JP4671272B2 - Method and apparatus for detecting anion in liquid - Google Patents

Method and apparatus for detecting anion in liquid Download PDF

Info

Publication number
JP4671272B2
JP4671272B2 JP2004362496A JP2004362496A JP4671272B2 JP 4671272 B2 JP4671272 B2 JP 4671272B2 JP 2004362496 A JP2004362496 A JP 2004362496A JP 2004362496 A JP2004362496 A JP 2004362496A JP 4671272 B2 JP4671272 B2 JP 4671272B2
Authority
JP
Japan
Prior art keywords
cation
chamber
liquid
cation exchanger
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004362496A
Other languages
Japanese (ja)
Other versions
JP2006167568A (en
Inventor
弘次 山中
洋 井上
直幸 田島
雅司 藤田
晶久 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2004362496A priority Critical patent/JP4671272B2/en
Publication of JP2006167568A publication Critical patent/JP2006167568A/en
Application granted granted Critical
Publication of JP4671272B2 publication Critical patent/JP4671272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、液中の陰イオン検出方法及び検出装置に係り、特に、火力及び原子力発電所における復水器の冷却水(海水)のリークを感知できる塩素イオンに代表される陰イオンの検出方法及び検出装置に関する。   The present invention relates to an anion detection method and a detection apparatus in a liquid, and more particularly to a detection method for anions typified by chlorine ions capable of sensing leakage of cooling water (seawater) of condensers in thermal power and nuclear power plants. And a detection apparatus.

従来、火力及び原子力発電所では、ボイラーで発生した高温、高圧の水蒸気を蒸気タービンに導き、蒸気タービンからの排蒸気は復水器で凝縮して水とし、この復水を再びボイラー給水として使うという水循環を行っている。循環水中には、腐食生成物などの不純物が蓄積してくるので、定常運転時には該腐食生成物などの不純物を除去し、また以下に述べる海水リーク時には塩化ナトリウムを主成分とする不純物を一定時間捕捉して循環水系統を保護するために、復水脱塩装置が設置されている。この循環系での復水器は、蒸気側が減圧されており、冷却水に海水が用いられるので、復水器細管にピンホールが生じたような場合には、海水が蒸気側に侵入し、塩類濃度が著しく上昇する。その結果、復水脱塩装置の負荷が大きくなり、海水リーク量が多くなると、この脱塩装置の許容範囲を越えてしまう。そこで、検塩装置により海水のリークを検知することが必要になる。海水リークを検知する方法としては、ナトリウムモニター、原子吸光法等による方法や導電率を測定する方法が知られている。   Conventionally, in thermal power and nuclear power plants, high-temperature and high-pressure steam generated in a boiler is guided to a steam turbine, and the exhaust steam from the steam turbine is condensed into water by a condenser, and this condensate is used again as boiler feed water. This is a water cycle. Since impurities such as corrosion products accumulate in the circulating water, impurities such as corrosion products are removed during steady operation, and impurities containing sodium chloride as a main component during seawater leaks described below for a certain period of time. A condensate demineralizer is installed to capture and protect the circulating water system. In the condenser in this circulation system, the steam side is depressurized, and seawater is used for cooling water, so if a pinhole occurs in the condenser thin tube, seawater enters the steam side, Salinity increases significantly. As a result, when the load of the condensate demineralizer increases and the amount of seawater leak increases, the allowable range of the demineralizer is exceeded. Therefore, it is necessary to detect seawater leaks with a salt detector. Known methods for detecting seawater leaks include a sodium monitor, an atomic absorption method, and a method for measuring conductivity.

ナトリウムモニターは、イオン選択性のガラス電極を用いたものである。このため、低濃度領域での感度は電極の起電力の低下により、ネルンストの式からずれて小さくなるし、照合電極の電極液として塩化カリウム溶液が使用されるため、試料水側に拡散したカリウムイオンによりプラスの誤差を与えることがある。また、クラッドと呼ばれる鉄の酸化物及び水酸化物により電極表面が汚染され、感度が低下してくる等の欠点をもっている。   The sodium monitor uses an ion selective glass electrode. For this reason, the sensitivity in the low-concentration region becomes smaller than the Nernst equation due to a decrease in the electromotive force of the electrode, and a potassium chloride solution is used as the electrode solution for the reference electrode. Ions may give a positive error. In addition, the surface of the electrode is contaminated by iron oxide and hydroxide called clad, and the sensitivity is lowered.

原子吸光等の分析は、分析装置が現場に設置できるようなポータブル型がないので、試料水をサンプリングして持ち帰り、分析しなければならないため、海水リーク監視の上では特に重要な常時監視ができない。また、イオンの定量分析方法としては、イオンクロマト法が一般に用いられているが、試薬の調整等の手間を必要とし、原子吸光と同様に高価な装置である。   For analysis such as atomic absorption, there is no portable type that can be installed on-site, so sample water must be sampled and taken back and analyzed. . As a method for quantitative analysis of ions, ion chromatography is generally used, but requires labor such as reagent adjustment, and is an expensive apparatus similar to atomic absorption.

比抵抗又は導電率を測定する方法では、カチオン交換樹脂が必要となる。一般に循環水は系内の配管等の腐食を抑制するために、定常運転時において1mgNH/l程度のアンモニアを、デイリー・スタート・ストップ(DSS)など1日以内または1日程度の停止時には、2mgNH/l程度のアンモニア及び50μgN/l程度のヒドラジンを、ウィークリー・スタート・ストップ(WSS)などの2〜3日程度の停止時には、2mgNH/l程度のアンモニア及び10mgN/l程度のヒドラジンを添加しており、いずれの場合においても比抵抗が低く導電率が高いので、微量の海水リークにより、塩濃度が多少上昇した程度では、そのまま測定した値の変化はごく小さく海水リークを知ることは難しい。そこで、再生形のカチオン交換樹脂に通水し、もともと存在した陽イオンのアンモニア、ヒドラジンと海水リークにより混入するナトリウムイオン等の陽イオン成分を除去した後、主としてHClによる酸比抵抗又は酸導電率を測定する方法が一般的となっている。しかしながら、この方法では、カチオン交換樹脂は、いずれ貫流容量に達するため、定期的に再生作業や樹脂交換作業が必要になり、再生又は交換作業や樹脂コストなどが問題となる。特にPWR型原子力発電所においては、現在、系統内の鉄負荷低減を目的に高pH運用が検討されており、従来の復水水質に比べ10倍以上のアンモニア又はETA濃度にて運用されることになるため、前述の樹脂再生や交換作業頻度が非常に高くなり、実運用上問題となる可能性がある。 In the method of measuring specific resistance or conductivity, a cation exchange resin is required. In general, in order to suppress corrosion of piping in the system, circulating water should be about 1 mg NH 3 / l ammonia during steady operation, within a day such as daily start / stop (DSS) or when stopped for about a day. 2mgNH 3 / l of about ammonia and 50μgN 2 H 4 / l of about hydrazine, at the time of 2-3 days about the stop, such as a weekly-start-stop (WSS) is, 2mgNH 3 / l about ammonia and 10mgN 2 H 4 / l of hydrazine is added, and in either case, the resistivity is low and the conductivity is high. Therefore, the change in the measured value is negligible if the salt concentration is slightly increased due to a small amount of seawater leak. It is difficult to know seawater leaks. Therefore, water was passed through the regenerated cation exchange resin to remove the cation components such as ammonia, hydrazine and sodium ions that were mixed in due to seawater leak, and then the acid resistivity or acid conductivity mainly due to HCl. The method of measuring is becoming common. However, in this method, since the cation exchange resin eventually reaches a through-flow capacity, a regeneration operation or a resin replacement operation is required periodically, and the regeneration or replacement operation, resin cost, or the like becomes a problem. Particularly in the PWR nuclear power plant, high pH operation is currently being studied for the purpose of reducing the iron load in the system, and it should be operated at an ammonia or ETA concentration 10 times higher than the conventional condensate quality. Therefore, the frequency of the above-described resin regeneration and replacement work becomes very high, which may cause a problem in actual operation.

