JPH01218680A - Method for monitoring break of ion-exchange apparatus - Google Patents

Method for monitoring break of ion-exchange apparatus

Info

Publication number
JPH01218680A
JPH01218680A JP63042972A JP4297288A JPH01218680A JP H01218680 A JPH01218680 A JP H01218680A JP 63042972 A JP63042972 A JP 63042972A JP 4297288 A JP4297288 A JP 4297288A JP H01218680 A JPH01218680 A JP H01218680A
Authority
JP
Japan
Prior art keywords
break
ion exchange
evaporation residue
ion
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63042972A
Other languages
Japanese (ja)
Other versions
JPH0582278B2 (en
Inventor
Yoshitaka Yamaki
由孝 八巻
Yoshiharu Ota
太田 嘉治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP63042972A priority Critical patent/JPH01218680A/en
Publication of JPH01218680A publication Critical patent/JPH01218680A/en
Publication of JPH0582278B2 publication Critical patent/JPH0582278B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To judge precisely occurrence of break of an ion-exchange apparatus, by providing an on-line type measurement equipment for residue on evaporation after an ion-exchange apparatus, detecting thereby a leak of substances which is produced in water to be treated at a break of the ion-exchange apparatus by measuring the concentration of residue on evaporation. CONSTITUTION:Ion or silica leaks when a break of an ion-exchange apparatus 1 takes place, whereby a leak of substances which is produced in water to be treated at a break of the ion-exchange apparatus 1 is detected by measuring the concentration of residue on evaporation by means of an on-line type residue- on-evaporation measurement equipment 3 provided after the ion-exchange apparatus 1. As a result, occurrence of a break of ion-exchange apparatus 1 of anion break type or cation break type, can be precisely judged. Especially, in the case of an ion-exchange apparatus 1 of anion break type, not only soluble silica but also total silica such as colloidal silica and low polymer silica can be detected precisely in on-line manner, enabling a precise judgement of occurrence of a break.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、カチオン交換樹脂およびアニオン交換樹脂を
用いる純水(超純水)製造ラインにおいて、イオン交換
樹脂のブレークをオンラインで監視する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for online monitoring of ion exchange resin breakage in a pure water (ultra pure water) production line using cation exchange resins and anion exchange resins. .

(従来の技術) イオン交換樹脂の質流交換容量を越えるとイオン等のリ
ークが始まる(ブレーク)。純水製造ラインにおいてこ
のイオン交換装置のブレークをオンラインで検知すべく
、ブレーク時にNaイオンがリークし始めるカチオンブ
レークタイプのイオン交換装置では、比抵抗計を用い、
シリカがリークするアニオンブレークタイプのイオン交
換装置では、オンライン型シリカモニターを用いていた
(Prior art) When the mass exchange capacity of the ion exchange resin is exceeded, ions, etc. begin to leak (break). In order to detect a break in the ion exchange equipment online in a pure water production line, a resistivity meter is used in the cation break type ion exchange equipment, where Na ions begin to leak when the break occurs.
Anion break type ion exchange equipment that leaks silica uses an online silica monitor.

(発明が解決しようとする課題) このオンライン型シリカモニターとは、モリブテンイエ
ロー法あるいはモリブテンブルー法を採用し、溶解性シ
リカのみを検出するもので、コロイド状シリカや低重合
シリカはチエツクしえない。つまり、アニオンブレーク
タイプのイオン交換装置のブレーク時を正確に検知でき
ない。
(Problem to be solved by the invention) This online silica monitor uses the molybdenum yellow method or molybdenum blue method to detect only soluble silica, and cannot check colloidal silica or low polymerized silica. . In other words, it is not possible to accurately detect when an anion break type ion exchange device breaks.

