JP2013255864A - Apparatus for producing purified water - Google Patents
Apparatus for producing purified water Download PDFInfo
- Publication number
- JP2013255864A JP2013255864A JP2012131468A JP2012131468A JP2013255864A JP 2013255864 A JP2013255864 A JP 2013255864A JP 2012131468 A JP2012131468 A JP 2012131468A JP 2012131468 A JP2012131468 A JP 2012131468A JP 2013255864 A JP2013255864 A JP 2013255864A
- Authority
- JP
- Japan
- Prior art keywords
- pure water
- exchange resin
- ion exchange
- water
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 247
- 239000008213 purified water Substances 0.000 title abstract 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 82
- 238000005342 ion exchange Methods 0.000 claims abstract description 72
- 239000012528 membrane Substances 0.000 claims abstract description 62
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 49
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 41
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims description 48
- 230000002378 acidificating effect Effects 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 46
- 150000001450 anions Chemical class 0.000 abstract description 26
- 150000001768 cations Chemical class 0.000 abstract description 18
- 239000011347 resin Substances 0.000 abstract description 12
- 229920005989 resin Polymers 0.000 abstract description 12
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000003456 ion exchange resin Substances 0.000 description 45
- 229920003303 ion-exchange polymer Polymers 0.000 description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 40
- 238000002156 mixing Methods 0.000 description 23
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 22
- 229910052796 boron Inorganic materials 0.000 description 22
- 239000000377 silicon dioxide Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 230000008929 regeneration Effects 0.000 description 13
- 238000011069 regeneration method Methods 0.000 description 13
- 229910001415 sodium ion Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000005349 anion exchange Methods 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- -1 chlorine ions Chemical class 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000002349 well water Substances 0.000 description 3
- 235000020681 well water Nutrition 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
本発明は、混床式イオン交換装置の寿命を延長した純水製造装置に関する。 The present invention relates to a pure water production apparatus that extends the life of a mixed bed ion exchange apparatus.
従来から、半導体製造分野、医薬品製造分野などにおいて、純水が使用されている。純水は、上水、井水、洗浄排水などを原水とし、吸着除去やろ過処理などを組み合わせた前処理システム、逆浸透膜処理、限外ろ過処理、イオン交換処理などを組み合わせてほとんどのイオン成分や全有機炭素(以下、TOCともいう。)成分を除去する1次純水システムを経て製造されている。また、この純水を、紫外線照射処理、限外ろ過処理、イオン交換処理などを組み合わせて極めて微量のイオンや低分子有機物などを除去する2次純水システムを経てさらに高純度化することも行われている。 Conventionally, pure water has been used in the fields of semiconductor manufacturing and pharmaceutical manufacturing. Pure water uses raw water from well water, well water, washing wastewater, etc., and combines most of the ions with a pretreatment system that combines adsorption removal and filtration, reverse osmosis membrane treatment, ultrafiltration treatment, ion exchange treatment, etc. It is manufactured through a primary pure water system that removes components and total organic carbon (hereinafter also referred to as TOC) components. In addition, this pure water can be further purified through a secondary pure water system that combines ultra-violet irradiation treatment, ultrafiltration treatment, ion exchange treatment, etc. to remove extremely small amounts of ions and low-molecular organic substances. It has been broken.
1次純水システムや2次純水システムのイオン交換処理においては、被処理水や製造される純水の水質に応じて、カチオン交換樹脂、アニオン交換樹脂、キレート樹脂などの各種イオン交換樹脂が容器に充填されたイオン交換装置が用いられている。中でも、カチオン交換樹脂とアニオン交換樹脂を混合して充填された混床式イオン交換装置は、カチオン交換樹脂とアニオン交換樹脂が交換容量比で1/1でほぼ均一に混合されていることにより、カチオン交換装置とアニオン交換装置に交互に無限回通水することと同様の効果が得られ、高水質の純水を得ることができるため多く用いられている。
混床式イオン交換装置としては、再生式、非再生式のものが知られており、いずれも被処理水を処理することでイオン交換樹脂が飽和し除去能力が低下するため、処理による負荷に応じて再生処理や交換を行う必要がある。
In the ion exchange treatment of the primary pure water system and the secondary pure water system, various ion exchange resins such as a cation exchange resin, an anion exchange resin, and a chelate resin are used depending on the quality of the water to be treated and the pure water produced. An ion exchange device filled in a container is used. Among them, the mixed bed type ion exchanger filled with a mixture of a cation exchange resin and an anion exchange resin has a cation exchange resin and an anion exchange resin that are mixed almost uniformly at an exchange capacity ratio of 1/1, Since the same effect as passing through the cation exchange device and the anion exchange device alternately and infinitely is obtained and high-quality pure water can be obtained, it is often used.
As a mixed bed type ion exchange device, a regenerative type and a non-regenerative type are known, both of which treat the water to be treated, saturate the ion exchange resin and lower the removal capability, so the load due to the treatment is increased. It is necessary to perform regeneration processing and replacement accordingly.
1次純水システムでは、混床式イオン交換装置の負荷を低減して、より高水質の純水を得るために、混床式イオン交換装置の前段にイオン成分とともに微粒子などを除去する逆浸透膜装置や、混床式イオン交換装置に比べ再生処理が容易で、前処理水システムの処理水(前処理水)中に残存する微量の濁質分により逆浸透膜が目詰まりするなどの不具合の起こりにくい2床3塔型装置など組み合わせて使用することが行われている。
また、1次純水システムの混床式イオン交換装置では、シリカやホウ素が除去されにくいことが知られており、ホウ素の除去率を向上させる場合には、混床式イオン交換装置とホウ素選択性樹脂を用いた装置を組み合わせて使用することも提案されている。(例えば、特許文献1参照。)
In the primary pure water system, reverse osmosis is used to remove fine particles together with ion components at the front stage of the mixed bed ion exchanger in order to reduce the load on the mixed bed ion exchanger and obtain higher quality pure water. Regeneration treatment is easier than membrane devices and mixed bed type ion exchange devices, and reverse osmosis membranes are clogged by a small amount of turbidity remaining in the treated water (pretreated water) of the pretreated water system. It is used in combination with a two-bed / three-column type apparatus that is unlikely to occur.
Also, it is known that silica and boron are difficult to remove in the mixed bed type ion exchange device of the primary pure water system. When improving the boron removal rate, the mixed bed type ion exchange device and the boron selection are selected. It has also been proposed to use a combination of devices using a conductive resin. (For example, refer to Patent Document 1.)
上記したイオン交換樹脂からはイオン交換樹脂量に応じて有機物が漏出することも知られている。この問題を解消するために、1次純水システムにおける混床式イオン交換装置として、カチオン交換樹脂とアニオン交換樹脂を所定の混合比で充填し、60℃の高温の被処理水を通水して、漏出する有機物を低減した混床式イオン交換装置が記載されている。(例えば、特許文献2参照。)
It is also known that organic matter leaks from the above-described ion exchange resin according to the amount of the ion exchange resin. In order to solve this problem, as a mixed bed type ion exchange device in a primary pure water system, a cation exchange resin and an anion exchange resin are filled at a predetermined mixing ratio, and water to be treated at a high temperature of 60 ° C. is passed through. Thus, a mixed bed type ion exchange apparatus in which leaking organic substances are reduced is described. (For example, see
一方、2次純水システムでは、混床式イオン交換装置としては、超高水質の超純水を得るためにイオン交換樹脂の再生処理を行わず、イオン交換樹脂の入替えや容器ごとの交換を行う非再生式の混床式イオン交換装置(ポリッシャー)が用いられている。
2次純水システムの被処理水は1次純水システムの入口水である前処理水と比べて、例えばイオン濃度は1/1000以下と極微量であることから、イオン交換装置は、充填されたイオン交換樹脂が飽和する前に上記したように交換することが行われている。
On the other hand, in the secondary pure water system, as a mixed bed type ion exchange device, in order to obtain ultra-pure water with ultra-high water quality, the ion exchange resin is not regenerated and the ion exchange resin is replaced or replaced for each container. A non-regenerative mixed-bed ion exchange apparatus (polisher) is used.
The treated water of the secondary pure water system has a very small ion concentration of 1/1000 or less, for example, compared to the pretreated water that is the inlet water of the primary pure water system. Before the ion exchange resin is saturated, it is exchanged as described above.
