 to 1000 times. If the average radius of the macrovoids is less than twice the average radius of the three-dimensionally continuous pores of the co-continuous structure, the pressure loss during liquid or gas permeation is large, and the sufficient effect of reducing the pressure loss can be obtained. It is not preferable because it is difficult to obtain. In addition, if the radius of the macrovoid is too large, the contact between the liquid or gas and the organic porous body or organic porous ion exchanger becomes insufficient, resulting in a decrease in adsorption characteristics and ion exchange characteristics. It is not preferable. The radius of a three-dimensionally continuous hole having a macrovoid and a co-continuous structure can be clearly recognized in an SEM photograph or the like. For this reason, the average radii of these may be obtained by extracting the radii of at least 10 arbitrary points, preferably 20 arbitrary points in an SEM photograph or the like. In addition, when the shape of the macro void is a shape other than a true sphere, the shape is compared in terms of a true sphere.

なお、本発明のモノリス状多孔質体等において、連続マクロボイド構造X及び共連続構造Yは、該多孔質体等中、それぞれ均一に存在しているため、共連続構造Yをマトリックスとして、該マトリックス中に連続マクロボイド構造Xが形成された構造であり、また、連続マクロボイド構造Xをマトリックスとして、該マトリックス中に該共連続構造Yが形成された二重構造である。   In the monolithic porous body and the like of the present invention, the continuous macrovoid structure X and the co-continuous structure Y are uniformly present in the porous body and the like. It is a structure in which a continuous macrovoid structure X is formed in a matrix, and a double structure in which the continuous macrovoid structure X is used as a matrix and the co-continuous structure Y is formed in the matrix.

本発明において、骨格を構成するポリマーは、架橋構造を有する芳香族ビニルポリマーであり、該芳香族ビニルポリマー材料はポリマー材料を構成する全構成単位に対して、0.3〜2.5モル%の架橋構造単位を含むことが好ましい。架橋構造単位が0.3モル%未満であると、架橋密度が低下してしまい、モノリス中間体の機械的強度が著しく低下してしまうため好ましくなく、一方、2.5モル%を越えると、モノリス中間体に芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を含浸させ重合を行う工程において、該モノリス中間体の架橋密度が高すぎることで、十分な膨潤が行われず、連続マクロポア構造を維持したまま重合反応が進行することで、得られるモノリス状有機多孔質体の構造が、共連続構造にならず、連続マクロポア構造となってしまうため好ましくない。   In the present invention, the polymer constituting the skeleton is an aromatic vinyl polymer having a crosslinked structure, and the aromatic vinyl polymer material is 0.3 to 2.5 mol% with respect to all the structural units constituting the polymer material. It is preferable that a crosslinked structural unit is included. If the cross-linking structural unit is less than 0.3 mol%, the crosslink density is lowered, and the mechanical strength of the monolith intermediate is significantly reduced. On the other hand, if it exceeds 2.5 mol%, Polymerization by impregnating a monolith intermediate with a mixture of an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer, crosslinking agent, aromatic vinyl monomer and crosslinking agent, but does not dissolve the polymer produced by polymerization of the aromatic vinyl monomer. In the step of carrying out the step, the monolith intermediate porous body has a crosslinking density that is too high so that sufficient swelling is not performed and the polymerization reaction proceeds while maintaining a continuous macropore structure. However, it is not preferable because it does not have a co-continuous structure but a continuous macropore structure.

芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   There is no restriction | limiting in particular in the kind of aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is used because of its ease of forming a co-continuous structure, ease of introduction of ion exchange groups, high mechanical strength, and high stability against acids and alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

本発明のモノリス状有機多孔質体を吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、有機多孔質体を当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。   When using the monolithic organic porous material of the present invention as an adsorbent, for example, a cylindrical column or a square column is filled with an organic porous material cut into a shape that can be inserted into the column as an adsorbent, If the water to be treated containing a hydrophobic substance such as benzene, toluene, phenol, paraffin or the like is allowed to flow through this, the hydrophobic substance is efficiently adsorbed on the adsorbent.

本発明のモノリス状有機多孔質イオン交換体は、前記モノリス状有機多孔質体の骨格表面及び骨格内部に更にイオン交換基を均一に導入したものであり、そのイオン交換容量としては、特に制限されないが、水湿潤状態での体積当りのイオン交換容量が0.075mg当量/ml以上、好ましくは0.1mg当量/mlのイオン交換容量を有しているものである。水湿潤状態での体積当りのイオン交換容量が0.075mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。   The monolithic organic porous ion exchanger of the present invention is a monolithic organic porous body in which ion exchange groups are further uniformly introduced into the skeleton surface and inside the skeleton, and the ion exchange capacity is not particularly limited. However, the ion exchange capacity per volume in a water-wet state is 0.075 mg equivalent / ml or more, preferably 0.1 mg equivalent / ml. If the ion exchange capacity per volume in a water-wet state is less than 0.075 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water is reduced. It is not preferable.

導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAやSIMS等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   The introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA, SIMS, or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling And durability against shrinkage is improved.

有機多孔質体に導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of ion exchange groups to be introduced into the organic porous material include cation exchange groups such as sulfonic acid groups, carboxylic acid groups, iminodiacetic acid groups, phosphoric acid groups, and phosphoric acid ester groups; quaternary ammonium groups, tertiary amino groups, Examples include anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

次に、本発明のモノリス状有機多孔質体の製造方法について説明する。すなわち、当該製造方法は、芳香族ビニルモノマー、界面活性剤、水、架橋剤及び必要に応じて重合開始剤を、芳香族ビニルモノマー(M)と水(W)の重量比(M):(W)が1:49〜1:3、架橋剤がビニルモノマーと架橋剤の合計中、0.3〜2.5モル%となるように混合し、該混合物を撹拌して油中水滴型エマルジョンを調製するI工程、該油中水滴型エマルジョン中に多数の粒子状テンプレートを存在させ静置下重合するII工程、該重合体から該粒子状テンプレートを除去することで、連続マクロボイド構造と連続マクロポア構造が共存するモノリス状有機多孔質中間体を得るIII工程、芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤を、ビニルモノマーをモノリス状有機多孔質中間体に対して5〜50倍となる量で配合し、混合するIV工程、IV工程で得られた混合物を静置下、且つ該III工程で得られたモノリス状有機多孔質中間体の存在下に重合を行い、連続マクロボイド構造と共連続構造が共存する有機多孔質体を得るV工程を有する。   Next, the manufacturing method of the monolithic organic porous body of this invention is demonstrated. That is, in the production method, an aromatic vinyl monomer, a surfactant, water, a crosslinking agent and, if necessary, a polymerization initiator, a weight ratio (M) of the aromatic vinyl monomer (M) to water (W): ( W) is 1:49 to 1: 3, and the cross-linking agent is mixed so that the total amount of vinyl monomer and cross-linking agent is 0.3 to 2.5 mol%, and the mixture is stirred to form a water-in-oil emulsion. Step I for preparing a polymer, Step II for polymerizing under standing in the presence of a large number of particulate templates in the water-in-oil emulsion, and removing the particulate template from the polymer to provide a continuous macrovoid structure. Step III to obtain a monolithic organic porous intermediate coexisting with macropore structure, aromatic vinyl monomer, cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve, but polymer produced by polymerization of aromatic vinyl monomer dissolves. The organic solvent and the polymerization initiator that are not mixed with the vinyl monomer in an amount that is 5 to 50 times the amount of the monolithic organic porous intermediate, are mixed, and the mixture obtained in the IV step and the IV step is left standing, In addition, there is a V step in which polymerization is carried out in the presence of the monolithic organic porous intermediate obtained in the step III to obtain an organic porous body in which a continuous macrovoid structure and a co-continuous structure coexist.

I工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、水に対する溶解性が低く、親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1−ブテン、イソブテン等のα−オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The aromatic vinyl monomer used in Step I is not particularly limited as long as it contains a polymerizable vinyl group in the molecule, has low solubility in water, and is a lipophilic monomer. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene, and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene, and isobutene; butadiene, isoprene, chloroprene, and the like. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate Examples include (meth) acrylic monomers such as syl, benzyl methacrylate, and glycidyl methacrylate. These monomers can be used alone or in combination of two or more. Among these monomers, preferred are aromatic vinyl monomers, and vinyl monomers suitably used in the present invention are styrene monomers such as styrene and vinyl benzyl chloride.

I工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。   As the crosslinking agent used in the step I, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis.

I工程で用いられる界面活性剤は、芳香族ビニルモノマーと水を混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は、1種単独または2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量は、油溶性モノマーの種類及び、目的とするエマルジョン粒子の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant used in Step I is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an aromatic vinyl monomer and water are mixed. Sorbitan monooleate and sorbitan mono Nonionic surfactants such as laurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate, dodecylbenzene Anionic surfactants such as sodium sulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyl dimethyl ammonium chloride; amphoteric surfactants such as lauryl dimethyl betaine can be used. These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added is not unclear because it varies greatly depending on the type of the oil-soluble monomer and the size of the target emulsion particles, but the total amount of the oil-soluble monomer and the surfactant A range of about 2 to 70% can be selected.

I工程で用いられる重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソ酪酸ジメチル、4,4’−アゾビス(4−シアノ吉草酸)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator used in step I, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

I工程において、芳香族ビニルモノマー、界面活性剤、水、必要に応じて架橋剤や重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   In the step I, there is no particular limitation as a mixing method for forming a water-in-oil emulsion by mixing an aromatic vinyl monomer, a surfactant, water, and if necessary, a crosslinking agent or a polymerization initiator, Method of mixing each component at once, oil-soluble monomer, crosslinking agent, surfactant and oil-soluble polymerization initiator oil-soluble component and water-soluble water-soluble polymerization initiator water-soluble component separately For example, a method in which each component is mixed after being uniformly dissolved in the solution can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程において、芳香族ビニルモノマー(M)と水(W)の重量比(M):(W)は1:49〜1:3、好ましくは1:40〜1:3、更に好ましくは1:35〜1:3である。(M)と水(W)の配合比率を上記範囲とすることにより、III工程で得られるモノリス中間体の連続マクロポア構造における全細孔容積を4〜30ml/gとすることができる。   In step I, the weight ratio (M) :( W) of the aromatic vinyl monomer (M) to water (W) is from 1:49 to 1: 3, preferably from 1:40 to 1: 3, more preferably 1: 35 to 1: 3. By setting the blending ratio of (M) and water (W) within the above range, the total pore volume in the continuous macropore structure of the monolith intermediate obtained in the step III can be 4 to 30 ml / g.