この問題を解決するものとして、特開平9−210943号公報には、陽極室と陰極室の間に、2枚の陽イオン交換膜で仕切られた陽イオン交換体が充填された脱陽イオン室を設け、前記陽極室と陰極室及び脱陽イオン室には、それぞれ水の導入経路と処理水の排出経路が配され、脱陽イオン室からの処理水の排出経路に、該処理水の比抵抗又は導電率を測定する測定器を配備する水中の陰イオンの検出装置が開示されている。この陰イオン検出装置によれば、イオン交換樹脂等の交換を必要とせず、また、クラッド等の固形浮遊物による汚染の影響を受けず、操作が簡単で安定して正確な測定ができ、しかも安価な装置とすることができる。   In order to solve this problem, Japanese Patent Application Laid-Open No. 9-210943 discloses a decation chamber in which a cation exchanger partitioned by two cation exchange membranes is filled between an anode chamber and a cathode chamber. The anode chamber, the cathode chamber, and the decation chamber are provided with a water introduction path and a treated water discharge path, respectively, and the treated water discharge path from the decation chamber has a ratio of the treated water. An apparatus for detecting anions in water with a measuring instrument for measuring resistance or conductivity is disclosed. According to this anion detector, it is not necessary to exchange ion exchange resin, etc., and is not affected by contamination by solid suspended matter such as cladding, so that it can be operated easily, stably and accurately. An inexpensive apparatus can be obtained.

しかしながら、特開平9−210943号公報記載の水中の陰イオンの検出装置において、イオン交換体として、例えばスチレンとジビニルベンゼンの共重合体にスルホン酸基を導入した粒子径0.2 〜0.5mm程度の球状カチオン交換樹脂のみを充填した場合には、以下のような問題があった。すなわち、発電所復水を試料水とした場合、除去すべき陽イオンは、アンモニアやヒドラジンといった弱塩基性成分が大部分を占める。これらの弱塩基性成分は、陽イオン交換樹脂内部においては、スルホン酸基とイオン対を形成するためイオン化しており、電気再生式脱陽イオン装置に印加される直流電圧によって泳動可能であるが、該泳動によってスルホン酸基を離脱すると、該弱塩基性成分固有の解離定数に従って、その多くは非解離状態となり、再びスルホン酸基に捕捉されてイオン解離するまでは、印加される直流電圧による電気的泳動を行うことなく試料水中を拡散する。該拡散が陽イオン交換樹脂内部において行われるときは、スルホン酸基が比較的均一に、かつ密に存在しているので、弱塩基性成分の該拡散による移動は狭い範囲に限定されるが、イオン交換樹脂の粒子界面においては、弱塩基性成分は一時的にスルホン酸基の存在しない試料水中に出て、再びイオン交換樹脂粒子に捕捉されるまでの比較的長い距離を直流電圧の影響を受けずに拡散することになり、この結果、陽イオン交換樹脂充填層における弱塩基性成分吸着ゾーンは、試料水通水方向に広がってしまう。このため、従来の電気再生式脱陽イオン装置では、前記の弱塩基性成分吸着ゾーンの広がりを考慮して、イオン交換樹脂充填層を大きくする必要があった。すなわち、従来の電気再生式脱陽イオン装置では、装置の大型化や費用の増加は避けられないという問題があった。   However, in the apparatus for detecting anions in water described in JP-A-9-210943, as an ion exchanger, for example, a particle size of 0.2 to 0.5 mm in which a sulfonic acid group is introduced into a copolymer of styrene and divinylbenzene. When only a spherical cation exchange resin of a certain degree was filled, there were the following problems. That is, when the power plant condensate is used as sample water, the cations to be removed are mostly weak basic components such as ammonia and hydrazine. These weakly basic components are ionized inside the cation exchange resin to form ion pairs with sulfonic acid groups, and can be electrophoresed by a DC voltage applied to the electroregenerative decation apparatus. When the sulfonic acid group is released by the electrophoresis, most of the sulfonic acid group becomes non-dissociated according to the dissociation constant inherent to the weakly basic component, and until it is captured by the sulfonic acid group and ion dissociates again, it depends on the applied DC voltage. It diffuses in sample water without performing electrophoresis. When the diffusion is performed inside the cation exchange resin, since the sulfonic acid groups are present relatively uniformly and densely, the movement of the weak basic component due to the diffusion is limited to a narrow range, At the ion-exchange resin particle interface, the weakly basic component is temporarily removed from the sample water without sulfonic acid groups, and is affected by the DC voltage over a relatively long distance until it is captured again by the ion-exchange resin particles. As a result, the weakly basic component adsorption zone in the cation exchange resin packed bed spreads in the direction of sample water flow. For this reason, in the conventional electric regeneration type decationization apparatus, it is necessary to enlarge the ion exchange resin packed layer in consideration of the expansion of the weak basic component adsorption zone. That is, the conventional electric regenerative decation ion apparatus has a problem that the apparatus is inevitably increased in size and cost.

また、従来の球状イオン交換樹脂を充填した電気再生式脱陽イオン装置では、前記のように弱塩基性成分が非解離状態で電気的泳動をしていない時間があり、かつ球状イオン交換樹脂のため粒子同士の接触面積が小さいので解離状態で電気的に泳動するイオンにおいても、その流れが該粒子界面の接点部に集中してイオン移動の阻害要因となり、吸着イオンの系外排除を遅くさせる要因となっている。これを補うために従来の電気再生式脱陽イオン装置では、高電流値で運転する必要があり、目的とする弱塩基性成分の移動の他に、大過剰に与えられた電流が水の解離に消費され、消費電力が大となってランニングコストの増加を招くという問題があった。   In addition, in the electric regeneration type decationization apparatus filled with the conventional spherical ion exchange resin, there is a time during which the weak basic component is not electrophoresed in a non-dissociated state as described above, and the spherical ion exchange resin As a result, the contact area between particles is small, so even in the case of ions that migrate electrophoretically in a dissociated state, the flow concentrates on the contact portion of the particle interface and becomes an inhibitory factor for ion movement, slowing the exclusion of adsorbed ions outside the system. It is a factor. In order to compensate for this, the conventional electric regenerative decationization device needs to be operated at a high current value, and in addition to the movement of the target weak basic component, a large excess of current is dissociated in water. There is a problem that the power consumption increases and the running cost increases.