2次純水システムにおいて用いられるポリッシャーとしては、ナトリウムイオンやTOCを低減させる目的や、シリカ濃度を低減させる目的で用いられる、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を所定の割合で混合して構成したポリッシャーが提案されている。(例えば、特許文献3、4参照。)
The polisher used in the secondary pure water system is a mixture of strong acid cation exchange resin and strongly basic anion exchange resin used for the purpose of reducing sodium ion and TOC and the purpose of reducing silica concentration at a predetermined ratio. A polisher configured as described above has been proposed. (For example, see
近年、医療用、半導体製造用などに用いられる純水を製造する装置の大規模化や、純水の高水質化に伴い、運転管理の簡素化やコスト削減を目的とし、より長期間安定して純水を製造することのできるイオン交換樹脂が求められる傾向にある。
特に、高水質の純水を製造する装置では、頻繁な交換、再生処理を要する、使用する薬品の量が増大する、処理工程が煩雑化するという問題がある上、薬品による再生処理は、イオン交換樹脂への力学的、化学的負荷を増大させるため、イオン交換樹脂を破砕させ寿命をさらに短くするという問題があった。
また、再生処理や交換などの直後の処理水は水質が十分でなく、水質が上がり安定するまで処理水を使用することができない。したがって要求される水質を満たさない処理水を前段に循環させ再処理する、ブロー排出するなどの手段が採られており、再生処理頻度の増加が運転管理の煩雑化やコスト増の重大な要因となるという問題もあった。
In recent years, with the increase in the scale of pure water production equipment used for medical and semiconductor manufacturing, and the increase in the quality of pure water, it has been stable for a longer period of time for the purpose of simplifying operation management and reducing costs. Therefore, ion exchange resins that can produce pure water tend to be required.
In particular, in an apparatus for producing high-quality pure water, there are problems that frequent replacement and regeneration treatment are required, the amount of chemicals used is increased, and the treatment process is complicated. In order to increase the mechanical and chemical load on the exchange resin, there is a problem that the ion exchange resin is crushed to further shorten the life.
Further, the treated water immediately after the regeneration treatment or replacement has insufficient water quality, and the treated water cannot be used until the water quality is improved and stabilized. Therefore, measures such as circulating and reprocessing treated water that does not satisfy the required water quality to the previous stage and blowing it out are taken, and the increase in the frequency of regeneration treatment is a major factor in complicating operation management and increasing costs. There was also a problem of becoming.
これらのことから、1次純水システムにおいて、優れたイオン除去能力を有するともに、再生処理頻度の削減できる純水装置が求められていた。 For these reasons, there has been a demand for a pure water apparatus that has an excellent ion removal capability and can reduce the frequency of regeneration treatment in the primary pure water system.
本発明は上記問題を解消するためになされたものであって、1次純水システム中において、アニオン成分がカチオン成分より多い被処理水を処理する場合に、混床式イオン交換装置の寿命が延長され、かつ優れたイオン成分除去能力を有する純水製造装置の提供を課題とする。 The present invention has been made in order to solve the above-mentioned problem. In the primary pure water system, when the water to be treated has a larger amount of anion component than that of the cation component, the life of the mixed bed type ion exchange apparatus is improved. It is an object of the present invention to provide an apparatus for producing pure water that is extended and has an excellent ability to remove ionic components.
ところで、1次純水システムの逆浸透膜装置では、全有機炭素成分や微粒子などとともにマグネシウム、ナトリウムなどのイオン成分が除去され透過水が得られる。逆浸透膜装置において、2価イオンより1価イオンの方が除去されにくく、金属イオンなどのカチオン成分よりアニオン成分の方が除去されにくい。また、逆浸透膜装置ではイオン化せずに溶存する炭酸ガス(二酸化炭素)はほとんど除去されない。そのため、逆浸透膜装置の透過水中では、除去されず残存した二酸化炭素由来の炭酸水素イオン(HCO3 −)など、アニオン成分が多く存在し、全体としてカチオン成分より多くなっている。 By the way, in the reverse osmosis membrane device of the primary pure water system, ion components such as magnesium and sodium are removed together with all organic carbon components and fine particles, and permeated water is obtained. In reverse osmosis membrane devices, monovalent ions are less likely to be removed than divalent ions, and anionic components are less likely to be removed than cationic components such as metal ions. In the reverse osmosis membrane device, carbon dioxide (carbon dioxide) dissolved without being ionized is hardly removed. For this reason, in the permeated water of the reverse osmosis membrane device, there are many anion components such as hydrogen carbonate ions (HCO 3 − ) derived from carbon dioxide that remain without being removed, and as a whole, there are more than the cation components.
アニオン成分の中でも特に弱電解質のアニオンは、逆浸透膜装置で除去されにくいだけでなく、後段のイオン交換樹脂に吸着されにくい。また、炭酸ガス由来の炭酸水素イオンなど他のアニオンが共存すると一度吸着されても脱離してしまい漏出する。そのため、後段への負荷を増加させる、純水の水質を悪化させるなどの要因となるおそれがある。 Among the anion components, particularly weak electrolyte anions are not only easily removed by the reverse osmosis membrane apparatus, but also difficult to be adsorbed by the subsequent ion exchange resin. In addition, when other anions such as hydrogen carbonate ions derived from carbon dioxide coexist, they are separated and leak even if they are once adsorbed. For this reason, there is a risk of increasing the load on the subsequent stage or deteriorating the quality of pure water.
本発明者らは、逆浸透膜装置の透過水のようにアニオン成分がカチオン成分より多い(以下、「アニオン過多の」ともいう。)被処理水を通水する混床式イオン交換装置について、充填するカチオン交換樹脂とアニオン交換樹脂の交換容量で計算される混合比に着目して研究した。その結果、交換容量で計算される所定の混合比を決定して、吸着されにくい弱電解質アニオン成分の除去率を向上させ、かつカチオン成分の除去率とのバランスを制御することにより混床式イオン交換装置の寿命を延長することを知見し、本発明の純水製造装置を完成した。 The present inventors have a mixed bed type ion exchange apparatus that allows water to be treated to flow through the water to be treated, such as the permeated water of the reverse osmosis membrane device, which has more anionic components than the cationic components (hereinafter also referred to as “excessive anion”). The research focused on the mixing ratio calculated by the exchange capacity of the cation exchange resin and the anion exchange resin to be filled. As a result, the predetermined mixing ratio calculated by the exchange capacity is determined, the removal rate of the weak electrolyte anion component that is difficult to be adsorbed is improved, and the balance with the removal rate of the cation component is controlled, thereby controlling the mixed bed type ion. Knowing that the life of the exchange device is extended, the pure water production device of the present invention was completed.
本発明者らは、この純水製造装置によれば、今まで除去が困難とされていた原水由来の微量溶存ホウ素やシリカの除去率を向上させ、比抵抗の下降により容易に測定できるナトリウムイオンが最初に漏出することを知見した。
なお、本発明において、特に断らない場合には、カチオン交換樹脂とアニオン交換樹脂の混合比は、交換容量により計算される値である。イオン交換樹脂又はイオン交換装置の「寿命」とは、通水開始時から処理水の比抵抗が所定の値以下となり通水を停止するまでの期間をいう。
「純水」とは比抵抗10.0MΩ・cm以上の水をいい、「1次純水」とは比抵抗17.0MΩ・cm以上の純水をいう。
According to this pure water production apparatus, the present inventors have improved the removal rate of trace dissolved boron and silica derived from raw water, which has been difficult to remove until now, and sodium ions that can be easily measured by lowering the specific resistance Was found to leak first.
In the present invention, unless otherwise specified, the mixing ratio of the cation exchange resin and the anion exchange resin is a value calculated from the exchange capacity. The “lifetime” of the ion exchange resin or ion exchange device refers to a period from the start of water flow until the specific resistance of the treated water becomes a predetermined value or less and the water flow is stopped.
“Pure water” refers to water having a specific resistance of 10.0 MΩ · cm or higher, and “primary pure water” refers to pure water having a specific resistance of 17.0 MΩ · cm or higher.