II工程は、容器内の油中水滴型エマルジョン中に多数の粒子状テンプレートを存在させ静置下重合する工程である。容器内に油中水滴型エマルジョンを導入し、その後、多数の粒子状テンプレートを入れてもよく(第1の方法)、容器内に多数の粒子状テンプレートを入れ、その後、油中水滴型エマルジョンを導入してもよい(第2の方法)。   Step II is a step in which a large number of particulate templates are present in a water-in-oil emulsion in a container and polymerized under standing. A water-in-oil emulsion may be introduced into the container, and then a number of particulate templates may be placed (first method), a number of particulate templates may be placed in the container, and then a water-in-oil emulsion may be added. It may be introduced (second method).

第1の方法では、多数の粒子状テンプレートを入れた後は、落し蓋等の方法で若干、粒子状テンプレートを押圧することが、最密充填あるいはそれに近い充填ができる点で好ましい。また、第2の方法では、油中水滴型エマルジョンを導入する際、脱気しながら行なうことが、多数の粒子状テンプレート間の隙間に油中水滴型エマルジョンを十分に行き渡らせることができ、連続マクロポア構造と連続マクロボイド構造をそれぞれ均一に形成できる点で好ましい。また、第1の方法及び第2の方法のいずれの場合も、容器への油中水滴型エマルジョンの導入はエマルジョン構造を崩壊させることなく、静かに行なうことが好ましい。   In the first method, after a large number of particulate templates are put, it is preferable that the particulate templates are slightly pressed by a method such as a drop lid in that close-packing or close filling is possible. In addition, in the second method, when introducing the water-in-oil emulsion, degassing can be performed, so that the water-in-oil emulsion can be sufficiently distributed in the gaps between a large number of particulate templates. This is preferable in that the macropore structure and the continuous macrovoid structure can be formed uniformly. In either case of the first method or the second method, it is preferable to gently introduce the water-in-oil emulsion into the container without disrupting the emulsion structure.

II工程で用いる粒子状テンプレートは、静置時及び重合時にその形状を保持してエマルジョンやポリマー中に存在し、重合後は除去手段により除去されるものである。粒子状テンプレートとしては、多糖類ハイドロゲルが、油中水滴型エマルジョンに対する安定性、マクロボイド形成の容易性、充填及び除去の容易性の観点から好ましい。多糖類ハイドロゲルの具体例としては、例えば、寒天、アルギン酸カルシウム、ゼラチン、カラギナン、ペクチン、グルコマンナン等のハイドロゲルが挙げられる。これらは1種単独又は2種以上をブレンドして用いてもよい。これら粒子状テンプレートの中で、寒天、アルギン酸カルシウムのハイドロゲルが、粒子状テンプレートの入手の容易性、静置下重合した後のテンプレート除去工程の容易性から好ましい。   The particulate template used in step II is present in the emulsion or polymer while retaining its shape during standing and during polymerization, and is removed by the removing means after polymerization. As the particulate template, polysaccharide hydrogel is preferred from the viewpoints of stability to water-in-oil emulsion, ease of macrovoid formation, and ease of filling and removal. Specific examples of the polysaccharide hydrogel include hydrogels such as agar, calcium alginate, gelatin, carrageenan, pectin, and glucomannan. These may be used alone or in combination of two or more. Among these particulate templates, agar and calcium alginate hydrogel are preferred because of the availability of the particulate template and the ease of the template removal step after polymerization under standing.

多糖類ハイドロゲルビーズは公知の製造方法で容易に得られる。寒天ハイドロゲルビーズの製造方法としては、例えば寒天溶液を冷却した気相部に噴霧し固化させる方法(特開平6−254382号)、寒天溶液を冷却した液相部に滴下し固化させる方法(特開2000−185229号、特開平5−49911号)が挙げられる。また、アルギン酸カルシウムハイドロゲルビーズの製造方法としては、アルギン酸ナトリウム水溶液を塩化カルシウム水溶液中に滴下することでゲル化させる方法(特開昭63−139108号、特開平11−137188号)が挙げられる。   The polysaccharide hydrogel beads can be easily obtained by a known production method. As a method for producing agar hydrogel beads, for example, a method in which an agar solution is sprayed and solidified on a cooled gas phase portion (Japanese Patent Laid-Open No. 6-254382), a method in which an agar solution is dropped and solidified on a cooled liquid phase portion (Japanese Patent Laid-Open No. 6-254382). 2000-185229 and JP-A-5-49911). Examples of the method for producing calcium alginate hydrogel beads include gelling methods by dropping a sodium alginate aqueous solution into a calcium chloride aqueous solution (Japanese Patent Laid-Open Nos. 63-139108 and 11-137188).

また、その粒子状テンプレートの形状は特に制限はなく、例えば、立方体、直方体、楕円球状、真球状等が挙げられる。この中、真球状とすることが、マクロボイドが、静置下重合の後、該テンプレートが除去されることで形成されることから、均一充填の簡易性、該テンプレート除去後のモノリス状多孔質体等の共通開口構造の均一性などの観点より好ましい。   The shape of the particulate template is not particularly limited, and examples thereof include a cube, a rectangular parallelepiped, an elliptic sphere, and a true sphere. Among these, since the macrovoid is formed by removing the template after polymerization under standing, the monolithic porous after the removal of the template It is preferable from the viewpoint of uniformity of a common opening structure such as a body.

粒子状テンプレートの粒子径は、真球状換算にして、半径が0.5〜50mm、好ましくは0.5〜25mm、特に好ましくは、0.5〜10mmである。すなわち、粒子状テンプレート除去後、半径0.5〜50mmのマクロボイドとマクロボイドが重なり合い、この重なる部分が開口となる構造を形成し、その部分がオープンポア構造となることから、液体や気体を流した場合、該マクロボイドと該開口で形成される空孔構造内が流路となる。該テンプレート半径が0.5mm未満であると、液体または気体透過時の圧力損失が大きく、圧力損失を低減させる十分な効果が得られにくいため好ましくない。一方、該テンプレート半径が50mmを越えると、液体または気体とモノリス状多孔質体等との接触が不十分になり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。なお、粒子状テンプレートの形状が立方体や直方体の場合、油中水滴型エマルジョン中に導入する際、特段の操作を行わずとも、静置状態において、それぞれのテンプレートがランダム方向において互いが接触するため、好適な連続マクロボイド構造を形成することができる。   The particle size of the particulate template is 0.5 to 50 mm, preferably 0.5 to 25 mm, and particularly preferably 0.5 to 10 mm in terms of a true sphere. That is, after removing the particulate template, a macro void with a radius of 0.5 to 50 mm and a macro void are overlapped, and the overlapping portion forms an opening structure, and the portion becomes an open pore structure. When flowing, the inside of the pore structure formed by the macro void and the opening becomes a flow path. If the template radius is less than 0.5 mm, the pressure loss during liquid or gas permeation is large, and it is difficult to obtain a sufficient effect of reducing the pressure loss, which is not preferable. On the other hand, when the template radius exceeds 50 mm, the contact between the liquid or gas and the monolithic porous body becomes insufficient, and as a result, the adsorption characteristics and the ion exchange characteristics deteriorate, which is not preferable. In addition, when the shape of the particulate template is a cube or a rectangular parallelepiped, when introduced into the water-in-oil emulsion, the templates contact each other in a random direction in a stationary state without any special operation. A suitable continuous macrovoid structure can be formed.

II工程において、容器の油中水滴型エマルジョン中への多数の粒子状テンプレートの充填は、適当な開口を形成させるため、それぞれの粒子状テンプレートが相互に接触するような充填、特に最密充填あるいは最密充填に近い充填をすることが好ましい。粒子状テンプレートは互いの接触が点接触のような充填であっても、重合の際、ポリマー材料部が収縮するため、適度な開口を形成することができる。なお、開口において、半径が0.1mmに近い開口を形成するには、粒子径が小さく且つ揃ったものを選択することで得ることができ、また、半径が25mmに近い開口を形成するには、粒子径が大きく且つ最密充填することで得ることができる。   In step II, the filling of the numerous particulate templates into the water-in-oil emulsion of the container is such that the respective particulate templates are in contact with each other, in particular close-packed filling, in order to form appropriate openings. It is preferable to perform filling close to closest packing. Even if the particulate template is filled such that the contact with each other is a point contact, the polymer material portion contracts during the polymerization, so that an appropriate opening can be formed. In order to form an opening having a radius close to 0.1 mm, it is possible to obtain an opening having a small and uniform particle diameter, and to form an opening having a radius close to 25 mm. The particle diameter is large and can be obtained by close packing.

II工程において、重合条件は、芳香族ビニルモノマーの種類、重合開始剤の種類により様々な条件が選択できる。例えば、重合開始剤として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。   In step II, various polymerization conditions can be selected depending on the type of aromatic vinyl monomer and the type of polymerization initiator. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate and the like were used as polymerization initiators. Sometimes, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere.

III工程は、重合体から粒子状テンプレートを除去する工程である。すなわち、重合終了後、容器から内容物を取り出し、粒子状テンプレートを除去した後、未反応ビニルモノマーと有機溶媒の除去を目的に、2−プロパノール等の溶剤で抽出して、連続マクロボイド構造と連続マクロポア構造が共存するモノリス状有機多孔質中間体を得る。   Step III is a step of removing the particulate template from the polymer. That is, after the polymerization is completed, the contents are taken out from the container, the particulate template is removed, and then extracted with a solvent such as 2-propanol for the purpose of removing unreacted vinyl monomer and organic solvent. A monolithic organic porous intermediate in which a continuous macropore structure coexists is obtained.

粒子状テンプレートの除去方法としては、特に制限はなく、例えば、熱溶解、加水分解、酵素分解、酸化分解、エチレンジアミン四酢酸やヘキサメタりん酸ナトリウム等、キレート剤によるイオン交換処理等が挙げられる。これら粒子状テンプレート除去方法の中、熱溶解又はエチレンジアミン四酢酸やヘキサメタりん酸ナトリウム等のキレート剤によるイオン交換処理が、実験操作上の簡易性、該テンプレート除去の容易性の点で好ましい。   The method for removing the particulate template is not particularly limited, and examples thereof include heat dissolution, hydrolysis, enzymatic decomposition, oxidative decomposition, ion exchange treatment with a chelating agent such as ethylenediaminetetraacetic acid and sodium hexametaphosphate. Among these particulate template removal methods, heat dissolution or ion exchange treatment with a chelating agent such as ethylenediaminetetraacetic acid or sodium hexametaphosphate is preferable in terms of simplicity in experimental operation and ease of template removal.