(課題を解決するだめの手段) イオン交換装置を用いる純水製造ラインにおいて、イオ
ン交換装置の後段に蒸発残留物測定装置を配置し、検知
した蒸発残留物濃度によりブレーク時を判定する。蒸発
残留物とは、純水中に含まれる微粒子、微量イオン、不
揮発性の有機炭素、そして全シリカ(溶解性シリカやコ
ロイドシリカ)であり、I)I)b単位でこれら蒸発残
留物を検出するのが蒸発残留物測定装置である。溶解性
シリカ、コロイド状シリカ、低重合シリカ(以下全シリ
カと称する)を正確に測定してアニオンブレークタイプ
のイオン交換装置のブレーク時を判定し、Naイオン等
を測定してカチオンブレークタイプのイオン交換装置の
ブレーク時をオンラインで判定する。この蒸発残留物測
定装置は出願人が既に開発したもので(特開昭62−2
22145号)、測定水を一定の粒径分布と中心径を有
する微小な水滴に霧化し、これを蒸発・乾燥して一定粒
径分布を保ちつつそのピーク中心径をシフトし、得られ
るエアロゾルを飽和蒸気と混合して粒径を一様に拡大し
、凝縮核カウンターでピーク中心径を演算するものであ
る。
(Means for solving the problem) In a pure water production line using an ion exchange device, an evaporation residue measuring device is placed after the ion exchange device, and a break time is determined based on the detected concentration of the evaporation residue. Evaporation residues are fine particles, trace ions, nonvolatile organic carbon, and total silica (soluble silica and colloidal silica) contained in pure water, and these evaporation residues are detected in units of I)I)b. This is the evaporation residue measuring device. Accurately measure soluble silica, colloidal silica, and low-polymerized silica (hereinafter referred to as total silica) to determine when an anion break type ion exchange device breaks, and measure Na ions, etc. to determine cation break type ions. Determine online when a replacement device breaks. This evaporation residue measuring device was already developed by the applicant (Japanese Patent Laid-Open No. 62-2
No. 22145), the measurement water is atomized into minute water droplets with a constant particle size distribution and center diameter, and these are evaporated and dried to maintain a constant particle size distribution while shifting the peak center diameter, and the resulting aerosol is The particle size is uniformly expanded by mixing with saturated steam, and the peak center diameter is calculated using a condensation nucleus counter.

(作用) イオン交換装置の貫流交換容量を越えるとイオンやシリ
カ等のリークが始まる。アニオンブレークタイプのイオ
ン交換装置では、このブレーク時に溶解性シリカやコロ
イド状シリカなどの全シリカが処理水中にリークされる
。全シリカの濃度を後段に配置した蒸発残留物測定装置
で検知し、ブレーク時の判定をオンラインで下す。カチ
オンブレークタイプのイオン交換装置ではNaイオン等
がブレーク時にリークされる。こわ。
(Function) When the flow-through exchange capacity of the ion exchange device is exceeded, ions, silica, etc. begin to leak. In an anion break type ion exchange device, all silica such as soluble silica and colloidal silica is leaked into the treated water during this break. The concentration of total silica is detected by the evaporation residue measuring device installed in the latter stage, and a break condition is determined online. In a cation break type ion exchange device, Na ions and the like are leaked at the time of break. scary.

も蒸発残留物測定装置で検知しえる。can also be detected with an evaporation residue measuring device.

(実施例) 第1図はイオン交換装置(1)の前段に逆浸透膜(2)
を配置し、後段に蒸発残留物測定装置(3)を配置した
純水製造ラインの説明図である。分岐管(4)を経て蒸
発残留物測定装置(3)へ処理水が送りこまれる。処理
水の比抵抗を検出するために比抵抗セル(5)と比抵抗
計(6)を配置する。
(Example) Figure 1 shows a reverse osmosis membrane (2) installed before the ion exchange device (1).
FIG. 2 is an explanatory diagram of a pure water production line in which an evaporation residue measuring device (3) is arranged at a later stage. The treated water is sent to the evaporation residue measuring device (3) via the branch pipe (4). A resistivity cell (5) and a resistivity meter (6) are arranged to detect the resistivity of the treated water.

