JP4855068B2 - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method Download PDF

Info

Publication number
JP4855068B2
JP4855068B2 JP2005378871A JP2005378871A JP4855068B2 JP 4855068 B2 JP4855068 B2 JP 4855068B2 JP 2005378871 A JP2005378871 A JP 2005378871A JP 2005378871 A JP2005378871 A JP 2005378871A JP 4855068 B2 JP4855068 B2 JP 4855068B2
Authority
JP
Japan
Prior art keywords
chamber
water
cathode
anode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005378871A
Other languages
Japanese (ja)
Other versions
JP2007175647A (en
Inventor
雅司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005378871A priority Critical patent/JP4855068B2/en
Publication of JP2007175647A publication Critical patent/JP2007175647A/en
Application granted granted Critical
Publication of JP4855068B2 publication Critical patent/JP4855068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体製造分野、医薬製造分野、原子力や火力などの発電分野、食品工業などの各種の産業又は研究所施設において使用される、イオン交換膜の膜焼けが起こらず、省電力で且つスケール発生を防止する電気式脱イオン水製造装置に関するものである。   The present invention is used in various fields such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry, etc. The present invention relates to an electric deionized water production apparatus that prevents scale generation.

従前の電気式脱イオン水製造装置は、陽極を備えた陽極室と陰極を備えた陰極室の間に複数の脱塩室と濃縮室を交互に配したものであり、陰極と陽極の間の電気抵抗が大きく、両極間の印加電圧が高くなるという問題がある。また、被処理水中のカルシウムイオンと炭酸成分に起因する炭酸カルシウムスケールが濃縮室のイオン交換膜に発生するという問題があった。   A conventional electric deionized water production apparatus has a plurality of demineralization chambers and concentration chambers alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. There is a problem that the electric resistance is large and the applied voltage between the two electrodes becomes high. In addition, there is a problem that calcium carbonate scale caused by calcium ions and carbonic acid components in the water to be treated is generated in the ion exchange membrane in the concentration chamber.

これを解決するものとして、特開2003−136063号公報には、陰極と陽極との間にカチオン交換膜とアニオン交換膜とが1枚ずつ配置され、該陰極とカチオン交換膜との間に濃縮室兼陰極室が設けられ、該陽極とアニオン交換膜との間に濃縮室兼陽極室が設けられ、該カチオン交換膜とアニオン交換膜との間に脱塩室が設けられ、該濃縮室兼陽極室及び濃縮室兼陰極室にそれぞれカチオン交換体などの導電体が充填され、該脱塩室内にイオン交換体が充填されてなる電気式脱イオン装置が開示されている。この電気式脱イオン水装置によれば、生産水量が少ない場合に好適であり、電極間の印加電圧が低く、また、スケールが発生し難いものである。   As a solution to this problem, Japanese Patent Application Laid-Open No. 2003-136063 discloses that one cation exchange membrane and one anion exchange membrane are arranged between the cathode and the anode, and the cation exchange membrane is concentrated between the cathode and the cation exchange membrane. A chamber / cathode chamber is provided, a concentration chamber / anode chamber is provided between the anode and the anion exchange membrane, and a desalting chamber is provided between the cation exchange membrane and the anion exchange membrane. An electric deionization apparatus is disclosed in which an anode chamber and a concentration chamber / cathode chamber are filled with a conductor such as a cation exchanger, and an ion exchanger is filled in the demineralization chamber. This electric deionized water device is suitable when the amount of produced water is small, the applied voltage between the electrodes is low, and scale is unlikely to occur.

しかしながら、このような電気式脱イオン水装置のうち、例えば、陽極室及び陰極室にそれぞれカチオン交換体を充填したものは、印加電流を上げ、イオン排除効率を高めると、アニオンが透過するアニオン交換膜が黒く焦げる、いわゆる膜焼けを起こし、アニオンを透過する機能が損なわれるため、電流密度を高めることができないという問題がある。また、特開2003−136063号公報記載の電気式脱イオン水装置は、被処理水中のカチオン及びアニオン共に除去するため、例えば、被処理水中のカチオンのみを除去し、アニオンを残したい場合や、被処理水中のアニオンのみを除去し、カチオンを残したい場合などには適用できないという問題がある。被処理水中のカチオンのみを除去し、アニオンを残す装置としては、例えば、アンモニアやヒドラジンあるいは海水のリークを微量に含む発電所の復水循環系の水の分析において、アンモニアニウムイオンやヒドラジニウムイオン、海水のNaCl中のナトリウムイオン等のカチオン成分を除去する装置が挙げられる。該装置から流出する脱カチオン水は、その中に含まれるHClによる比抵抗又は酸導電率を測定するため、測定器に供給される。   However, among such electric deionized water devices, for example, those in which the anode chamber and the cathode chamber are filled with cation exchangers, respectively, increase the applied current and increase the ion exclusion efficiency, and anion exchange that allows permeation of anions. There is a problem that the current density cannot be increased because the film burns black, so-called film burning, and the function of transmitting anions is impaired. In addition, the electric deionized water device described in Japanese Patent Application Laid-Open No. 2003-136063 removes both cations and anions in the water to be treated. For example, when removing only cations in the water to be treated and leaving anions, There is a problem that it cannot be applied to cases where it is desired to remove only anions in the water to be treated and leave cations. As an apparatus that removes only cations in the water to be treated and leaves anions, for example, in the analysis of water in the condensate circulation system of a power plant that contains trace amounts of ammonia, hydrazine, or seawater, ammonianium ions, hydrazinium ions, An apparatus for removing cation components such as sodium ions in NaCl of seawater is mentioned. The decationized water flowing out from the apparatus is supplied to a measuring instrument in order to measure the specific resistance or acid conductivity due to HCl contained therein.

発電所の復水循環系の水中のアニオンを検出する装置として、陽極室と陰極室の間に、2枚のカチオン交換膜で区画されカチオン交換体が充填された脱アルカリ室を配設し、該陽極室、陰極室及び脱イオン室には、それぞれ水の導入経路と処理水の排出経路が配され、該脱アルカリ室からの処理水の排出経路に、該処理水の導電率を測定する測定器を配した装置が既に提案されている。しかしながら、復水循環系の水中には、クラッドと呼ばれる鉄の酸化物、水酸化物及び各種金属イオンが存在し、脱アルカリ室はクラッド及び金属イオンが負荷され、カチオン交換体は強酸性であるため、クラッドは脱アルカリ室のカチオン交換体に接触、堆積し、次第にイオン化し、金属イオンとなりカチオン交換膜を透過して脱アルカリ室から陰極室に排除される。排除された金属イオンは陰極室のカチオン交換膜表面で局部的に濃縮され、陰極水の水の電気分解で生成する水酸化物イオンと反応し水酸化物のスケールを生成する。また水酸化鉄は脱水作用により絶縁性の酸化鉄と形態変化する。このようなスケールが発生すると、その部分で電気抵抗が上昇し、電流が流れ難くなるという問題がある。   As a device for detecting anions in the water of the condensate circulation system of the power plant, a dealkalization chamber partitioned by two cation exchange membranes and filled with a cation exchanger is disposed between the anode chamber and the cathode chamber, In the anode chamber, the cathode chamber, and the deionization chamber, a water introduction path and a treated water discharge path are arranged, respectively, and the conductivity of the treated water is measured in the treated water discharge path from the dealkalization chamber. A device with a vessel has already been proposed. However, the water in the condensate circulation system contains iron oxides, hydroxides, and various metal ions called clads, and the dealkalization chamber is loaded with clads and metal ions, and the cation exchanger is strongly acidic. The clad contacts and deposits with the cation exchanger in the dealkalization chamber, gradually ionizes, becomes metal ions, permeates the cation exchange membrane, and is removed from the dealkalization chamber to the cathode chamber. The excluded metal ions are locally concentrated on the surface of the cation exchange membrane in the cathode chamber, and react with the hydroxide ions generated by electrolysis of the cathode water to produce a hydroxide scale. In addition, iron hydroxide changes its form with insulating iron oxide by dehydration. When such a scale occurs, there is a problem that the electrical resistance rises at that portion and current does not flow easily.