III工程で得られるモノリス中間体は、連続マクロボイド構造の骨格部が低架橋の骨格を有する連続マクロポア構造である。連続マクロポア構造は、マクロポア同士が重なり合い、この重なる部分が平均半径0.01〜100μmの開口となる連続マクロポア構造である。連続マクロポア構造は、互いに繋がっているマクロポアとマクロポアの該繋がり部分が半径0.01〜100μm、好ましくは0.1〜100μm、特に好ましくは5〜60μmの開口となる構造である。すなわち、連続マクロポア構造は、通常、半径0.2〜500μmのマクロポアとマクロポアが重なり合い、この重なる部分が開口となる構造を有するもので、その部分がオープンポア構造のものである。   The monolith intermediate obtained in the step III has a continuous macropore structure in which the skeleton part of the continuous macrovoid structure has a low-bridge skeleton. The continuous macropore structure is a continuous macropore structure in which the macropores overlap each other, and the overlapping portion becomes an opening having an average radius of 0.01 to 100 μm. The continuous macropore structure is a structure in which the macropores connected to each other and the connected portion of the macropores have an opening with a radius of 0.01 to 100 μm, preferably 0.1 to 100 μm, particularly preferably 5 to 60 μm. That is, the continuous macropore structure usually has a structure in which a macropore having a radius of 0.2 to 500 μm and a macropore overlap each other, and this overlapping portion becomes an opening, and this portion has an open pore structure.

また、モノリス中間体の連続マクロポア構造は、全細孔容積が4〜30ml/gであることが好ましい。全細孔容積が4ml/g未満であると、骨格密度が高いことで、後に得られるモノリス状有機多孔質体の構造形成に悪影響を及ぼし、該有機多孔質体の構造が、モノリス中間体由来の連続マクロポア構造になってしまうため好ましくない。一方、全細孔容積が30ml/gを越えると、骨格部分のポリマーの占める割合が低下し、モノリス中間体に芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を含浸させ重合を行う工程において、十分量の芳香族ビニルモノマーを骨格部へ吸着又は分配することが出来なくなるため好ましくない。   The continuous macropore structure of the monolith intermediate preferably has a total pore volume of 4 to 30 ml / g. If the total pore volume is less than 4 ml / g, the skeleton density is high, which adversely affects the structure formation of the monolithic organic porous material obtained later, and the structure of the organic porous material is derived from the monolith intermediate This is not preferable because of the continuous macropore structure. On the other hand, when the total pore volume exceeds 30 ml / g, the proportion of the polymer in the skeleton portion decreases, and the aromatic vinyl monomer, the crosslinking agent, the aromatic vinyl monomer and the crosslinking agent dissolve in the monolith intermediate, but the aromatic In the process of polymerizing by impregnating a mixture of an organic solvent and a polymerization initiator that does not dissolve the polymer produced by polymerization of the vinyl monomer, a sufficient amount of aromatic vinyl monomer cannot be adsorbed or distributed to the skeleton. It is not preferable.

モノリス中間体のマクロポアとマクロポアの重なり部分である開口の半径0.01〜100μmは、油中水滴型エマルジョンを得る工程において、界面活性剤の添加量、攪拌混合における攪拌回転数及び攪拌時間などを適宜に決定することで達成することができる。また、攪拌混合の際、アルコール、カルボン酸あるいは炭化水素を共存させることにより調整することもできる。開口の半径0.01μm近傍は、界面活性剤の添加量を多くしたり、攪拌回転数を高めたり、攪拌時間を長くとることにより、逆に半径100μm近傍は、界面活性剤の添加量を少なくしたり、攪拌回転数を低くしたり、攪拌時間を短くすることで達成することができる。   The radius of the opening 0.01-100 μm, which is the overlapping part of the macropores and macropores of the monolith intermediate, determines the amount of surfactant added, the stirring rotation speed and stirring time in the step of obtaining the water-in-oil emulsion. This can be achieved by appropriately determining. Moreover, it can also adjust by making alcohol, carboxylic acid, or a hydrocarbon coexist in the case of stirring and mixing. In the vicinity of the radius of 0.01 μm, the addition amount of the surfactant is increased, the number of rotations of stirring is increased, or the stirring time is lengthened. Conversely, in the vicinity of the radius of 100 μm, the addition amount of the surfactant is reduced. Can be achieved by reducing the number of rotations of stirring or shortening the stirring time.

IV工程は、芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調整する工程である。   Step IV is a step of preparing a mixture of an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer, the crosslinking agent, the aromatic vinyl monomer and the crosslinking agent, but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. It is.

IV工程で用いられる芳香族ビニルモノマーとしては、前記I工程と同様に分子中に重合可能なビニル基を含有し、水に対する溶解性が低く、親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1−ブテン、イソブテン等のα−オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The aromatic vinyl monomer used in step IV is not particularly limited as long as it contains a vinyl group that can be polymerized in the molecule as in step I, has low water solubility, and is oleophilic. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene, and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene, and isobutene; butadiene, isoprene, chloroprene, and the like. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate Examples include (meth) acrylic monomers such as syl, benzyl methacrylate, and glycidyl methacrylate. These monomers can be used alone or in combination of two or more. Among these monomers, preferred are aromatic vinyl monomers, and vinyl monomers suitably used in the present invention are styrene monomers such as styrene and vinyl benzyl chloride.

これら芳香族ビニルモノマーの添加量は、前記III工程で得られたモノリス中間体に対して、重量で5〜50倍である。芳香族ビニルモノマー添加量が多孔質体に対して5倍未満であると、生成したモノリスの骨格を太くできず、体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The addition amount of these aromatic vinyl monomers is 5 to 50 times by weight with respect to the monolith intermediate obtained in the step III. If the amount of aromatic vinyl monomer added is less than 5 times that of the porous material, the resulting monolith skeleton cannot be thickened, and the adsorption capacity per volume and the ion exchange capacity per volume after introduction of ion exchange groups are small. This is not preferable. On the other hand, if the amount of the aromatic vinyl monomer added exceeds 50 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

IV工程で用いられる架橋剤は、前記I工程と同様に分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。   As the cross-linking agent used in the step IV, those having at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent are preferably used as in the step I. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis.

IV工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が5〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in the IV step is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, Chain (poly) ethers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; hexane, heptane, octane, isooctane, Examples include chain saturated hydrocarbons such as decane and dodecane; esters such as ethyl acetate, isopropyl acetate, cellosolve acetate, and ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 5 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration is less than 5% by weight, it is not preferable because the polymerization rate is lowered. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.

IV工程で用いられる重合開始剤としては、前記I工程と同様に熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソ酪酸ジメチル、4,4’−アゾビス(4−シアノ吉草酸)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator used in the IV step, a compound that generates radicals by heat and light irradiation as in the I step is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

V工程は、前記IV工程で得られた混合物を静置下、且つ前記III工程で得られたモノリス状有機多孔質中間体の存在下に重合を行い、連続マクロボイド構造と共連続構造が共存する有機多孔質体を得る工程である。また、骨格部である共連続構造は全細孔容積0.5〜5ml/g、全構成単位中、架橋構造単位を0.3〜2.5モル%含有する、該有機多孔質中間体の骨格より太い骨格を有する多孔質構造である。   In step V, the mixture obtained in step IV is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in step III, so that a continuous macrovoid structure and a co-continuous structure coexist. This is a step of obtaining an organic porous body. Further, the co-continuous structure as the skeleton part has a total pore volume of 0.5 to 5 ml / g, and contains 0.3 to 2.5 mol% of a crosslinked structural unit in all the structural units. It is a porous structure having a skeleton thicker than the skeleton.

V工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下で芳香族ビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に、全細孔容積4〜30ml/g、全構成単位中、架橋構造単位を0.3〜2.5モル%含有する連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造、連続マクロポア構造が消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に比較的低架橋の多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁部から一次元の棒状骨格に変化して共連続構造のモノリスが得られると考えられる。   The monolith intermediate used in the V process plays an extremely important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when an aromatic vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic material is obtained. A porous body is obtained. On the other hand, as in the present invention, the polymerization system has a monolith intermediate of a continuous macropore structure containing a total pore volume of 4 to 30 ml / g and 0.3 to 2.5 mol% of cross-linked structural units in all the structural units. When the body is present, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure and the continuous macropore structure disappear, and the above-mentioned monolith having the above-described bicontinuous structure is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. If a porous body (intermediate) having a relatively low cross-linkage is present in the system, the vinyl monomer and the cross-linking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the structure is changed from a two-dimensional wall portion to a one-dimensional rod-shaped skeleton to obtain a monolith with a co-continuous structure.

V工程において、重合条件はII工程と同様に、芳香族ビニルモノマーの種類、重合開始剤の種類により様々な条件が選択できる。例えば、重合開始剤として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。重合終了後、容器から内容物を取り出し、未反応のビニルモノマーと有機溶媒の除去を目的に、2−プロパノール等の溶剤で抽出してモノリス状有機多孔質体を得る。   In step V, various conditions can be selected depending on the type of aromatic vinyl monomer and the type of polymerization initiator, as in step II. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate and the like were used as polymerization initiators. Sometimes, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere. After completion of the polymerization, the contents are taken out from the container and extracted with a solvent such as 2-propanol for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a monolithic organic porous material.

次に、本発明のモノリス状有機多孔質イオン交換体の製造方法について説明する。該モノリス状有機多孔質イオン交換体は、上記の方法により得られたモノリス状有機多孔質体を製造した後、モノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基を均一に導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.075mg当量/ml以上、好ましくは0.1〜5.0mg当量/mlである。このように、予めモノリス状有機多孔質体を製造し、その後、イオン交換基を導入する方法が、モノリス状有機多孔質イオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   Next, the manufacturing method of the monolithic organic porous ion exchanger of this invention is demonstrated. In the monolithic organic porous ion exchanger, after the monolithic organic porous body obtained by the above method was produced, ion exchange groups were uniformly introduced into the skeleton surface and inside the skeleton of the monolithic organic porous body. The ion exchange capacity per volume in a wet state of water is 0.075 mg equivalent / ml or more, preferably 0.1 to 5.0 mg equivalent / ml. Thus, the method of manufacturing a monolithic organic porous body in advance and then introducing an ion exchange group is preferable in that the porous structure of the monolithic organic porous ion exchanger can be strictly controlled.