蒸発残留物測定装置(3)を第2図に基づいて詳しく説
明する。純水はポンプ(7)に噴霧器(8)に圧送され
、清浄な空気中に噴霧される。噴霧直後の一定の粒径分
布(対数正規分布)と中心径(10μm)を有する。こ
のような分布形状を有する微粒子を乾燥器(9)にて蒸
発・乾燥させる。符号00)は加熱器である。蒸発によ
り不純物が析出した超微粒子の粒径分布は、上記対数正
規分布が保たれるがピークとなる中心径は0.01/z
m程度にシフトする。不純物の濃度に応じて中心径のシ
フト量が異なるために、このシフト量を検出すれば蒸発
残留物濃度を測定できることになる。このエアロゾルを
希釈器aυに案内し、所定の粒径以下の微粒子を内壁面
に吸着除去するフィルタf12)内を通過させ、蒸気室
03)から高温の飽和蒸気が供給される混合室Oaへと
導ひく。この混合室04)内にてエアロゾルはその粒径
を拡大する。
The evaporation residue measuring device (3) will be explained in detail based on FIG. 2. The pure water is pumped by a pump (7) to a sprayer (8) and sprayed into clean air. It has a constant particle size distribution (log normal distribution) and a center diameter (10 μm) immediately after spraying. The fine particles having such a distribution shape are evaporated and dried in a dryer (9). Code 00) is a heater. The particle size distribution of the ultrafine particles from which impurities are precipitated by evaporation maintains the above-mentioned lognormal distribution, but the center diameter at the peak is 0.01/z.
Shift to about m. Since the amount of shift in the center diameter differs depending on the concentration of impurities, the concentration of evaporation residue can be measured by detecting this amount of shift. This aerosol is guided to a diluter aυ, passed through a filter f12) that adsorbs and removes fine particles with a predetermined particle size or less on the inner wall surface, and is then passed through a filter f12) that adsorbs and removes fine particles with a predetermined particle size or less, and is then transferred from a steam chamber 03) to a mixing chamber Oa where high-temperature saturated steam is supplied. Guide. In this mixing chamber 04), the aerosol expands its particle size.

計測室(15)は、レーザービームを用いて粒径を拡大
したエアロゾルの粒径分布とピーク中心径を演算し、蒸
発残留物濃度をI)pb年単位検出し、その結果をデイ
スプレィ(16)とレコーダー(17)に表示する。
The measurement room (15) calculates the particle size distribution and peak center diameter of the aerosol whose particle size has been expanded using a laser beam, detects the evaporation residue concentration in pb years, and displays the results (16). is displayed on the recorder (17).

第3図の蒸発残留物濃度曲線図は、アニオンブレークタ
イプのイオン交換装置(11を使用した実験例であり、
アニオン交換樹脂として強塩基性アニオン交換樹脂・デ
ュオライトA−102D(デュオライト社) 15 (
1と、強酸性カチオン交換樹脂・デュオライトC−20
(デーオライド社)75沼をイオン交換装置(1)に充
填し再生する。この混床型のイオン交換装置(1)に、
逆浸透膜(2)処理後の全アニオン25 ’my/A 
(as CaCO3)、シリカ27nf/−e (as
 Ca CO3)の処理水を通水する。
The evaporation residue concentration curve diagram in Figure 3 is an experimental example using an anion break type ion exchange device (No. 11).
As an anion exchange resin, strongly basic anion exchange resin Duolite A-102D (Duolite Co., Ltd.) 15 (
1 and strong acidic cation exchange resin Duolite C-20
(Deoride Co.) 75 swamp is filled into the ion exchange device (1) and regenerated. In this mixed bed type ion exchange device (1),
Total anion after reverse osmosis membrane (2) treatment 25'my/A
(as CaCO3), silica 27nf/-e (as
The treated water of CaCO3) is passed through.