また、流入する被処理水の硬度が高い場合、電気式脱イオン水製造装置の電極室において炭酸カルシウムや水酸化マグネシウム等のスケールが発生するという問題がある。すなわち、陽イオン交換膜を通過して脱イオン室から陰極室に排除されたカルシウムイオンやマグネシウムイオンは、陰極室の陽イオン交換膜表面で局部的に濃縮され、陰極室の水の電気分解で生成する水酸化物イオンと、溶解度積を越えた濃度で混合されてスケールが発生するという問題がある。また、上記の水中のアニオンを検出する装置においても、前記カチオン交換膜の膜焼けの問題は依然として解決されておらず、印加電流が上げられないという問題があった。   Moreover, when the hardness of the to-be-processed water which flows in is high, there exists a problem that scales, such as a calcium carbonate and magnesium hydroxide, generate | occur | produce in the electrode chamber of an electrical deionized water manufacturing apparatus. In other words, calcium ions and magnesium ions that have passed through the cation exchange membrane and have been excluded from the deionization chamber to the cathode chamber are locally concentrated on the surface of the cation exchange membrane in the cathode chamber, and electrolysis of the water in the cathode chamber There is a problem that scale is generated by mixing with the generated hydroxide ions at a concentration exceeding the solubility product. Further, even in the above-described apparatus for detecting anions in water, the problem of burning of the cation exchange membrane has not been solved, and the applied current cannot be increased.

従って、本発明の目的は、印加電流を上げても、イオン交換膜の膜焼けが発生せず、酸化鉄や水酸化鉄、あるいは硬度成分などのスケール発生を防止することができる電気式脱イオン水製造装置及び脱イオン水製造方法を提供することにある。   Therefore, an object of the present invention is to provide an electric deionization that can prevent generation of scales such as iron oxide, iron hydroxide, or a hardness component, even when the applied current is increased, without causing film burning of the ion exchange membrane. It is providing the water manufacturing apparatus and the deionized water manufacturing method.

かかる実情において、本発明者らは鋭意検討を行った結果、(1)陰極側のカチオン交換膜の陰極に対向する膜面又は陽極側のアニオン交換膜の陽極に対向する膜面においては、電位勾配が急であるため、発熱し易いこと、(2)当該電極室内に、該イオン交換膜と同じ極性のイオン種のイオン交換体、すなわち、カチオン交換膜の場合はカチオン交換体、アニオン交換膜の場合はアニオン交換体を充填すれば、当該膜面に電位の勾配が起こらず、発熱し難いこと、(3)脱カチオン水製造装置の場合、陰極室に充填されたカチオン交換体により、脱カチオン室から陰極室に移動してきた金属イオンは、そのまま電極水として排除されるため、スケールを生成しないことなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, (1) the potential of the potential on the membrane surface facing the cathode of the cation exchange membrane on the cathode side or the membrane surface facing the anode of the anion exchange membrane on the anode side is Since the gradient is steep, it is easy to generate heat. (2) In the electrode chamber, an ion exchanger having the same polarity as the ion exchange membrane, that is, in the case of a cation exchange membrane, a cation exchanger, an anion exchange membrane. In this case, if the anion exchanger is filled, the potential gradient does not occur on the membrane surface and it is difficult to generate heat. (3) In the case of the decationized water production apparatus, the decationized water is removed by the cation exchanger filled in the cathode chamber. Since the metal ions that have moved from the cation chamber to the cathode chamber are excluded as electrode water as they are, it has been found that no scale is generated, and the present invention has been completed.

すなわち、本発明は、陽極室と陰極室の間に、2枚のカチオン交換膜で区画され且つ該陽極室と陰極室に隣接するカチオン交換体が充填された脱カチオン室を配設し、該陽極室及び陰極室には、電極水流入配管と電極水流出配管が配設され、脱カチオン室には、被処理水流入配管と処理水流出配管が配設され、陰極と該カチオン交換膜で区画される陰極室には、カチオン交換体が充填されることを特徴とする電気式脱イオン水製造装置(第2の装置)を提供するものである。当該第2の装置は、被処理水中のカチオンを除去し、アニオンを除去しない。また、第2の装置においては、カチオン交換膜の陰極側の膜面はカチオン交換体と接しているため、該膜面で電位の勾配はほとんど起こらず、カチオン交換膜が焦げることはない。また、脱カチオン室から陰極室に移動してきた金属イオンや硬度成分は、そのまま電極水として排除されるため、スケールを生成しない。 That is , the present invention provides a decation chamber between the anode chamber and the cathode chamber, which is partitioned by two cation exchange membranes and filled with a cation exchanger adjacent to the anode chamber and the cathode chamber, In the anode chamber and the cathode chamber, an electrode water inflow pipe and an electrode water outflow pipe are provided, and in the decation chamber, a treated water inflow pipe and a treated water outflow pipe are provided, and the cathode and the cation exchange membrane are provided. An electric deionized water production apparatus (second apparatus) is provided in which the cathode chamber to be partitioned is filled with a cation exchanger. The said 2nd apparatus removes the cation in to-be-processed water, and does not remove an anion. In the second apparatus, since the membrane surface on the cathode side of the cation exchange membrane is in contact with the cation exchanger, the potential gradient hardly occurs on the membrane surface, and the cation exchange membrane does not burn. In addition, since the metal ions and hardness components that have moved from the decation chamber to the cathode chamber are excluded as electrode water, they do not generate scale.

また、本発明は、陽極室と陰極室の間に、2枚のアニオン交換膜で区画され且つ該陽極室と陰極室に隣接するアニオン交換体が充填された脱アニオン室を配設し、該陽極室及び陰極室には、電極水流入配管と電極水流出配管が配設され、脱アニオン室には、被処理水流入配管と処理水流出配管が配設され、陽極と該アニオン交換膜で区画される陽極室には、アニオン交換体が充填されることを特徴とする電気式脱イオン水製造装置を提供するものである。当該第3の装置は、被処理水中のアニオンを除去し、カチオンを除去しない。また、第3の装置においては、アニオン交換膜の陽極側の膜面はアニオン交換体と接しているため、該膜面で電位の勾配はほとんど起こらず、アニオン交換膜が焦げることはない。   The present invention further includes a deanion chamber that is partitioned between two anion exchange membranes and is filled with an anion exchanger adjacent to the anode chamber and the cathode chamber between the anode chamber and the cathode chamber, In the anode chamber and the cathode chamber, an electrode water inflow pipe and an electrode water outflow pipe are arranged, and in the deanion chamber, a to-be-treated water inflow pipe and a treated water outflow pipe are arranged, and the anode and the anion exchange membrane An anode chamber to be partitioned is filled with an anion exchanger, and an electric deionized water production apparatus is provided. The said 3rd apparatus removes the anion in to-be-processed water, and does not remove a cation. In the third apparatus, since the membrane surface on the anode side of the anion exchange membrane is in contact with the anion exchanger, the potential gradient hardly occurs on the membrane surface, and the anion exchange membrane is not burnt.

また、本発明は、陽極室と陰極室の間に、2枚のカチオン交換膜で区画され且つ該陽極室と陰極室に隣接するカチオン交換体が充填された脱カチオン室を配設し、陰極と該カチオン交換膜で区画される陰極室には、カチオン交換体が充填される電気式脱イオン水製造装置において、陽極及び陰極間に電圧を印加させながら、脱カチオン室に被処理水を流入させ、陽極室及び陰極室に電極水を流入させて、被処理水中の不純物カチオンを除去して脱カチオン水を得ることを特徴とする脱イオン水製造方法を提供するものである。   In the present invention, a decation chamber is provided between the anode chamber and the cathode chamber, which is partitioned by two cation exchange membranes and filled with a cation exchanger adjacent to the anode chamber and the cathode chamber. In an electric deionized water production apparatus filled with a cation exchanger, the water to be treated flows into the decation chamber while applying a voltage between the anode and the cathode. The present invention provides a method for producing deionized water, characterized in that electrode water is allowed to flow into an anode chamber and a cathode chamber to remove impurity cations in water to be treated to obtain decationized water.