上記モノリス状有機多孔質体の表面及び骨格内部にイオン交換基を均一に導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、有機多孔質体がスチレン−ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;有機多孔質体の表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、有機多孔質体がスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;有機多孔質体をクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;有機多孔質体の表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、有機多孔質体に三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合により有機多孔質体を製造し、三級アミンと反応させる方法が、イオン交換基を骨格表面及び骨格内部に均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   The method for uniformly introducing ion exchange groups into the surface of the monolithic organic porous material and inside the skeleton is not particularly limited, and known methods such as polymer reaction and graft polymerization can be used. For example, as a method for introducing a sulfonic acid group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; surface of the organic porous material And a method of grafting polymerization of sodium styrene sulfonate or acrylamide-2-methylpropane sulfonic acid by introducing a radical initiating group or chain transfer group into the skeleton; similarly, graft polymerization of glycidyl methacrylate followed by functional group conversion to sulfonic acid Examples thereof include a method for introducing a group. Moreover, as a method of introducing a quaternary ammonium group, if the organic porous material is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine A method in which an organic porous material is produced by copolymerization of chloromethylstyrene and divinylbenzene and reacted with a tertiary amine; a radical initiating group or a chain transfer group is introduced into the surface of the organic porous material and inside the skeleton; A method of graft polymerization of N, N-trimethylammonium ethyl acrylate or N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion, etc. It is done. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into an organic porous material and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -An organic porous material is produced by introducing a chloromethyl group into a divinylbenzene copolymer with chloromethyl methyl ether and then reacting with a tertiary amine, or by copolymerizing chloromethylstyrene and divinylbenzene. Is preferable in that the ion exchange group can be uniformly and quantitatively introduced into the skeleton surface and inside the skeleton. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

イオン交換容量の調整は、多孔質体と反応試薬の選択により適宜決定できる。例えば、0.075mg当量/gといった比較的低いカチオン交換容量の多孔質体を製造する場合には、濃硫酸やクロロスルホン酸といったスルホン化試薬との反応性が低いジビニルベンゼンを主成分とする多孔質体をスルホン化することで達成できる。また、グラフト反応によりカチオン交換基を導入する場合は、多孔質体に導入するラジカル開始基や連鎖移動基の導入量を低く抑えることで、カチオン交換容量を低くすることができる。一方、カチオン交換容量を高くしたい場合には、スルホン化試薬との反応性が高いスチレンを主成分とする多孔質体をスルホン化する。また、グラフト反応を用いる場合には、多孔質体に導入するラジカル開始基や連鎖移動基の導入量を多くすればよい。また、アニオン交換容量や両性イオン交換容量の場合も、前記カチオン交換容量の場合と同じ方法で行うことができる。   The ion exchange capacity can be adjusted as appropriate by selecting the porous material and the reaction reagent. For example, when producing a porous body having a relatively low cation exchange capacity of 0.075 mg equivalent / g, a porous material mainly composed of divinylbenzene having a low reactivity with a sulfonation reagent such as concentrated sulfuric acid or chlorosulfonic acid. This can be achieved by sulfonating the mass. In addition, when introducing a cation exchange group by a graft reaction, the cation exchange capacity can be lowered by suppressing the introduction amount of radical initiation groups and chain transfer groups introduced into the porous body. On the other hand, when it is desired to increase the cation exchange capacity, a porous material mainly composed of styrene having a high reactivity with the sulfonation reagent is sulfonated. Further, when a graft reaction is used, the amount of radical initiation group or chain transfer group introduced into the porous body may be increased. In addition, in the case of anion exchange capacity or amphoteric ion exchange capacity, the same method as in the case of the cation exchange capacity can be used.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(モノリス状有機多孔質中間体の製造)
スチレン4.66g、ジビニルベンゼン0.10g、ソルビタンモノオレート0.25g及び、2,2’−アゾビス(イソブチロニトリル)0.07gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/2,2’−アゾビス(イソブチロニトリル)混合物を45.0gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、公転回転数1000回転/分、自転回転数330回転/分で2分間撹拌し、油中水滴型エマルジョンを得た(I工程)。
(Production of monolithic organic porous intermediate)
4.66 g of styrene, 0.10 g of divinylbenzene, 0.25 g of sorbitan monooleate, and 0.07 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / 2,2′-azobis (isobutyronitrile) mixture was added to 45.0 g of pure water, and a vacuum stirring defoaming mixer (EM The product was stirred for 2 minutes under a reduced pressure of 13.3 kPa at a revolution speed of 1000 revolutions / minute and a rotation speed of 330 revolutions / minute to obtain a water-in-oil emulsion (Step I).

I工程で得られた油中水滴型エマルジョンを円筒容器内に静かに注入した。次いで、該エマルジョン中に真球状で粒子半径が1.5mmの寒天ハイドロゲルを最密充填し、系内を窒素で十分置換した後密封し、静置下60℃で24時間重合させた(II工程)。寒天ハイドロゲルビーズは、寒天溶液を冷却した溶液に滴下し固化させる方法により製造されたものを使用した。   The water-in-oil emulsion obtained in Step I was gently poured into a cylindrical container. Next, the emulsion was closely packed with aspherical hydrogel having a spherical shape and a particle radius of 1.5 mm, the system was sufficiently substituted with nitrogen, sealed, and polymerized at 60 ° C. for 24 hours under standing (II). Process). As the agar hydrogel beads, those produced by dropping and solidifying the agar solution into the cooled solution were used.

重合終了後、内容物を取り出し、90℃以上に加熱した純水中で1時間撹拌することで、寒天ハイドロゲルを除去した。その後、2−プロパノールで6時間ソックスレー抽出し、未反応モノマー、水及び、ソルビタンモノオレートを除去した後、85℃で一昼夜減圧乾燥することで、スチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有した、連続マクロボイド構造を有するモノリス状有機多孔質中間体を得た(III工程)。   After completion of the polymerization, the contents were taken out and stirred in pure water heated to 90 ° C. or higher for 1 hour to remove the agar hydrogel. Thereafter, Soxhlet extraction is performed with 2-propanol for 6 hours to remove unreacted monomers, water and sorbitan monooleate, followed by drying under reduced pressure at 85 ° C. for one day to obtain a crosslinking component made of a styrene / divinylbenzene copolymer. A monolithic organic porous intermediate having a continuous macrovoid structure and containing 3 mol% was obtained (step III).

この有機多孔質中間体の内部構造は、連続マクロボイド構造と連続マクロポア構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.6mmであった。また骨格部分の連続マクロポア構造は、平均半径32μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は14μm、全細孔容積は8.8ml/gであった。得られた多孔質体は、重量4.3g、直径70.0mm、高さ41.2mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macrovoid structure and a continuous macropore structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.6 mm. Further, in the continuous macropore structure of the skeleton portion, most of the macropores having an average radius of 32 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 14 μm, and the total pore volume was 8.8 ml / g. The obtained porous body was a cylindrical shape having a weight of 4.3 g, a diameter of 70.0 mm, and a height of 41.2 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
スチレン39.2g、ジビニルベンゼン0.8g、1−オクタノール60g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(IV工程)。
(Production of monolithic organic porous material)
39.2 g of styrene, 0.8 g of divinylbenzene, 60 g of 1-octanol, and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (IV step).

次に上記III工程で得られたモノリス中間体を厚さ約20mmの円盤状に切断して、2.0g分取した。分取したモノリス中間体を内径88mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一昼夜減圧乾燥することで、スチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有した、連続マクロボイド構造を有するモノリス状有機多孔質体を得た(V工程)。   Next, the monolith intermediate obtained in the above step III was cut into a disk shape having a thickness of about 20 mm, and 2.0 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 88 mm, immersed in the styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the contents are taken out, extracted with Soxhlet with acetone, and then dried under reduced pressure at 85 ° C. overnight to contain 1.3 mol% of a cross-linking component composed of a styrene / divinylbenzene copolymer. A monolith-like organic porous body having V was obtained (Step V).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.3mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.5mmであった。また骨格部分の共連続構造を、SEMにより観察した結果を図3に示す。当該モノリス状有機多孔質体(乾燥体)の内部構造をSEMにより観察したところ、骨格及び空孔がそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは11μmであった。また、粒子状テンプレートを使用しないこと以外は同様の方法で別途に調製した共連続構造体について、空孔の大きさ及び全細孔容積を水銀圧入法により測定した。水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは21μm、全細孔容積は2.9ml/gであった。また、得られた多孔質体は、重量34.0g、直径88.0mm、高さ25.1mmの円盤状であった。結果を表2にまとめて示す。   The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component composed of the styrene / divinylbenzene copolymer thus obtained is a mixture of a continuous macrovoid structure and a co-continuous structure uniformly. They were connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.3 mm overlap each other, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids is 0.5 mm. Moreover, the result of having observed the co-continuous structure of the frame | skeleton part by SEM is shown in FIG. When the internal structure of the monolithic organic porous body (dried body) was observed by SEM, it was a co-continuous structure in which the skeleton and pores were each three-dimensionally continuous and both phases were entangled. Moreover, the thickness of the skeleton measured from the SEM image was 11 μm. Moreover, about the co-continuous structure separately prepared by the same method except not using a particulate template, the void | hole size and the total pore volume were measured by the mercury intrusion method. The size of the three-dimensionally continuous pores of the monolith measured by the mercury intrusion method was 21 μm, and the total pore volume was 2.9 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 34.0 g, a diameter of 88.0 mm, and a height of 25.1 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例1で得られた有機多孔質体に、ジクロロメタン1800mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸186.4gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロボイド構造を有するモノリス状有機多孔質カチオン交換体を得た。
(Production of monolithic organic porous cation exchanger)
To the organic porous material obtained in Example 1, 1800 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 186.4 g of chlorosulfuric acid was gradually added, and the temperature was raised to 35 ° C. For 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic organic porous cation exchanger having a continuous macrovoid structure.

得られたカチオン交換体の反応前後の膨潤率は1.69倍であり、直径は148.7mm、体積当りのイオン交換容量は、水湿潤状態で0.15mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は2.2mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.0mmであった。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.69 times, the diameter was 148.7 mm, and the ion exchange capacity per volume was 0.15 mg equivalent / ml in a wet state. In the water wet state, the average macrovoid radius of the continuous macrovoid structure was 2.2 mm, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids was 1.0 mm.