本発明の第1の純水製造装置は、前処理システムと、1次純水システムとを備える純水製造装置において、前記1次純水システムは、逆浸透膜装置と、前記逆浸透膜装置の直後に設置された混床式イオン交換装置とを含み、前記混床式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを前記強酸性カチオン交換樹脂/前記強塩基性アニオン交換樹脂で示される交換容量比で1/1.5〜1/5として混合し充填したことを特徴とする。
本発明の第2の純水製造装置は、前記混床式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを前記強酸性カチオン交換樹脂/前記強塩基性アニオン交換樹脂で示される交換容量比で1/2.5〜1/3.5として混合し充填したことを特徴とする。
本発明の第3の純水製造装置は、前記逆浸透膜装置が2段逆浸透膜装置であることを特徴とする。
本発明の第4の純水製造装置は、前記混床式イオン交換装置に通水される被処理水の比抵抗が0.1〜10MΩ・cmであることを特徴とする。
本発明の第5の純水製造装置は、前記前処理システムと前記逆浸透膜装置の間に、2床3塔型装置を含むことを特徴とする。
本発明の第6の純水製造装置は、前記逆浸透膜装置の前段に脱気装置を含むことを特徴とする。
本発明の第7の純水製造装置は、前記混床式イオン交換装置の後段に比抵抗計を備え、比抵抗が降下し、17.0MΩ・cm未満となった任意の時点で前記混床式イオン交換装置への通水を停止するよう制御されることを特徴とする。
本発明の第8の純水製造装置は、前記1次純水システムの後段に、前記1次純水システムでの処理水を更に高純度化する2次純水システムを備えることを特徴とする。
The first pure water production apparatus of the present invention is a pure water production apparatus comprising a pretreatment system and a primary pure water system, wherein the primary pure water system comprises a reverse osmosis membrane device and the reverse osmosis membrane device. The mixed bed type ion exchange apparatus is installed immediately after the mixed bed type ion exchange apparatus, wherein the strong acid cation exchange resin and the strong basic anion exchange resin are combined with the strong acid cation exchange resin / the strong basicity. It is characterized by being mixed and filled as an exchange capacity ratio indicated by an anion exchange resin of 1 / 1.5-1 / 5.
In the second pure water production apparatus of the present invention, the mixed bed type ion exchange apparatus comprises a strongly acidic cation exchange resin and a strongly basic anion exchange resin as the strongly acidic cation exchange resin / the strongly basic anion exchange resin. It is characterized by being mixed and filled in the exchange capacity ratio shown as 1 / 2.5-1 / 3.5.
The third pure water producing apparatus of the present invention is characterized in that the reverse osmosis membrane device is a two-stage reverse osmosis membrane device.
The 4th pure water manufacturing apparatus of this invention is characterized by the specific resistance of the to-be-processed water passed through the said mixed bed type ion exchange apparatus being 0.1-10 Mohm * cm.
The fifth deionized water production apparatus of the present invention is characterized in that a two-bed, three-column apparatus is included between the pretreatment system and the reverse osmosis membrane apparatus.
The 6th pure water manufacturing apparatus of this invention is characterized by including the deaeration apparatus in the front | former stage of the said reverse osmosis membrane apparatus.
The seventh deionized water production apparatus of the present invention comprises a specific resistance meter in the subsequent stage of the mixed bed type ion exchanger, and the mixed bed at any time when the specific resistance drops to less than 17.0 MΩ · cm. It is controlled to stop water flow to the ion exchange device.
The eighth pure water production apparatus of the present invention is provided with a secondary pure water system for further purifying the treated water in the primary pure water system at the subsequent stage of the primary pure water system. .
本発明の純水製造装置によれば、1次純水システム中においてアニオン成分をカチオン成分より多く含む被処理水を処理する場合に、混床式イオン交換装置の寿命を延長し、かつ優れたイオン除去能力を得ることができる。本発明の純水製造装置によれば、再生頻度を削減して運転管理を簡易としコストの削減を行うことができる。 According to the pure water production apparatus of the present invention, when treating water to be treated containing more anion components than cation components in the primary pure water system, the life of the mixed bed type ion exchange device is extended and excellent. Ion removal capability can be obtained. According to the pure water producing apparatus of the present invention, it is possible to reduce the regeneration frequency, simplify the operation management, and reduce the cost.
本発明の純水製造装置によれば、ナトリウムイオンの漏出による比抵抗の低下を測定し、混床式イオン交換樹脂の交換時期の管理などを簡易に行うことができる。 According to the pure water production apparatus of the present invention, it is possible to measure the decrease in specific resistance due to leakage of sodium ions and easily manage the exchange time of the mixed bed type ion exchange resin.
本発明の純水製造装置に用いられる、カチオン交換樹脂とアニオン交換樹脂の交換容量で計算される混合比を変更した混床式イオン交換装置は、当該混合比が1/1であることにより1次純水システムにおけるイオン成分の除去能力を向上させているという混床式イオン交換装置についての一般的な技術理解とは相容れない新たな知見である。 The mixed bed type ion exchange apparatus used in the pure water production apparatus of the present invention, in which the mixing ratio calculated by the exchange capacity of the cation exchange resin and the anion exchange resin is changed, is 1 because the mixing ratio is 1/1. This is a new finding that is incompatible with the general technical understanding of mixed-bed ion exchangers that improve the ability to remove ion components in the next pure water system.
イオン交換樹脂のイオン除去能力について、弱電解質のイオンは吸着されにくい、イオン成分がコロイド化して吸着されにくくなるなどの要因をはじめとする多様な要素が複雑に関連している。そのため、従来より、イオン交換装置について、多くの設計変更や工夫がなされ、イオン交換樹脂の種類、充填量、通水量などについて被処理水や処理水の水質、求められる性能向上などに応じた数多くの最適化がなされてきた。 Regarding the ion-removing ability of the ion-exchange resin, various factors such as factors such as weak ions that are not easily adsorbed and ionic components that are difficult to adsorb due to colloidalization are related in a complex manner. Therefore, many design changes and ingenuities have been made for ion exchange devices, and many types of ion exchange resins, such as the type, filling amount, and water flow rate, according to the quality of treated water and treated water and the required performance improvements, etc. Has been optimized.
このように最適化が行われる中でも、前記したような新たな知見が従来見出されていなかったのは、混床式イオン交換樹脂の最も重大な作用は、カチオン交換樹脂とアニオン交換樹脂の交換容量で計算される混合比が1/1でほぼ均一に混合されていることで、無数のカチオン交換装置とアニオン交換装置に交互に無限回通水することと同様の効果を得ることであり、これにより高水質の純水を製造できるということが一般に共通した理解であったためである。 In spite of such optimization, the new findings as described above have not been found so far. The most important action of the mixed bed type ion exchange resin is the exchange between the cation exchange resin and the anion exchange resin. The mixing ratio calculated by the volume is almost uniformly mixed at 1/1, thereby obtaining the same effect as infinitely passing water through an infinite number of cation exchange devices and anion exchange devices. This is because it was generally understood that high-quality pure water can be produced.
したがって、従来は、カチオン成分又はアニオン成分の一方が他方より多くなっている被処理水を処理する場合であっても、交換容量で計算される混合比が1/1の混床式イオン交換装置が用いられ、被処理水の水質とイオン交換樹脂の交換容量から算出した、装置を停止させるまでの積算流量などに基づき、通水速度、通水温度などの運転方法、充填されるイオン交換樹脂量など、混合比以外の要素を最適化して構成されていた。 Therefore, conventionally, even when treating the water to be treated in which one of the cation component or the anion component is larger than the other, the mixed bed type ion exchange apparatus in which the mixing ratio calculated by the exchange capacity is 1/1. Based on the quality of the water to be treated and the exchange capacity of the ion exchange resin, based on the integrated flow rate until the equipment is shut down, etc. It was configured by optimizing factors other than the mixing ratio such as the amount.
これに対し、本発明の純水製造装置は、1次純水システムにおいてアニオン過多の被処理水を処理する混床式イオン交換装置について、交換容量で計算される各イオン交換樹脂の混合比を最適化することで混床式イオン交換樹脂全体の寿命を延長したものである。 On the other hand, the pure water production apparatus of the present invention has the mixing ratio of each ion exchange resin calculated by the exchange capacity for the mixed bed type ion exchange apparatus for treating the water to be treated with excess anion in the primary pure water system. By optimizing, the life of the entire mixed bed type ion exchange resin is extended.