また、本発明は、陽極室と陰極室の間に、2枚のアニオン交換膜で区画され且つ該陽極室と陰極室に隣接するアニオン交換体が充填された脱アニオン室を配設し、陽極と該アニオン交換膜で区画される陽極室には、アニオン交換体が充填される電気式脱イオン水製造装置において、陽極及び陰極間に電圧を印加させながら、脱アニオン室に被処理水を流入させ、陽極室及び陰極室に電極水を流入させて、被処理水中の不純物アニオンを除去して脱アニオン水を得ることを特徴とする脱イオン水製造方法を提供するものである。   In the present invention, a deanion chamber, which is partitioned by two anion exchange membranes and is filled with an anion exchanger adjacent to the anode chamber and the cathode chamber, is disposed between the anode chamber and the cathode chamber. In the electric deionized water production apparatus filled with an anion exchanger, the water to be treated flows into the deanion chamber while applying a voltage between the anode and the cathode. The present invention provides a method for producing deionized water, characterized in that electrode water is caused to flow into an anode chamber and a cathode chamber to remove impurity anions in water to be treated to obtain deanion water.

本発明によれば、陰極側のカチオン交換膜の陰極に対向する膜面又は陽極側のアニオン交換膜の陽極に対向する膜面において、該膜面と接する部材が、同じイオン種のイオン交換体であるため、電位勾配が緩和され、膜焼けは起こらない。このため、電流密度を上げることができ、イオン除去効率が向上する。従来の電気式脱イオン水製造装置の電流密度はせいぜい0.1A/dmであったものが、本発明の場合、1.0A/dmまで上げることができた。また、2枚のカチオン交換体でカチオン交換体が充填された脱塩室を形成する脱カチオン水製造装置の場合、脱カチオン室から陰極室に移動してきた金属イオンや硬度成分は、そのまま電極水として排除されるため、スケールを生成しない。このため、被処理水中からカルシウムイオンやマグネシウムイオン等の硬度成分を除去する前処理、すなわち、Na形陽イオン交換樹脂層に通水することによって、硬度成分をナトリウムに交換する軟化処理や、逆浸透膜やイオン交換による一次脱塩処理を不要とする。また、本発明の電気式脱イオン水製造装置は、縦横高さがそれぞれ10mm以下のような超小型化が可能であり、数mlから数十ml/hのような処理流量が少ない用途に好適である。 According to the present invention, in the membrane surface facing the cathode of the cation exchange membrane on the cathode side or the membrane surface facing the anode of the anion exchange membrane on the anode side, the member in contact with the membrane surface is an ion exchanger of the same ionic species. Therefore, the potential gradient is relaxed and film burning does not occur. For this reason, a current density can be raised and ion removal efficiency improves. The current density of the conventional electric deionized water production apparatus was at most 0.1 A / dm 2 , but in the present invention, it could be increased to 1.0 A / dm 2 . Further, in the case of a decationized water production apparatus that forms a desalination chamber filled with a cation exchanger with two cation exchangers, the metal ions and hardness components that have moved from the decation chamber to the cathode chamber remain as electrode water. Does not generate a scale. For this reason, pretreatment for removing hardness components such as calcium ions and magnesium ions from the water to be treated, that is, softening treatment to exchange hardness components with sodium by passing water through the Na-type cation exchange resin layer, No primary desalination treatment by osmosis membrane or ion exchange is required. Moreover, the electric deionized water production apparatus of the present invention can be miniaturized such that the height and width are each 10 mm or less, and is suitable for applications where the treatment flow rate is as low as several ml to several tens ml / h. It is.

本発明の電気式脱イオン水製造装置において、脱イオン室に充填されるイオン交換体としては、特に制限されず、モノリス状有機多孔質イオン交換体(以下、単に「モノリス」とも言う。)、イオン交換樹脂、モノリスとイオン交換樹脂の混合体が挙げられる。モノリスとしては、特に制限されず、特開2003−334560号公報記載のものが挙げられ、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1ml/g〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上である3次元網目構造のものが使用できる。イオン交換樹脂としては、特に制限されず、水処理に使用される公知の粒状イオン交換樹脂が挙げられる。   In the electric deionized water production apparatus of the present invention, the ion exchanger filled in the deionization chamber is not particularly limited, and is a monolithic organic porous ion exchanger (hereinafter also simply referred to as “monolith”), Examples thereof include ion exchange resins and mixtures of monoliths and ion exchange resins. The monolith is not particularly limited and includes those described in JP-A No. 2003-334560, which has an open-cell structure having macropores connected to each other and mesopores having an average diameter of 1-1000 μm in the walls of the macropores. A three-dimensional network structure having a total pore volume of 1 ml / g to 50 ml / g, an ion exchange group uniformly distributed, and an ion exchange capacity of 0.5 mg equivalent / g or more of a dry porous body is used. it can. The ion exchange resin is not particularly limited, and examples thereof include known granular ion exchange resins used for water treatment.

モノリスとイオン交換樹脂の混合体としては、特に制限されないが、排出イオンが泳動する方向にモノリス相とイオン交換樹脂相が積層された層状体が挙げられる。モノリスとイオン交換樹脂の層状体は、モノリスがスポンジ状の一体構造物であるため、イオン交換樹脂と混ざることがなく、脱イオン室内においてイオン交換膜等の区画手段を用いなくとも相状に充填できる。層状体におけるモノリス相とイオン交換樹脂相の体積割合としては、特に制限されず、イオン交換基の種類、被処理水の処理目的などにより適宜決定される。また、層状体の積層構造としては、特に制限されず、一側のイオン交換膜から他側のイオン交換膜に向けて順に、モノリス相とイオン交換樹脂相、イオン交換樹脂相とモノリス相の2層構造;モノリス相とイオン交換樹脂相とモノリス相、イオン交換樹脂相とモノリス相とイオン交換樹脂相の3層構造が挙げられる。   The mixture of the monolith and the ion exchange resin is not particularly limited, and examples thereof include a layered body in which the monolith phase and the ion exchange resin phase are laminated in the direction in which the discharged ions migrate. The layered body of monolith and ion exchange resin is a monolithic sponge-like structure, so it does not mix with the ion exchange resin and fills in phase without using ion exchange membrane or other partitioning means in the deionization chamber it can. The volume ratio of the monolith phase and the ion exchange resin phase in the layered body is not particularly limited, and is appropriately determined depending on the type of ion exchange group, the purpose of treating the water to be treated, and the like. Further, the laminated structure of the layered body is not particularly limited, and the monolith phase and the ion exchange resin phase, the ion exchange resin phase and the monolith phase 2 in order from the ion exchange membrane on one side to the ion exchange membrane on the other side. Layer structure: A three-layer structure of a monolith phase, an ion exchange resin phase, a monolith phase, an ion exchange resin phase, a monolith phase, and an ion exchange resin phase can be mentioned.

モノリスとイオン交換樹脂の混合体のイオン形としては、特に制限されないが、塩形と再生形の混合体が、イオン交換反応に伴う膨潤、収縮を緩和できる点で好ましい。なお、脱イオン室においては、モノリスとイオン交換樹脂の混合体による当該膨潤、収縮緩和効果にモノリスの物理的な伸縮効果が加わって、脱イオン室内の密着性が確保できる。   The ionic form of the mixture of the monolith and the ion exchange resin is not particularly limited, but a salt form and a regenerated form mixture are preferred in that they can alleviate swelling and shrinkage associated with the ion exchange reaction. In the deionization chamber, the physical expansion / contraction effect of the monolith is added to the swelling / shrinkage relaxation effect of the mixture of the monolith and the ion exchange resin, so that the adhesion in the deionization chamber can be ensured.

また、本発明において、脱イオン室に充填されるカチオン交換体とアニオン交換体の混合イオン交換体としては、特に制限されず、カチオン交換体とアニオン交換体が混合した混合体あるいはカチオン交換体の層とアニオン交換体層が積層した積層体などが挙げられる。   In the present invention, the mixed ion exchanger of the cation exchanger and the anion exchanger filled in the deionization chamber is not particularly limited, and is a mixture of a cation exchanger and an anion exchanger or a cation exchanger. Examples include a laminate in which a layer and an anion exchanger layer are laminated.