脱イオン処理した処理水の一部を蒸発残留物測定装置(
3)に案内し、蒸発残留物濃度と通水時間との関係を第
3図の点線(黒丸)にて示す。比抵抗計(6)で測定し
た比抵抗値を白丸で示し、比較のだめ処理水をサンプリ
ングして、溶解性シリカ(白三角)と全シリカ(黒三角
)の濃度をJIS−に−0101法により分析した。
A portion of the deionized treated water is measured using an evaporation residue measuring device (
3), and the relationship between the evaporation residue concentration and water flow time is shown by the dotted line (black circle) in Figure 3. The resistivity value measured with a resistivity meter (6) is shown by a white circle, and the concentrations of soluble silica (white triangles) and total silica (black triangles) were determined by sampling treated water for comparison according to the JIS-0101 method. analyzed.

この測定データにより、従来のように溶解性シリカのみ
を検出してアニオンブレーク時(B点)を判定するよシ
も、蒸発残留物濃度によるアニオンブレーク時(A点)
の方が正確であることが理解される。蒸発残留物濃度曲
線と全シリカ濃度曲線の上昇とがほぼ一致している。
With this measurement data, it is possible to determine the anion break (point B) by detecting only soluble silica as in the past, but also to determine the anion break (point A) due to the concentration of evaporated residue.
is understood to be more accurate. The rise in the evaporation residue concentration curve and the total silica concentration curve almost coincide.

第4図の蒸発残留物濃度曲線図は、カチオンブレークタ
イプのイオン交換装置(1)を使用した実験結果である
。第3図の実験例で使用したイオン交換樹脂を再生後、
0.4%のNa OH溶液を5001通薬し、カチオン
交換樹脂の約70%をNa型にして本来アニオンブレー
クタイプのイオン交換装置(1)をカチオンが最初にブ
レイクするようにしておく。このイオン交換装置(1)
の処理水を蒸発残留物測定装置(3)で測定した結果を
同図の黒丸印の点線で示す。比抵抗値は白丸印の曲線、
溶解性シリカ濃度はJIS−KOIOI法により測定し
n=角印の曲線、そしてNa濃度を原子吸光度法により
測定した結果を白四角印の曲線で示す。比抵抗値による
カチオンブレーク時(B点)と、蒸発残留物濃度による
ブレーク時(A点)とは合致し、カチオンブレーク時の
判定も蒸発残留物濃度により正確に行うことができる。
The evaporation residue concentration curve diagram in FIG. 4 is the result of an experiment using a cation break type ion exchange device (1). After regenerating the ion exchange resin used in the experimental example shown in Figure 3,
5,000 times of 0.4% NaOH solution is passed through, and about 70% of the cation exchange resin is changed to Na type, so that the ion exchange device (1), which is originally an anion break type, is set so that cations break first. This ion exchange device (1)
The results of measuring the treated water using the evaporation residue measuring device (3) are shown by the dotted line marked with black circles in the figure. The specific resistance value is the curve marked with a white circle,
The soluble silica concentration was measured by the JIS-KOIOI method, and the curve with n = square marks, and the Na concentration was measured by the atomic absorption method, and the curve with white squares shows the results. The cation break time based on the resistivity value (point B) and the break time based on the evaporation residue concentration (point A) match, and the cation break time can also be accurately determined based on the evaporation residue concentration.

この蒸発物としてはNaイオン、溶解性シリカ等が含ま
れるために、カチオンブレーク時のNaイオンのリーク
による蒸発残留物濃度変化を検知することで、正確なブ
レーク時判定ができるのである。
Since this evaporated material includes Na ions, soluble silica, etc., by detecting the change in the evaporation residue concentration due to the leakage of Na ions during the cation break, it is possible to accurately determine when the break occurs.