本発明の純水製造装置に用いられる混床式イオン交換装置では、逆浸透膜装置の透過水がアニオン過多であることに特に着目し、イオン除去能力を左右する要因の中でも従来未検討であったカチオン交換樹脂とアニオン交換樹脂の交換容量で計算される混合比について検討した。そして、被処理水中のカチオン成分とアニオン成分の濃度比に基づき、アニオン交換樹脂をカチオン交換樹脂より多い本発明の交換容量で計算される混合比とし、アニオン成分の除去率を向上させることを可能とした。また、アニオン成分の除去能力を向上させたことにより、混床式イオン交換樹脂の寿命を延長することを可能とした。 In the mixed bed type ion exchange apparatus used in the pure water production apparatus of the present invention, the permeated water of the reverse osmosis membrane apparatus is particularly focused on anion excess, and has not been studied in the past among the factors affecting the ion removal ability. The mixing ratio calculated by the exchange capacity of cation exchange resin and anion exchange resin was investigated. Based on the concentration ratio of the cation component and the anion component in the water to be treated, the anion exchange resin can be made a mixing ratio calculated by the exchange capacity of the present invention, which is higher than that of the cation exchange resin, and the removal rate of the anion component can be improved. It was. In addition, by improving the ability to remove the anion component, it was possible to extend the life of the mixed bed ion exchange resin.
アニオン成分の除去率を向上させるためには、交換容量で計算される混合比を1/1としたままで、イオン交換樹脂全体の量を多くする方法も考えられる。
ところが、イオン交換処理を行う際、イオン交換樹脂からは、イオン交換樹脂製造時にできて初めからイオン交換樹脂内に含有される水溶性物質や、イオン交換樹脂の使用時に酸化劣化などによって炭素鎖が一部切れたイオン交換樹脂由来物質などが溶出する。イオン交換樹脂量を多くする方法では、溶出物が増加し、後段の水処理装置への負荷を増大させるおそれがある。特にアニオン交換樹脂からは有機系イオン成分の溶出が多く、後段でのTOC濃度の上昇を招くおそれがある。
In order to improve the removal rate of the anion component, a method of increasing the total amount of the ion exchange resin while keeping the mixing ratio calculated by the exchange capacity at 1/1 may be considered.
However, when the ion exchange treatment is performed, the ion exchange resin may contain carbon chains due to oxidative degradation or the like due to water-soluble substances contained in the ion exchange resin from the beginning after the production of the ion exchange resin. A part of the ion exchange resin-derived material is eluted. In the method of increasing the amount of ion exchange resin, the amount of eluate increases, which may increase the load on the subsequent water treatment apparatus. In particular, there are many elutions of organic ion components from the anion exchange resin, which may cause an increase in the TOC concentration in the subsequent stage.
混床式イオン交換樹脂に通水を続け、カチオン交換樹脂が飽和した場合にはナトリウムイオンやカリウムイオンなどのカチオン成分が漏出するが、アニオン交換樹脂が飽和した場合にはホウ素やシリカが漏出する。混床式イオン交換装置の停止時期(寿命)は、漏出したイオン成分を検出し、いずれかのイオン交換樹脂の飽和を検知して決定されている。従来から、後述のように比抵抗の変化でイオン交換樹脂の飽和を検知できるように設計されていた。
しかし、この場合、カチオン成分よりもアニオン成分が先に漏出する。特に最初に漏出するホウ素やシリカはカチオン成分に比べて後段での除去が困難であり、漏出は少量であっても後段への影響が大きい。
If water continues to flow through the mixed-bed ion exchange resin and the cation exchange resin is saturated, cation components such as sodium ions and potassium ions will leak, but if the anion exchange resin is saturated, boron and silica will leak. . The stop time (lifetime) of the mixed bed type ion exchange apparatus is determined by detecting leaked ion components and detecting saturation of any ion exchange resin. Conventionally, it has been designed so that saturation of an ion exchange resin can be detected by a change in specific resistance as will be described later.
However, in this case, the anion component leaks before the cation component. In particular, boron or silica that leaks first is difficult to remove in the latter stage compared to the cation component, and even if the leakage is small, the latter stage is greatly affected.
また、ホウ素やシリカは純水中に微量残存すると、特に近年急速に微細化されている配線などの、製造される最終製品の信頼性に重大な影響を与えるおそれがある。したがって、従来の混床式イオン交換装置と他の水処理装置を組み合わせて用いることなどで、ホウ素やシリカを除去することや、先に漏出するホウ素やシリカの漏出を検知し、混床式イオン交換装置の停止時期(寿命)を決定することが行われていた。 Further, if a trace amount of boron or silica remains in pure water, there is a possibility of seriously affecting the reliability of the final product to be manufactured, such as wiring that has been miniaturized rapidly in recent years. Therefore, by using a combination of a conventional mixed-bed ion exchange device and another water treatment device, boron or silica can be removed, or boron or silica leaking earlier can be detected and mixed-bed ion The stop time (life) of the exchange device has been determined.
さらに、ホウ素やシリカは弱電解質であるため、比抵抗への影響が小さく比抵抗の測定による検出が困難である。微量のホウ素やシリカの漏出を検出する方法として、原子吸光光度法、ICP質量分析法などがある。これらは、サンプルを採取して、所定の分析機器により分析を行うため、分析結果を得られるまでに時間がかかる。オンラインに設置するモニターとしてホウ素計やシリカ計もある。これらは、バッチ式であり、1つのサンプルを分析するまでに5分以上の時間を要するだけでなく、精度も低い。このように、ホウ素やシリカの漏出を厳密に検知することは困難であった。そのため、ホウ素やシリカなどの溶存した純水ができる限り後段へ供給されないように、安全率を加味し、イオン交換装置を停止することも必要であった。 Furthermore, since boron and silica are weak electrolytes, their influence on specific resistance is small and detection by measurement of specific resistance is difficult. As a method for detecting leakage of a trace amount of boron or silica, there are an atomic absorption photometry method, an ICP mass spectrometry method, and the like. Since these samples are collected and analyzed by a predetermined analytical instrument, it takes time to obtain an analysis result. There are also boron meters and silica meters as monitors installed online. These are batch-type and not only require more than 5 minutes to analyze one sample, but also have low accuracy. Thus, it has been difficult to accurately detect leakage of boron and silica. For this reason, it has been necessary to stop the ion exchanger in consideration of a safety factor so that dissolved pure water such as boron and silica is not supplied to the subsequent stage as much as possible.
本発明の純水製造装置では、アニオン成分の中でも、ホウ素やシリカの除去能力を特に向上させることができるため、イオン交換樹脂が飽和した際には、従来ホウ素やシリカに次いで漏出の始まっていたナトリウムイオンが最初に漏出する。ナトリウムイオンは強電解質のイオンであり、その純水中の濃度は純水の比抵抗に直接影響する。したがって、比抵抗計という簡便で幅広く用いられる装置により、ナトリウムイオンの漏出を直ちに検出することができ、ホウ素やシリカなどの溶存した純水が後段へ供給される前に混床式イオン交換装置を停止し、イオン交換樹脂の交換又は再生処理を行うことができる。 In the pure water production apparatus of the present invention, since the ability to remove boron and silica can be particularly improved among the anion components, when the ion exchange resin is saturated, leakage has conventionally started after boron and silica. Sodium ions leak out first. Sodium ion is a strong electrolyte ion, and its concentration in pure water directly affects the specific resistance of pure water. Therefore, leakage of sodium ions can be immediately detected by a simple and widely used device called a specific resistance meter, and a mixed bed ion exchange device can be installed before dissolved pure water such as boron and silica is supplied to the subsequent stage. The ion exchange resin can be exchanged or regenerated.
次に、本発明を、図面を参照し詳細に説明する。本発明は以下に示す実施形態に限定されるものではない。 Next, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments shown below.