一方、特開2002−306976号公報には、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1,000μm のメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上の多孔質イオン交換体を脱塩室に充填した電気式脱イオン水製造装置が開示されている。この有機多孔質イオン交換体は、モノリス形状のスポンジ状であり、細孔容積や比表面積が格段に大きいため吸着能力に優れる。しかしながら、特開2002−306976号公報には、該モノリスが陰イオン検出装置で用いる電気再生式脱陽イオン装置の陽イオン交換体に好適であることの記載はなく、ましてや小型化が可能である旨の記載はない。
特開平9−210943号公報(請求項1) 特開2002−306976号公報(請求項1)
On the other hand, Japanese Patent Application Laid-Open No. 2002-306976 has an open cell structure having mesopores with an average diameter of 1 to 1,000 μm in the walls of macropores and macropores connected to each other, and the total pore volume is 1 to 50 ml. An electric deionized water production apparatus in which the ion exchange groups are uniformly distributed, the ion exchange capacity is 0.5 mg equivalent / g, and a porous ion exchanger having a dry porous body or more is filled in the desalting chamber. It is disclosed. This organic porous ion exchanger is in the form of a monolithic sponge and has an excellent adsorption capacity due to its extremely large pore volume and specific surface area. However, Japanese Patent Laid-Open No. 2002-306976 does not describe that the monolith is suitable for a cation exchanger of an electric regeneration type decation apparatus used in an anion detection apparatus, and can be downsized. There is no statement to that effect.
Japanese Patent Laid-Open No. 9-210943 (Claim 1) JP 2002-306976 A (Claim 1)

従って、本発明の目的は、前記した従来技術の問題点を解決し、装置構造が簡単で小型化でき、設置コスト及びランニングコストを低減でき、しかも操作が簡単で安定して正確な常時監視ができる液中の陰イオン検出方法及び検出装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, the device structure is simple and downsized, the installation cost and the running cost can be reduced, and the operation is simple, stable and accurate constant monitoring. An object of the present invention is to provide a method and an apparatus for detecting an anion in a liquid.

かかる実情において、本発明者らは鋭意検討を行った結果、液中の陽イオンを除去する手段として、連続気泡構造を有する有機多孔質陽イオン交換体を脱塩室の陽イオン交換体の一部又は全部とする電気再生式脱陽イオン装置を用いれば、装置構造が簡単で小型化でき、設置コスト及びランニングコストを低減でき、しかも操作が簡単で安定して正確な常時監視ができること等を見出し、本発明を完成させた。   Under such circumstances, as a result of intensive studies, the present inventors have determined that an organic porous cation exchanger having an open cell structure is one of the cation exchangers in the desalting chamber as means for removing cations in the liquid. If the electric regenerative decation ion device is used as a part or the whole, the structure of the device can be simplified and reduced in size, the installation cost and the running cost can be reduced, and the operation can be performed easily, stably and accurately at all times. The headline and the present invention were completed.

すなわち、本発明は、試料液を電気再生式脱陽イオン装置の脱塩室に通液して、該試料液中の陽イオンを除去した後、該液中の陰イオンを測定する陰イオン検出方法において、該脱塩室に充填される陽イオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、陽イオン交換基が均一に分布され、陽イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質陽イオン交換体と、粒状陽イオン交換体とを、試料液流入側に前記有機多孔質陽イオン交換体を配置し、試料液流出側に粒状陽イオン交換体を配置して、層状に設置したものであることを特徴とする液中の陰イオン検出方法を提供するものである。 That is, the present invention provides an anion detection in which a sample solution is passed through a desalting chamber of an electric regeneration type decation apparatus, and after removing cations in the sample solution, the anions in the solution are measured. In the method, the cation exchanger filled in the desalting chamber has an open cell structure having macropores connected to each other and mesopores having an average diameter of 1-1000 μm in the walls of the macropores, and the total pore volume is 1 to 50 ml / g, an organic porous cation exchanger having a cation exchange group uniformly distributed and a cation exchange capacity of 0.5 mg equivalent / g dry porous body or more, a granular cation exchanger, The organic porous cation exchanger is disposed on the sample solution inflow side, the granular cation exchanger is disposed on the sample solution outflow side, and the anion in the liquid is characterized in that it is installed in layers. An ion detection method is provided.

また、本発明は、陽極室と陰極室の間に陽イオン交換体が充填された脱塩室を備え、該陽極室、陰極室及び脱塩室には、それぞれ液の流入配管と流出配管が配設された電気再生式脱陽イオン装置と、該脱塩室流出配管に配設される該処理液の導電率又は比抵抗を測定する測定器と、を備えるものであって、該脱塩室に充填される陽イオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、陽イオン交換基が均一に分布され、陽イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質陽イオン交換体、粒状陽イオン交換体とを、試料液流入側に前記有機多孔質陽イオン交換体を配置し、試料液流出側に粒状陽イオン交換体を配置して、層状に設置したものであることを特徴とする液中の陰イオン検出装置を提供するものである。








The present invention also includes a desalting chamber filled with a cation exchanger between the anode chamber and the cathode chamber, and the anode chamber, the cathode chamber, and the desalting chamber have a liquid inflow pipe and an outflow pipe, respectively. An electric regenerative decation ion device disposed, and a measuring instrument for measuring the conductivity or specific resistance of the treatment liquid disposed in the desalination chamber outflow pipe, The cation exchanger filled in the chamber has an open cell structure having mesopores having an average diameter of 1-1000 μm in the macropores and the walls of the macropores, and the total pore volume is 1-50 ml / g. Yes, an organic porous cation exchanger having a cation exchange group uniformly distributed and a cation exchange capacity of 0.5 mg equivalent / g dry porous body or more, and a granular cation exchanger on the sample solution inflow side The organic porous cation exchanger is disposed, and a granular cation is placed on the sample solution outflow side. The present invention provides an anion detector in a liquid characterized in that an on-exchanger is disposed and installed in a layered manner.








本発明によれば、多孔質陽イオン交換体充填層における弱塩基性成分吸着ゾーンは、陽イオン交換体として粒状陽イオン交換樹脂を用いる場合に比べて、1/3〜1/2程度短く、小型で装置構造を簡略化でき、設置コスト及びランニングコストを低減でき、しかも操作が簡単で安定して正確な常時監視ができる。   According to the present invention, the weakly basic component adsorption zone in the porous cation exchanger packed bed is shorter by about 1/3 to 1/2 than when a granular cation exchange resin is used as the cation exchanger. It is compact and can simplify the structure of the device, reduce installation costs and running costs, and is easy to operate, stable and accurate constant monitoring.

本発明において、試料液としては、該液中の陰イオンを検出、定量しようとする液体であれば特に制限されず、例えば、火力又は原子力発電所における復水のようにアンモニア、ヒドラジン又はETAのような弱塩基性の陽イオンを多く含む試料液中の陰イオンの測定に好適に用いることができる。本発明の液中の陰イオン検出装置は、海水リークの常時監視という目的から、発電所の復水循環主系統の内、復水器から復水脱塩装置に至る間の復水中の酸導電率の監視が最も重要であるが、これに加えて、低圧ヒーター、高圧ヒーター、脱気器、ボイラー(PWR型電子力発電所においては蒸気発生器)給水などの復水器出口以外の復水循環主系統、および低圧ヒータードレンや高圧ヒータードレンのような副次的配水系統から採取された水も測定対象とすることができる。   In the present invention, the sample liquid is not particularly limited as long as it is a liquid for detecting and quantifying anions in the liquid. For example, ammonia, hydrazine or ETA such as condensate in thermal power or nuclear power plants is used. It can be suitably used for the measurement of anions in a sample solution containing a large amount of such weakly basic cations. The anion detection device in the liquid of the present invention is an acid conductivity in condensate from the condenser to the condensate demineralizer in the main condensate circulation system for the purpose of constantly monitoring seawater leaks. In addition to this, the main condensate circulation other than the outlet of the condenser such as low-pressure heater, high-pressure heater, deaerator, boiler (steam generator in PWR type electronic power plant) feed water, etc. Water collected from the system and secondary water distribution systems such as low pressure heater drains and high pressure heater drains can also be measured.

本発明で用いる電気再生式脱陽イオン装置において、脱塩室の少なくとも一部に充填される有機多孔質陽イオン交換体(以下、単に、「多孔質陽イオン交換体」とも言う)としては、特に制限されず、例えばモノリス状多孔質陽イオン交換体(以下、単に「モノリス」とも言う)、繊維状多孔質陽イオン交換体及び粒子凝集型多孔質陽イオン交換体等が挙げられ、このうち、モノリスが、イオン交換基が均一に分布し、イオン排除がすみやかに行われることから好ましい。   In the electric regeneration type decation apparatus used in the present invention, as an organic porous cation exchanger (hereinafter, also simply referred to as “porous cation exchanger”) filled in at least a part of the desalting chamber, It is not particularly limited, and examples thereof include a monolithic porous cation exchanger (hereinafter also simply referred to as “monolith”), a fibrous porous cation exchanger, a particle aggregation type porous cation exchanger, and the like. Monoliths are preferred because the ion exchange groups are uniformly distributed and ion exclusion is performed promptly.

モノリスとしては、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μm、好ましくは10〜100μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/g 、好ましくは4〜20ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上のものが挙げられる。モノリスのその他の物性及びその製造方法は、例えば特開2003−334560号公報に開示されている。   The monolith has an open cell structure with mesopores having an average diameter of 1 to 1000 μm, preferably 10 to 100 μm in the macropores and the walls of the macropores, and the total pore volume is 1 to 50 ml / g, preferably Is 4 to 20 ml / g, the ion exchange groups are uniformly distributed, and the ion exchange capacity is 0.5 mg equivalent / g or more of the dried porous body. Other physical properties of the monolith and methods for producing the same are disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-334560.

陽イオン交換体としてモノリスを用いれば、細孔容積や比表面積を格段に大きくすることができる。このため、電気再生式脱陽イオン装置の脱イオン効率が著しく向上し非常に有利である。また、モノリスの全細孔容積が1ml/g未満であると、単位断面積当りの通水量が小さくなってしまい、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、骨格部分の占める割合が低下し、多孔質体の強度が著しく低下してしまうため好ましくない。全細孔容積が1〜50ml/gであるモノリスを電気再生式脱陽イオン装置のイオン交換体として使用した場合、多孔質体の強度と脱イオン効率を共に満足したものとすることができる点で好ましい。また、モノリスのイオン交換容量が0.5mg当量/g乾燥多孔質体未満であると、イオン吸着容量が不足して好ましくない。また、イオン交換基の分布が不均一であると、多孔質陽イオン交換体内のイオン移動が不均一となり、吸着されたイオンの迅速な排除が阻害されるので好ましくない。   If a monolith is used as the cation exchanger, the pore volume and specific surface area can be greatly increased. For this reason, the deionization efficiency of the electric regeneration type decation apparatus is remarkably improved, which is very advantageous. Further, if the total pore volume of the monolith is less than 1 ml / g, the amount of water per unit cross-sectional area becomes small and the treatment capacity is lowered, which is not preferable. On the other hand, if the total pore volume exceeds 50 ml / g, the proportion of the skeleton portion is decreased, and the strength of the porous body is significantly decreased. When a monolith having a total pore volume of 1 to 50 ml / g is used as an ion exchanger of an electroregenerative decation apparatus, both the strength and deionization efficiency of the porous body can be satisfied. Is preferable. Moreover, when the ion exchange capacity of the monolith is less than 0.5 mg equivalent / g dry porous body, the ion adsorption capacity is insufficient, which is not preferable. In addition, if the ion exchange group distribution is non-uniform, the ion movement in the porous cation exchanger becomes non-uniform and the rapid removal of the adsorbed ions is hindered.

繊維状多孔質イオン交換体としては、例えば特開平5−64726号公報に記載の単繊維や単繊維の集合体である織布及び不織布、さらにこれらの加工品に放射線グラフト重合を利用してイオン交換基を導入し、加工成形したものが挙げられる。また、粒子凝集型多孔質イオン交換体としては、例えば特開平10−192716号公報、特開平10−192717号公報に記載の熱可塑性ポリマーと熱硬化性ポリマーの混合ポリマー、あるいは架橋性ポリマーを用いてイオン交換樹脂粒子を結合し、加工成形したものが挙げられる。   Examples of the fibrous porous ion exchanger include single fibers and woven fabrics and non-woven fabrics that are aggregates of single fibers described in JP-A-5-64726, and further ionized by using radiation graft polymerization for these processed products. Examples thereof include those in which an exchange group is introduced and processed. Further, as the particle aggregation type porous ion exchanger, for example, a mixed polymer or a crosslinkable polymer of a thermoplastic polymer and a thermosetting polymer described in JP-A-10-192716 and JP-A-10-192717 is used. Then, ion-exchange resin particles are combined and processed and molded.

また、陽イオン交換体は、前記多孔質陽イオン交換体と粒状陽イオン交換樹脂の混床イオン交換体であってもよく、この場合、例えば、電気再生式脱陽イオン装置において、被処理水流入側にモノリスを配置し、下流側に従来の粒状イオン交換樹脂を充填した場合、該モノリスの迅速な吸着とイオン排除を備えながら、粒状イオン交換樹脂の大きな充填体積あたりの交換容量のために、発電所における定期点検時の満水保管後の立上げ運転時や、デイリー・スタート・ストップ(DSS)、ウィークリー・スタート・ストップ(WSS)などに伴う被処理水中の陽イオン流入量の変動に対しても、より安定した脱陽イオン処理を行うことが可能となり、汎用性の高い陰イオン検出装置が得られる点で好ましい。前記多孔質陽イオン交換体と粒状陽イオン交換樹脂の充填割合としては、特に制限されないが、モノリス:粒状陽イオン交換樹脂が、体積割合で1:0.5〜1:10である。   Further, the cation exchanger may be a mixed bed ion exchanger of the porous cation exchanger and the granular cation exchange resin. In this case, for example, in an electric regeneration type decation apparatus, When a monolith is arranged on the inflow side and a conventional granular ion exchange resin is filled on the downstream side, the exchange capacity per large filling volume of the granular ion exchange resin is provided while providing rapid adsorption and ion exclusion of the monolith. In response to fluctuations in the amount of cation inflow in the treated water during start-up operations after full storage during regular inspections at power plants, daily start / stop (DSS), weekly start / stop (WSS), etc. However, it is preferable in that a more stable decation treatment can be performed and a highly versatile anion detector can be obtained. The filling ratio of the porous cation exchanger and the granular cation exchange resin is not particularly limited, but the volume ratio of monolith: particulate cation exchange resin is 1: 0.5 to 1:10.