また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は19μm、連続空孔の大きさは35μm、全細孔容積は2.9ml/gであった。結果を表3にまとめて示す。   Further, the co-continuous structure of the skeleton part was estimated from the diameter of the organic porous material and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 19 μm, the continuous pore size was 35 μm, and the total pore volume. Was 2.9 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質中間体の製造)
粒子半径が1.5mmの寒天ハイドロゲルに代えて、粒子半径が2.5mmの寒天ハイドロゲルを使用した以外は、実施例1と同様の方法でモノリス状有機多孔質中間体を製造した。
(Production of monolithic organic porous intermediate)
A monolithic organic porous intermediate was produced in the same manner as in Example 1 except that an agar hydrogel having a particle radius of 2.5 mm was used instead of an agar hydrogel having a particle radius of 1.5 mm.

この有機多孔質中間体の内部構造は、連続マクロポア構造と連続マクロボイド構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径2.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.0mmであった。また骨格部分の連続マクロポア構造は、平均半径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は12μm、全細孔容積は8.9ml/gであった。得られた多孔質体は、重量4.1g、直径70.5mm、高さ41.5mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macropore structure and a continuous macrovoid structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 2.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 1.0 mm. Further, in the continuous macropore structure of the skeleton part, most of the macropores having an average radius of 30 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 12 μm, and the total pore volume was 8.9 ml / g. The obtained porous body was a cylindrical shape having a weight of 4.1 g, a diameter of 70.5 mm, and a height of 41.5 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
実施例2で得られたモノリス状有機多孔質中間体を、実施例1と同様の方法でスチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行い、モノリス状有機多孔質体を製造した。得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径2.4mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.9mmであった。また骨格部である連続マクロポア構造を、SEMにより観察した結果を図6に示す。図6のSEM画像は、図3と同様にモノリスを任意の位置で切断して得た骨格部の切断面の任意の位置における画像である。骨格部分の共連続構造について、実施例1と同様の方法で求めた骨格直径は12μmであった。また、実施例1と同様の方法で求めた当該モノリスの連続空孔の大きさは20μm、全細孔容積は2.8ml/gであった。また、得られた多孔質体は、重量33.5g、直径87.5mm、高さ24.5mmの円盤状であった。結果を表2にまとめて示す。
(Production of monolithic organic porous material)
The monolithic organic porous intermediate obtained in Example 2 was converted into a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture in the same manner as in Example 1. It was immersed and a polymerization reaction was performed to produce a monolithic organic porous body. The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component made of the styrene / divinylbenzene copolymer was obtained by uniformly mixing the continuous macrovoid structure and the co-continuous structure. Met. In the continuous macrovoid structure, most of the macrovoids having an average radius of 2.4 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.9 mm. Moreover, the result of having observed the continuous macropore structure which is a frame | skeleton part by SEM is shown in FIG. The SEM image in FIG. 6 is an image at an arbitrary position on the cut surface of the skeleton obtained by cutting the monolith at an arbitrary position as in FIG. Regarding the co-continuous structure of the skeleton part, the skeleton diameter determined by the same method as in Example 1 was 12 μm. Moreover, the size of the continuous pores of the monolith obtained by the same method as in Example 1 was 20 μm, and the total pore volume was 2.8 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 33.5 g, a diameter of 87.5 mm, and a height of 24.5 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例2で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.73倍であり、直径は151.3mm、体積当りのイオン交換容量は、水湿潤状態で0.14mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は4.2mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.7mmであった。また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は21μm、連続空孔の大きさは35μm、全細孔容積は2.8ml/gであった。結果を表3にまとめて示す。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 2 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The swelling rate before and after the reaction of the obtained cation exchanger was 1.73 times, the diameter was 151.3 mm, and the ion exchange capacity per volume was 0.14 mg equivalent / ml in a wet state. In the water wet state, the macrovoid average radius of the continuous macrovoid structure was 4.2 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 1.7 mm. Further, the co-continuous structure of the skeleton part was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 21 μm, the continuous pore size was 35 μm, and the total pore volume. Was 2.8 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質中間体の製造)
粒子半径が1.5mmの寒天ハイドロゲルに代えて、粒子半径が12.5mmの寒天ハイドロゲルを使用した以外は、実施例1と同様の方法でモノリス状有機多孔質中間体を製造した。
(Production of monolithic organic porous intermediate)
A monolithic organic porous intermediate was produced in the same manner as in Example 1 except that an agar hydrogel having a particle radius of 12.5 mm was used instead of an agar hydrogel having a particle radius of 1.5 mm.

この有機多孔質中間体の内部構造は、連続マクロポア構造と連続マクロボイド構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径12.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は5.5mmであった。また骨格部分の連続マクロポア構造は、平均半径31μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は13μm、全細孔容積は8.6ml/gであった。得られた多孔質体は、重量4.2g、直径70.0mm、高さ40.6mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macropore structure and a continuous macrovoid structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 12.5 mm overlap each other, and the average radius of the opening formed by the overlap between the macrovoids and the macrovoids is 5.5 mm. Further, in the continuous macropore structure of the skeleton, most of the macropores having an average radius of 31 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 13 μm, and the total pore volume was 8.6 ml / g. The obtained porous body was a cylindrical shape having a weight of 4.2 g, a diameter of 70.0 mm, and a height of 40.6 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
実施例3で得られたモノリス状有機多孔質中間体を、実施例1と同様の方法でスチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行い、モノリス状有機多孔質体を製造した。得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径11.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は4.6mmであった。また骨格部である連続マクロポア構造を、SEMにより観察した結果を図7に示す。図7のSEM画像は、図3と同様にモノリスを任意の位置で切断して得た骨格部の切断面の任意の位置における画像である。骨格部分の共連続構造について、実施例1と同様の方法で求めた骨格直径は11μmであった。また、水銀圧入法により測定した当該モノリスの連続空孔の大きさは21μm、全細孔容積は2.7ml/gであった。また、得られた多孔質体は、重量34.5g、直径87.8mm、高さ24.3mmの円盤状であった。結果を表2にまとめて示す。
(Production of monolithic organic porous material)
The monolithic organic porous intermediate obtained in Example 3 was converted into a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture in the same manner as in Example 1. It was immersed and a polymerization reaction was performed to produce a monolithic organic porous body. The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component made of the styrene / divinylbenzene copolymer was obtained by uniformly mixing the continuous macrovoid structure and the co-continuous structure. Met. In the continuous macrovoid structure, most of the macrovoids having an average radius of 11.5 mm overlap each other, and the average radius of the opening formed by the overlap of the macrovoids and the macrovoids is 4.6 mm. Moreover, the result of having observed the continuous macropore structure which is a frame | skeleton part by SEM is shown in FIG. The SEM image in FIG. 7 is an image at an arbitrary position on the cut surface of the skeleton obtained by cutting the monolith at an arbitrary position as in FIG. Regarding the co-continuous structure of the skeleton part, the skeleton diameter determined by the same method as in Example 1 was 11 μm. Moreover, the size of the continuous pores of the monolith measured by the mercury intrusion method was 21 μm, and the total pore volume was 2.7 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 34.5 g, a diameter of 87.8 mm, and a height of 24.3 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例3で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.74倍であり、直径は152.8mm、体積当りのイオン交換容量は、水湿潤状態で0.14mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は21.0mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は9.6mmであった。また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は19μm、連続空孔の大きさは37μm、全細孔容積は2.7ml/gであった。結果を表3にまとめて示す。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 3 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The swelling rate before and after the reaction of the obtained cation exchanger was 1.74 times, the diameter was 152.8 mm, and the ion exchange capacity per volume was 0.14 mg equivalent / ml in a wet state. In the water wet state, the average macrovoid radius of the continuous macrovoid structure was 21.0 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 9.6 mm. Further, the co-continuous structure of the skeleton part was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 19 μm, the continuous pore size was 37 μm, and the total pore volume. Was 2.7 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質中間体の製造)
粒子半径が1.5mmの寒天ハイドロゲルに代えて、粒子半径が1.5mmのアルギン酸カルシウムハイドロゲルを使用したことと、テンプレート除去条件を、90℃以上に加熱した純水中で1時間撹拌することに代えて、10%ヘキサメタりん酸ナトリウム水溶液中で4時間撹拌することに変更したこと以外は、実施例1と同様の方法でモノリス状有機多孔質中間体を製造した。なお、アルギン酸カルシウムハイドロゲルビーズは、アルギン酸ナトリウム水溶液を塩化カルシウム水溶液中に滴下してゲル化させる方法で得られたものを使用した。
(Production of monolithic organic porous intermediate)
The calcium alginate hydrogel having a particle radius of 1.5 mm was used in place of the agar hydrogel having a particle radius of 1.5 mm, and the template removal conditions were stirred for 1 hour in pure water heated to 90 ° C. or higher. Instead, a monolithic organic porous intermediate was produced in the same manner as in Example 1 except that stirring was performed in a 10% sodium hexametaphosphate aqueous solution for 4 hours. As the calcium alginate hydrogel beads, those obtained by dropping a sodium alginate aqueous solution into a calcium chloride aqueous solution to form a gel were used.

この有機多孔質中間体の内部構造は、連続マクロポア構造と連続マクロボイド構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.6mmであった。また骨格部分の連続マクロポア構造は、平均半径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は14μm、全細孔容積は8.7ml/gであった。得られた多孔質体は、重量4.2g、直径70.3mm、高さ40.0mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macropore structure and a continuous macrovoid structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.6 mm. Further, in the continuous macropore structure of the skeleton part, most of the macropores having an average radius of 30 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 14 μm, and the total pore volume was 8.7 ml / g. The obtained porous body was a cylindrical shape having a weight of 4.2 g, a diameter of 70.3 mm, and a height of 40.0 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
実施例4で得られたモノリス状有機多孔質中間体を、実施例1と同様の方法でスチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行い、モノリス状有機多孔質体を製造した。得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.4mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.5mmであった。また骨格部である連続マクロポア構造を、SEMにより観察した結果を図8に示す。図8のSEM画像は、図3と同様にモノリスを任意の位置で切断して得た骨格部の切断面の任意の位置における画像である。骨格部分の共連続構造について、実施例1と同様の方法で求めた骨格直径は10μmであった。また、水銀圧入法により測定した当該モノリスの連続空孔の大きさは21μm、全細孔容積は2.8ml/gであった。また、得られた多孔質体は、重量34.2g、直径87.0mm、高さ24.5mmの円盤状であった。結果を表2にまとめて示す。
(Production of monolithic organic porous material)
The monolithic organic porous intermediate obtained in Example 4 was converted into a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture in the same manner as in Example 1. It was immersed and a polymerization reaction was performed to produce a monolithic organic porous body. The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component made of the styrene / divinylbenzene copolymer was obtained by uniformly mixing the continuous macrovoid structure and the co-continuous structure. Met. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.4 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.5 mm. Moreover, the result of having observed the continuous macropore structure which is a frame | skeleton part by SEM is shown in FIG. The SEM image in FIG. 8 is an image at an arbitrary position on the cut surface of the skeleton obtained by cutting the monolith at an arbitrary position as in FIG. Regarding the co-continuous structure of the skeleton part, the skeleton diameter determined by the same method as in Example 1 was 10 μm. Further, the size of continuous pores of the monolith measured by the mercury intrusion method was 21 μm, and the total pore volume was 2.8 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 34.2 g, a diameter of 87.0 mm, and a height of 24.5 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例4で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.70倍であり、直径は147.9mm、体積当りのイオン交換容量は、水湿潤状態で0.15mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は2.4mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.0mmであった。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 4 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The swelling ratio before and after the reaction of the obtained cation exchanger was 1.70 times, the diameter was 147.9 mm, and the ion exchange capacity per volume was 0.15 mg equivalent / ml in a wet state. In the water wet state, the average macrovoid radius of the continuous macrovoid structure was 2.4 mm, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids was 1.0 mm.