図1に示す本発明の純水製造装置10は前処理システム1と、前処理システム1により処理された前処理水を処理する逆浸透膜装置2と混床式イオン交換装置3を含んだ1次純水システム4と、1次純水システム4により処理された1次純水を処理する2次純水システムを備えて構成されている。
A pure
原水としては、濁質分、微粒子、有機物や塩素イオン、ナトリウムイオン、微量のホウ素などのイオン成分が溶存した、上水、井水、工業水及び再生水などを用いることができる。 As raw water, clean water, well water, industrial water, reclaimed water, etc. in which ionic components such as turbid components, fine particles, organic substances, chlorine ions, sodium ions, and trace amounts of boron are dissolved can be used.
本発明の純水製造装置10において、前処理システム1は従来公知のものと同様である。具体的には、被処理水の温度を調節する熱交換器、精密ろ過装置、活性炭装置などを適宜選択して配列し構成することができる。
In the pure
前処理システム1と逆浸透膜装置2の間には、後段に設置する水処理装置の構成に応じて、従来公知の水処理装置を備えていてもよい。このような水処理装置として、具体的に、カチオン交換装置、アニオン交換装置、キレート樹脂装置などのイオン交換装置や、活性炭装置、紫外線照射装置などが挙げられる。
A conventionally known water treatment device may be provided between the pretreatment system 1 and the reverse
逆浸透膜装置2としては、従来公知のものを使用することができる。代表的な逆浸透膜装置として、例えば、酢酸セルロース系若しくはポリアミド系の非対称膜又はポリアミド系の活性層を有する複合膜を用いた装置などが挙げられる。膜構造としては、非対称膜や複合膜があり、膜形態については、平膜、中空糸膜、スパイラル膜などがある。
A conventionally known device can be used as the reverse
逆浸透膜装置2で処理された透過水は、アニオン成分をカチオン成分の、グラム当量で2〜10倍と多く含有し、比抵抗は0.1〜10MΩ・cmである。
The permeated water treated by the reverse
本発明に用いる混床式イオン交換装置3は、上記比率でカチオン成分とアニオン成分を含有する透過水中の各種イオン成分を除去するものであり、塩化ビニル樹脂製のタンクやボンベなどの容器に強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを強酸性カチオン交換樹脂/強塩基性アニオン交換樹脂で示される交換容量比で1/1.5〜1/5、好ましくは1/2.5〜1/3.5として混合して充填したものである。
The mixed bed type
混床式イオン交換装置3内の強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の交換容量で計算される混合比を上記した範囲とすることで、炭酸ガスが比較的多く、アニオン成分をカチオン成分の2〜10倍(グラム当量換算)と多く含有する逆浸透膜装置の透過水を通水しても、得られる処理水の水質を向上させることができる。交換容量で計算される混合比が1/1.5を超えると、アニオン成分が十分除去されないおそれがある。また、交換容量で計算される混合比が1/5未満であると、カチオン成分の漏出がアニオン成分の漏出に比べ早期に起こり、その結果、混床式イオン交換樹脂全体としての寿命を短くし、交換や再生頻度を上げるおそれがある。
By setting the mixing ratio calculated by the exchange capacity of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the mixed bed type
混床式イオン交換装置3内の各イオン交換樹脂の交換容量で計算される混合比は、被処理水のイオン濃度比により決定することができる。具体的には、第1の方法として、逆浸透膜装置2の性能から透過水の水質を予測し、この水質からアニオン成分のグラム当量とカチオン成分のグラム当量を算出し、混合される各イオン交換樹脂の交換容量を考慮して、交換容量で計算される混合比を決定する方法がある。すなわち、逆浸透膜装置2は、使用される膜の性質などにより除去できる微粒子やイオン成分の量が予測できるため、透過水の水質を予測し、各イオン交換樹脂の交換容量を考慮して交換容量で計算される混合比を決定するのである。
第2の方法として、実際に逆浸透膜装置2の透過水の水質を分析して得られる透過水中のアニオン成分のグラム当量とカチオン成分のグラム当量と、各イオン交換樹脂の交換容量を考慮して交換容量で計算される混合比を決める方法がある。
第3の方法として、上記した本発明の交換容量で計算される混合比の範囲の任意の混合比により、各イオン交換樹脂を混合して充填した混床式イオン交換装置3により純水装置を構成する方法がある。
The mixing ratio calculated by the exchange capacity of each ion exchange resin in the mixed bed
As a second method, the gram equivalent of the anion component and the gram equivalent of the cation component in the permeate obtained by actually analyzing the quality of the permeate of the reverse
As a third method, a deionized water apparatus is formed by a mixed bed type
混床式イオン交換装置においては、実際に得られる処理水の水質と交換容量や通水量から計算される処理水の水質とに誤差が生じる場合もある。したがって、第1〜第3の方法は、混床式イオン交換装置の設計条件、純水製造装置全体の設計条件、被処理水の水質や製造する純水の水質などに応じて適宜選択し変更することができる。 In the mixed bed type ion exchange apparatus, an error may occur between the quality of the treated water actually obtained and the quality of the treated water calculated from the exchange capacity and the amount of water flow. Accordingly, the first to third methods are appropriately selected and changed according to the design conditions of the mixed bed type ion exchange apparatus, the design conditions of the entire pure water production apparatus, the quality of the treated water, the quality of the pure water to be produced, and the like. can do.
強酸性カチオン交換樹脂としては、交換容量が好ましくは1.5〜2.5meq/mL、より好ましくは2〜2.5meq/mLのものなどを用いることができる。また、イオン交換樹脂の加水分解が少なく有機系アニオン成分の超純水への溶出が少ないため、官能基としてスルホン酸基を有するスチレン系樹脂などが好ましい。
強酸性カチオン交換樹脂としては、イオン選択性の低いナトリウムイオンなどを除去できることからH型が好ましい。塩型のカチオン交換樹脂をH型にする方法としては、塩酸水溶液又は硫酸水溶液を用いて塩型のカチオン交換樹脂を処理した後に、脱イオン水で洗浄する方法などが挙げられる。H型転換率としては、99.95%以上のものが好適に用いられる。
As the strongly acidic cation exchange resin, one having an exchange capacity of preferably 1.5 to 2.5 meq / mL, more preferably 2 to 2.5 meq / mL can be used. Moreover, since the hydrolysis of the ion exchange resin is small and the elution of the organic anion component into the ultrapure water is small, a styrene resin having a sulfonic acid group as a functional group is preferable.
The strongly acidic cation exchange resin is preferably H-type because sodium ions having low ion selectivity can be removed. Examples of the method for converting the salt-type cation exchange resin into the H-type include a method in which the salt-type cation exchange resin is treated with an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution and then washed with deionized water. As the H-type conversion rate, 99.95% or more is preferably used.
強塩基性アニオン交換樹脂としては、交換容量が好ましくは0.7〜1.5meq/mL、より好ましくは1〜1.5meq/mLのものなどを用いることができる。また、イオン交換樹脂の加水分解が少なく有機系カチオン成分の超純水への溶出が少ないため、官能基として第4級アンモニウム基を有するスチレン系樹脂などが好ましく用いられる。
強塩基性アニオン交換樹脂としては、被処理水中へのフッ化物イオンの混入を考慮して、イオン選択性の低いフッ化物イオンなどを除去できるOH型が好ましい。Cl型の陰イオン交換樹脂をOH型にする方法としては、水酸化ナトリウム水溶液を用いてCl型の陰イオン交換樹脂を処理した後に、脱イオン水で洗浄する方法などが挙げられる。OH型転換率としては、99.95%以上のものが好適に用いられる。
As the strongly basic anion exchange resin, those having an exchange capacity of preferably 0.7 to 1.5 meq / mL, more preferably 1 to 1.5 meq / mL can be used. In addition, since the ion exchange resin is less hydrolyzed and the organic cation component is less eluted into the ultrapure water, a styrene resin having a quaternary ammonium group as a functional group is preferably used.
The strong base anion exchange resin is preferably an OH type capable of removing fluoride ions having low ion selectivity in consideration of the mixing of fluoride ions in the water to be treated. Examples of the method for converting the Cl-type anion exchange resin into an OH type include a method of treating the Cl-type anion exchange resin with an aqueous sodium hydroxide solution and then washing with deionized water. As the OH-type conversion rate, 99.95% or more is preferably used.