第1図のイオン交換装置(1)の代シにカートリッジ型
カラムを採用し、強酸性カチオン交換樹脂ダイヤイオン
5K−IB(三菱化成)2o1と、強塩基性アニオン交
換樹脂ダイヤイオン5A−1OA(三菱化成)3o1を
混合してカラム内に充填し、IOMΩ・傭程度のシリカ
50 tt?/−e (as CaC0a )を含む一
次純水を、このカートリッジ型カラムで処理し、処理水
の一部を蒸発残留物測定装置(3)へ導ひいた実施例の
実験結果が第5図である。比抵抗や溶解性シリカそして
全シリカ濃度の検出方法や同図への表示方法は第3図と
同様である。従来の溶解性シリカ濃度によるアニオンブ
レーク時の判定は、シリカモニターで301)I)bの
ポイントでB点であったが、本発明の蒸発残留物濃度に
よる判定では同じ30 ppbのポイントでもA点にな
る。第3図の実験例と同じように全シリカ濃度を正確に
検出しえるためブレーク時を的確に判定しえる。
A cartridge-type column was adopted in place of the ion exchange device (1) in Figure 1, and a strong acid cation exchange resin Diaion 5K-IB (Mitsubishi Kasei) 2o1 and a strong basic anion exchange resin Diaion 5A-1OA ( Mitsubishi Kasei) 3o1 was mixed and packed into the column, and 50 tt? Figure 5 shows the experimental results of an example in which primary pure water containing /-e (as CaC0a) was treated with this cartridge type column and a part of the treated water was led to the evaporation residue measuring device (3). be. The method of detecting resistivity, soluble silica, and total silica concentration and the method of displaying them in the same figure are the same as in FIG. 3. In the conventional judgment of anion break based on the soluble silica concentration, the silica monitor gave a point B at point 301)I)b, but in the judgment based on the evaporation residue concentration of the present invention, it was a point A even at the same point of 30 ppb. become. As in the experimental example shown in FIG. 3, since the total silica concentration can be detected accurately, the break time can be accurately determined.

(発明の効果) 微量イオンや微粒子そして全シリカ等の蒸発残留物を、
イオン交換装置(1)の後段に配置した蒸発残留物測定
装置(3)によりオンラインで測定するため、アニオン
ブレークタイプやカチオンブレークタイプのイオン交換
装置(1)のブレーク時を正確に判定できる。特に、ア
ニオンブレークタイプでは従来は溶解性シリカのみ検出
していたため、ブレーク時の正確な判定は不可能であっ
たが、本発明では溶解性シリカのみならずコロイド状シ
リカや低重合シリカなどの全シリカをオンラインで正確
に検出でき、ブレーク時の的確な判定が可能になった。
(Effect of the invention) Trace ions, fine particles, and evaporation residues such as total silica can be removed.
Since the measurement is carried out online by the evaporation residue measuring device (3) placed after the ion exchange device (1), it is possible to accurately determine when the anion break type or cation break type ion exchange device (1) breaks. In particular, in the anion break type, only soluble silica was detected in the past, making it impossible to accurately determine when the break occurred. Silica can be detected accurately online, making it possible to accurately judge when a break occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は純水製造ラインの説明図、第2図は蒸発残留物
測定装置の概略説明図、第3図はアニオンブレークタイ
プのイオン交換装置の処理水を蒸発残留物測定装置によ
り測定した蒸発残留物濃度曲線図、第4図はカチオンブ
レークタイプのイオン交換装置の処理水を同上測定装置
により測定した蒸発残留物濃度曲線図、第5図はイオン
交換樹脂を混合したカートリッジ型コラムの処理水を同
上測定装置により測定した蒸発残留物濃度曲線図である
。 ■ ・・ イオン交換装置    2・・・・逆浸透膜
3 ・・蒸発残留物測定装置
Figure 1 is an explanatory diagram of the pure water production line, Figure 2 is a schematic diagram of the evaporation residue measuring device, and Figure 3 is the evaporation of treated water from an anion break type ion exchange equipment measured by the evaporation residue measuring device. Residue concentration curve diagram; Figure 4 is an evaporation residue concentration curve diagram obtained by measuring treated water from a cation break type ion exchange device using the same measuring device; Figure 5 is a diagram showing treated water from a cartridge type column mixed with ion exchange resin. FIG. 3 is an evaporation residue concentration curve diagram measured by the same measuring device as above. ■...Ion exchange device 2...Reverse osmosis membrane 3...Evaporation residue measuring device