また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は17μm、連続空孔の大きさは36μm、全細孔容積は2.8ml/gであった。結果を表3にまとめて示す。   Further, the co-continuous structure of the skeleton part was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 17 μm, the continuous pore size was 36 μm, and the total pore volume. Was 2.8 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質中間体の製造)
スチレン4.66g、ジビニルベンゼン0.10g、ソルビタンモノオレート0.25gの原料に代えて、スチレン1.30g、ジビニルベンゼン0.03g、ソルビタンモノオレート0.07gの原料に変更した以外は、実施例1と同様の方法でモノリス状有機多孔質中間体を製造した。
(Production of monolithic organic porous intermediate)
Example except that styrene 4.66 g, divinylbenzene 0.10 g, sorbitan monooleate 0.25 g were replaced with styrene 1.30 g, divinylbenzene 0.03 g, sorbitan monooleate 0.07 g. A monolithic organic porous intermediate was produced in the same manner as in Example 1.

この有機多孔質中間体の内部構造は、連続マクロポア構造と連続マクロボイド構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.5mmであった。また骨格部分の連続マクロポア構造は、平均半径57μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は21μm、全細孔容積は15.5ml/gであった。得られた多孔質体は、重量1.5g、直径69.5mm、高さ39.5mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macropore structure and a continuous macrovoid structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.5 mm. Further, in the continuous macropore structure of the skeleton part, most of the macropores having an average radius of 57 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 21 μm, and the total pore volume was 15.5 ml / g. The obtained porous body was a cylindrical shape having a weight of 1.5 g, a diameter of 69.5 mm, and a height of 39.5 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
モノリス中間体を厚さ約20mmの円盤状に切断して、2.0g分取したことに代えて、厚さ約20mmの円盤状に切断して、0.8g分取したこと以外は実施例1と同様の方法で、実施例5で得られたモノリス状有機多孔質中間体を、スチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行い、モノリス状有機多孔質体を製造した。得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.5mmであった。また骨格部である連続マクロポア構造を、SEMにより観察した結果を図9に示す。図9のSEM画像は、図3と同様にモノリスを任意の位置で切断して得た骨格部の切断面の任意の位置における画像である。骨格部分の共連続構造について、実施例1と同様の方法で求めた骨格直径は9μmであった。また、水銀圧入法により測定した当該モノリスの連続空孔の大きさは23μm、全細孔容積は3.2ml/gであった。また、得られた多孔質体は、重量32.5g、直径88.0mm、高さ23.5mmの円盤状であった。結果を表2にまとめて示す。
(Production of monolithic organic porous material)
Example 1 except that the monolith intermediate was cut into a disk shape having a thickness of about 20 mm and cut into a disk shape having a thickness of about 20 mm instead of being cut into 2.0 g. The monolithic organic porous intermediate obtained in Example 5 was immersed in a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture in the same manner as in Example 1. And a polymerization reaction was carried out to produce a monolithic organic porous material. The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component made of the styrene / divinylbenzene copolymer was obtained by uniformly mixing the continuous macrovoid structure and the co-continuous structure. Met. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.5 mm. Moreover, the result of having observed the continuous macropore structure which is a frame | skeleton part by SEM is shown in FIG. The SEM image in FIG. 9 is an image at an arbitrary position on the cut surface of the skeleton obtained by cutting the monolith at an arbitrary position as in FIG. Regarding the co-continuous structure of the skeleton part, the skeleton diameter determined by the same method as in Example 1 was 9 μm. Further, the size of the continuous pores of the monolith measured by mercury porosimetry was 23 μm, and the total pore volume was 3.2 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 32.5 g, a diameter of 88.0 mm, and a height of 23.5 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例5で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.79倍であり、直径は157.5mm、体積当りのイオン交換容量は、水湿潤状態で0.14mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は2.7mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.9mmであった。また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は16μm、連続空孔の大きさは41μm、全細孔容積は3.2ml/gであった。結果を表3にまとめて示す。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 5 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The swelling rate before and after the reaction of the obtained cation exchanger was 1.79 times, the diameter was 157.5 mm, and the ion exchange capacity per volume was 0.14 mg equivalent / ml in a wet state. In the water wet state, the macrovoid average radius of the continuous macrovoid structure was 2.7 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.9 mm. Further, the co-continuous structure of the skeleton portion was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 16 μm, the continuous pore size was 41 μm, and the total pore volume. Was 3.2 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質中間体の製造)
スチレン4.66g、ジビニルベンゼン0.10g、ソルビタンモノオレート0.25gの原料に代えて、スチレン10.5g、ジビニルベンゼン0.22g、ソルビタンモノオレート0.56gの原料に変更した以外は、実施例1と同様の方法でモノリス状有機多孔質中間体を製造した。
(Production of monolithic organic porous intermediate)
Example except that styrene 4.66 g, divinylbenzene 0.10 g and sorbitan monooleate 0.25 g were replaced with styrene 10.5 g, divinylbenzene 0.22 g and sorbitan monooleate 0.56 g. A monolithic organic porous intermediate was produced in the same manner as in Example 1.

この有機多孔質中間体の内部構造は、連続マクロポア構造と連続マクロボイド構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.5mmであった。また骨格部分の連続マクロポア構造は、平均半径16μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される開口の平均半径は6μm、全細孔容積は4.5ml/gであった。得られた多孔質体は、重量9.6g、直径70.8mm、高さ41.2mmの円柱状であった。結果を表1にまとめて示す。   The internal structure of the organic porous intermediate was such that a continuous macropore structure and a continuous macrovoid structure were uniformly mixed and connected to each other. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.5 mm. Further, in the continuous macropore structure of the skeleton portion, most of the macropores having an average radius of 16 μm overlapped, the average radius of the openings formed by the overlap of the macropores and the macropores was 6 μm, and the total pore volume was 4.5 ml / g. The obtained porous body was a cylindrical shape having a weight of 9.6 g, a diameter of 70.8 mm, and a height of 41.2 mm. The results are summarized in Table 1.

(モノリス状有機多孔質体の製造)
スチレン39.2g、ジビニルベンゼン0.8g、1−オクタノール60gの原料に代えて、スチレン34.3g、ジビニルベンゼン0.7g、1−オクタノール45gの原料に変更したこと、モノリス中間体を厚さ約20mmの円盤状に切断して、2.0g分取したことに代えて、厚さ約20mmの円盤状に切断して、4.5g分取したこと以外は実施例1と同様の方法で、実施例6で得られたモノリス状有機多孔質中間体を、スチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行い、モノリス状有機多孔質体を製造した。得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス状有機多孔質体の内部構造は、連続マクロボイド構造と共連続構造が均一に混在し互いに繋がったものであった。連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.6mmであった。また骨格部である連続マクロポア構造を、SEMにより観察した結果を図10に示す。図10のSEM画像は、図3と同様にモノリスを任意の位置で切断して得た骨格部の切断面の任意の位置における画像である。骨格部分の共連続構造について、実施例1と同様の方法で求めた骨格直径は15μmであった。また、水銀圧入法により測定した当該モノリスの連続空孔の大きさは17μm、全細孔容積は2.5ml/gであった。また、得られた多孔質体は、重量33.5g、直径89.0mm、高さ24.5mmの円盤状であった。結果を表2にまとめて示す。
(Production of monolithic organic porous material)
Instead of the raw material of 39.2 g of styrene, 0.8 g of divinylbenzene and 60 g of 1-octanol, it was changed to the raw material of 34.3 g of styrene, 0.7 g of divinylbenzene and 45 g of 1-octanol, and the monolith intermediate had a thickness of about In the same manner as in Example 1 except that it was cut into a 20 mm disk shape and separated into 2.0 g, and cut into a disk shape with a thickness of about 20 mm, and 4.5 g was collected. The monolithic organic porous intermediate obtained in Example 6 was immersed in a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture to conduct a polymerization reaction, A monolithic organic porous body was produced. The internal structure of the monolithic organic porous material containing 1.3 mol% of the cross-linking component made of the styrene / divinylbenzene copolymer was obtained by uniformly mixing the continuous macrovoid structure and the co-continuous structure. Met. In the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 0.6 mm. Moreover, the result of having observed the continuous macropore structure which is a frame | skeleton part by SEM is shown in FIG. The SEM image in FIG. 10 is an image at an arbitrary position on the cut surface of the skeleton obtained by cutting the monolith at an arbitrary position as in FIG. Regarding the co-continuous structure of the skeleton part, the skeleton diameter determined by the same method as in Example 1 was 15 μm. Further, the size of the continuous pores of the monolith measured by mercury porosimetry was 17 μm, and the total pore volume was 2.5 ml / g. Moreover, the obtained porous body was a disk shape having a weight of 33.5 g, a diameter of 89.0 mm, and a height of 24.5 mm. The results are summarized in Table 2.

(モノリス状有機多孔質カチオン交換体の製造)
実施例6で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.81倍であり、直径は161.1mm、体積当りのイオン交換容量は、水湿潤状態で0.16mg当量/mlであった。水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は2.7mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.1mmであった。また、骨格部分の共連続構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、骨格直径は27μm、連続空孔の大きさは31μm、全細孔容積は2.5ml/gであった。結果を表3にまとめて示す。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 6 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The swelling rate before and after the reaction of the obtained cation exchanger was 1.81 times, the diameter was 161.1 mm, and the ion exchange capacity per volume was 0.16 mg equivalent / ml in a wet state with water. In the water wet state, the macrovoid average radius of the continuous macrovoid structure was 2.7 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 1.1 mm. Further, the co-continuous structure of the skeleton part was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state. As a result, the skeleton diameter was 27 μm, the continuous pore size was 31 μm, and the total pore volume. Was 2.5 ml / g. The results are summarized in Table 3.