通水速度は、被処理水中のイオン濃度、混合される各イオン交換樹脂の交換容量、製造される純水の水質や、混床式イオン交換装置の大きさなどの態様に応じて適宜決定することができる。
本発明に用いられる混床式イオン交換装置3では、通水時の空間速度SVは、10〜60h−1であることが好ましく、さらに30〜40h−1であることが特に好ましい。通水速度が上記した上限値より速すぎる場合にはイオン成分を十分に除去できないおそれがある。一方、上記した下限値より遅い場合にはイオン交換樹脂からの溶出物により1次純水の水質が低下するおそれがある。
The water flow rate is appropriately determined according to the ion concentration in the water to be treated, the exchange capacity of each ion exchange resin to be mixed, the quality of the pure water produced, the size of the mixed bed ion exchange device, and the like. be able to.
In mixed-bed ion-
本発明において、被処理水の温度は特に制限はないが、5〜40℃が好ましい。また、処理水質を安定させるためには被処理水の温度を一定にすることが好ましい。そのため、逆浸透膜装置の前段には、プレート型熱交換器などを備えることが好ましい。 In the present invention, the temperature of the water to be treated is not particularly limited, but is preferably 5 to 40 ° C. In order to stabilize the quality of the treated water, it is preferable to keep the temperature of the treated water constant. Therefore, it is preferable to provide a plate type heat exchanger etc. in the front | former stage of a reverse osmosis membrane apparatus.
本発明に用いる混床式イオン交換装置3は、各イオン交換樹脂を上記割合で混合しているため、シリカやホウ素などの早期の漏出を防いでより高水質の1次純水を得るとともに、後段における2次純水システム5の構成を簡略化することができる。
Since the mixed bed type
本発明の純水製造装置10では、混床式イオン交換装置3は薬品再生式又は非再生式であり、処理流量が、おおむね10m3/時以上である場合には再生式混床式イオン交換装置を用いることが好ましく、おおむね20m3/時以下である場合には非再生式のものを用いることが好ましい。処理流量がおおむね10〜20m3/時である場合、いずれを用いてもよい。
In the pure
本発明の純水製造装置10では、逆浸透膜装置2に代えて、2段の逆浸透膜装置を直列して成る2段逆浸透膜装置を用いてもよい。2段逆浸透膜装置は、第1の逆浸透膜装置の透過水を、続く第2の逆浸透膜装置により処理して、第2の逆浸透膜装置の透過水が高純度となるように構成した装置である。逆浸透膜装置2の前段では、スケール防止のためにpHが酸性に調整されていてもよい。
2段逆浸透膜装置を用いる場合でも処理水質のカチオン成分とアニオン成分の濃度比は上記したのと同様であるため、カチオン交換樹脂とアニオン交換樹脂の交換容量比で1/1.5〜1/5とすることが好ましい。
In the pure
Even in the case of using a two-stage reverse osmosis membrane device, the concentration ratio of the cation component and the anion component of the treated water is the same as described above, so the exchange capacity ratio of the cation exchange resin and the anion exchange resin is 1 / 1.5-1. / 5 is preferable.
本発明の純水製造装置10は、逆浸透膜装置2の前段に脱気装置を備えてもよい。
脱気装置を備えることにより高水質の純水を製造することができる。脱気装置としては、本発明の効果を損なわない範囲で、気液接触型の脱気装置、疎水性膜と真空ポンプを組み合わせた膜脱気装置などを適宜使用することができる。
本発明の純水製造装置10は、逆浸透膜装置2の前段に、カチオン交換装置、脱気装置、アニオン交換装置を備えた2床3塔型装置を備えてもよい。2床3塔型装置を備えることにより、前処理水システムの処理水(前処理水)中に残存する微量の濁質分により逆浸透膜が目詰まりするなどの不具合を抑制することができる。
The pure
By providing a deaeration device, high-quality pure water can be produced. As a deaeration device, a gas-liquid contact type deaeration device, a membrane deaeration device combining a hydrophobic membrane and a vacuum pump, or the like can be used as long as the effects of the present invention are not impaired.
The pure
本発明の純水製造装置10では、混床式イオン交換装置3の直後に比抵抗計6を設置して、ナトリウムイオンの漏出による比抵抗の低下を検知して、比抵抗が所定の値となったときに混床式イオン交換装置3を停止することができる。比抵抗の測定によりイオン交換装置3の停止時期を決定し、停止したイオン交換装置3の交換又は再生処理を行うことができる。
In the pure
比抵抗計6として、周囲の温度変化の影響を受けにくく、18.2MΩ・cm程度まで純水の比抵抗を測定できる装置、例えばHORIBA(株)社製 HE-960RWなどを使用することができる。カチオン交換樹脂が飽和した場合には、処理水の比抵抗がおおよそ18.0MΩ・cmから急激に降下する。上述したように、ナトリウムイオンは後段での除去が比較的容易であることから、製造する純水に要求される水質や、後段に設置する水処理装置の構成によって、混床式イオン交換装置3の出水口での純水の比抵抗が所望の値に降下した時に混床式イオン交換装置を停止することができる。例えば、純水製造装置の運転開始後、製造される1次純水の比抵抗が17.0MΩ・cm以上、好ましくは17.5MΩ・cm以上で安定した状態から17.0MΩ・cm未満に降下した時点で混床式イオン交換装置3を停止し、再生処理を行うことが好ましい。
As the
高水質が要求される場合には、1次純水システム内に任意に設置されているその他の水処理装置の設計などに応じて、比抵抗が降下した任意の時点を決定し、当該時点で混床式イオン交換装置3を停止して再生処理を行うこともできる。この場合、高水質の純水を製造するために、比抵抗が10.0Ω・cm以上で混床式イオン交換装置3を停止することが好ましい。また、混床式イオン交換装置3は、自動制御で又は手動により停止することが好ましく、停止した後に、交換又は再生処理を行うことが、高水質の純水が得られる点で好ましい。
充填されるイオン交換樹脂量から計算される、任意のイオン成分の漏出が開始する時間などによってサイクルを決定して混床式イオン交換装置を同様に停止し、交換又は再生処理を行うこともできる。
When high water quality is required, an arbitrary point in time when the specific resistance falls is determined according to the design of other water treatment equipment that is arbitrarily installed in the primary pure water system. It is also possible to stop the mixed-bed
It is also possible to determine the cycle according to the time when leakage of an arbitrary ion component starts, calculated from the amount of ion exchange resin to be filled, and similarly stop the mixed bed type ion exchange apparatus and perform exchange or regeneration treatment. .
本発明において、混床式イオン交換装置3の処理水である1次純水は比抵抗が17.0MΩ・cm以上となり安定した状態で、ホウ素濃度が5ppb以下、シリカ濃度が5ppb以下、より好ましくは、ホウ素濃度が1ppb以下、シリカ濃度が2ppb以下であり、比抵抗は17.0MΩ・cm以上、より好ましくは18.0MΩ・cm以上である。
In the present invention, the primary pure water which is the treated water of the mixed bed type
混床式イオン交換装置3の処理水である1次純水は、そのまま医療、医薬製造、半導体製造装置の冷却水などの用水として使用することもできる。シリコンウェハ洗浄用水など、比抵抗18.0MΩ・cm以上のより高純度の超純水を得る場合には、混床式イオン交換装置3の後段に2次純水システム5を設置して、1次純水を更に高純度化することができる。
この場合、1次純水は混床式イオン交換装置3によりナトリウム、塩素イオンなどのイオン成分が除去されて上記した高い比抵抗を有するため、2次純水システム5の構成を簡略化することができる。
Primary pure water which is treated water of the mixed bed type
In this case, since the primary pure water has the above-described high specific resistance by removing ion components such as sodium and chlorine ions by the mixed bed
前記した2次純水システム5は、サブシステムとも称され、従来公知のものを使用することができる。具体的には、紫外線照射装置、ポリッシャー、限外ろ過装置、膜脱気装置などを適宜選択して配列し構成することができる。
The secondary
次に、実施例を示し、本発明をより詳細に説明する。例1〜5は実施例であり、例6、7は比較例である。
実施例で使用した装置及び条件は以下の通りである。
Next, an Example is shown and this invention is demonstrated in detail. Examples 1 to 5 are examples, and examples 6 and 7 are comparative examples.
The apparatus and conditions used in the examples are as follows.