Claims (4)

【特許請求の範囲】[Claims] (1)アニオン交換樹脂やカチオン交換樹脂を用いる純
水製造ラインにおいて、これらイオン交換装置の後段に
オンライン型蒸発残留物測定装置を配置し、イオン交換
装置のブレーク時に発生する処理水中のリーク物質を蒸
発残留物測定装置の蒸発残留物濃度として検知する、イ
オン交換装置のブレーク監視方法。
(1) In pure water production lines that use anion exchange resins and cation exchange resins, an online evaporation residue measuring device is placed after these ion exchange devices to detect leakage substances in the treated water that occur when the ion exchange devices break. A method for monitoring breaks in ion exchange equipment, which is detected as the concentration of evaporation residue in an evaporation residue measuring device.
(2)測定水を一定の粒径分布と中心径を有する微小な
水滴に霧化し、これを乾燥して得られるエアロゾルを飽
和蒸気と混合して粒径を拡大し、凝縮核カウンターでピ
ーク中心径を演算する、蒸発残留物測定装置を採用する
請求項1記載のイオン交換装置のブレーク監視方法。
(2) The measurement water is atomized into minute water droplets with a fixed particle size distribution and center diameter, and the aerosol obtained by drying this is mixed with saturated steam to expand the particle size, and the peak center is measured with a condensation nucleus counter. 2. A break monitoring method for an ion exchange device according to claim 1, which employs an evaporation residue measuring device that calculates the diameter.
(3)アニオンブレークタイプのイオン交換装置を用い
る純水製造ラインにおいて、このイオン交換装置の後段
に蒸発残留物測定装置を配置し、イオン交換装置のブレ
ーク時に発生するコロイド状シリカ、溶解性シリカ、低
重合シリカを、この蒸発残留物測定装置の蒸発残留物濃
度として検知する、イオン交換装置のブレーク監視方法
(3) In a pure water production line that uses an anion break type ion exchange device, an evaporation residue measuring device is placed after the ion exchange device to detect colloidal silica, soluble silica, etc. generated when the ion exchange device breaks. A break monitoring method for ion exchange equipment that detects low polymerized silica as the evaporation residue concentration of this evaporation residue measurement device.
(4)測定水を一定の粒径分布と中心径を有する微小な
水滴に霧化し、これを蒸発・乾燥して一定の粒径分布を
保ちつつその中心径(ピーク径)をシフトし、このエア
ロゾルを飽和蒸気と混合して粒径を一様に拡大し、凝縮
核カウンターでピーク中心径を演算する蒸発残留物測定
装置を採用する請求項3記載のイオン交換装置のブレー
ク監視装置。
(4) Atomize the water to be measured into minute water droplets with a constant particle size distribution and center diameter, and evaporate and dry them to maintain a constant particle size distribution while shifting the center diameter (peak diameter). 4. The break monitoring device for an ion exchange device according to claim 3, which employs an evaporation residue measuring device that uniformly expands the particle size by mixing the aerosol with saturated steam and calculates the peak center diameter using a condensation nucleus counter.
JP63042972A 1988-02-25 1988-02-25 Method for monitoring break of ion-exchange apparatus Granted JPH01218680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042972A JPH01218680A (en) 1988-02-25 1988-02-25 Method for monitoring break of ion-exchange apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042972A JPH01218680A (en) 1988-02-25 1988-02-25 Method for monitoring break of ion-exchange apparatus

Publications (2)

Publication Number Publication Date
JPH01218680A true JPH01218680A (en) 1989-08-31
JPH0582278B2 JPH0582278B2 (en) 1993-11-18

Family

ID=12650953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042972A Granted JPH01218680A (en) 1988-02-25 1988-02-25 Method for monitoring break of ion-exchange apparatus