(モノリス状有機多孔質アニオン交換体の製造)
実施例1と同様の方法でモノリス状有機多孔質体を製造した。得られた有機多孔質体に、ジメトキシメタン1405ml、四塩化スズ44.6gを加え、10℃以下まで冷却した後、クロロ硫酸978.7gを徐々に加え、昇温して35℃で5時間反応させた。その後、再び10℃以下まで冷却し、容器より反応溶液を抜き取り、テトラヒドロフラン/水=1/1混合溶液1800mlを加え洗浄し、クロロメチル化有機多孔質体を得た。該クロロメチル化有機多孔質体に、テトラヒドロフラン1800mlを加え、そこにトリメチルアミン30%水溶液879.1gを加え、昇温して50℃で6時間反応させた。その後、容器より反応溶液を抜き取り、メタノール/水=1/1混合溶液1800mlを加え洗浄を行い、更に純水で洗浄してモノリス状有機多孔質アニオン交換体を得た。得られたアニオン交換体の、水湿潤状態での体積当りのイオン交換容量は、0.12mg当量/mlであった。
(Production of monolithic organic porous anion exchanger)
A monolithic organic porous material was produced in the same manner as in Example 1. To the obtained organic porous material, 1405 ml of dimethoxymethane and 44.6 g of tin tetrachloride were added, and after cooling to 10 ° C. or lower, 978.7 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 5 hours. I let you. Thereafter, the reaction solution was cooled again to 10 ° C. or lower, and the reaction solution was taken out from the container, and washed with 1800 ml of a tetrahydrofuran / water = 1/1 mixed solution to obtain a chloromethylated organic porous material. 1800 ml of tetrahydrofuran was added to the chloromethylated organic porous material, and 879.1 g of a 30% aqueous solution of trimethylamine was added thereto, and the temperature was raised and reacted at 50 ° C. for 6 hours. Thereafter, the reaction solution was withdrawn from the vessel, washed with 1800 ml of a methanol / water = 1/1 mixed solution, and further washed with pure water to obtain a monolithic organic porous anion exchanger. The obtained anion exchanger had an ion exchange capacity per volume in a water-wet state of 0.12 mg equivalent / ml.

比較例1
(連続気泡構造型モノリス状有機多孔質体の製造)
スチレン4.66g、ジビニルベンゼン0.10g、ソルビタンモノオレート0.25g及び、2,2’−アゾビス(イソブチロニトリル)0.07g及び純水45.0gの原料を、スチレン19.24g、ジビニルベンゼン1.01g、ソルビタンモノオレート1.07g、2,2’-アゾビス(イソブチロニトリル)0.26g及び純水180gの原料に変更したこと、寒天ハイドロゲルビーズの使用を省略したこと以外は、実施例1のモノリス状有機多孔質中間体の製造方法と同様の方法でモノリス状有機多孔質体を製造した。
Comparative Example 1
(Manufacture of monolithic organic porous body with open cell structure)
A raw material of 4.66 g of styrene, 0.10 g of divinylbenzene, 0.25 g of sorbitan monooleate, 0.07 g of 2,2′-azobis (isobutyronitrile) and 45.0 g of pure water, 19.24 g of styrene, divinyl Except for changing to 1.01 g of benzene, 1.07 g of sorbitan monooleate, 0.26 g of 2,2′-azobis (isobutyronitrile) and 180 g of pure water, and omitting the use of agar hydrogel beads, A monolithic organic porous material was produced in the same manner as the production method of the monolithic organic porous intermediate of Example 1.

得られた有機多孔質体は、粒子状テンプレートを用いないことから、連続マクロボイド構造を形成しておらず、スチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有した連続マクロポア構造のみを形成した。この有機多孔質体の内部構造は、平均半径31μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成される連続空孔の大きさは24μm、全細孔容積は8.6ml/gであった。また、骨格構造をSEMにより観察したところ、壁面厚みは5μmであった。得られた多孔質体は、重量16.7g、直径70.8mm、高さ42.0mmの円柱状であった。結果を表1、表2にまとめて示す。   Since the obtained organic porous body does not use a particulate template, it does not form a continuous macrovoid structure and contains a continuous macropore containing 1.3 mol% of a cross-linking component made of a styrene / divinylbenzene copolymer. Only the structure was formed. The internal structure of this organic porous material is that most macropores with an average radius of 31 μm overlap, the size of continuous pores formed by the overlap of macropores and macropores is 24 μm, and the total pore volume is 8.6 ml / g. there were. Further, when the skeleton structure was observed by SEM, the wall thickness was 5 μm. The obtained porous body was a cylindrical shape having a weight of 16.7 g, a diameter of 70.8 mm, and a height of 42.0 mm. The results are summarized in Tables 1 and 2.

(連続気泡構造型モノリス状有機多孔質カチオン交換体の製造)
比較例1で得られた連続マクロポア構造のモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られた該カチオン交換体には連続マクロボイド構造は形成しておらず、反応前後の膨潤率は1.92倍であり、直径135.9mm、体積当りのイオン交換容量は、水湿潤状態で0.19mg当量/mlであった。この有機多孔質カチオン交換体の内部構造は、連続マクロポア構造を有しており、水湿潤状態の平均細孔半径を、有機多孔質体の連続空孔の大きさと水湿潤状態のカチオン交換体の膨潤率から見積もったところ、連続空孔の大きさは46μm、骨格直径は10μmであった。結果を表3にまとめて示す。
(Manufacture of monolithic organic porous cation exchanger with open cell structure)
The monolithic organic porous material having a continuous macropore structure obtained in Comparative Example 1 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous cation exchanger. The obtained cation exchanger did not form a continuous macrovoid structure, the swelling ratio before and after the reaction was 1.92 times, the diameter was 135.9 mm, and the ion exchange capacity per volume was in a wet state of water. It was 0.19 mg equivalent / ml. The internal structure of the organic porous cation exchanger has a continuous macropore structure, and the average pore radius of the water wet state is determined by the size of the continuous pores of the organic porous body and the cation exchanger of the water wet state. As estimated from the swelling rate, the size of the continuous pores was 46 μm, and the skeleton diameter was 10 μm. The results are summarized in Table 3.

参考例1
(モノリス状有機多孔質カチオン交換体の製造)
実施例1で製造したモノリス状有機多孔質中間体に、スチレン/ジビニルベンゼン/1−オクタノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、重合反応を行う工程を省略し、そのままスルホン化反応を行うことで、モノリス状有機多孔質カチオン交換体を製造した。
Reference example 1
(Production of monolithic organic porous cation exchanger)
The step of immersing the monolithic organic porous intermediate produced in Example 1 in a styrene / divinylbenzene / 1-octanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture and performing a polymerization reaction The monolithic organic porous cation exchanger was manufactured by omitting and performing the sulfonation reaction as it was.

すなわち、実施例1のIII工程で得られたモノリス状多孔質中間体を厚さ約20mmの円盤状に切断して、2.0g分取した後、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質カチオン交換体を製造した。得られたカチオン交換体の反応前後の膨潤率は1.87倍であり、直径は132.8mm、全細孔容積は8.9ml、体積当りのイオン交換容量は、水湿潤状態で0.04mg当量/mlであった。   That is, the monolithic porous intermediate obtained in Step III of Example 1 was cut into a disk shape having a thickness of about 20 mm, and 2.0 g was collected. By reacting, a monolithic organic porous cation exchanger was produced. The swelling ratio before and after the reaction of the obtained cation exchanger was 1.87 times, the diameter was 132.8 mm, the total pore volume was 8.9 ml, and the ion exchange capacity per volume was 0.04 mg in a water-wet state. Equivalent / ml.

水湿潤状態において、連続マクロボイド構造のマクロボイド平均半径は2.6mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.0mmであった。また、骨格部分の連続マクロポア構造を、有機多孔質体の直径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、連続空孔の大きさは49μm、壁面厚みは9μmであった。結果を表1、表2、表3にまとめて示す。   In the water wet state, the macrovoid average radius of the continuous macrovoid structure was 2.6 mm, and the average radius of the openings formed by the overlap of the macrovoid and the macrovoid was 1.0 mm. Further, when the continuous macropore structure of the skeleton portion was estimated from the diameter of the organic porous body and the swelling ratio of the cation exchanger in a water-wet state, the size of the continuous pores was 49 μm and the wall thickness was 9 μm. The results are summarized in Table 1, Table 2, and Table 3.

(イオン除去性能試験1)
実施例1で得られたモノリス状有機多孔質カチオン交換体を、内径10mm、高さ100mmのカラムに充填し、0.004mol/l 塩化ナトリウム水溶液(Naイオン濃度:92.0ppm)を、線速度10m/hで通液し、Naイオンの除去性能を測定した。その結果、Naイオン除去率は99%以上であり、圧力損失は0.002MPaであった。また、モノリス状有機多孔質カチオン交換体は、イオン除去性能試験に耐える強度を有するものであった。
(Ion removal performance test 1)
The monolithic organic porous cation exchanger obtained in Example 1 was packed in a column having an inner diameter of 10 mm and a height of 100 mm, and 0.004 mol / l sodium chloride aqueous solution (Na + ion concentration: 92.0 ppm) was The solution was passed at a speed of 10 m / h, and the removal performance of Na + ions was measured. As a result, the Na + ion removal rate was 99% or more, and the pressure loss was 0.002 MPa. Moreover, the monolithic organic porous cation exchanger had a strength that can withstand the ion removal performance test.

(イオン除去性能試験2)
実施例1で得られたモノリス状有機多孔質カチオン交換体に代えて、比較例1で製造した連続気泡構造型モノリス状有機多孔質カチオン交換体を用いたこと以外は、イオン除去性能試験1と同様のイオン除去性能試験を行った。その結果、Naイオン除去率は99%以上であったが、圧力損失は0.010MPaであった。
(Ion removal performance test 2)
In place of the monolithic organic porous cation exchanger obtained in Example 1, the ion-removing performance test 1 except that the open-cell structure type monolithic organic porous cation exchanger produced in Comparative Example 1 was used. A similar ion removal performance test was conducted. As a result, the Na + ion removal rate was 99% or more, but the pressure loss was 0.010 MPa.