また、陽イオン交換体は、脱塩領域を形成する陽イオン交換体部と、該脱塩領域のイオン排除側に隣接して配設される被処理液の一部が透過する多孔質陽イオン交換体からなる複合イオン交換体であれば、脱塩室と電極室を区画するイオン交換膜を省略することができる点で好ましい。陽イオン交換体部としては、モノリスや陽イオン交換樹脂が挙げられる。複合イオン交換体において、多孔質陽イオン交換体の通液抵抗は、該脱塩領域を形成する陽イオン交換体部の通液抵抗より大きいものが、別途の特段の流路分配手段を設けることなく、脱塩領域に流入した試料液の大部分が脱カチオン液として脱塩領域から流出し、被処理液の一部が液透過領域に透過する点で好ましい。なお、液透過領域から透過した流出液の流路に流量調節手段を配設すれば、該流量調節手段によって、透過液と脱イオン液の流量をより所望の割合に調整することができる。液透過領域から透過した流出液の流路に流量調節手段を配設する場合、液透過領域に装填される多孔質イオン交換体の通液抵抗は、脱塩領域に充填される陽イオン交換体部の通液抵抗と同じであってもよい。例えば、脱塩領域及び液透過領域共に、モノリスを使用する場合、脱塩領域及び液透過領域に亘る形状に加工された単一モノリスを使用することができる。これによれば、脱塩領域用モノリスと液透過領域用モノリスをそれぞれ個別に製造する必要がない点で都合が良い。被処理液の流量に対する液透過領域を透過する透過液の流量比率は、例えば2〜30%、好ましくは4〜30%である。   The cation exchanger includes a porous cation through which a cation exchanger part that forms a desalting region and a part of the liquid to be treated that is disposed adjacent to the ion exclusion side of the desalting region. A composite ion exchanger made of an exchanger is preferable in that the ion exchange membrane that partitions the desalting chamber and the electrode chamber can be omitted. Examples of the cation exchanger include monoliths and cation exchange resins. In the composite ion exchanger, the flow resistance of the porous cation exchanger is larger than the liquid resistance of the cation exchanger part forming the desalting region, but a separate special channel distribution means is provided. It is preferable that most of the sample liquid flowing into the desalting region flows out from the desalting region as a decation solution and a part of the liquid to be treated permeates into the liquid permeation region. If flow rate adjusting means is provided in the flow path of the effluent permeated from the liquid permeation region, the flow rate of the permeated liquid and the deionized liquid can be adjusted to a desired ratio by the flow rate adjusting means. When the flow rate adjusting means is provided in the flow path of the effluent permeated from the liquid permeation region, the flow resistance of the porous ion exchanger loaded in the liquid permeation region is determined by the cation exchanger filled in the desalting region. It may be the same as the liquid flow resistance of the part. For example, when a monolith is used for both the desalting region and the liquid permeation region, a single monolith processed into a shape extending over the desalting region and the liquid permeation region can be used. This is advantageous in that it is not necessary to separately manufacture the desalination zone monolith and the liquid permeation zone monolith. The flow rate ratio of the permeate passing through the liquid permeation region to the flow rate of the liquid to be processed is, for example, 2 to 30%, preferably 4 to 30%.

また、脱塩室の少なくとも一部に充填される多孔質陽イオン交換体は、国際公開WO 02/083770 A1に記載された複合多孔質イオン交換体を使用することができる。該複合多孔質イオン交換体は、前記モノリスの少なくとも一方の表面に、該モノリスと一体的に形成され、イオン交換基を保有するためにイオンの移動は可能であるが、実質的に水を透過しない緻密層を有するものである。このような複合多孔質イオン交換体を陽イオン交換体として使用する場合には、前記の電気再生式脱陽イオン装置の構成の内、イオン交換膜の一部または全部を省略し、装置構成をより簡略化することもできる。   As the porous cation exchanger filled in at least a part of the desalting chamber, a composite porous ion exchanger described in International Publication WO 02/083770 A1 can be used. The composite porous ion exchanger is formed integrally with the monolith on the surface of at least one of the monoliths. Since the composite porous ion exchanger has an ion exchange group, it can move ions, but substantially transmits water. It has a dense layer that does not. When such a composite porous ion exchanger is used as a cation exchanger, a part or all of the ion exchange membrane is omitted from the configuration of the electric regeneration type decation apparatus, and the apparatus configuration is It can also be simplified.

本発明の実施の形態における陰イオンの検出装置を図1を参照して説明する。図1は陰イオンの検出装置の一例を示す概略構成図である。図1において、陰イオンの検出装置10は、電気再生式脱陽イオン装置10aと、脱塩室流出配管32に配設される処理液の導電率又は比抵抗を測定する測定器10bとからなり、電気再生式脱陽イオン装置10aは、陽極室1と陰極室2の間に、二枚のカチオン交換膜5、5で区画された陽イオン交換体3が充填される脱塩室4を備え、陽極室1、陰極室2及び脱塩室4には、それぞれ液の流入配管11、21、31と流出配管12、22、32が配設されている。   An anion detection apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing an example of an anion detection device. In FIG. 1, the anion detection device 10 includes an electric regenerative decation ion device 10 a and a measuring instrument 10 b that measures the conductivity or specific resistance of a processing solution disposed in the desalination chamber outflow pipe 32. The electric regenerative decationization apparatus 10a includes a desalination chamber 4 in which a cation exchanger 3 partitioned by two cation exchange membranes 5 and 5 is filled between an anode chamber 1 and a cathode chamber 2. The anode chamber 1, the cathode chamber 2, and the desalting chamber 4 are provided with liquid inflow pipes 11, 21, 31 and outflow pipes 12, 22, 32, respectively.

図1において、脱塩室4は、被処理液流入側にモノリス35が、処理液流出側には球状陽イオン交換樹脂36が、それぞれ、充填体積比率1:1で充填されている。すなわち、モノリス35と球状陽イオン交換樹脂36は通水方向にモノリス相と球状陽イオン交換樹脂層が積層された層状体である。モノリスとイオン交換樹脂との層状体は、モノリスがスポンジ状の一体構造物であるため、イオン交換樹脂と混ざることがなく、室内においてイオン交換膜等の区画手段を用いなくとも相状に充填できる。また、被処理水流入配管31は脱塩室の陰極側のカチオン交換膜近傍に流入口がくるように付設され、処理水流出配管32は脱塩室の陽極側のカチオン交換膜近傍であって、流入口から遠い側に流出口がくるように付設されている。これにより、直流電場の印加は、排除されるイオンが該陽イオン交換体内における通水方向に対して逆方向に泳動するため、被処理液中の陽イオンを確実に除去できる。また、陰極室流入配管21は脱塩室流入配管31から分岐しており、陽極室流入配管11は測定器流出配管16と接続している。   In FIG. 1, the desalting chamber 4 is filled with a monolith 35 on the inflow side of the liquid to be treated and a spherical cation exchange resin 36 on the outflow side of the treatment liquid at a filling volume ratio of 1: 1. That is, the monolith 35 and the spherical cation exchange resin 36 are layered bodies in which a monolith phase and a spherical cation exchange resin layer are laminated in the direction of water flow. The layered body of the monolith and the ion exchange resin is a monolithic sponge-like structure, so that the monolith is not mixed with the ion exchange resin and can be filled in phase without using a partition means such as an ion exchange membrane in the room. . Further, the treated water inflow pipe 31 is attached so that the inlet is provided near the cation exchange membrane on the cathode side of the desalting chamber, and the treated water outflow pipe 32 is near the cation exchange membrane on the anode side of the desalination chamber. The outlet is attached to the side far from the inlet. As a result, the application of the DC electric field allows the ions to be eliminated to migrate in the direction opposite to the direction of water flow in the cation exchanger, so that the cations in the liquid to be treated can be reliably removed. Further, the cathode chamber inflow piping 21 is branched from the desalination chamber inflow piping 31, and the anode chamber inflow piping 11 is connected to the measuring device outflow piping 16.

図1の陰イオンの検出装置10において、被処理液が脱塩室4に流入すると、試料中に含まれるアンモニアやヒドラジン成分はカチオン交換体3に捕捉され、カチオン交換膜5を透過し、陰極室2に移動し、陰極水である試料液と共に系外へ排出される。陽極室1の陽極水は測定器10bの流出水であり、これには水素イオン以外の陽イオン成分はなく陽極室1から脱塩室4へは水素イオン以外に移動はない。このため、処理水は水素イオン以外の陽イオン成分の混入はない。ここで、試料液に少量の塩化ナトリウムが混入した場合、例えば1mgNH/l中の数μgNaCl/lの増加であるため、試料液自身の導電率はほとんど変化しない。一方、処理水はアンモニアやヒドラジンなどのカチオン成分は除去されるもののClは除去されない。従って、導電率はClが混入した分だけ変化する。この導電率は酸導電率の変化であるため、当該変化量は同当量のNaClの変化よりも大きい。なお、導電率は比抵抗の逆数であり、どちらを測定してもよい。 In the anion detection device 10 of FIG. 1, when the liquid to be treated flows into the desalting chamber 4, the ammonia and hydrazine components contained in the sample are captured by the cation exchanger 3 and permeate the cation exchange membrane 5 to form the cathode. It moves to the chamber 2 and is discharged out of the system together with the sample solution which is cathode water. The anode water in the anode chamber 1 is the effluent water of the measuring instrument 10b, which has no cation component other than hydrogen ions and does not move from the anode chamber 1 to the desalting chamber 4 other than hydrogen ions. For this reason, treated water does not contain cation components other than hydrogen ions. Here, when a small amount of sodium chloride is mixed in the sample solution, for example, an increase of several μg NaCl / l in 1 mg NH 3 / l, the conductivity of the sample solution itself hardly changes. On the other hand, treated water removes cation components such as ammonia and hydrazine, but does not remove Cl . Therefore, the conductivity changes by the amount of Cl mixed therein. Since this conductivity is a change in acid conductivity, the amount of change is greater than a change in the same equivalent NaCl. The conductivity is the reciprocal of the specific resistance, and either may be measured.

本発明の陰イオンの検出装置は、図1の陰イオン検出装置に限定されず、例えば、前記の脱塩領域と液透過領域を備えた複合イオン交換体又は緻密層を備えた複合多孔質イオン交換体を使用すれば、二枚のカチオン交換膜の設置を省略することができ、更にコストを低減できる。また、脱塩室中、被処理液の流通方向は直流電場の印加が、排除されるイオンが該陽イオン交換体内における通水方向に対して直行方向であってもよい。また、陽極水は、陰イオン測定器の流出水ではなく、別途の配管から供給される純水であってもよい。   The anion detection device of the present invention is not limited to the anion detection device of FIG. 1, for example, a composite ion exchanger having the desalting region and the liquid permeation region or a composite porous ion having a dense layer. If an exchanger is used, the installation of two cation exchange membranes can be omitted, and the cost can be further reduced. Further, in the desalting chamber, the flow direction of the liquid to be treated may be a direct electric field applied, and the ions to be excluded may be perpendicular to the water flow direction in the cation exchanger. Further, the anode water may be pure water supplied from a separate pipe instead of the outflow water of the anion measuring device.

本発明の陰イオンの検出装置の電気再生式脱陽イオン装置の脱塩室の全部に多孔質陽イオン交換体、特にモノリスを充填した場合、該モノリスは連続気泡構造を有する多孔質体であるため、その充填層には、従来の粒状イオン交換体充填層に見られるような粒子界面は存在せず、該充填層全体にわたって均一に陽イオン交換基が存在する。したがって、流入する被処理水中のアンモニアやヒドラジンなどのカチオン成分のイオン交換体への吸着が迅速で、かつ吸着されたカチオン成分は、該充填層全体に連続して存在する陽イオン交換基上をほぼ解離状態のまま、電気的に泳動して速やかに系外に排出される。カチオン成分の速やかな吸着と排除により、陰イオンの検出装置は、安定して正確な常時監視が可能で、かつ構造が簡単で且つ小型化でき安価に製造できる。また、更に被処理水流入側にモノリスを配置し、下流側に従来の粒状イオン交換樹脂を充填した場合、該モノリスの迅速な吸着とイオン排除を備えながら、粒状イオン交換樹脂の大きな充填体積当りの交換容量のために、発電所における定期点検時の満水保管後の立上げ運転時や、DSS、WSSなどに伴う被処理水中の陽イオン流入量の変動に対しても、より安定した脱陽イオン処理を行うことが可能となる。   When the entire desalination chamber of the electroregenerative decation apparatus of the anion detector of the present invention is filled with a porous cation exchanger, particularly a monolith, the monolith is a porous body having an open-cell structure. Therefore, in the packed bed, there is no particle interface as in the conventional granular ion exchanger packed bed, and cation exchange groups exist uniformly throughout the packed bed. Therefore, adsorption of cation components such as ammonia and hydrazine in the inflowing treated water to the ion exchanger is rapid, and the adsorbed cation components are present on the cation exchange group continuously present in the entire packed bed. In an almost dissociated state, it electrophoreses and is quickly discharged out of the system. By quickly adsorbing and eliminating the cation component, the anion detector can be constantly and accurately monitored, and has a simple structure, can be miniaturized, and can be manufactured at low cost. In addition, when a monolith is arranged on the treated water inflow side and a conventional granular ion exchange resin is filled on the downstream side, the monolith per a large filling volume of the granular ion exchange resin is provided with quick adsorption and ion exclusion of the monolith. Because of the exchange capacity of the plant, more stable decations are possible even during start-up operations after full water storage during periodic inspections at power stations and fluctuations in the amount of cation inflow in the treated water due to DSS, WSS, etc. Ion processing can be performed.

次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(陰イオン検出装置)
図1に示した装置が安定して正確な被検水中の陰イオンの検出定量ができることを確認した。陰極にはSUS304製の網目板を、陽極にはチタン製網目板に白金を被覆したものを用い、二枚の陽イオン交換膜5、5に密着させて配置した。二枚の陽イオン交換膜5、5は、いずれもスチレン−ジビニルベンゼン共重合体母体にスルホン酸基を導入した強酸性陽イオン交換膜(ネオセプタ CMX(徳山曹達社製))を使用した。両電極のイオン交換膜接触面との反対側をそれぞれ陰極室2、陽極室1とした。前記二枚の陽イオン交換膜5、5で仕切られた脱陽イオン室4には、被処理水流入側にモノリス35を充填し、下流側にスチレン−ジビニルベンゼン共重合体母体にスルホン酸基を導入した球状強酸性陽イオン交換樹脂36(アンバーライトIR120B)を充填した。脱陽イオン室形状は、50mm×50mm×100mmの直方体であり、モノリス35及び球状強酸性陽イオン交換樹脂36を体積比で1:1で充填した。前記モノリス35のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。脱陽イオン室4からの処理水流出配管32を導電率計10b(フォックスボロ製875CR(モニター)、同871CC(センサー))に接続し、該導電率計10bからの流出水を陽極室1の入口に接続して、陰イオン検出装置10を構成した。
(Anion detector)
It was confirmed that the apparatus shown in FIG. 1 can stably and accurately detect and quantify anions in test water. A mesh plate made of SUS304 was used as the cathode, and a titanium mesh plate coated with platinum was used as the anode, and was placed in close contact with the two cation exchange membranes 5 and 5. The two cation exchange membranes 5 and 5 were both strongly acidic cation exchange membranes (Neocepta CMX (manufactured by Tokuyama Soda Co., Ltd.)) in which sulfonic acid groups were introduced into a styrene-divinylbenzene copolymer matrix. The opposite sides of both electrodes to the ion exchange membrane contact surface were designated as a cathode chamber 2 and an anode chamber 1, respectively. The decation chamber 4 divided by the two cation exchange membranes 5 and 5 is filled with a monolith 35 on the treated water inflow side and a styrene-divinylbenzene copolymer matrix on the downstream side with a sulfonic acid group. The spherical strong acidic cation exchange resin 36 (Amberlite IR120B) into which was introduced was packed. The shape of the decation chamber was a rectangular parallelepiped of 50 mm × 50 mm × 100 mm, and the monolith 35 and the spherical strong acid cation exchange resin 36 were filled at a volume ratio of 1: 1. The ion exchange capacity of the monolith 35 is 4.0 mg equivalent / g in terms of a dry porous body, and sulfonic acid groups are uniformly introduced into the porous body by mapping of sulfur atoms using EPMA. confirmed. Moreover, as a result of SEM observation, the internal structure of this porous body has an open cell structure, most of the macropores having an average diameter of 30 μm overlap, and the average diameter of the mesopores formed by the overlap of the macropores and the macropores. The value was 5 μm and the total pore volume was 10.1 ml / g. The treated water outflow pipe 32 from the decation chamber 4 is connected to the conductivity meter 10b (Foxboro 875CR (monitor), 871CC (sensor)), and the outflow water from the conductivity meter 10b is supplied to the anode chamber 1 An anion detector 10 was configured by connecting to the inlet.

(陰イオン検出方法)
陰イオン検出装置10を用いて、発電所の定常運転時における海水リーク検知能を模擬水によって確認した。被処理水としては、比抵抗18.2MΩ・cm純水にアンモニアを濃度1mgNH/lとなるように溶解し、海水リークを模擬するために、前記アンモニア水に更に塩化ナトリウムを0.1〜100μg/lの濃度となるように適宜変化させて用いた。被処理水の流量は、50l/hであり、陽極、陰極間に印加した直流電流は1.0A、電圧は40Vであった。結果を表1に示す。表1より陰イオン検出装置10は、塩化ナトリウム5μg/lを検出、定量可能であり、火力および原子力発電所における海水リークの連続監視装置として、充分な性能を有していることがわかる。
(Anion detection method)
Using the anion detection device 10, the seawater leak detection ability during steady operation of the power plant was confirmed with simulated water. As the water to be treated, ammonia was dissolved in pure water having a specific resistance of 18.2 MΩ · cm so as to have a concentration of 1 mg NH 3 / l, and sodium chloride was further added to the ammonia water in order to simulate seawater leak. The concentration was changed as appropriate so that the concentration was 100 μg / l. The flow rate of the water to be treated was 50 l / h, the direct current applied between the anode and the cathode was 1.0 A, and the voltage was 40V. The results are shown in Table 1. From Table 1, it can be seen that the anion detector 10 can detect and quantify 5 μg / l of sodium chloride, and has sufficient performance as a continuous monitoring device for seawater leaks in thermal power and nuclear power plants.

Figure 0004671272
Figure 0004671272

更に、火力発電所におけるウィークリー・スタート・ストップ(WSS)を想定し、被処理水中の陽イオン濃度が高い場合にも陰イオン検出装置10が安定して脱陽イオン性能を発揮することを確認した。すなわち、被処理水中の陽イオンをアンモニア2mgNH/l、ヒドラジン10mgN/lとし、塩化ナトリウム無配合とし、運転時間1000時間とした以外は、実施例1と同様の陰イオン検出装置を用い、同様の方法で行った。その結果、1000時間に渡る連続運転で、処理水導電率は0.06μS/cm以下を保持し、本例の陰イオン検出装置が被処理水中の陽イオン負荷上昇時にも、安定して脱陽イオン処理が可能であることを確認した。 Furthermore, assuming a weekly start / stop (WSS) in a thermal power plant, it was confirmed that the anion detector 10 stably exhibits decation performance even when the cation concentration in the treated water is high. . That is, an anion detection apparatus similar to that of Example 1 except that the cation in the water to be treated was 2 mg NH 3 / l ammonia, 10 mg N 2 H 4 / l hydrazine, no sodium chloride was added, and the operation time was 1000 hours. And performed in a similar manner. As a result, the conductivity of the treated water is maintained at 0.06 μS / cm or less in 1000 hours of continuous operation, and the anion detector of the present example stably removes the cation even when the cation load increases in the treated water. It was confirmed that ion treatment was possible.

比較例1
モノリスと球状強酸性陽イオン交換樹脂の体積比1:1の充填に代えて、該室内全体に球状強酸性陽イオン交換樹脂(アンバーライトIR120B)を充填した以外は、実施例1と同様の陰イオン検出装置を用い、前記被処理水中の陽イオン負荷上昇時の脱陽イオン性能確認と同様の条件で運転を行った。その結果、処理水導電率は運転開始後50時間から上昇し、70時間後に5.2μS/cmとなって以後安定した。塩化ナトリウムの添加のない被処理水通水時に処理水導電率5.2μS/cmでは、微量の海水リークの検出及び定量は不可能である。
Comparative Example 1
Instead of filling the monolith and the spherical strong acid cation exchange resin at a volume ratio of 1: 1, the negative electrode similar to Example 1 except that the whole chamber was filled with the spherical strong acid cation exchange resin (Amberlite IR120B). Using an ion detector, the operation was performed under the same conditions as the decation performance confirmation when the cation load in the treated water was increased. As a result, the treated water conductivity increased from 50 hours after the start of operation, became 5.2 μS / cm after 70 hours, and stabilized thereafter. When the treated water conductivity is 5.2 μS / cm when water to be treated is added without adding sodium chloride, it is impossible to detect and quantify a slight amount of seawater leak.

実施例1及び2から、陰イオン検出定量10は、装置構造が簡単で小型化でき、設置コストを低減でき、しかも操作が簡単で安定して正確な常時監視ができることは明らかである。また、比較例の結果より、有機多孔質陽イオン交換体を使用しない陰イオン検出装置では、アンモニアやヒドラジンといった弱塩基性陽イオンの除去性能が実施例の陰イオンの検出装置に比して十分でないことが確認された。   From Examples 1 and 2, it is clear that the anion detection quantification 10 has a simple device structure and can be miniaturized, can reduce the installation cost, is easy to operate, is stable, and can be constantly monitored accurately. In addition, from the results of the comparative example, the anion detection device that does not use the organic porous cation exchanger has a sufficient ability to remove weakly basic cations such as ammonia and hydrazine compared to the anion detection device of the example. It was confirmed that it was not.

本発明の陰イオン検出装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the anion detection apparatus of this invention.

符号の説明Explanation of symbols

1 陽極室
2 陰極室
3 陽イオン交換体
4 脱陽イオン室
5 陽イオン交換膜
10 陰イオン検出装置
10a 電気再生式脱陽イオン装置
10b 測定器(比抵抗計又は導電率計)
11 陽極水流入配管
12 陽極水流出配管
21 陰極水流入配管
22 陰極水流出配管
31 被処理水流入配管
32 処理水流出配管
DESCRIPTION OF SYMBOLS 1 Anode chamber 2 Cathode chamber 3 Cation exchanger 4 Decation chamber 5 Cation exchange membrane 10 Anion detector 10a Electric regeneration type decation apparatus 10b Measuring instrument (resistivity meter or conductivity meter)
DESCRIPTION OF SYMBOLS 11 Anode water inflow piping 12 Anode water outflow piping 21 Cathode water inflow piping 22 Cathode water outflow piping 31 Treated water inflow piping 32 Treated water outflow piping

Claims (3)

試料液を電気再生式脱陽イオン装置の脱塩室に通液して、該試料液中の陽イオンを除去した後、該液中の陰イオンを測定する陰イオン検出方法において、該脱塩室に充填される陽イオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、陽イオン交換基が均一に分布され、陽イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質陽イオン交換体と、粒状陽イオン交換体とを、試料液流入側に前記有機多孔質陽イオン交換体を配置し、試料液流出側に粒状陽イオン交換体を配置して、層状に設置したものであることを特徴とする液中の陰イオン検出方法。 In the anion detection method for measuring an anion in the liquid after removing the cation in the sample liquid by passing the sample liquid through a desalting chamber of an electric regeneration type decation apparatus, the desalting is performed. The cation exchanger filled in the chamber has an open cell structure having mesopores having an average diameter of 1-1000 μm in the macropores and the walls of the macropores, and the total pore volume is 1-50 ml / g. There, the cation-exchange groups are uniformly distributed, and a cation exchange capacity of 0.5mg equivalent / g dry porous material or organic porous cation exchanger, and a particulate cation exchanger, sample liquid inlet side A method for detecting anions in a liquid , wherein the organic porous cation exchanger is disposed in a layered state, a granular cation exchanger is disposed on the outflow side of the sample liquid, and the organic porous cation exchanger is disposed in a layered manner. 発電所の復水器の冷却水のリークを測定することを特徴とする請求項記載の液中の陰イオン検出方法。 Negative ion detection method in a liquid according to claim 1, wherein the measuring the leakage of the cooling water of the condenser of the power plant. 陽極室と陰極室の間に陽イオン交換体が充填された脱塩室を備え、該陽極室、陰極室及び脱塩室には、それぞれ液の流入配管と流出配管が配設された電気再生式脱陽イオン装置と、
該脱塩室流出配管に配設される該処理液の導電率又は比抵抗を測定する測定器と、
を備えるものであって、該脱塩室に充填される陽イオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、陽イオン交換基が均一に分布され、陽イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質陽イオン交換体、粒状陽イオン交換体とを、試料液流入側に前記有機多孔質陽イオン交換体を配置し、試料液流出側に粒状陽イオン交換体を配置して、層状に設置したものであることを特徴とする液中の陰イオン検出装置。
An electric regeneration system comprising a desalting chamber filled with a cation exchanger between the anode chamber and the cathode chamber, and an inflow pipe and an outflow pipe for the liquid disposed in the anode chamber, the cathode chamber and the desalting chamber, respectively. A deionization device,
A measuring instrument for measuring the conductivity or specific resistance of the treatment liquid disposed in the desalination chamber outflow pipe;
The cation exchanger filled in the desalting chamber has an open cell structure having macropores connected to each other and mesopores having an average diameter of 1 to 1000 μm in the walls of the macropores. An organic porous cation exchanger having a pore volume of 1 to 50 ml / g, a cation exchange group uniformly distributed, and a cation exchange capacity of 0.5 mg equivalent / g or more of a dry porous body, a granular cation A liquid, characterized in that the organic porous cation exchanger is disposed on the sample liquid inflow side and the granular cation exchanger is disposed on the sample liquid outflow side, and the exchanger is installed in layers. Inside anion detector.
JP2004362496A 2004-12-15 2004-12-15 Method and apparatus for detecting anion in liquid Active JP4671272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362496A JP4671272B2 (en) 2004-12-15 2004-12-15 Method and apparatus for detecting anion in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362496A JP4671272B2 (en) 2004-12-15 2004-12-15 Method and apparatus for detecting anion in liquid

Publications (2)

Publication Number Publication Date
JP2006167568A JP2006167568A (en) 2006-06-29
JP4671272B2 true JP4671272B2 (en) 2011-04-13

Family

ID=36668869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362496A Active JP4671272B2 (en) 2004-12-15 2004-12-15 Method and apparatus for detecting anion in liquid

Country Status (1)

Country Link
JP (1) JP4671272B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993568B2 (en) * 2006-09-22 2012-08-08 中国電力株式会社 Water treatment method and apparatus for stopping / starting a power plant
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5486204B2 (en) * 2009-03-13 2014-05-07 オルガノ株式会社 Method and apparatus for detecting anion in liquid
JP5336258B2 (en) * 2009-05-14 2013-11-06 オルガノ株式会社 Method and apparatus for detecting anion in liquid
WO2012039312A1 (en) * 2010-09-22 2012-03-29 日理工業株式会社 Device for removing impurity ions
JP5648106B2 (en) * 2013-09-13 2015-01-07 オルガノ株式会社 Method and apparatus for detecting anion in liquid
JP6108020B1 (en) * 2016-09-27 2017-04-05 東亜ディーケーケー株式会社 Ion exchange device and anion detection device
JP6108021B1 (en) * 2016-09-27 2017-04-05 東亜ディーケーケー株式会社 Anion detection system
JP7454330B2 (en) * 2018-06-20 2024-03-22 オルガノ株式会社 Boron removal method in treated water, boron removal system, ultrapure water production system, and boron concentration measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153588A (en) * 1987-09-17 1998-06-09 Asahi Optical Co Ltd Column for liquid chromatography
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2003166982A (en) * 2001-09-18 2003-06-13 Japan Organo Co Ltd Organic porous material, manufacturing method therefor, and organic porous ion exchanger
JP2003246809A (en) * 2001-12-21 2003-09-05 Japan Organo Co Ltd Organic porous material, manufacturing method for it and organic porous ion exchanger
JP2004066153A (en) * 2002-08-08 2004-03-04 Japan Organo Co Ltd Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
JP2004177180A (en) * 2002-11-25 2004-06-24 Chemicals Evaluation & Research Institute Column for liquid chromatograph
JP2004264045A (en) * 2003-02-03 2004-09-24 Japan Organo Co Ltd Column and suppressor for ion chromatography unit, and ion chromatography unit
JP2004283647A (en) * 2003-03-19 2004-10-14 Nihon Medi Physics Co Ltd Cylindrical column structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153588A (en) * 1987-09-17 1998-06-09 Asahi Optical Co Ltd Column for liquid chromatography
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2003166982A (en) * 2001-09-18 2003-06-13 Japan Organo Co Ltd Organic porous material, manufacturing method therefor, and organic porous ion exchanger
JP2003246809A (en) * 2001-12-21 2003-09-05 Japan Organo Co Ltd Organic porous material, manufacturing method for it and organic porous ion exchanger
JP2004066153A (en) * 2002-08-08 2004-03-04 Japan Organo Co Ltd Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
JP2004177180A (en) * 2002-11-25 2004-06-24 Chemicals Evaluation & Research Institute Column for liquid chromatograph
JP2004264045A (en) * 2003-02-03 2004-09-24 Japan Organo Co Ltd Column and suppressor for ion chromatography unit, and ion chromatography unit
JP2004283647A (en) * 2003-03-19 2004-10-14 Nihon Medi Physics Co Ltd Cylindrical column structure

Also Published As

Publication number Publication date
JP2006167568A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US5954937A (en) Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
JP4394957B2 (en) Water purification apparatus and method
JP5947367B2 (en) CO2 removal apparatus and method
EP2801821B1 (en) Current efficient electrolytic device and method
Hassanvand et al. Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time
JP2002048776A (en) Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP4671272B2 (en) Method and apparatus for detecting anion in liquid
KR20080056216A (en) Recycling of suppressor regenerants
JP2014512945A5 (en)
JP2005515055A (en) Aqueous flow purifier and method of use
JP3169831B2 (en) Water anion detector
KR20110081148A (en) Electrochemically driven pump
US20190322547A1 (en) Ion exchange based volatile component removal device for ion chromatography
JP2018054359A (en) Anion detecting system
EP2881496A1 (en) Gas-less electrolytic device and method
JP2013255864A (en) Apparatus for producing purified water
JP3704289B2 (en) Method and apparatus for detecting anions in water
WO2002014850A9 (en) A process and device for continuous ionic monitoring of aqueous solutions
JP6108020B1 (en) Ion exchange device and anion detection device
JP6676266B2 (en) Electric regeneration type deionizer
JP2019219199A (en) Measuring system and measuring method for conductivity of cation removed water
US20030180186A1 (en) Process and device for continuous tonic monitoring of aqueous solutions
CN111615497B (en) Electric deionizing device for producing deionized water
JP6916702B2 (en) Measurement method and measurement system for conductivity of decationized water
WO2019058779A1 (en) Decationized water electrical conductivity measuring method and measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

R150 Certificate of patent or registration of utility model

Ref document number: 4671272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250