活性炭装置:NCC−200AC(野村マイクロ・サイエンス(株)社製)
逆浸透膜装置2:SU−710(東レ(株)社製)
混床式イオン交換装置3:塩化ビニル樹脂製、内径φ50mm
強酸性カチオン交換樹脂(C):Duolite C20(ダウ・ケミカル(株)社製)
強塩基性アニオン交換樹脂(A):Duolite A113(ダウ・ケミカル(株)社製)
比抵抗計6:HE−960RW(HORIBA(株)社製)
原水:井水(電気伝導度:224μS/m(0.0044MΩ・cm)、TOC:1mg/L)
通水流量:0.6L/分
Activated carbon device: NCC-200AC (manufactured by Nomura Micro Science Co., Ltd.)
Reverse osmosis membrane device 2: SU-710 (manufactured by Toray Industries, Inc.)
Mixed bed type ion exchanger 3: made of vinyl chloride resin, inner diameter φ50mm
Strong acid cation exchange resin (C): Duolite C20 (manufactured by Dow Chemical Co., Ltd.)
Strongly basic anion exchange resin (A): Duolite A113 (manufactured by Dow Chemical Co., Ltd.)
Specific resistance meter 6: HE-960RW (manufactured by HORIBA)
Raw water: Well (electric conductivity: 224 μS / m (0.0044 MΩ · cm), TOC: 1 mg / L)
Flow rate: 0.6L / min
[例1]
井水を活性炭装置で前処理し、次いで逆浸透膜装置2で処理した透過水(比抵抗0.1MΩ・cm、陽イオン濃度880ppb、陰イオン濃度1765ppb)を、強酸性カチオン交換樹脂0.25Lと強塩基性アニオン交換樹脂0.65L(交換容量比でC/A=1/1.4)を混合して充填した混床式イオン交換装置3に通水した。
なお、透過水の水質を表1に示す。
The permeated water (specific resistance 0.1 MΩ · cm, cation concentration 880 ppb, anion concentration 1765 ppb) treated with the activated carbon device and then with the reverse
The quality of the permeated water is shown in Table 1.
[例2]
混床式イオン交換装置3内に、強酸性カチオン交換樹脂0.17Lと強塩基性アニオン交換樹脂0.73L(交換容量比C/A=1.0/2.2)を混合して充填した以外は例1と同様の条件とした。
[例3]
混床式イオン交換装置内3内に、強酸性カチオン交換樹脂0.12Lと強塩基性アニオン交換樹脂0.78L(交換容量比C/A=1.0/3.2)混合して充填した以外は例1と同様の条件とした。
[例4]
混床式イオン交換装置内3内に、強酸性カチオン交換樹脂0.09Lと強塩基性アニオン交換樹脂0.91L(交換容量比C/A=1.0/4.6)混合して充填した以外は例1と同様の条件とした。
[例5]
混床式イオン交換装置3内に、強酸性カチオン交換樹脂0.08Lと強塩基性アニオン交換樹脂0.82L(交換容量比C/A=1.0/5.0)を混合して充填した以外は例1と同様の条件とした。
[例6]
混床式イオン交換装置3内に、強酸性カチオン交換樹脂0.3Lと強塩基性アニオン交換樹脂0.6L(交換容量比C/A=1.0/1.0)を混合して充填した以外は例1と同様の条件とした。
[例7]
混床式イオン交換装置3内に、強酸性カチオン交換樹脂0.07Lと強塩基性アニオン交換樹脂0.83L(交換容量比C/A=1.0/5.6)を混合して充填した以外は例1と同様の条件とした。
[Example 2]
In the mixed bed
[Example 3]
The mixed bed
[Example 4]
The mixed bed
[Example 5]
In the mixed bed
[Example 6]
In the mixed bed
[Example 7]
In the mixed bed
例1〜6について、混床式イオン交換装置3の出口に比抵抗計を設置して、比抵抗が17.5MΩ・cm以下となるまでの通水時間と、その時の混床式イオン交換装置3の出水口での1次純水中のシリカ、ホウ素、ナトリウムイオンの濃度を測定した。
以上の結果を表2に示す。
The results are shown in Table 2.
表2に示されるように、例1〜5の純水製造装置は比抵抗が17.5MΩ・cm以下となるまでの時間が長く、例3が最も長いことが分かる。さらに、比抵抗が17.5MΩ・cm以下となったとき一番初めにナトリウムが漏出することが分かる。なお、例7は比抵抗が17.0MΩ・cmに達して安定することはなかったので分析は行わなかった。 As shown in Table 2, it can be seen that the pure water producing apparatuses of Examples 1 to 5 have a long time until the specific resistance becomes 17.5 MΩ · cm or less, and Example 3 has the longest time. Furthermore, it can be seen that sodium leaks first when the specific resistance is 17.5 MΩ · cm or less. In Example 7, the specific resistance reached 17.0 MΩ · cm and was not stabilized, so analysis was not performed.
さらに例1〜6について、比抵抗が17.5MΩ・cmとなるまでの総通水量を測定した。図2に混合したカチオン交換樹脂とアニオン交換樹脂の交換容量比と総通水量(L)を樹脂量(L)で除算した値(混床式イオン交換樹脂1L量あたりの処理水量)の関係を示す。
図2より、カチオン交換樹脂とアニオン交換樹脂が交換容量比で1/3.2(例3)である場合に、混床式イオン交換樹脂からイオン成分が漏出するまでの単位樹脂量あたりの処理水量が最大となることが分かる。
Furthermore, about Examples 1-6, the total water flow amount until specific resistance became 17.5 Mohm * cm was measured. Fig. 2 shows the relationship between the exchange capacity ratio of the cation exchange resin and the anion exchange resin and the value obtained by dividing the total water flow rate (L) by the resin amount (L) (the amount of treated water per 1 L of mixed bed type ion exchange resin). Show.
From FIG. 2, when the cation exchange resin and the anion exchange resin have an exchange capacity ratio of 1 / 3.2 (Example 3), the process per unit resin amount until the ion component leaks from the mixed bed type ion exchange resin. It turns out that the amount of water becomes the maximum.
また、図3、4、5に、それぞれ例3、6、7における、通水開始からの時間と、混床式イオン交換装置の出水口で採取した1次純水中の比抵抗の関係を示す。
図3より本発明の純水製造装置では、通水開始後200時間を超えても十分な比抵抗を持つ純水を製造できることが分かる。
図4より、例6では、通水開始後100時間経過程度で、得られる1次純水の比抵抗が低下していること、すなわち、イオン交換樹脂からイオン成分の漏出が起こっていることが分かる。図5より、例7では、得られる純水の比抵抗が17.0MΩ・cm未満であり、混床式イオン交換装置としての機能を満たさず必要な水質を得られていないことが分かる。
3, 4, and 5 show the relationship between the time from the start of water flow and the specific resistance in the primary pure water collected at the outlet of the mixed bed ion exchanger in Examples 3, 6 and 7, respectively. Show.
FIG. 3 shows that the pure water production apparatus of the present invention can produce pure water having a sufficient specific resistance even after 200 hours have passed since the start of water flow.
From FIG. 4, in Example 6, the specific resistance of the obtained primary pure water is decreased after about 100 hours have elapsed since the start of water flow, that is, leakage of ion components from the ion exchange resin. I understand. From FIG. 5, it can be seen that in Example 7, the specific resistance of the pure water obtained is less than 17.0 MΩ · cm, and the required water quality cannot be obtained without satisfying the function as the mixed bed type ion exchanger.