Country Status (1)

Country Link
JP (1) JPH01218680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device
JP2012037318A (en) * 2010-08-05 2012-02-23 Japan Organo Co Ltd Apparatus and method for measuring particle in liquid
JP2013255864A (en) * 2012-06-11 2013-12-26 Nomura Micro Sci Co Ltd Apparatus for producing purified water
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439686A (en) * 1977-09-05 1979-03-27 Nippon Steel Chemical Co Detection for quick finding of mixed brine in water to be inspected
JPS54131340A (en) * 1978-03-31 1979-10-12 Mitsubishi Chem Ind Ltd Water treatment device
JPS57104337U (en) * 1981-08-12 1982-06-26
JPS62222145A (en) * 1986-03-24 1987-09-30 Nippon Kagaku Kogyo Kk Method and apparatus for measuring impurity in liquid
JPS62199191U (en) * 1986-06-04 1987-12-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439686A (en) * 1977-09-05 1979-03-27 Nippon Steel Chemical Co Detection for quick finding of mixed brine in water to be inspected
JPS54131340A (en) * 1978-03-31 1979-10-12 Mitsubishi Chem Ind Ltd Water treatment device
JPS57104337U (en) * 1981-08-12 1982-06-26
JPS62222145A (en) * 1986-03-24 1987-09-30 Nippon Kagaku Kogyo Kk Method and apparatus for measuring impurity in liquid
JPS62199191U (en) * 1986-06-04 1987-12-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device
JP2012037318A (en) * 2010-08-05 2012-02-23 Japan Organo Co Ltd Apparatus and method for measuring particle in liquid
JP2013255864A (en) * 2012-06-11 2013-12-26 Nomura Micro Sci Co Ltd Apparatus for producing purified water
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules

Also Published As

Publication number Publication date
JPH0582278B2 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
JPH02115697A (en) Monitor for continuous on-stream of water of cooling tower
JP2002048776A (en) Performance evaluation method and device of anion- exchange resin and condensate demineralizer
DE2806208C3 (en) Method and device for the detection of sulfur dioxide in a gas sample
US11130684B2 (en) Water softening device and method of operating a water softening device
US4814281A (en) Differential conductivity sulfate monitor
JPH01218680A (en) Method for monitoring break of ion-exchange apparatus
US5788828A (en) Apparatus for detecting anions in water
DE69732685T2 (en) Method for evaluating the performance of a chemical filter for the purification of gases
CA2051245A1 (en) Process and apparatus for the electrochemical determination of gaseous or volatile species with particular reference to hemogasanalyzers
US2560317A (en) Method of determining the concentration of a chemical constituent of a fluid
NZ250956A (en) Monitoring concentrations of water treatment compositions using absorbance or emission spectra
US4887453A (en) Method and system for on-line calibration and validation of process instrumentation
US3705477A (en) Condensate analyzer
JP4864671B2 (en) Water quality abnormality detection device, water quality abnormality detection method, and water treatment device
US3117841A (en) Method and apparatus for detecting gases or vapors
DE2850766A1 (en) METHOD FOR DETECTING CORROSION FORMATION IN STEAM TURBINE SYSTEMS AND DEVICE FOR IMPLEMENTING THE METHOD
EP0122248B1 (en) A method for analysing gases
JP3974732B2 (en) Seawater leak detection device
CN219285148U (en) Performance test device of online chloride ion analyzer
JP2000131307A (en) Method and device for evaluating water quality
Kieber et al. An Undergraduate Laboratory for the Determination of Sodium, Potassium, and Chloride: Using an Ion-Exchange Resin, Ion Chromatography, and Atomic Absorption Spectrophotometry
Bondareva et al. Monitoring of natural waters using sorption cartridges
Felder et al. A method of moments for measuring diffusivities of gases in polymers
JP3089867B2 (en) Salt detection method and apparatus
JPS6271831A (en) Method and instrument for measuring impurity in liquid