本発明の電気式脱イオン水製造装置において、陰極とカチオン交換膜で区画される陰極室に充填されるカチオン交換体としては、特に制限されず、カチオンモノリス、カチオン交換樹脂、カチオンモノリスとカチオン交換樹脂の混合体が挙げられる。また、陽極とアニオン交換膜で区画される陽極室に充填されるアニオン交換体としては、特に制限されず、同様に、アニオンモノリス、アニオン交換樹脂、アニオンモノリスとアニオン交換樹脂の混合体が挙げられる。このうち、モノリスは、モノリスとイオン交換膜との接触面積を増大させ、電位勾配をより緩和することができる点で好ましく、イオン交換樹脂は耐熱性が高い点で好ましい。モノリスとイオン交換樹脂の混合体は、イオン交換膜と当接する側にモノリスを配設し、電極側にイオン交換樹脂を配設することが、モノリスとイオン交換膜との接触面積を増大させ、且つ発熱箇所に耐熱性のイオン交換樹脂が配設できる点で好ましい。電極に充填されるイオン交換樹脂としては、特に制限されず、水処理に使用される公知の粒状イオン交換樹脂が挙げられる。   In the electric deionized water production apparatus of the present invention, the cation exchanger filled in the cathode chamber partitioned by the cathode and the cation exchange membrane is not particularly limited, and is a cation monolith, a cation exchange resin, a cation monolith and a cation exchange. A mixture of resins may be mentioned. The anion exchanger filled in the anode chamber partitioned by the anode and the anion exchange membrane is not particularly limited, and similarly, anion monoliths, anion exchange resins, and mixtures of anion monoliths and anion exchange resins can be mentioned. . Among these, the monolith is preferable in that the contact area between the monolith and the ion exchange membrane can be increased and the potential gradient can be more relaxed, and the ion exchange resin is preferable in terms of high heat resistance. The mixture of the monolith and the ion exchange resin has the monolith disposed on the side in contact with the ion exchange membrane, and the ion exchange resin disposed on the electrode side increases the contact area between the monolith and the ion exchange membrane, And it is preferable at the point which can arrange | position a heat resistant ion exchange resin in a heat_generation | fever location. The ion exchange resin filled in the electrode is not particularly limited, and examples thereof include known granular ion exchange resins used for water treatment.

本発明において、被処理水としては、カチオン及びアニオンのいずれか一方又は両方の処理を目的とするものであり、濁質を含まないものであれば特に限定されないが、例えば、発電所の復水循環系から採取された水、あるいはイオンクロマトグラフィーの分離カラムからの流出液が挙げられる。発電所の復水循環系とは、復水循環主系統の他、これに付属する副次的排水系統を含む意味である。発電所の復水循環系から採取された水を被処理水とする場合、当該電気式脱イオン水製造装置は、アンモニアやヒドラジンと海水由来のナトリウムイオン等のカチオン成分を除去するカチオン除去装置として機能する。この場合、処理水は、比抵抗又は導電率を測定する測定器に送られ、処理水中の主にHClによる比抵抗又は酸導電率を測定することになる。イオンクロマトグラフィーの分離カラムからの流出液を被処理水とする場合、当該電気式脱イオン水製造装置は、いわゆるサプレッサーとして機能する。測定対象のイオンがアニオンの場合、脱カチオン装置として使用し、クロマトグラフィー装置の分離カラムからの溶離液の電解液の導電率を抑制して、分離されたアニオンの導電率は抑制せず、測定対象のアニオンの感度を向上させる。また、測定対象のイオンがカチオンの場合、脱アニオン装置として使用し、クロマトグラフィー装置の分離カラムからの溶離液の電解液の導電率を抑制して、分離されたカチオンの導電率は抑制せず、測定対象のカチオンの感度を向上させる。この場合、処理水は、比抵抗又は導電率を測定する測定器に送られる。   In the present invention, the water to be treated is intended for treatment of either one or both of cation and anion, and is not particularly limited as long as it does not contain turbidity. Examples include water collected from the system or an effluent from an ion chromatography separation column. The condensate circulation system of a power plant is meant to include the secondary drainage system attached to the condensate circulation main system. When water collected from the condensate circulation system of a power plant is treated water, the electric deionized water production device functions as a cation removal device that removes cation components such as ammonia, hydrazine, and sodium ions derived from seawater. To do. In this case, the treated water is sent to a measuring instrument that measures the specific resistance or conductivity, and the specific resistance or acid conductivity mainly due to HCl in the treated water is measured. When the effluent from the separation column of ion chromatography is treated water, the electric deionized water production apparatus functions as a so-called suppressor. When the ion to be measured is an anion, it is used as a decationization device, and the conductivity of the electrolyte of the eluent from the separation column of the chromatography device is suppressed, and the conductivity of the separated anion is not suppressed Improve the sensitivity of the target anion. In addition, when the ion to be measured is a cation, it is used as a deanion device, and the conductivity of the eluent from the separation column of the chromatography device is suppressed, and the conductivity of the separated cation is not suppressed. , Improve the sensitivity of the cation to be measured. In this case, the treated water is sent to a measuring instrument that measures specific resistance or conductivity.

次ぎに、本発明の第1の実施の形態における電気式脱イオン水製造装置を図1を参照して説明する。図1は本例の電気式脱イオン水製造装置(第1の装置)の模式図である。電気式脱イオン水製造装置10aは、陽極2を備えた陽極室112と陰極1を備えた陰極室111の間に、陽極室112側のアニオン交換膜4と陰極111側のカチオン交換膜3で区画され、陽極室112と陰極室111に隣接するカチオン交換体とアニオン交換体の混合イオン交換体5が充填された脱イオン室15を配設し、陽極室112には陽極水流入配管8aと陽極水流出配管8bが、陰極室111には、陰極水流入配管6aと陰極水流出配管6bが、脱イオン室15には、被処理水流入配管7aと処理水流出配管7bがそれぞれ配設されたものであり、陽極2とアニオン交換膜4で区画される陽極室112内にはアニオン交換体12が充填され、陰極1とカチオン交換膜3で区画される陰極室111内にはカチオン交換体11が充填されたものである。   Next, an electric deionized water production apparatus according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of an electric deionized water production apparatus (first apparatus) of this example. The electric deionized water production apparatus 10 a includes an anion exchange membrane 4 on the anode chamber 112 side and a cation exchange membrane 3 on the cathode 111 side between the anode chamber 112 having the anode 2 and the cathode chamber 111 having the cathode 1. A deionization chamber 15 that is partitioned and filled with a mixed ion exchanger 5 of a cation exchanger and an anion exchanger adjacent to the anode chamber 112 and the cathode chamber 111 is disposed. In the anode chamber 112, an anode water inflow pipe 8a and The anode water outflow pipe 8b, the cathode chamber 111 is provided with the cathode water inflow pipe 6a and the cathode water outflow pipe 6b, and the deionization chamber 15 is provided with the treated water inflow pipe 7a and the treated water outflow pipe 7b. The anode chamber 112 defined by the anode 2 and the anion exchange membrane 4 is filled with the anion exchanger 12, and the cathode chamber 111 defined by the cathode 1 and the cation exchange membrane 3 is filled in the cation exchanger. 11 is filling The is intended.

電気式脱イオン水製造装置10aにおいて、陽極室112及び陰極室111間に電圧を印加させ、被処理水を被処理水流入配管7aから脱イオン室15に流入させ、処理水を処理水流出配管7bから系外へ流出させる。一方、陽極水を陽極水流入配管8aから陽極室112に流入させ、陽極水流出配管8bから流出させる。陰極水を陰極水流入配管6aから陰極室111に流入させ、陰極水流出配管6bから流出させる。脱イオン室15において、被処理水中の不純物カチオンはカチオン交換膜3を透過して陰極室(兼濃縮室)111に移動し、陰極水と共に排出され、被処理水中の不純物アニオンはアニオン交換膜4を透過して陽極室(兼濃縮室)112に移動し、陽極水と共に排出される。電気式脱イオン水製造装置10aにおいては、アニオン交換膜4の陽極側の膜面41はアニオン交換体12と接しているため、膜面41で電位の勾配はほとんど起こらず、アニオン交換膜4が焦げることはない。また、カチオン交換膜3の陰極側の膜面31はカチオン交換体11と接しているため、膜面31で電位の勾配はほとんど起こらず、カチオン交換膜3が焦げることはない。また、脱イオン室15から陰極室111に移動してきた金属イオンや硬度成分は、そのまま電極水として排除されるため、スケールは生成しない。   In the electric deionized water production apparatus 10a, a voltage is applied between the anode chamber 112 and the cathode chamber 111, the water to be treated is caused to flow into the deionization chamber 15 from the water to be treated inflow pipe 7a, and the water to be treated is discharged. It flows out of the system from 7b. On the other hand, the anode water is caused to flow from the anode water inflow pipe 8a into the anode chamber 112 and from the anode water outflow pipe 8b. Cathode water flows into the cathode chamber 111 from the cathode water inflow pipe 6a and flows out from the cathode water outflow pipe 6b. In the deionization chamber 15, the impurity cations in the water to be treated permeate the cation exchange membrane 3 and move to the cathode chamber (also the concentration chamber) 111 and are discharged together with the cathode water. Is transferred to the anode chamber (also serving as a concentration chamber) 112 and discharged together with the anode water. In the electrical deionized water production apparatus 10a, since the membrane surface 41 on the anode side of the anion exchange membrane 4 is in contact with the anion exchanger 12, the potential gradient hardly occurs on the membrane surface 41, and the anion exchange membrane 4 Don't burn. Further, since the membrane surface 31 on the cathode side of the cation exchange membrane 3 is in contact with the cation exchanger 11, the potential gradient hardly occurs on the membrane surface 31, and the cation exchange membrane 3 is not burnt. In addition, since the metal ions and hardness components that have moved from the deionization chamber 15 to the cathode chamber 111 are directly removed as electrode water, no scale is generated.

次ぎに、本発明の第2の実施の形態における電気式脱イオン水製造装置を図2を参照して説明する。図2は本例の電気式脱イオン水製造装置(第2の装置)の模式図である。電気式脱カチオン水製造装置10bは、陽極室112と陰極室111の間に、2枚のカチオン交換膜3、3で区画され、陽極室112と陰極室111に隣接するカチオン交換体5aが充填された脱カチオン室15aを配設し、陽極室112には陽極水流入配管8aと陽極水流出配管8bが、陰極室111には、陰極水流入配管6aと陰極水流出配管6bが、脱カチオン室15aには、被処理水流入配管7aと処理水流出配管7bがそれぞれ配設されたものであり、陽極2とカチオン交換膜3で区画される陽極室112内にはカチオン交換体12aが充填され、陰極1とカチオン交換膜3で区画される陰極室111内にはカチオン交換体11が充填されたものである。また、被処理水流入配管7aは、陰極側のカチオン交換膜3の近傍で流入側(図2中、装置の下縁)の脱カチオン室15aに接続され、処理水流出配管7bは、陽極側のカチオン交換膜3の近傍で流出側(図2中、装置の上縁)の脱カチオン室15aに接続されている。なお、電気式脱カチオン水製造装置10bにおいて、処理水流出配管7bと陽極水流入配管8aを接続すれば、別途陽極水を用意する必要がなく、また、処理水中には、水素イオン以外のカチオンはほとんど含まれず、陽極室112から脱カチオン室15aに、水素イオン以外のカチオンが移動してくることがない点で好ましい。電気式脱イオン水製造装置10bにおいて、陽極室112はカチオン交換体無充填であってもよい。   Next, an electric deionized water production apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic view of the electric deionized water production apparatus (second apparatus) of this example. The electric decationized water production apparatus 10 b is partitioned by two cation exchange membranes 3 and 3 between the anode chamber 112 and the cathode chamber 111 and filled with a cation exchanger 5 a adjacent to the anode chamber 112 and the cathode chamber 111. The decationization chamber 15a is disposed, the anode chamber 112 has an anode water inflow pipe 8a and an anode water outflow pipe 8b, and the cathode chamber 111 has a cathode water inflow pipe 6a and a cathode water outflow pipe 6b. The chamber 15a is provided with a treated water inflow pipe 7a and a treated water outflow pipe 7b, respectively. The anode chamber 112 defined by the anode 2 and the cation exchange membrane 3 is filled with a cation exchanger 12a. The cathode chamber 111 partitioned by the cathode 1 and the cation exchange membrane 3 is filled with the cation exchanger 11. The treated water inflow pipe 7a is connected to the decationization chamber 15a on the inflow side (the lower edge of the apparatus in FIG. 2) in the vicinity of the cation exchange membrane 3 on the cathode side, and the treated water outflow pipe 7b is connected to the anode side. The cation exchange membrane 3 is connected to a decation chamber 15a on the outflow side (the upper edge of the apparatus in FIG. 2). In the electrical decationized water production apparatus 10b, if the treated water outflow pipe 7b and the anodic water inflow pipe 8a are connected, it is not necessary to prepare anodized water separately. Is preferable in that no cations other than hydrogen ions move from the anode chamber 112 to the decation chamber 15a. In the electric deionized water production apparatus 10b, the anode chamber 112 may be unfilled with a cation exchanger.

電気式脱カチオン水製造装置10bにおいて、被処理水が発電所の復水循環系から採取された水であって、処理水流出配管7bと陽極水流入配管8aを接続した場合について説明する。すなわち、被処理水はカチオンとして、アンモニウムイオン、ヒドラジニウムイオン、海水由来のナトリウムイオン、アニオンとして、アンモニウムイオン及びヒドラジニウムイオンの対イオンである水酸化物イオン及び海水由来の塩化物イオンを含有する。被処理水の流入及び処理水の流出、陽極水及び陰極水の流入及び流出は、電気式脱イオン水製造装置10aと同じである。脱カチオン室15aにおいて、被処理水中のアンモニウムイオン、ヒドラジニウムイオン、ナトリウムイオン及び陽極室112からカチオン膜3を透過して移動してくるカチオンは、共に陰極側のカチオン交換膜3を透過して陰極室(兼濃縮室)111に移動し、同時に、陽極室112で電気分解により発生した水素イオンは、カチオン交換膜3を透過して脱カチオン室15aに移動し、脱カチオン室内の水酸化物イオンと反応して水となる。脱カチオン室内のイオンは、塩化物イオン及びその対イオンである水素イオンのみとなり、処理水中に含まれた状態で排出される。電気式脱カチオン水製造装置10bの陰極室111においては、カチオン交換膜3の陰極側の膜面31はカチオン交換体11と接しているため、膜面31で電位の勾配はほとんど起こらず、カチオン交換膜3が焦げることはない。また、脱カチオン室15aから陰極室111に移動してきた金属イオンや硬度成分は、そのまま電極水として排除されるため、スケールは生成しない。電気式脱カチオン水製造装置10b(第2の装置)は、被処理水中に金属を含む場合、金属イオンを除去するため、金属フィルターとして機能する。この場合、陰極室111から流出する陰極水は金属イオン濃度を高めたものとすることができ、金属の再利用に供することもできる。   In the electric decationized water production apparatus 10b, a case where the water to be treated is water collected from the condensate circulation system of the power plant and the treated water outflow pipe 7b and the anode water inflow pipe 8a are connected will be described. That is, the water to be treated contains ammonium ions, hydrazinium ions, sodium ions derived from seawater as cations, hydroxide ions that are counter ions of ammonium ions and hydrazinium ions, and chloride ions derived from seawater as anions. . The inflow of treated water and outflow of treated water, and inflow and outflow of anode water and cathode water are the same as in the electrical deionized water production apparatus 10a. In the decation chamber 15a, ammonium ions, hydrazinium ions, sodium ions in the water to be treated, and cations that move through the cation membrane 3 from the anode chamber 112 both pass through the cation exchange membrane 3 on the cathode side. At the same time, the hydrogen ions generated by electrolysis in the anode chamber 112 move to the cathode chamber (also serving as the concentration chamber) 111, pass through the cation exchange membrane 3 and move to the decation chamber 15a, and the hydroxide in the decation chamber It reacts with ions to become water. The ions in the decation chamber become only chloride ions and hydrogen ions which are counter ions thereof, and are discharged while contained in the treated water. In the cathode chamber 111 of the electric decationized water production apparatus 10b, since the membrane surface 31 on the cathode side of the cation exchange membrane 3 is in contact with the cation exchanger 11, the potential gradient hardly occurs on the membrane surface 31, and the cation exchange membrane 3 The exchange membrane 3 does not burn. Further, since the metal ions and hardness components that have moved from the decation chamber 15a to the cathode chamber 111 are excluded as electrode water as they are, no scale is generated. The electrical decationized water production apparatus 10b (second apparatus) functions as a metal filter in order to remove metal ions when metal is contained in the water to be treated. In this case, the cathode water flowing out from the cathode chamber 111 can be increased in metal ion concentration and can be used for metal recycling.

電気式脱イオン水製造装置10bにおいて、陽極室は、イオン交換体充填、イオン交換体無充填のいずれであってもよいが、イオン交換体、特にカチオン交換体を充填したものが、強度を有しつつ、装置の電気抵抗を低減することができる点で好ましい。   In the electric deionized water production apparatus 10b, the anode chamber may be either filled with an ion exchanger or not filled with an ion exchanger, but an ion exchanger, particularly one filled with a cation exchanger has strength. However, it is preferable in that the electrical resistance of the device can be reduced.

次ぎに、本発明の第3の実施の形態における電気式脱イオン水製造装置を図3を参照して説明する。図3は本例の電気式脱アニオン水製造装置(第3の装置)の模式図である。電気式脱アニオン水製造装置10cは、陽極室112と陰極室111の間に、2枚のアニオン交換膜4、4で区画され、陽極室112と陰極室111に隣接するアニオン交換体5bが充填された脱アニオン室15bを配設し、陽極室112には陽極水流入配管8aと陽極水流出配管8bが、陰極室111には、陰極水流入配管6aと陰極水流出配管6bが、脱アニオン室15bには、被処理水流入配管7aと処理水流出配管7bがそれぞれ配設されたものであり、陽極2とアニオン交換膜4で区画される陽極室112内にはアニオン交換体12が充填され、陰極1とアニオン交換膜4で区画される陰極室111内にはアニオン交換体11aが充填されたものである。また、被処理水流入配管7aは、陽極側のアニオン交換膜4の近傍で流入側(図3中、装置の下縁)の脱アニオン室15bに接続され、処理水流出配管7bは、陰極側のアニオン交換膜4の近傍で流出側(図3中、装置の上縁)の脱アニオン室15bに接続されている。なお、電気式脱アニオン水製造装置10cにおいて、処理水流出配管7bと陰極水流入配管6aを接続すれば、別途陰極水を用意する必要がなく、また、処理水中には、ヒドロキシルイオン以外のアニオンはほとんど含まれず、陰極室111から脱アニオン室15bに、ヒドロキシルイオン以外のアニオンが移動してくることがない点で好ましい。電気式脱アニオン水製造装置10cにおいて、陰極室111はアニオン交換体無充填であってもよい。   Next, an electrical deionized water production apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic view of the electric deanion water production apparatus (third apparatus) of this example. The electric deanion water production apparatus 10c is divided between the anode chamber 112 and the cathode chamber 111 by two anion exchange membranes 4 and 4, and is filled with an anion exchanger 5b adjacent to the anode chamber 112 and the cathode chamber 111. The anion chamber 15b is disposed, the anode chamber 112 is provided with an anode water inlet pipe 8a and an anode water outlet pipe 8b, and the cathode chamber 111 is provided with a cathode water inlet pipe 6a and a cathode water outlet pipe 6b. The chamber 15 b is provided with a treated water inflow pipe 7 a and a treated water outflow pipe 7 b, and the anion exchanger 12 is filled in the anode chamber 112 defined by the anode 2 and the anion exchange membrane 4. The cathode chamber 111 partitioned by the cathode 1 and the anion exchange membrane 4 is filled with an anion exchanger 11a. The treated water inflow pipe 7a is connected to the deanion chamber 15b on the inflow side (the lower edge of the apparatus in FIG. 3) in the vicinity of the anion exchange membrane 4 on the anode side, and the treated water outflow pipe 7b is connected to the cathode side. Near the anion exchange membrane 4 is connected to a deanion chamber 15b on the outflow side (the upper edge of the apparatus in FIG. 3). In the electrical deanion water production apparatus 10c, if the treated water outflow pipe 7b and the cathode water inflow pipe 6a are connected, it is not necessary to prepare a separate cathode water, and the treated water contains anions other than hydroxyl ions. Is not included, and is preferable in that anions other than hydroxyl ions do not move from the cathode chamber 111 to the deanion chamber 15b. In the electric deanion water production apparatus 10c, the cathode chamber 111 may be unfilled with an anion exchanger.

電気式脱アニオン水製造装置10cにおいて、被処理水の流入及び処理水の流出、陽極水及び陰極水の流入及び流出は、電気式脱イオン水製造装置10aと同じである。脱アニオン室15cにおいて、被処理水中のアニオン及び陰極室111からアニオン膜4を透過して移動してくるアニオンは、共に陽極側のアニオン交換膜4を透過して陽極室(兼濃縮室)112に移動し、陽極水と共に排出される。被処理水中のカチオンはアニオン交換膜4を透過しないから、処理水中に含まれた状態で排出される。電気式脱アニオン水製造装置10cの陽極室112においては、アニオン交換膜4の陽極側の膜面41はアニオン交換体12と接しているため、膜面41で電位の勾配はほとんど起こらず、アニオン交換膜4が焦げることはない。   In the electrical deanion water production apparatus 10c, the inflow of treated water and the outflow of treated water, and the inflow and outflow of anode water and cathode water are the same as in the electrical deionized water production apparatus 10a. In the deanion chamber 15 c, both the anion in the water to be treated and the anion moving through the anion membrane 4 from the cathode chamber 111 pass through the anion exchange membrane 4 on the anode side and pass through the anode chamber (also serving as a concentration chamber) 112. And discharged with the anode water. Since cations in the water to be treated do not pass through the anion exchange membrane 4, they are discharged in a state of being contained in the water to be treated. In the anode chamber 112 of the electric deanion water production apparatus 10c, since the membrane surface 41 on the anode side of the anion exchange membrane 4 is in contact with the anion exchanger 12, the potential gradient hardly occurs on the membrane surface 41. The exchange membrane 4 does not burn.

電気式脱アニオン水製造装置10cにおいて、陰極室は、イオン交換体充填、イオン交換体無充填のいずれであってもよいが、イオン交換体、特にアニオン交換体を充填したものが、強度を有しつつ、装置の電気抵抗を低減することができる点で好ましい。   In the electrical deanion water production apparatus 10c, the cathode chamber may be either filled with an ion exchanger or not filled with an ion exchanger, but an ion exchanger, particularly one filled with an anion exchanger has strength. However, it is preferable in that the electrical resistance of the device can be reduced.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

鉄含有の被処理水を、図2の電気式脱カチオン水製造装置(第2の装置)であって、下記仕様の装置に通水して1週間の連続運転を行った。1日、2日、3日、4日及び7日毎に印加電圧の上昇程度を測定した。また、1週間後、装置を分解して、陰極室内のスケール発生状況及び陰極室内のカチオン交換膜面の焦げ状況を目視観察をした。運転時間に対する印加電圧の上昇結果を表1に示した。また、1週間後、陰極室内にはスケールは発生せず、陰極室内のカチオン交換膜面の焦げも観察されなかった。   The iron-containing water to be treated was the electric decationized water production apparatus (second apparatus) shown in FIG. 2, and was passed through an apparatus having the following specifications for continuous operation for one week. The degree of increase in applied voltage was measured every 1 day, 2 days, 3 days, 4 days, and 7 days. Further, after one week, the apparatus was disassembled, and the scale generation state in the cathode chamber and the burn state of the cation exchange membrane surface in the cathode chamber were visually observed. Table 1 shows the results of increasing the applied voltage with respect to the operation time. Further, after one week, no scale was generated in the cathode chamber, and no burning of the cation exchange membrane surface in the cathode chamber was observed.

(脱カチオン装置の装置仕様及び運転条件)
・ 陰極;SUS304製平板
・ 陽極;白金被覆のチタン製平板
・ 陰極室充填剤;カチオン交換樹脂IR−120B(Na)基準型
・ 陽極室充填剤;カチオン交換樹脂IR−120B(H)再生型
・ 脱カチオン室充填剤;カチオンモノリス(40×50×80mmの直方体)
・ カチオンモノリスのイオン交換容量;乾燥換算で4.0mg当量/g
・ イオン交換膜;カチオン交換膜(Nafion N324(デュポン社製))
・ 脱カチオン室負荷量;硫酸鉄 100μgFe/L、10L/h
・ 陰極水;アンモニア水(アンモニア濃度500μg/L)、5L/h
・ 陽極水;脱カチオン室の処理水、5L/h
・ 印加電流;0.7A(一定電流)
(Device specifications and operating conditions for decationization equipment)
-Cathode: SUS304 flat plate-Anode: Platinum-coated titanium flat plate-Cathode chamber filler: Cation exchange resin IR-120B (Na) standard type-Anode chamber filler: Cation exchange resin IR-120B (H) regenerative type- Decation chamber filler; Cationic monolith (40 × 50 × 80 mm rectangular parallelepiped)
・ Ion exchange capacity of cationic monolith; 4.0 mg equivalent / g in terms of dryness
・ Ion exchange membrane; Cation exchange membrane (Nafion N324 (manufactured by DuPont))
・ Decationization chamber load: Iron sulfate 100 μg Fe / L, 10 L / h
・ Cathode water; ammonia water (ammonia concentration 500 μg / L), 5 L / h
・ Anode water; treated water in decation chamber, 5L / h
・ Applied current: 0.7A (constant current)

比較例1
陰極室の充填剤のカチオン交換樹脂IR−120B(Na)に代えて、アニオン交換樹脂IRA−402BL(OH)再生型とした以外は、実施例1と同様の方法で行った。運転時間に対する印加電圧の上昇結果を表1に示した。また、1週間後、陰極室内にスケールの発生が認められた。また、陰極室内のカチオン交換膜面に焦げが観察された。焦げの状況から更に連続した場合、カチオン交換膜の機能が低下することが推察された。
Comparative Example 1
The same procedure as in Example 1 was performed except that the anion exchange resin IRA-402BL (OH) regenerated type was used instead of the cation exchange resin IR-120B (Na) as the filler in the cathode chamber. Table 1 shows the results of increasing the applied voltage with respect to the operation time. Further, after one week, generation of scale was observed in the cathode chamber. In addition, scorching was observed on the surface of the cation exchange membrane in the cathode chamber. It has been inferred that the function of the cation exchange membrane is lowered when it continues further from the burnt state.

Figure 0004855068
Figure 0004855068

表1から明らかなように、実施例1は鉄イオン負荷が増大しても電圧の上昇はなかった。また、比較例1は鉄イオン負荷が増大するに従い電圧が上昇した。比較例1の電圧上昇は、陰極室に発生したスケールに起因するものと推察された。   As is clear from Table 1, in Example 1, the voltage did not increase even when the iron ion load increased. In Comparative Example 1, the voltage increased as the iron ion load increased. The voltage increase in Comparative Example 1 was presumed to be due to the scale generated in the cathode chamber.

アニオン含有の被処理水(導電率0.16μS/cm)を、図3の電気式脱アニオン水製造装置(第3の装置)であって、下記仕様の装置に通水して1週間の連続運転を行った。1週間後、処理水の導電率を測定した。また、1週間後、装置を分解して、陽極室内のアニオン交換膜面の焦げ状況を目視観察をした。その結果、1週間後、陽極室内のアニオン交換膜面の焦げも観察されなかった。また、処理水の導電率は0.055μS/cmであった。   The anion-containing water to be treated (conductivity 0.16 μS / cm) is the electric deanion water production apparatus (third apparatus) shown in FIG. Drove. One week later, the conductivity of the treated water was measured. Further, after one week, the apparatus was disassembled, and the state of scorching of the anion exchange membrane surface in the anode chamber was visually observed. As a result, after one week, no burning of the anion exchange membrane surface in the anode chamber was observed. The conductivity of the treated water was 0.055 μS / cm.

(脱アニオン装置の装置仕様及び運転条件)
・ 陰極;白金被覆のチタン製平板
・ 陽極;白金被覆のチタン製平板
・ 陰極室充填剤;アニオン交換樹脂IRA−402BL(OH)再生型
・ 陽極室充填剤;アニオン交換樹脂IRA−402BL(Cl)基準型
・ 脱アニオン室充填剤;アニオンモノリス(40×50×40mmの直方体)
・ アニオンモノリスのイオン交換容量;乾燥換算で4.0mg当量/g
・ イオン交換膜;アニオン交換膜(AHA(トクヤマ社製))
・ 脱アニオン室負荷量;塩化物イオン1μg/L、硫酸イオン1μg/L、酢酸イオン10μg/L、流量15L/h
・ 陰極水;脱アニオン室の処理水、5L/h
・ 陽極水;陰極室出口水、5L/h
・ 印加電流;0.5A(一定電流)、電流密度;2.5A/dm
(Deanion device specifications and operating conditions)
・ Cathode: Platinum-coated titanium flat plate ・ Anode: Platinum-coated titanium flat plate ・ Cathode chamber filler: Anion exchange resin IRA-402BL (OH) regenerative type ・ Anode chamber filler: Anion exchange resin IRA-402BL (Cl) Standard type, deanion chamber filler; anion monolith (40 x 50 x 40 mm cuboid)
・ Ion exchange capacity of anionic monolith; 4.0 mg equivalent / g in terms of dryness
・ Ion exchange membrane; anion exchange membrane (AHA (manufactured by Tokuyama))
Deanion chamber loading: chloride ion 1 μg / L, sulfate ion 1 μg / L, acetate ion 10 μg / L, flow rate 15 L / h
・ Cathode water; treated water in the deanion chamber, 5 L / h
・ Anode water; cathode chamber outlet water, 5 L / h
Applied current: 0.5 A (constant current), current density: 2.5 A / dm 2

比較例2
陽極室の充填剤のアニオン交換樹脂IRA−402BL(Cl)に代えて、カチオン交換樹脂IR−120B(H)再生型とした以外は、実施例2と同様の方法で行った。1週間後、処理水の導電率を測定した。また、1週間後、装置を分解して、陽極室内のアニオン交換膜面の焦げ状況を目視観察をした。その結果、1週間後、処理水の導電率は0.055μS/cmであった。また、陽極室内のアニオン交換膜面に焦げが観察された。焦げの状況から更に連続した場合、アニオン交換膜の機能が低下することが推察された。
Comparative Example 2
The same procedure as in Example 2 was performed except that the cation exchange resin IR-120B (H) regenerated type was used instead of the anion exchange resin IRA-402BL (Cl) as the filler in the anode chamber. One week later, the conductivity of the treated water was measured. Further, after one week, the apparatus was disassembled, and the state of scorching of the anion exchange membrane surface in the anode chamber was visually observed. As a result, after one week, the conductivity of the treated water was 0.055 μS / cm. In addition, scorching was observed on the anion exchange membrane surface in the anode chamber. It was inferred that the function of the anion exchange membrane deteriorated when it continued further from the state of scorching.

第1の実施の形態例の電気式脱イオン水製造装置の模式図である。It is a schematic diagram of the electric deionized water production apparatus of the first embodiment. 第2の実施の形態例の電気式脱イオン水製造装置の模式図である。It is a schematic diagram of the electric deionized water manufacturing apparatus of the second embodiment. 第3の実施の形態例の電気式脱イオン水製造装置の模式図である。It is a schematic diagram of the electric deionized water manufacturing apparatus of the third embodiment.

符号の説明Explanation of symbols

1 陰極
2 陽極
3 カチオン交換膜
4 アニオン交換膜
5 混合イオン交換体
6a 陰極水流入配管
6b 陰極水流出配管
7a 被処理水流入配管
7b 処理水流出配管
8a 陽極水流入配管
8b 陽極水流出配管
10a〜10c 電気式脱イオン水製造装置
11、5a、12a、 カチオン交換体
12、5b、11a アニオン交換体
15 脱イオン室
15a 脱カチオン室
15b 脱アニオン室
31 カチオン交換体の膜面
41 アニオン交換体の膜面
111 陰極室
112 陽極室








DESCRIPTION OF SYMBOLS 1 Cathode 2 Anode 3 Cation exchange membrane 4 Anion exchange membrane 5 Mixed ion exchanger 6a Cathode water inflow piping 6b Cathode water outflow piping 7a Treated water inflow piping 7b Treated water outflow piping 8a Anode water inflow piping 8b Anode water outflow piping 10a 10c Electric deionized water production apparatus 11, 5a, 12a, cation exchanger 12, 5b, 11a anion exchanger 15 deionization chamber 15a decation chamber 15b deanion chamber 31 membrane surface of cation exchanger 41 membrane of anion exchanger Surface 111 Cathode chamber 112 Anode chamber








Claims (6)

陽極室と陰極室の間に、2枚のカチオン交換膜で区画され且つ該陽極室と陰極室に隣接するカチオン交換体が充填された脱カチオン室を配設し、該陽極室及び陰極室には、電極水流入配管と電極水流出配管が配設され、脱カチオン室には、被処理水流入配管と処理水流出配管が配設され、陰極と該カチオン交換膜で区画される陰極室には、カチオン交換体が充填されることを特徴とする電気式脱イオン水製造装置。   A decation chamber, which is partitioned between two cation exchange membranes and filled with a cation exchanger adjacent to the anode chamber and the cathode chamber, is disposed between the anode chamber and the cathode chamber. The electrode water inflow pipe and the electrode water outflow pipe are provided, the decation chamber is provided with the treated water inflow pipe and the treated water outflow pipe, and the cathode chamber is defined by the cathode and the cation exchange membrane. Is an electric deionized water production apparatus filled with a cation exchanger. 陽極室と陰極室の間に、2枚のアニオン交換膜で区画され且つ該陽極室と陰極室に隣接するアニオン交換体が充填された脱アニオン室を配設し、該陽極室及び陰極室には、電極水流入配管と電極水流出配管が配設され、脱アニオン室には、被処理水流入配管と処理水流出配管が配設され、陽極と該アニオン交換膜で区画される陽極室には、アニオン交換体が充填されることを特徴とする電気式脱イオン水製造装置。   A deanion chamber filled with an anion exchanger adjacent to the anode chamber and the cathode chamber is provided between the anode chamber and the cathode chamber, and the anode chamber and the cathode chamber are filled with an anion exchanger. The electrode water inflow pipe and the electrode water outflow pipe are provided, the deanion chamber is provided with the treated water inflow pipe and the treated water outflow pipe, and the anode chamber is defined by the anode and the anion exchange membrane. Is an electric deionized water production apparatus filled with an anion exchanger. 前記被処理水が、発電所の復水循環系から採取された水であるか、あるいはイオンクロマトグラフィーの分離カラムからの流出液であることを特徴とする請求項又は記載の電気式脱イオン水製造装置。 The electric deionization according to claim 1 or 2 , wherein the water to be treated is water collected from a condensate circulation system of a power plant or an effluent from a separation column of ion chromatography. Water production equipment. 陽極室と陰極室の間に、2枚のカチオン交換膜で区画され且つ該陽極室と陰極室に隣接するカチオン交換体が充填された脱カチオン室を配設し、陰極と該カチオン交換膜で区画される陰極室には、カチオン交換体が充填される電気式脱イオン水製造装置において、陽極及び陰極間に電圧を印加させながら、脱カチオン室に被処理水を流入させ、陽極室及び陰極室に電極水を流入させて、被処理水中の不純物カチオンを除去して脱カチオン水を得ることを特徴とする脱イオン水製造方法。   A decation chamber, which is partitioned by two cation exchange membranes and filled with a cation exchanger adjacent to the anode chamber and the cathode chamber, is disposed between the anode chamber and the cathode chamber. In an electric deionized water production apparatus filled with a cation exchanger, the water to be treated is allowed to flow into the decation chamber while applying a voltage between the anode and the cathode. A method for producing deionized water, wherein electrode water is allowed to flow into a chamber to remove impurity cations in water to be treated to obtain decationized water. 陽極室と陰極室の間に、2枚のアニオン交換膜で区画され且つ該陽極室と陰極室に隣接するアニオン交換体が充填された脱アニオン室を配設し、陽極と該アニオン交換膜で区画される陽極室には、アニオン交換体が充填される電気式脱イオン水製造装置において、陽極及び陰極間に電圧を印加させながら、脱アニオン室に被処理水を流入させ、陽極室及び陰極室に電極水を流入させて、被処理水中の不純物アニオンを除去して脱アニオン水を得ることを特徴とする脱イオン水製造方法。   A deanion chamber that is partitioned by two anion exchange membranes and filled with an anion exchanger adjacent to the anode chamber and the cathode chamber is disposed between the anode chamber and the cathode chamber. In the electric deionized water production apparatus in which the anion exchanger is filled with the compartment, the water to be treated flows into the deanion chamber while applying a voltage between the anode and the cathode. A method for producing deionized water, wherein electrode water is allowed to flow into a chamber to remove impurity anions in water to be treated to obtain deanion water. 前記被処理水が、発電所の復水循環系から採取された水であるか、あるいはイオンクロマトグラフィーの分離カラムからの流出液であることを特徴とする請求項又は記載の脱イオン水製造方法。 The deionized water production according to claim 4 or 5 , wherein the water to be treated is water collected from a condensate circulation system of a power plant or an effluent from a separation column of ion chromatography. Method.
JP2005378871A 2005-12-28 2005-12-28 Electric deionized water production apparatus and deionized water production method Active JP4855068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378871A JP4855068B2 (en) 2005-12-28 2005-12-28 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378871A JP4855068B2 (en) 2005-12-28 2005-12-28 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2007175647A JP2007175647A (en) 2007-07-12
JP4855068B2 true JP4855068B2 (en) 2012-01-18

Family

ID=38301359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378871A Active JP4855068B2 (en) 2005-12-28 2005-12-28 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP4855068B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805244B2 (en) * 2007-12-10 2011-11-02 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5116710B2 (en) * 2009-03-10 2013-01-09 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5431196B2 (en) * 2009-03-12 2014-03-05 オルガノ株式会社 Electric deionized water production apparatus and operation method thereof
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5586979B2 (en) * 2009-05-14 2014-09-10 オルガノ株式会社 Electric deionized water production apparatus and operation method thereof
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
JP5355460B2 (en) * 2010-03-16 2013-11-27 オルガノ株式会社 Electric deionized water production equipment
CN102211803B (en) * 2010-04-09 2013-01-23 苏润西 Device for separating electro-adsorption water-based solution ions
KR101216584B1 (en) 2012-07-30 2012-12-31 주식회사 비젼인텍 Electronfield type water treatment apparatus improving filtering capability
KR101582477B1 (en) * 2013-06-28 2016-01-06 한국에너지기술연구원 Capacitive deionization apparatus having conductive foam
CN105621545A (en) * 2014-11-07 2016-06-01 徐丽天 High-voltage polarity ion adsorption apparatus
KR101677670B1 (en) * 2015-03-27 2016-11-29 주식회사 두산 Fuel cell system with electro deionazation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800571B2 (en) * 1997-08-27 2006-07-26 オルガノ株式会社 Secondary water treatment system for pressurized water nuclear power plant
JP3894033B2 (en) * 2002-04-24 2007-03-14 栗田工業株式会社 Electric deionizer
JP3773190B2 (en) * 2002-05-15 2006-05-10 オルガノ株式会社 Electric deionized water production equipment
JP3864891B2 (en) * 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer

Also Published As

Publication number Publication date
JP2007175647A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4855068B2 (en) Electric deionized water production apparatus and deionized water production method
Alvarado et al. Electrodeionization: Principles, strategies and applications
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
EP0946301B1 (en) Electrodeionization apparatus and method
JP6078074B2 (en) Desalination system and method
EP2208523B1 (en) Electrodeionization device with hydrodynamic flow splitting
US8871073B2 (en) Electrodeionization apparatus for producing deionized water
CN109843812B (en) Deionized water production system, electrodeionization device, and method for producing deionized water
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
JP4828242B2 (en) Electric deionized water production apparatus and deionized water production method
JP5145305B2 (en) Electric deionized water production equipment
JP4609924B2 (en) Electric deionized water production equipment
KR101526093B1 (en) Electric device for producing deionized water
JP5114307B2 (en) Electric deionized water production equipment
JP7224994B2 (en) Electrodeionized water production device and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
WO2014132888A1 (en) Desalination method and desalination apparatus
JP2011121027A (en) Electric type deionized water producing apparatus
KR102436864B1 (en) Electric deionized water production device
JP2014000524A (en) Electric type deionized water production apparatus and deionized water production method
JP5396300B2 (en) Electric deionized water production equipment
JP6542091B2 (en) Water treatment apparatus and water treatment method
JP2019135054A (en) Water treatment device and water treatment method
JP2019072694A (en) Electric deionized water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250