Figure 0005131911
Figure 0005131911

Figure 0005131911
Figure 0005131911

Figure 0005131911
Figure 0005131911

本発明のモノリス状多孔質体等は、連続マクロボイド構造と共連続構造が均一に混在し、更に共連続構造の骨格が骨太であるというユニークな構造である。このことから、水や気体などの流体を流した際圧力損失が極めて低くなることが期待でき、フィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。   The monolithic porous body of the present invention has a unique structure in which a continuous macrovoid structure and a co-continuous structure are uniformly mixed, and the skeleton of the co-continuous structure is thick. From this, it can be expected that the pressure loss will be extremely low when a fluid such as water or gas is flowed, and it will be packed in filters and adsorbents; two-bed, three-column pure water production equipment and electric deionized water production equipment. It is useful as a solid acid / base catalyst, and can be applied to a wide range of application fields.

本発明のモノリス状多孔質体等の基本構造を示す模式図である。It is a schematic diagram which shows basic structures, such as a monolithic porous body of this invention. 本発明のモノリス状多孔質体等の骨格部である共連続構造を模式的に示した図である。It is the figure which showed typically the co-continuous structure which is frame | skeleton parts, such as a monolithic porous body of this invention. 実施例1で得られたモノリス状有機多孔質体のSEM写真である。2 is a SEM photograph of the monolithic organic porous material obtained in Example 1. 実施例1で得られたモノリス状有機多孔質カチオン交換体の外観写真である。2 is an appearance photograph of the monolithic organic porous cation exchanger obtained in Example 1. FIG. 比較例1で得られたモノリス状有機多孔質体のSEM写真である。4 is a SEM photograph of the monolithic organic porous material obtained in Comparative Example 1. 実施例2で得られたモノリス状有機多孔質体のSEM写真である。3 is a SEM photograph of the monolithic organic porous material obtained in Example 2. 実施例3で得られたモノリス状有機多孔質体のSEM写真である。4 is a SEM photograph of the monolithic organic porous material obtained in Example 3. 実施例4で得られたモノリス状有機多孔質体のSEM写真である。4 is a SEM photograph of the monolithic organic porous material obtained in Example 4. 実施例5で得られたモノリス状有機多孔質体のSEM写真である。4 is a SEM photograph of the monolithic organic porous material obtained in Example 5. 実施例6で得られたモノリス状有機多孔質体のSEM写真である。6 is a SEM photograph of the monolithic organic porous material obtained in Example 6.

符号の説明Explanation of symbols

1 骨格相
2 空孔相
10 共連続構造
11 マクロボイド
12 共通の開口
X 連続マクロボイド構造
DESCRIPTION OF SYMBOLS 1 Skeletal phase 2 Pore phase 10 Co-continuous structure 11 Macro void 12 Common opening X Continuous macro void structure

Claims (5)

マクロボイド同士が重なり合い、この重なる部分が平均半径0.1〜25mmの開口となる連続マクロボイド構造の有機多孔質体であって、該連続マクロボイド構造の見かけ上の骨格部が、全構成単位中、架橋構造単位を0.3〜2.5モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に半径が4〜100μmの三次元的に連続した空孔とからなる共連続構造であり、前記マクロボイドの半径が、前記空孔の半径の倍以上であることを特徴とするモノリス状有機多孔質体。 The macrovoids overlap each other, and the overlapping portion is an organic porous body having a continuous macrovoid structure in which an opening having an average radius of 0.1 to 25 mm, and the apparent skeleton portion of the continuous macrovoid structure is the entire structural unit. Among them, a three-dimensional continuous skeleton composed of an aromatic vinyl polymer containing 0.3 to 2.5 mol% of a crosslinked structural unit and having a thickness of 0.8 to 40 μm, and a radius of 4 to 100 μm between the skeletons A monolithic organic porous body having a co-continuous structure composed of three-dimensionally continuous pores, wherein the radius of the macrovoid is at least five times the radius of the pores. 前記マクロボイドの平均半径が、前記空孔の平均半径の〜250000倍であることを特徴とする請求項1記載のモノリス状有機多孔質体。 2. The monolithic organic porous material according to claim 1, wherein an average radius of the macrovoid is 5 to 250,000 times an average radius of the pores. 下記工程;
芳香族ビニルモノマー、界面活性剤、水、架橋剤及び必要に応じて重合開始剤を、芳香族ビニルモノマー(M)と水(W)の重量比(M):(W)が1:49〜1:3、架橋剤がビニルモノマーと架橋剤の合計中、0.3〜2.5モル%となるように混合し、該混合物を撹拌して油中水滴型エマルジョンを調製するI工程、
該油中水滴型エマルジョン中に多数の粒子状テンプレートを存在させ静置下重合するII工程、
該重合体から該粒子状テンプレートを除去することで、連続マクロボイド構造と連続マクロポア構造が共存するモノリス状有機多孔質中間体を得るIII工程、
芳香族ビニルモノマー、架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤を、ビニルモノマーをモノリス状有機多孔質中間体に対して5〜50倍となる量で配合し、混合するIV工程、
IV工程で得られた混合物を静置下、且つ該III工程で得られたモノリス状有機多孔質中間体の存在下に重合を行い、連続マクロボイド構造と共連続構造が共存する有機多孔質体を得るV工程、
を行うことを特徴とするモノリス状有機多孔質体の製造方法。
Following steps;
The weight ratio (M) :( W) of the aromatic vinyl monomer (M) to water (W) is from 1:49 to the aromatic vinyl monomer, surfactant, water, crosslinking agent and, if necessary, the polymerization initiator. 1: 3, Mixing so that a crosslinking agent may be 0.3-2.5 mol% in the sum total of a vinyl monomer and a crosslinking agent, Stirring this mixture, and preparing the water-in-oil type emulsion, I process,
A step II in which a large number of particulate templates are present in the water-in-oil emulsion and polymerized by standing;
Step III for obtaining a monolithic organic porous intermediate in which a continuous macrovoid structure and a continuous macropore structure coexist by removing the particulate template from the polymer;
Aromatic vinyl monomer, crosslinker, aromatic vinyl monomer and crosslinker dissolve, but polymer formed by polymerization of aromatic vinyl monomer does not dissolve organic solvent and polymerization initiator, vinyl monomer is monolithic organic porous intermediate IV process which mix | blends with the quantity used as 5-50 times with respect to a body, and mixes,
An organic porous material in which the mixture obtained in the step IV is allowed to stand still and in the presence of the monolithic organic porous intermediate obtained in the step III, and a continuous macrovoid structure and a co-continuous structure coexist. V process to obtain
A method for producing a monolithic organic porous material characterized by comprising:
前記粒子状テンプレートが、多糖類ハイドロゲルであることを特徴とする請求項3記載のモノリス状有機多孔質体の製造方法。   The method for producing a monolithic organic porous material according to claim 3, wherein the particulate template is a polysaccharide hydrogel. 請求項1又は2記載のモノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基が導入されたものであって、水湿潤状態での体積当りのイオン交換容量が0.075mg当量/ml以上であることを特徴とするモノリス状有機多孔質イオン交換体。   An ion exchange group is introduced into the skeleton surface and inside the skeleton of the monolithic organic porous material according to claim 1 or 2, and the ion exchange capacity per volume in a water-wet state is 0.075 mg equivalent / ml. A monolithic organic porous ion exchanger characterized by the above.
JP2008070097A 2008-03-18 2008-03-18 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger Active JP5131911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070097A JP5131911B2 (en) 2008-03-18 2008-03-18 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070097A JP5131911B2 (en) 2008-03-18 2008-03-18 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger

Publications (2)

Publication Number Publication Date
JP2009221428A JP2009221428A (en) 2009-10-01
JP5131911B2 true JP5131911B2 (en) 2013-01-30

Family

ID=41238533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070097A Active JP5131911B2 (en) 2008-03-18 2008-03-18 Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger

Country Status (1)

Country Link
JP (1) JP5131911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter
JP2009221426A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolith-shaped organic porous body, manufacturing method, monolith-shaped organic porous ion exchanger

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208550B2 (en) * 2007-06-12 2013-06-12 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5019470B2 (en) * 2007-06-12 2012-09-05 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
JP5411737B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ion adsorption module and water treatment method
CN102348505B (en) * 2009-03-10 2014-07-02 奥加诺株式会社 Ion adsorption module and method of treating water
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
WO2016117574A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material
WO2016117572A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material
JP6746914B2 (en) * 2016-01-07 2020-08-26 日立化成株式会社 Separation material and column
JP6834130B2 (en) * 2016-01-07 2021-02-24 昭和電工マテリアルズ株式会社 Separator and column
JP6852259B2 (en) * 2016-01-07 2021-03-31 昭和電工マテリアルズ株式会社 Separator and column
JP2022104711A (en) * 2020-12-29 2022-07-11 オルガノ株式会社 Composite absorber and polymer absorbent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399933A (en) * 1989-09-14 1991-04-25 Hitachi Ltd Ultraviolet lamp box with catalyst
JP2781104B2 (en) * 1992-08-26 1998-07-30 日本ペイント株式会社 Polycarbonate polyol
JP4216142B2 (en) * 2003-07-01 2009-01-28 オルガノ株式会社 Method for producing aminated organic porous material
EP1837365A4 (en) * 2005-01-07 2011-04-20 Emaus Kyoto Inc Porous cured epoxy resin
JP2008013625A (en) * 2006-07-04 2008-01-24 Emaus Kyoto:Kk Water quality keeping material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter
JP2009221426A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolith-shaped organic porous body, manufacturing method, monolith-shaped organic porous ion exchanger

Also Published As

Publication number Publication date
JP2009221428A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP4931006B2 (en) Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP4428616B2 (en) Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5698813B2 (en) Ultrapure water production equipment
JP2004066153A (en) Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP5685632B2 (en) Ion adsorption module and water treatment method
JP4034163B2 (en) Organic porous body, production method thereof, and organic porous ion exchanger
KR20180081569A (en) Method for purifying organic solvents
EP1321187A1 (en) Organic porous material, process for manufacturing the same, and organic porous ion exchanger
JP5116710B2 (en) Electric deionized water production apparatus and deionized water production method
JP5283893B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP5465463B2 (en) Ion adsorption module and water treatment method
JP3957179B2 (en) Organic porous ion exchanger
TWI447150B (en) Monolithic organic porous material, monolithic organic porous ion exchanger, and method of producing same
JP2022163531A (en) Ion exchanger and method for producing ion exchanger
JP5642211B2 (en) Solid acid catalyst
JP3957182B2 (en) Method for producing sulfonated organic porous material
JP2004131517A (en) Method for producing organic porous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250