10…純水製造装置、1…前処理システム、2…逆浸透膜装置、3…混床式イオン交換装置、4…1次純水システム、5…2次純水システム、6…比抵抗計。
DESCRIPTION OF
Claims (8)
前記1次純水システムは、逆浸透膜装置と、前記逆浸透膜装置の直後に設置された混床式イオン交換装置とを含み、
前記混床式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを前記強酸性カチオン交換樹脂/前記強塩基性アニオン交換樹脂で示される交換容量比で1/1.5〜1/5として混合し充填したことを特徴とする特徴とする純水製造装置。 In a pure water production apparatus comprising a pretreatment system and a primary pure water system,
The primary pure water system includes a reverse osmosis membrane device, and a mixed bed ion exchange device installed immediately after the reverse osmosis membrane device,
In the mixed bed type ion exchange apparatus, a strongly acidic cation exchange resin and a strongly basic anion exchange resin are converted into a ratio of 1 / 1.5-1.5 by an exchange capacity ratio represented by the strongly acidic cation exchange resin / the strongly basic anion exchange resin. A pure water production apparatus characterized by being mixed and filled as 1/5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012131468A JP6082192B2 (en) | 2012-06-11 | 2012-06-11 | Pure water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012131468A JP6082192B2 (en) | 2012-06-11 | 2012-06-11 | Pure water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013255864A true JP2013255864A (en) | 2013-12-26 |
JP6082192B2 JP6082192B2 (en) | 2017-02-15 |
Family
ID=49952773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012131468A Active JP6082192B2 (en) | 2012-06-11 | 2012-06-11 | Pure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6082192B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105125080A (en) * | 2015-10-14 | 2015-12-09 | 广州龙泽环保设备实业有限公司 | Intelligent direct water dispenser |
CN105461115A (en) * | 2015-12-30 | 2016-04-06 | 福建中锦新材料有限公司 | Desalted water energy-saving emission-reduction system |
WO2017221733A1 (en) * | 2016-06-22 | 2017-12-28 | 野村マイクロ・サイエンス株式会社 | Ultraviolet sterilization device, ultraviolet sterilization method, and ultrapure water manufacturing system |
CN110015778A (en) * | 2019-04-02 | 2019-07-16 | 大唐辽源发电厂 | A kind of ultralow TOC demineralized water preparation system for steam-extracting type Turbo-generator Set |
US10526226B2 (en) | 2014-12-19 | 2020-01-07 | Kurita Water Industries Ltd. | Ultrapure water production apparatus and ultrapure water production method |
CN114291937A (en) * | 2022-01-18 | 2022-04-08 | 山东金泽水业科技有限公司 | Composite ion exchange-reverse osmosis coupled advanced water treatment system and process |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63156591A (en) * | 1986-08-28 | 1988-06-29 | Toray Ind Inc | Production of ultra-pure water |
JPH01218680A (en) * | 1988-02-25 | 1989-08-31 | Nomura Micro Sci Kk | Method for monitoring break of ion-exchange apparatus |
JPH04293586A (en) * | 1991-03-25 | 1992-10-19 | Kurita Water Ind Ltd | Ion exchange apparatus for making pure water |
JPH0889956A (en) * | 1994-09-20 | 1996-04-09 | Daikin Ind Ltd | Ultrapure water producing device |
JP2002361247A (en) * | 2001-06-11 | 2002-12-17 | Kurita Water Ind Ltd | Method for manufacturing pure water |
JP2003010845A (en) * | 2001-07-05 | 2003-01-14 | Nippon Denko Kk | Method for recovering high purity boron solution and apparatus therefor |
JP2005295916A (en) * | 2004-04-14 | 2005-10-27 | Nippon Rensui Co Ltd | Method for purifying saccharide-containing solution |
JP2011029144A (en) * | 2009-06-22 | 2011-02-10 | Japan Organo Co Ltd | Water treatment device of fuel cell |
JP2011098267A (en) * | 2009-11-04 | 2011-05-19 | Japan Organo Co Ltd | Pure water production system and method |
-
2012
- 2012-06-11 JP JP2012131468A patent/JP6082192B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63156591A (en) * | 1986-08-28 | 1988-06-29 | Toray Ind Inc | Production of ultra-pure water |
JPH01218680A (en) * | 1988-02-25 | 1989-08-31 | Nomura Micro Sci Kk | Method for monitoring break of ion-exchange apparatus |
JPH04293586A (en) * | 1991-03-25 | 1992-10-19 | Kurita Water Ind Ltd | Ion exchange apparatus for making pure water |
JPH0889956A (en) * | 1994-09-20 | 1996-04-09 | Daikin Ind Ltd | Ultrapure water producing device |
JP2002361247A (en) * | 2001-06-11 | 2002-12-17 | Kurita Water Ind Ltd | Method for manufacturing pure water |
JP2003010845A (en) * | 2001-07-05 | 2003-01-14 | Nippon Denko Kk | Method for recovering high purity boron solution and apparatus therefor |
JP2005295916A (en) * | 2004-04-14 | 2005-10-27 | Nippon Rensui Co Ltd | Method for purifying saccharide-containing solution |
JP2011029144A (en) * | 2009-06-22 | 2011-02-10 | Japan Organo Co Ltd | Water treatment device of fuel cell |
JP2011098267A (en) * | 2009-11-04 | 2011-05-19 | Japan Organo Co Ltd | Pure water production system and method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10526226B2 (en) | 2014-12-19 | 2020-01-07 | Kurita Water Industries Ltd. | Ultrapure water production apparatus and ultrapure water production method |
CN105125080A (en) * | 2015-10-14 | 2015-12-09 | 广州龙泽环保设备实业有限公司 | Intelligent direct water dispenser |
CN105461115A (en) * | 2015-12-30 | 2016-04-06 | 福建中锦新材料有限公司 | Desalted water energy-saving emission-reduction system |
WO2017221733A1 (en) * | 2016-06-22 | 2017-12-28 | 野村マイクロ・サイエンス株式会社 | Ultraviolet sterilization device, ultraviolet sterilization method, and ultrapure water manufacturing system |
JP2017225925A (en) * | 2016-06-22 | 2017-12-28 | 野村マイクロ・サイエンス株式会社 | Uv sterilization device, uv sterilization method and ultrapure water production system |
CN109415228A (en) * | 2016-06-22 | 2019-03-01 | 野村微科学股份有限公司 | Ultraviolet sterilization apparatus, ultraviolet sterilizing method and Hyperpure water manufacturing systems |
CN109415228B (en) * | 2016-06-22 | 2022-03-01 | 野村微科学股份有限公司 | Ultraviolet sterilization apparatus, ultraviolet sterilization method, and ultrapure water production system |
CN110015778A (en) * | 2019-04-02 | 2019-07-16 | 大唐辽源发电厂 | A kind of ultralow TOC demineralized water preparation system for steam-extracting type Turbo-generator Set |
CN114291937A (en) * | 2022-01-18 | 2022-04-08 | 山东金泽水业科技有限公司 | Composite ion exchange-reverse osmosis coupled advanced water treatment system and process |
Also Published As
Publication number | Publication date |
---|---|
JP6082192B2 (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6082192B2 (en) | Pure water production equipment | |
JP3200301B2 (en) | Method and apparatus for producing pure or ultrapure water | |
KR101525635B1 (en) | Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members | |
JP5081690B2 (en) | Production method of ultra pure water | |
JP6298275B2 (en) | Water treatment especially to obtain ultrapure water | |
JP6907514B2 (en) | Ultrapure water production system and ultrapure water production method | |
JP6634918B2 (en) | Ultrapure water production system | |
JP6165882B2 (en) | Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, method for producing them, and method for purifying hydrogen peroxide water | |
TWI391331B (en) | Pure water fabricating apparatus | |
JP2007181833A (en) | Method for treating tetraalkylammonium ion-containing solution | |
JP5518433B2 (en) | Pure water production system and pure water production method | |
JP5320723B2 (en) | Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus | |
JP5499433B2 (en) | Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus | |
US20200377386A1 (en) | Phospate recovery by acid retardation | |
JP2005246126A (en) | Device and method for manufacturing pure water or ultra pure water | |
JP5292136B2 (en) | Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration | |
EP4267520A1 (en) | Mineralization of organic compounds with boron-doped-diamond electrode during radionuclides stripping process | |
JP2012040560A (en) | Water treatment system and water treatment method | |
KR20120103633A (en) | Method for reusing waste liquid from which tetraalkylammonium ions have been removed | |
JP5564817B2 (en) | Ion exchange resin regeneration method and ultrapure water production apparatus | |
JP2023150986A (en) | Water treatment control apparatus and water quality monitoring method | |
JP2010253451A (en) | Method for cleaning electrical deionized-water producing apparatus | |
JP5895962B2 (en) | Method for preventing boron contamination of ion exchange resin | |
JP2004191185A (en) | Ion composition measuring method for ion-exchange resin | |
JPH11237370A (en) | Method for evaluating performance of ion exchange resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6082192 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |