WO2014132888A1 - Desalination method and desalination apparatus - Google Patents

Desalination method and desalination apparatus Download PDF

Info

Publication number
WO2014132888A1
WO2014132888A1 PCT/JP2014/054157 JP2014054157W WO2014132888A1 WO 2014132888 A1 WO2014132888 A1 WO 2014132888A1 JP 2014054157 W JP2014054157 W JP 2014054157W WO 2014132888 A1 WO2014132888 A1 WO 2014132888A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
exchanger
cation
anion
exchange resin
Prior art date
Application number
PCT/JP2014/054157
Other languages
French (fr)
Japanese (ja)
Inventor
澄田 康光
山中 弘次
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013040688A external-priority patent/JP6042234B2/en
Priority claimed from JP2013211810A external-priority patent/JP6163078B2/en
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2014132888A1 publication Critical patent/WO2014132888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/09Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/30Electrical regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a water treatment for removing salts contained in water, and more particularly, to a desalting method and a desalting apparatus using a bipolar membrane.
  • a method using an ion exchange resin or a method using a reverse osmosis membrane is known as a method for removing ion components in water to be treated such as tap water and desalting the water to be treated.
  • desalting by these methods is widely used in the industrial field, it is widely used for removing salt from water used in household appliances that use water, such as washing machines and dishwashers, for example, removing hardness components. Not done.
  • the reason is that in the method using an ion exchange resin, it is necessary to supply salt in order to regenerate the resin periodically. However, this is troublesome for the user, and in the method using a reverse osmosis membrane, desalting is performed. For example, it is difficult to save water because concentrated water in which ions are concentrated together with the treated water is discharged.
  • a cation (cation) exchange membrane and an anion (anion) exchange membrane are alternately arranged between a pair of electrodes, and a space between these membranes is filled with an ion exchange resin, and then unidirectional between the electrodes.
  • EDI electric regenerative desalinator
  • the electric regenerative desalinator is also called a continuous desalter (CDI).
  • a demineralization chamber in which water to be treated is passed between a cathode chamber in which a cathode is disposed and an anode chamber in which an anode is disposed; It has a structure in which the concentrating chambers that are concentrated by moving are repeatedly arranged with the ion exchange membrane interposed therebetween.
  • the electric regeneration type desalination apparatus it is not necessary to regenerate the ion exchange membrane or ion exchange resin using a chemical, but for example, when desalting water to be treated having a hardness of tap water level,
  • a scale is generated mainly on the anion exchange membrane side of the concentrating chamber, the operating voltage rises, and stable operation cannot be performed. Therefore, it is difficult to use the electric regeneration type desalination apparatus when the desalination treatment is directly performed on the water to be treated containing a hardness component such as tap water.
  • ion exchangers such as ion exchange resins and ion exchange membranes can be automatically regenerated, and the amount of water required for the regeneration treatment is small, and the water to be treated contains hardness components such as tap water.
  • a method for removing ions by applying a voltage to a bipolar membrane has been proposed as a water treatment method capable of performing desalting treatment.
  • the bipolar membrane is an ion exchange membrane having a structure in which a cation exchange membrane and an anion exchange membrane are joined.
  • a bipolar membrane is arranged so as to partition the space between the electrodes by providing a pair of electrodes, and the space between the electrodes is filled with water, the anion exchange membrane side electrode is the anode, the cation exchange membrane side electrode
  • a voltage of 0.83 V or more which is the theoretical decomposition voltage of water
  • Patent Document 1 shows an example in which hydrogen ions and hydroxide ions generated in a bipolar membrane are used for regeneration of an ion exchange resin of an electric regeneration type desalination apparatus. Has been.
  • the bipolar membrane is generally used to dissociate water and generate acid and alkali.
  • Patent Document 2 2001-509074 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2011-94938 (Patent Document 3) repeatedly perform desalting and regeneration by switching the polarity of an electrode for applying a voltage to a bipolar membrane. Water treatment equipment has been proposed.
  • the desalting method using the bipolar membrane repeats the desalting process and the regeneration process by reversing the polarity of the DC voltage applied between the pair of electrodes.
  • the desalting process is performed in a batch system.
  • the desalting method using the bipolar membrane does not require a mechanism corresponding to the concentration chamber in the electric regeneration type desalting apparatus, and scales generated at the cathode or the like can be removed by polarity switching, and include a hardness component.
  • the desalted water can be desalted.
  • JP 2006-43549 A JP 2001-509074 gazette JP 2011-94938 A JP 2011-78936 A
  • the bipolar membrane has the advantage that it can be easily regenerated
  • the conventional desalting apparatus using the bipolar membrane has sufficient desalination for the exchange capacity of the cation exchange membrane or anion exchange membrane constituting the bipolar membrane. There is a problem that ability is not demonstrated.
  • Patent Document 4 discloses a water treatment apparatus using an ion exchange membrane having a two-layer structure in which a cation exchanger and an anion exchanger are joined, that is, a bipolar membrane.
  • the exchanger can be made granular or fibrous, for example, and the ion exchanger can be regenerated by hydrogen ions and hydroxide ions generated by the dissociation action of water in the bipolar membrane. It is shown.
  • the contact efficiency with water to be treated can be expected.
  • An object of the present invention is a desalting method and desalting apparatus using a bipolar membrane, which has a high desalting performance, can reduce the size of the apparatus, and has a high regeneration efficiency. It is to provide.
  • a desalination apparatus including a bipolar membrane
  • a cation exchanger is provided in the space between the bipolar membranes or in the space between the bipolar membrane and the electrode.
  • an anion exchanger are arranged, and a DC voltage is applied between these electrodes so that the electrode facing the cation exchange membrane in the bipolar membrane is an anode and the electrode facing the anion exchange membrane is a cathode.
  • the desalinating apparatus of the present invention comprises a pair of electrodes capable of reversing the polarity of the DC voltage to be applied, and a bipolar membrane disposed in a space to which a voltage is applied by the pair of electrodes,
  • the space has an ion exchange region in which a cation exchanger and an anion exchanger are arranged, and the cation exchanger and the anion exchanger are weakly acidic cation exchangers.
  • the voltage between a pair of electrodes is such that the electrode facing the cation exchange membrane in the bipolar membrane becomes the anode and the electrode facing the anion exchange membrane in the bipolar membrane becomes the cathode.
  • the water to be treated is passed through the space while being applied, and desalting is performed.
  • the electrode facing the cation exchange membrane serves as the cathode, and the electrode facing the anion exchange membrane serves as the anode.
  • the bipolar membrane, the cation exchanger and the anion exchanger are regenerated by applying a voltage to them.
  • the desalinating method of the present invention is a desalting method of water to be treated, in which a space in which an ion exchange region and a bipolar membrane are disposed, which is a region in which a cation exchanger and an anion exchanger are disposed, is treated.
  • a space in which an ion exchange region and a bipolar membrane are disposed which is a region in which a cation exchanger and an anion exchanger are disposed, is treated.
  • a voltage between a pair of electrodes so that the electrode facing the cation exchange membrane in the bipolar membrane becomes the anode and the electrode facing the anion exchange membrane in the bipolar membrane becomes the cathode
  • Applying a voltage between a pair of electrodes so that the electrode facing the cation exchange membrane serves as a cathode and the electrode facing the anion exchange membrane serves as an anode.
  • a combination of an on-exchanger with a weakly basic anion exchanger, a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, and a combination of a strongly acidic cation exchanger with a weakly basic anion exchanger It is characterized by being any combination of combinations.
  • the voltage E applied to the pair of electrodes during the desalting treatment is preferably equal to or higher than the theoretical decomposition voltage of water.
  • the distance between the electrodes is L, and E / L is 0.1 V / mm or more and 15 V / mm or less.
  • the ion exchange region in which the cation exchanger and the anion exchanger are arranged is a water-permeable region, for example, a mixture of the cation exchanger and the anion exchanger is arranged. It is an area.
  • a cation exchanger is disposed so as to be in contact with or close to the cation exchange membrane constituting the bipolar membrane, and an anion is so formed as to be in contact with or close to the anion exchange membrane of the bipolar membrane. It is configured by arranging an exchanger.
  • an anion exchanger may be disposed on the cation exchange membrane side of the bipolar membrane, and the cation exchanger may be disposed on the anion exchange membrane side to constitute the ion exchange region.
  • An ion exchange region is formed by arranging the cation exchanger and anion exchanger in this order along the direction of water flow in the space between the bipolar membranes, or vice versa. May be. Further, for example, the ion exchange region may be configured as a mixed bed in which a granular cation exchange resin and a granular anion exchange resin are uniformly dispersed.
  • the ion exchange region may be configured such that the cation exchanger and the anion exchanger are alternately arranged with the bipolar membrane interposed therebetween.
  • a water-permeable cation exchange region having a cation exchanger provided in contact with the cation exchange membrane in the bipolar membrane and an anion exchange membrane in the bipolar membrane are provided.
  • a water-permeable anion exchange region having an anion exchanger and forming an ion exchange region, and the cation exchange region and the anion exchange region are mutually connected in a space where a voltage is applied by a pair of electrodes.
  • a cation exchange region in contact with a cation exchange membrane in a bipolar membrane, and in providing an anion exchange region in contact with an anion exchange membrane, a cation exchange region is provided even in contact with one of a pair of electrodes, It is preferable to provide an anion exchange region even in contact with the other electrode.
  • the anion exchange region is disposed in contact with the electrode facing the cation exchange membrane in the bipolar membrane, and the cation exchange region is disposed in contact with the electrode facing the anion exchange membrane in the bipolar membrane.
  • one electrode, the anion exchange region, the cation exchange region along the direction connecting the pair of electrodes , Cation exchange region, bipolar membrane, anion exchange region repeatedly appear, such as bipolar membrane, anion exchange region, cation exchange region, bipolar membrane, ..., cation exchange region, the other electrode Become.
  • a weakly acidic cation exchange resin or a weakly basic anion exchange resin which generally has a large ion exchange capacity but does not exhibit a deionizing ability in a neutral pH region. It becomes possible to use in a wide pH range, and the desalting performance is improved.
  • the amount of water to be treated that can be desalted in one cycle of desalting and regeneration increases, and the desalination apparatus can be miniaturized to the extent that it can be mounted on home appliances.
  • the weak acid cation exchange resin and the weak base anion exchange resin have higher regeneration efficiency than the strong acid cation exchange resin and the strong base anion exchange resin, respectively. It is possible to save power.
  • FIG. 5 is a graph showing changes in hardness over time in Example 1 and Comparative Example 1. It is a graph which shows the time change of the hardness in Example 2 and Comparative Example 2.
  • FIG. 6 is a graph showing a change with time in hardness in Example 3; It is a graph which shows the relationship between the desalination frequency in Examples 4 and 5, and hardness.
  • FIG. 1 shows a desalination apparatus according to an embodiment of the present invention.
  • This desalination apparatus is provided between the desalting module 10, a DC power source 21 that generates a DC voltage applied to the electrodes 12 and 13, and the polarity of the electrodes 12 and 13 provided between the DC power source 21 and the electrodes 12 and 13.
  • a changeover switch 22 for switching between.
  • the desalting module 10 includes a bipolar membrane 11, a pair of electrodes 12 and 13, and an ion exchange resin layer 16.
  • a pair of electrodes 12 and 13 are arranged separately in a container to which the pipes 23 and 24 are connected, and a voltage can be applied to the space between them by the electrodes 12 and 13. Yes.
  • the bipolar film 11 is disposed away from the electrodes 12 and 13 so as to partition the space between the electrodes 12 and 13 into a plurality of portions when viewed as a cross-sectional configuration.
  • the space between the electrodes 12 and 13 is divided into five parts by the bipolar film 11.
  • an ion exchange resin layer is provided in each of the partitioned parts, that is, the space between the electrode 12 and the bipolar film 11, the space between the adjacent bipolar films 11, and the space between the bipolar film 11 and the electrode 13, an ion exchange resin layer is provided. 16 is arranged.
  • the electrodes 12 and 13 are not particularly limited as long as they function as a cathode and an anode, and examples thereof include noble metals such as platinum, palladium and iridium, or net-like or plate-like electrodes in which these noble metals are coated with titanium or the like. be able to.
  • the shape of the electrodes 12 and 13 may be a flat plate, expand, punching, round bar, wire, or the like. In accordance with the shape of the bipolar film 11, a voltage is uniformly applied to the bipolar film 11 and the space between the bipolar films 11. It must be something that can be applied.
  • the bipolar membrane 11 has a structure in which a cation exchange membrane 14 and an anion exchange membrane 15 are bonded together.
  • FIG. 1 the cross-sectional configuration is illustrated such that a plurality of bipolar films 11 are arranged between the electrodes 12 and 13, but the electrodes 12 and 13 having parallel plate shapes are parallel to each other and the electrodes 12. , 13 may be arranged in parallel so that a plurality of bipolar films 11 may actually be arranged, or electrodes 12, 13 are arranged concentrically with one electrode as a central electrode and the other electrode as a cylindrical electrode. However, one bipolar film may be wound between these electrodes in a spiral shape.
  • the water to be treated supplied from the pipe 23 to the desalting module 10 is not limited to the space between the electrodes 12, 13 and the bipolar membrane 11 or between the bipolar membranes 11. It is necessary to allow the ion exchange resin layer 16 provided in the space between them to pass evenly.
  • both bipolar membranes 11 are arranged between the electrodes 11 and 12 so that the surface on the cation exchange membrane 14 side faces the electrode 12 and the surface on the anion exchange membrane 15 side faces the other electrode 13. Is arranged.
  • the ion exchange resin layer 16 has water permeability and serves as an ion exchange region in which a cation exchanger and an anion exchanger are mixed and arranged.
  • the cation exchanger is, for example, a cation exchange resin
  • the anion exchanger is, for example, an anion exchange resin.
  • the combination of the cation exchanger and the anion exchanger constituting the ion exchange resin layer 16 is a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, or a weakly acidic cation exchanger and a strongly basic substance. Either a combination with an anion exchanger or a combination of a strongly acidic cation exchanger and a weakly basic anion exchanger.
  • a granular cation exchange resin and a granular anion exchange resin are mixed, and a state in which both are uniformly mixed is used as an ion exchange resin layer 16.
  • the space between the electrodes 12 and 13 and the bipolar film 11 and the space between the bipolar films 11 are filled.
  • the ion exchange resin layer 16 that can be used in the present embodiment is not limited to this.
  • the cation exchange resin is in contact with the cation exchange membrane 14 of the bipolar membrane 11 and the anion exchange membrane 15 is in contact with the anion exchange membrane 15.
  • Both ion exchange resins are arranged so as to be in contact with each other, and conversely, both ion exchanges are made so that the cation exchange membrane 14 is in contact with the anion exchange resin and the anion exchange membrane 15 is in contact with the cation exchange resin.
  • a resin may be provided.
  • each space partitioned by the bipolar membrane 11 is filled with either a cation exchange resin or an anion exchange resin so that the cation exchange resin and the anion exchange resin are alternately arranged as a whole.
  • An ion exchange resin layer may be provided.
  • the changeover switch 22 is operated so that the electrode 12 becomes an anode and the electrode 13 becomes a cathode, that is, the changeover switch 22 shown in FIG. 1 is set, and a DC voltage is applied between the electrodes 12 and 13 by the DC power source 21.
  • the cation exchange membrane 14 is on the anode side
  • the anion exchange membrane 15 is on the cathode side.
  • anions contained in the water to be treated move to the anion exchange membrane 15 side of the bipolar membrane 11, where they are ion-exchanged with hydroxide ions and adsorbed in the anion exchange membrane 15. Hydrogen ions and hydroxide ions that have moved into the water to be treated by ion exchange are recombined to become water. Of the cations and anions in the water to be treated, those not ion-exchanged in the bipolar membrane 11 are also ion-exchanged and adsorbed by the ion-exchange resin layer 16. As a result, demineralized water, that is, treated water is obtained from the pipe 24.
  • the ion exchange resin layer 16 includes at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin.
  • a weakly acidic cation exchange resin does not exhibit sufficient desalting performance unless the liquidity of the water to be treated is alkaline, and a weakly basic anion exchange resin is not acidic.
  • a microscopic pH deviation occurs in the water to be treated by applying a DC voltage by the electrodes 12 and 13
  • Desalination treatment can be performed using a cation exchange resin or a weakly basic anion exchange resin, and the large ion exchange capacity of those ion exchange resins can be utilized.
  • the voltage polarity is reversed from that in the desalting process, and a DC voltage is applied between the electrodes 12 and 13 so that the electrode 12 becomes a cathode and the electrode 13 becomes an anode.
  • dissociation of water occurs at the interface between the cation exchange membrane 14 and the anion exchange membrane 15 in the bipolar membrane 11, and hydrogen ions and hydroxide ions are generated.
  • Hydrogen ions move in the cation exchange membrane 14, thereby regenerating the cation exchange membrane 14, and hydroxide ions move in the anion exchange membrane 15, thereby regenerating the anion exchange membrane 15.
  • the bipolar film 11 has been regenerated.
  • the ion exchange resin layer 16 includes at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin.
  • the weakly acidic cation exchange resin and the weakly basic anion exchange resin are strongly acidic cation exchanges. Since the regeneration efficiency is higher than that of a resin or a strongly basic anion exchange resin, the desalination apparatus according to the present embodiment enables regeneration processing with power saving.
  • an ion exchange region is formed by mixing a granular cation exchange resin and a granular anion exchange resin.
  • the ion exchange region in the present invention is shown in FIG. It is not restricted to the thing.
  • an anion exchange region that is composed of an anion exchange region and is arranged so that the cation exchange region and the anion exchange region are in contact with each other or face each other.
  • FIG. 2 shows an embodiment of the present invention in which a cation exchange region is provided in contact with a cation exchange membrane in a bipolar membrane, and an anion exchange region is provided in contact with an anion exchange membrane.
  • the structure of a salt apparatus is shown.
  • a desalting module 10 as in the desalting apparatus shown in FIG. 1, a desalting module 10, a DC power source 21 and a switch 22 are provided.
  • the configuration of the desalting module 10 is shown in FIG. Is different.
  • a pair of electrodes 12 and 13 are arranged separately in a container to which the pipes 23 and 24 are connected, and a voltage can be applied to the space between them by the electrodes 12 and 13. Yes.
  • the bipolar film 11 is disposed away from the electrodes 12 and 13 so as to partition the space between the electrodes 12 and 13 into a plurality of portions when viewed as a cross-sectional configuration. In the illustrated example, the space between the electrodes 12 and 13 is divided into five parts by the bipolar film 11.
  • both bipolar membranes 11 are arranged between the electrodes 12 and 13 so that the surface on the cation exchange membrane 14 side faces the electrode 12 and the surface on the anion exchange membrane 15 side faces the other electrode 13. Is arranged.
  • an anion exchange resin layer 18 is provided in contact with the surface of the electrode 12 and in contact with the cation exchange membrane 14 of the bipolar membrane 11.
  • a cation exchange resin layer 17 is provided.
  • an anion exchange resin layer 18 is provided in contact with the anion exchange membrane 15 of the bipolar membrane 11 located on the electrode 12 side in the drawing, and the bipolar membrane 11 located on the electrode 13 side is provided.
  • a cation exchange resin layer 17 is provided in contact with the cation exchange membrane 14.
  • a cation exchange resin layer 17 is provided in contact with the surface of the electrode 13, and an anion exchange resin layer 18 is provided in contact with the anion exchange membrane 15 of the bipolar membrane 11. ing.
  • the cation exchange resin layer 17 and the anion exchange resin layer 18 in the part are in contact with each other in the vicinity of the center of the part.
  • a water-permeable spacer or the like is disposed between the cation exchange resin layer 17 and the anion exchange resin layer 18 so that the cation exchange resin layer 17 and the anion exchange resin layer 18 face each other. It may be arranged.
  • the same electrodes as those used in the embodiment shown in FIG. 1 are used.
  • the bipolar film 11 the same film as that used in the embodiment shown in FIG. 1 is used.
  • the electrodes 12 and 13 are arranged concentrically, and a bipolar film is wound between these electrodes so as to be spirally wound.
  • a sheet-like laminate in which the cation exchange resin layer 17 and the anion exchange resin layer 18 are previously provided on both surfaces of the bipolar membrane 11 is prepared, and the laminate may be wound around the center electrode.
  • the water to be treated supplied from the pipe 23 to the desalting module 10 is not limited to the space between the electrodes 12, 13 and the bipolar membrane 11 or between the bipolar membranes 11. It is necessary to allow the cation exchange resin layer 17 and the anion exchange resin layer 18 provided in the space between them to pass evenly.
  • the cation exchange resin layer 17 has water permeability and serves as a cation exchange region in which the cation exchanger is arranged.
  • the anion exchange resin layer 18 has water permeability and has an anion exchanger. Is an anion exchange region in which is arranged.
  • the cation exchanger and the anion exchanger are, for example, a cation exchange resin and an anion exchange resin, respectively.
  • the combination of the cation exchanger constituting the cation exchange resin layer 17 and the anion exchanger constituting the anion exchange resin layer 18 is a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, Either a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, or a combination of a strongly acidic cation exchanger and a weakly basic anion exchanger.
  • the cation exchange resin layer 17 is composed of a granular cation exchange resin layer
  • the anion exchange resin layer 18 is composed of a granular anion exchange resin layer.
  • the cation exchange resin layer 17 and the anion exchange resin layer 18 are disposed in contact with each partitioned part.
  • the granular cation exchange resin and the granular anion exchange resin are not mixed with each other.
  • a water-permeable spacer may be provided between the anion exchange resin layer 18 and the mixing of both ion exchange resins may be prevented. Further, by providing the spacer, it is possible to improve the efficiency of the filling operation of the cation exchange resin constituting the cation exchange resin layer 17 and the anion exchange resin constituting the anion exchange resin layer 18.
  • a porous cation exchanger, a fibrous cation exchanger, a cation exchange fiber, or the like can be used as the anion exchange resin layer 17.
  • a porous anion exchanger, a fibrous anion exchanger, an anion exchange fiber, or the like can be used as the anion exchange resin layer 18.
  • the changeover switch 22 is operated so that the electrode 12 becomes an anode and the electrode 13 becomes a cathode. That is, when the direct current voltage is applied between the electrodes 12 and 13 by the direct current power source 21 in the state of the changeover switch 22 shown in FIG. 2, the cation contained in the water to be treated is the same as in the case of the desalination apparatus shown in FIG. And anion is ion-exchanged by the bipolar membrane 11, and a desalination process is performed. At this time, among the cations and anions in the water to be treated, those not ion-exchanged in the bipolar membrane 11 are also ion-exchanged when passing through the cation exchange resin layer 17 or the anion exchange resin layer 18. Adsorbed on the ion exchange resin layer. As a result, demineralized water is obtained from the pipe 24.
  • At least one of the weakly acidic cation exchange resin and the weakly basic anion exchange resin is included in the region where the cation exchange resin layer 17 and the anion exchange resin layer 18 are combined. It is. Normally, a weakly acidic cation exchange resin does not exhibit sufficient desalting performance unless the liquidity of the water to be treated is alkaline, and a weakly basic anion exchange resin is not acidic. However, in the desalination apparatus shown in FIG. 2, when a DC voltage is applied by the electrodes 12 and 13, a local pH deviation occurs in the water to be treated, so that it is weakly acidic regardless of the liquidity of the water to be treated.
  • Desalination treatment can be performed using a cation exchange resin or a weakly basic anion exchange resin, and the large ion exchange capacity of those ion exchange resins can be utilized. As a result, the desalting apparatus of this embodiment comes to show high desalting performance.
  • the voltage polarity is reversed from that in the desalting process, and a DC voltage is applied between the electrodes 12 and 13 so that the electrode 12 becomes a cathode and the electrode 13 becomes an anode.
  • dissociation of water occurs at the interface between the cation exchange membrane 14 and the anion exchange membrane 15 in the bipolar membrane 11, and hydrogen ions and hydroxide ions are generated.
  • Hydrogen ions move in the cation exchange membrane 14, thereby regenerating the cation exchange membrane 14, and hydroxide ions move in the anion exchange membrane 15, thereby regenerating the anion exchange membrane 15.
  • the bipolar film 11 has been regenerated.
  • the hydrogen ions generated in the bipolar membrane 11 move into the cation exchange resin layer 17 provided in contact with the cation exchange membrane 14 to form the cation exchange resin layer 17.
  • the ion exchange resin is regenerated.
  • hydroxide ions generated in the bipolar membrane 11 move into the anion exchange resin layer 18 provided in contact with the anion exchange membrane 15 to form the anion exchange resin layer 18.
  • the resin is regenerated.
  • hydroxide ions are also generated at the interface between the electrode 12 and the anion exchange resin layer 18 in contact with the electrode 12, and the anion exchange resin layer 18 in contact with the electrode 12 is regenerated by the hydroxide ion. Is done.
  • Hydrogen ions are generated at the interface between the electrode 13 and the cation exchange resin layer 17 in contact with the electrode 13, and the cation exchange resin layer 17 in contact with the electrode 13 is regenerated by this hydrogen ion.
  • the bipolar membrane 11 but also the cation exchange resin layer 17 and the anion exchange resin layer 18 are regenerated during the regeneration process.
  • the anion exchange resin existing near the cation exchange membrane 14 of the bipolar membrane 11 should be regenerated by the hydroxide ions released from the anion exchange membrane 15 of the bipolar membrane 11. Since there are hydrogen ions released from the cation exchange membrane 14 around the anion exchange resin, the hydroxide ions to be regenerated from the anion exchange resin are hydrogen ions before reaching the anion exchange resin. May be converted to water, and as a result, the anion exchange resin may not be sufficiently regenerated.
  • a cation exchange resin layer 17 is provided in contact with the cation exchange membrane 14 of the bipolar membrane 11 so that the cation exchange resin and the anion exchange resin do not mix with each other.
  • the anion exchange resin layer 18 is provided in contact, the regeneration of the cation exchange resin layer 17 by hydrogen ions moving from the cation exchange membrane 14 side and the hydroxide ions moving from the anion exchange membrane 15 side are performed.
  • the anion exchange resin layer 18 can be efficiently regenerated.
  • at least one of the weakly acidic cation exchange resin and the weakly basic anion exchange resin is in the region where the cation exchange resin layer 17 and the anion exchange resin layer 18 are combined.
  • the weakly acidic cation exchange resin and weakly basic anion exchange resin have higher regeneration efficiency than the strongly acidic cation exchange resin and strong basic anion exchange resin. However, it enables playback processing with low power consumption.
  • desalting by the bipolar membrane 11, the cation exchange resin layer 17, and the anion exchange resin layer 18 is performed by switching the polarity of the DC voltage applied to the electrodes 12 and 13.
  • the process and these reproduction processes can be repeated many times.
  • Example 1 The desalination apparatus shown in FIG. 1 was assembled.
  • the bipolar membrane 11 used was a laminate of a weakly acidic cation exchange membrane and a strongly basic anion exchange membrane.
  • the ion exchange capacity (cation exchange capacity) of the weakly acidic cation exchange membrane is 2.2 meq / g-bipolar membrane
  • the ion exchange capacity (anion exchange capacity) of the strongly basic anion exchange membrane is 0.8 meq / g. g-bipolar membrane).
  • a weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and a weakly basic anion exchange resin (Amber) are used.
  • Two 40 ⁇ 50 ⁇ 1 mm platinum iridium-coated titanium electrodes are placed in a container with an internal volume of 40 ⁇ 50 ⁇ 20 mm, and four bipolar membranes cut into a size of 40 ⁇ 50 mm are provided between the electrodes.
  • the bipolar film are arranged so that the distance between the bipolar films and the distance between the bipolar films are equal.
  • the weakly acidic cation exchange resin and the weakly basic anion exchange resin are mixed at a volume ratio of 1: 3, and the ion exchange resin is mixed with the electrode and the bipolar so that they are uniformly dispersed. Packed between membranes and between bipolar membranes.
  • the treated water hardness was 30 mg-CaCO 3 / L even after the desalting treatment was continued for 150 minutes, and about 90% desalting was possible.
  • Example 1 The desalting treatment was performed under the same conditions as in Example 1 except that no DC voltage was applied to the electrode during the desalting treatment, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. When no voltage was applied, the treated water hardness exceeded 100 mg-CaCO 3 / L after 30 minutes, and sufficient desalting could not be performed.
  • Example 2 The desalination apparatus shown in FIG. 1 was assembled.
  • the dimensions of the container, the configuration and dimensions of the electrodes, and the configuration and arrangement of the bipolar membrane were the same as in Example 1.
  • a weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and a strongly basic anion exchange resin (Amber) Jet (registered trademark) 4002 (OH), manufactured by Dow Chemical Co., Ltd.)
  • a weakly acidic cation exchange resin and a strongly basic anion exchange resin are mixed at a volume ratio of 1: 3,
  • Such an ion exchange resin was filled between the electrode and the bipolar membrane and between the bipolar membranes so as to be evenly dispersed.
  • Desalination treatment was performed under the same treatment conditions as in Example 1, and the change over time in the hardness of the treated water was examined. The results are shown in FIG.
  • the treated water hardness was 30 mg-CaCO 3 / L even after the desalting treatment was continued for 150 minutes, and about 90% desalting was possible.
  • Example 2 A desalting treatment was performed under the same conditions as in Example 2 except that no DC voltage was applied to the electrode during the desalting treatment, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. When no voltage was applied, the treated water hardness exceeded 90 mg-CaCO 3 / L after 100 minutes, and sufficient desalting could not be performed.
  • Example 3 The desalination apparatus shown in FIG. 5 was assembled.
  • This desalting apparatus is the same as the desalting apparatus in Example 1, but instead of providing an ion exchange resin layer in which a weakly acidic cation exchange resin and a weakly basic anion exchange resin are uniformly mixed.
  • the second embodiment is different from the first embodiment in that a cation exchange resin layer 17 made of weakly acidic cation exchange resin and an anion exchange resin layer 18 made of weakly basic anion exchange resin are separately provided. More specifically, the dimensions of the container, the configuration and dimensions of the electrode, and the configuration and arrangement of the bipolar membrane are the same as those in Example 1, and the cation exchange resin layer 16 is formed in the space between the electrode and the bipolar membrane.
  • either the anion exchange resin layer 17 or the cation exchange resin layer 16 is provided for each space.
  • the cation exchange resin layer 16 and the anion exchange resin layer 17 are alternately arranged with the bipolar membrane 11 interposed therebetween.
  • weakly acidic cation exchange resin and weakly basic anion exchange resin weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and weakly basic anion exchange resin (Amberlite (registered)) (Trademark) IRA96, manufactured by Dow Chemical Co., Ltd.).
  • Example 3 Desalination treatment was performed under the same treatment conditions as in Example 1, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. As shown in FIG. 6, in Example 3, the treated water hardness exceeded 50 mg-CaCO 3 / L after 20 minutes, and the weakly acidic cation exchange resin and the weakly basic anion exchange resin were uniformly mixed. It was confirmed that the desalting performance was higher.
  • Example 4 Using the desalination apparatus of Example 1, 20 minutes of desalination treatment and 20 minutes of regeneration treatment were combined to form one cycle, and the change in the hardness of the treated water when such a cycle was repeated was examined. .
  • water to be treated water having a hardness adjusted to 250 mg-CaCO 3 / L was used, and water was passed through at a water flow rate of 40 ml / min for desalting treatment.
  • the maximum values of the voltage and current applied to the electrodes during the desalting treatment and the regeneration treatment were 200 V and 0.5 A, respectively.
  • the treated water 15 minutes after the start of desalting was collected every 10 cycles, and the hardness was measured. The results are shown in FIG.
  • Example 5 Desalination treatment was performed under the same conditions as in Example 4 except that a strongly acidic cation exchange resin (Amberlite (registered trademark) 252 manufactured by Dow Chemical Company) was used as the cation exchange resin contained in the ion exchange resin layer 16. The change in the hardness of the treated water was examined when the cycle of the regeneration treatment was repeated. The results are shown in FIG.
  • the treatment water hardness in the repetition of the desalting treatment and the regeneration treatment is more when the weak acid cation exchange resin is used as the cation exchange resin contained in the ion exchange resin layer 16 than the strong acid cation exchange resin. It was confirmed that the desalting was performed stably.
  • the desalination apparatus shown in FIG. 2 was assembled.
  • the bipolar membrane 11 used was a laminate of a weakly acidic cation exchange membrane and a strongly basic anion exchange membrane.
  • the ion exchange capacity (cation exchange capacity) in the weakly acidic cation exchange membrane is 2.2 meq / g-bipolar membrane, and the ion exchange capacity in the strongly basic anion exchange membrane (anion exchange capacity is 0.8 meq).
  • G-bipolar membrane A weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) was used as the cation exchange resin constituting the cation exchange resin layer 17.
  • As the anion exchange resin constituting the exchange resin layer 18 a weakly basic anion exchange resin (Amberlite (registered trademark) IRA96, manufactured by Dow Chemical Co., Ltd.) was used.
  • Two 40 ⁇ 50 ⁇ 1 mm platinum iridium-coated titanium electrodes are placed in a container with an internal volume of 40 ⁇ 50 ⁇ 20 mm, and four bipolar membranes cut into a size of 40 ⁇ 50 mm are provided between the electrodes.
  • the cation exchange resin layer 17 and the anion exchange resin layer 18 are provided within the gaps so that the gap between the bipolar membranes and the gap between the bipolar membranes are equal.
  • the cation exchange resin layer 17 and the anion exchange resin layer 18 are arranged in this order, and the anion exchange membrane side is on top of the cation exchange resin layer 17 and the anion exchange resin layer 18.
  • the desalin module was completed by placing the other electrode at the end.
  • the amount of the cation exchange resin constituting the cation exchange resin layer 17 and the amount of the anion exchange resin constituting the anion exchange resin layer 18 were set to 1: 1.
  • Water whose hardness was adjusted to 250 mg-CaCO 3 / L was used as water to be treated at the time of desalting treatment and water to be used for regeneration treatment, and water was passed at a flow rate of 40 ml / min.
  • the maximum values of the voltage and current applied to the electrodes during the desalting treatment and the regeneration treatment were 200 V and 0.5 A, respectively.
  • a desalting treatment was performed for 5 minutes under these conditions, followed by a regeneration treatment for 5 minutes as one cycle, and this cycle was repeated 100 cycles.
  • the desalting rate was calculated. The results are shown in Table 1.
  • Example 7 Desalination module similar to that used in Example 6, but without the cation exchange resin layer and anion exchange resin layer, instead, between the electrode and the bipolar membrane, and between the bipolar membranes, A uniform mixture of a granular cation exchange resin and a granular anion exchange resin was filled.
  • the cation exchange resin and the anion exchange resin the same ones as used in Example 6 were used, and the mixing ratio thereof was 1: 1.
  • the cycle of the desalting treatment and the regeneration treatment was repeated 100 cycles under the same conditions as in Example 6, and the hardness of the treated water after the desalting treatment in the first cycle, the 20th cycle and the 100th cycle was measured.
  • the desalting rate was calculated by the same calculation. The results are shown in Table 1.
  • Example 7 When comparing Example 6 and Example 7, when the cycle of desalting treatment and regeneration treatment was repeated, the desalting rate of Example 7 was higher. The desalination rate is high even when the cycle progresses.
  • the fact that the desalination treatment of the cycle immediately before the start of the cycle is performed between the bipolar membrane and the cation exchange resin and the anion exchange resin disposed between the bipolar membranes. It shows that the reproduction is performed sufficiently. Therefore, a water-permeable cation exchange resin layer is provided so as to be in contact with the cation exchange membrane of the bipolar membrane, and a water-permeable anion exchange resin layer is provided so as to be in contact with the anion exchange membrane of the bipolar membrane.
  • Example 7 in which the exchange resin layer and the anion exchange resin layer are in contact with each other is an example in which the space between the bipolar membranes is filled with a cation exchange resin and an anion exchange resin in a mixed bed It can be seen that the reproduction efficiency in the reproduction process was higher than that in FIG.

Abstract

A desalination device for desalinating water of interest is equipped with: a pair of electrodes having such a property that the polarity of a direct-current voltage to be applied to the electrodes can be reversed; a bipolar membrane; and an ion exchange zone in which a cation exchanger and an anion exchanger are arranged in a mixed state. Both of the bipolar membrane and the ion exchange zone are arranged in a space to which a voltage can be applied through the pair of electrodes. The cation exchanger is, for example, a weakly acidic cation exchanger, and the anion exchanger is, for example, a weakly basic anion exchanger. A desalination treatment of water of interest is carried out by passing the water through the apparatus while applying a voltage between the pair of electrodes in such a manner that one of the electrodes which faces a cation exchange membrane in the bipolar membrane acts as an anode and the other of the electrodes which faces an anion exchange membrane in the bipolar membrane acts as a cathode. When a regeneration treatment is to be carried out, the polarity of a direct-current voltage to be applied to the pair of electrodes is reversed.

Description

脱塩方法及び脱塩装置Desalination method and desalting apparatus
 本発明は、水中に含まれる塩類を除去する水処理に関し、特に、バイポーラ膜を利用する脱塩方法及び脱塩装置に関する。 The present invention relates to a water treatment for removing salts contained in water, and more particularly, to a desalting method and a desalting apparatus using a bipolar membrane.
 従来より、水道水などの被処理水中のイオン成分を除去し、被処理水の脱塩を行う方法として、イオン交換樹脂を用いる方法や、逆浸透膜(RO膜)を用いる方法が知られている。これらの方法による脱塩は、産業分野では幅広く利用されているが、水を利用する家庭電化製品、例えば洗濯機や食器洗浄機などで使用する水の塩類除去、例えば、硬度成分除去には普及していない。その理由としては、イオン交換樹脂を用いる方法では、定期的に樹脂を再生するために塩を供給する必要があるが、これが利用者にとって手間であること、逆浸透膜を用いる方法では、脱塩処理された水とともにイオン類が濃縮された濃縮水が排出されるため、節水が難しいこと、などが挙げられる。 Conventionally, a method using an ion exchange resin or a method using a reverse osmosis membrane (RO membrane) is known as a method for removing ion components in water to be treated such as tap water and desalting the water to be treated. Yes. Although desalting by these methods is widely used in the industrial field, it is widely used for removing salt from water used in household appliances that use water, such as washing machines and dishwashers, for example, removing hardness components. Not done. The reason is that in the method using an ion exchange resin, it is necessary to supply salt in order to regenerate the resin periodically. However, this is troublesome for the user, and in the method using a reverse osmosis membrane, desalting is performed. For example, it is difficult to save water because concentrated water in which ions are concentrated together with the treated water is discharged.
 また、一対の電極間に陽イオン(カチオン)交換膜と陰イオン(アニオン)交換膜とを交互に配置しこれらの膜の間の空間にイオン交換樹脂を充填した上で、電極間に一方向に直流電圧を印加することによって被処理液中のイオンを移動させ、被処理水から塩類を除去する電気再生式脱塩装置(EDI)がある。電気再生式脱塩装置は連続型脱塩装置(CDI)とも呼ばれる。電気再生式脱塩装置では、例えば、陰極が配置される陰極室と陽極が配置される陽極室との間に、被処理水が通水される脱塩室と、電界によって脱塩室からイオンが移動して濃縮される濃縮室とをイオン交換膜を挟んで交互に繰り返し配置した構造を有する。電気再生式脱塩装置では、薬剤を用いてイオン交換膜やイオン交換樹脂の再生処理を行う必要はないものの、例えば、水道水レベルの硬度を有する被処理水を脱塩しようとすると、陰極室及び濃縮室の主に陰イオン交換膜側にスケールが発生し、動作電圧が上昇して安定的な運転ができなくなる。そのため電気再生式脱塩装置は、水道水のような硬度成分を含む被処理水に対して脱塩処理を直接行う場合には、使用することが難しい。 In addition, a cation (cation) exchange membrane and an anion (anion) exchange membrane are alternately arranged between a pair of electrodes, and a space between these membranes is filled with an ion exchange resin, and then unidirectional between the electrodes. There is an electric regenerative desalinator (EDI) that removes salts from water to be treated by moving ions in the liquid to be treated by applying a DC voltage to the water. The electric regenerative desalinator is also called a continuous desalter (CDI). In the electric regeneration type desalination apparatus, for example, a demineralization chamber in which water to be treated is passed between a cathode chamber in which a cathode is disposed and an anode chamber in which an anode is disposed; It has a structure in which the concentrating chambers that are concentrated by moving are repeatedly arranged with the ion exchange membrane interposed therebetween. In the electric regeneration type desalination apparatus, it is not necessary to regenerate the ion exchange membrane or ion exchange resin using a chemical, but for example, when desalting water to be treated having a hardness of tap water level, In addition, a scale is generated mainly on the anion exchange membrane side of the concentrating chamber, the operating voltage rises, and stable operation cannot be performed. Therefore, it is difficult to use the electric regeneration type desalination apparatus when the desalination treatment is directly performed on the water to be treated containing a hardness component such as tap water.
 そこで、イオン交換樹脂やイオン交換膜などのイオン交換体の再生を自動的に行うことができ、かつ、再生処理に必要な水の量も少なく、水道水程度の硬度成分を含む被処理水に対しても脱塩処理を行うことが可能な水処理方法として、バイポーラ膜に電圧を印加してイオンを除去する方法が提案されている。 Therefore, ion exchangers such as ion exchange resins and ion exchange membranes can be automatically regenerated, and the amount of water required for the regeneration treatment is small, and the water to be treated contains hardness components such as tap water. On the other hand, a method for removing ions by applying a voltage to a bipolar membrane has been proposed as a water treatment method capable of performing desalting treatment.
 バイポーラ膜とは、陽イオン交換膜と陰イオン交換膜とを接合した構造を有するイオン交換膜である。一対の電極を設けてこの電極間の空間を仕切るようにバイポーラ膜を配置し、電極間の空間を水で満たした状態で、陰イオン交換膜側の電極が陽極、陽イオン交換膜側の電極が陰極となるように、水の理論分解電圧である0.83V以上の電圧を電極間に印加すると、水(H2O)を水素イオン(H+)と水酸化物イオン(OH-)とに解離させることができる。この解離は、バイポーラ膜での陽イオン交換膜と陰イオン交換膜との接合面で起こり、生成した水素イオンは陽イオン交換膜を介して陰極側に移動し、水酸化物イオンは陰イオン交換膜を介して陽極側に移動する。バイポーラ膜による水の解離を利用した酸やアルカリの製造方法に関する特許が多数出願されている。例えば、特開2006-43549号公報(特許文献1)には、電気再生式脱塩装置のイオン交換樹脂の再生に、バイポーラ膜で生成される水素イオン及び水酸化物イオンを使用する例が示されている。このようにバイポーラ膜は、一般的には、水を解離し酸とアルカリを生成するために使用されている。 The bipolar membrane is an ion exchange membrane having a structure in which a cation exchange membrane and an anion exchange membrane are joined. A bipolar membrane is arranged so as to partition the space between the electrodes by providing a pair of electrodes, and the space between the electrodes is filled with water, the anion exchange membrane side electrode is the anode, the cation exchange membrane side electrode When a voltage of 0.83 V or more, which is the theoretical decomposition voltage of water, is applied between the electrodes so that becomes a cathode, water (H 2 O) is converted into hydrogen ions (H + ) and hydroxide ions (OH ). Can be dissociated. This dissociation occurs at the junction surface between the cation exchange membrane and the anion exchange membrane in the bipolar membrane, the generated hydrogen ions move to the cathode side through the cation exchange membrane, and the hydroxide ions are exchanged with anions. It moves to the anode side through the membrane. Many patents relating to acid and alkali production methods utilizing water dissociation by bipolar membranes have been filed. For example, Japanese Patent Laid-Open No. 2006-43549 (Patent Document 1) shows an example in which hydrogen ions and hydroxide ions generated in a bipolar membrane are used for regeneration of an ion exchange resin of an electric regeneration type desalination apparatus. Has been. Thus, the bipolar membrane is generally used to dissociate water and generate acid and alkali.
 水を解離させるときとは電圧の印加方向を逆にした場合、すなわち、陰イオン交換膜側の電極が陰極、陽イオン交換膜側の電極が陽極となるように電極間に電圧を印加すると、水中の陽イオンは陽イオン交換膜方向に移動して水素イオンとのイオン交換を行って陽イオン交換膜に取り込まれ、水中の陰イオンは陰イオン交換膜方向に移動して水酸化物イオンとイオン交換を行って陰イオン交換膜に取り込まれる。イオン交換反応によって生成した水素イオンと水酸化物イオンとは再結合して水となる。これにより、水中の塩類が除去されたので、脱塩処理が行われたことになる。 When the voltage application direction is reversed from when water is dissociated, that is, when the voltage is applied between the electrodes so that the anion exchange membrane side electrode is a cathode and the cation exchange membrane side electrode is an anode, Cations in water move in the direction of the cation exchange membrane and exchange with hydrogen ions to be taken into the cation exchange membrane, and the anions in water move in the direction of the anion exchange membrane and become hydroxide ions. Ion exchange is performed and it is taken into the anion exchange membrane. Hydrogen ions and hydroxide ions generated by the ion exchange reaction are recombined to form water. Thereby, since the salt in water was removed, the desalination process was performed.
 バイポーラ膜で水が解離して水素イオンと水酸化物イオンが生成した場合、陽イオン交換膜に何らかの陽イオンが含まれていればその陽イオンは水素イオンとイオン交換して膜外に排出され、陰イオン交換膜に何らかの陰イオンが含まれていればその陰イオンは水酸化物イオンとイオン交換して膜外に排出される。結局、電圧印加によってバイポーラ膜において水を解離させるプロセスは、バイポーラ膜の再生のプロセスであるとも言える。したがって、バイポーラ膜に印加する電圧の方向を変化させることで、バイポーラ膜による脱塩処理とバイポーラ膜の再生処理とを切り替えることができる。特表2001-509074号公報(特許文献2)や特開2011-94938号公報(特許文献3)には、バイポーラ膜に電圧を印加する電極の極性を切り替えることで脱塩と再生とを繰り返し行う水処理装置が提案されている。 When water is dissociated in the bipolar membrane and hydrogen ions and hydroxide ions are generated, if any cation is contained in the cation exchange membrane, the cation exchanges with the hydrogen ion and is discharged outside the membrane. If any anion is contained in the anion exchange membrane, the anion exchanges with hydroxide ions and is discharged out of the membrane. After all, it can be said that the process of dissociating water in the bipolar film by applying a voltage is a process of regenerating the bipolar film. Therefore, by changing the direction of the voltage applied to the bipolar film, it is possible to switch between the desalting process using the bipolar film and the regeneration process of the bipolar film. Japanese Patent Application Publication No. 2001-509074 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2011-94938 (Patent Document 3) repeatedly perform desalting and regeneration by switching the polarity of an electrode for applying a voltage to a bipolar membrane. Water treatment equipment has been proposed.
 このようにバイポーラ膜による脱塩方法では、電気再生式脱塩装置の場合とは異なり、一対の電極間に印加される直流電圧の極性の反転を行って脱塩処理と再生処理とを繰り返すので、バッチ方式での脱塩処理が実行されることなる。その代わり、バイポーラ膜による脱塩方法では、電気再生式脱塩装置における濃縮室に相当する機構を必要とせず、また、陰極等で発生するスケールも極性切替によって除去可能であり、硬度成分を含んだ被処理水の脱塩が可能となる。 Thus, unlike the case of the electric regeneration type desalination apparatus, the desalting method using the bipolar membrane repeats the desalting process and the regeneration process by reversing the polarity of the DC voltage applied between the pair of electrodes. The desalting process is performed in a batch system. Instead, the desalting method using the bipolar membrane does not require a mechanism corresponding to the concentration chamber in the electric regeneration type desalting apparatus, and scales generated at the cathode or the like can be removed by polarity switching, and include a hardness component. The desalted water can be desalted.
特開2006-43549号公報JP 2006-43549 A 特表2001-509074号公報JP 2001-509074 gazette 特開2011-94938号公報JP 2011-94938 A 特開2011-78936号公報JP 2011-78936 A
 バイポーラ膜は再生を容易に行えるという利点を有するものの、バイポーラ膜を用いた従来の脱塩装置では、バイポーラ膜を構成する陽イオン交換膜あるいは陰イオン交換膜の交換容量に対して十分な脱塩能力が発揮されない、という課題がある。 Although the bipolar membrane has the advantage that it can be easily regenerated, the conventional desalting apparatus using the bipolar membrane has sufficient desalination for the exchange capacity of the cation exchange membrane or anion exchange membrane constituting the bipolar membrane. There is a problem that ability is not demonstrated.
 例えば、硬度成分の除去を目的としてカルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)を除去しようとする場合、通常のイオン交換樹脂を用いて脱塩を行おうとしたときと比べ、バイポーラ膜を構成する陽イオン交換膜の交換容量に対して十分な脱塩能力が発揮されない。一例として、同じ交換容量を有するイオン交換樹脂とバイポーラ膜とをそれぞれ利用して同一の原水を同一の硬度まで処理する場合、バイポーラ膜を使用したときには、イオン交換樹脂を使用したときに処理可能な原水の量の5分の1程度の原水しか処理できないことが明らかになった。つまり、バイポーラ膜を用いて再生を行うことなくイオン交換樹脂の場合と同等の脱塩処理を行うためには、イオン交換樹脂の使用量と比べて大量のバイポーラ膜を使用しなければならない。したがって、バイポーラ膜を用いて多量の水に対して連続して脱塩処理を行う場合には、装置が大型になるという課題が生じる。バイポーラ膜による脱塩処理での脱塩性能が低い理由の一つとして、バイポーラ膜の膜面が被処理水の通水方向に対して平行になるようにバイポーラ膜を配置した上で、バイポーラ膜に接触した被処理水から電界によって通水方向とは垂直な方向にイオンを移動させるため、膜に到達しないイオンは吸着されずに被処理水に残存することになることが挙げられる。言い換えれば、脱塩性能が低いのは、イオン交換体として機能するバイポーラ膜と被処理水との接触効率が悪いためである。 For example, when removing calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) for the purpose of removing hardness components, compared to when desalting using a normal ion exchange resin, bipolar Sufficient desalting ability is not exhibited with respect to the exchange capacity of the cation exchange membrane constituting the membrane. As an example, when the same raw water is treated to the same hardness using an ion exchange resin and a bipolar membrane having the same exchange capacity, when the bipolar membrane is used, the treatment is possible when the ion exchange resin is used. It became clear that only about one fifth of the amount of raw water can be treated. That is, in order to perform a desalting treatment equivalent to that of the ion exchange resin without performing regeneration using the bipolar membrane, a large amount of the bipolar membrane must be used as compared with the amount of the ion exchange resin used. Therefore, when desalting is continuously performed on a large amount of water using a bipolar membrane, there arises a problem that the apparatus becomes large. One of the reasons for the low desalting performance in the desalting treatment with the bipolar membrane is to arrange the bipolar membrane so that the membrane surface of the bipolar membrane is parallel to the direction of water flow of the water to be treated. Since ions are moved from the water to be treated in contact with the water in a direction perpendicular to the direction of water flow by an electric field, ions that do not reach the membrane remain in the water to be treated without being adsorbed. In other words, the desalting performance is low because the contact efficiency between the bipolar membrane functioning as an ion exchanger and the water to be treated is poor.
 特開2011-78936号公報(特許文献4)には、陽イオン交換体と陰イオン交換体とを接合させた2層構造を有するイオン交換膜すなわちバイポーラ膜を用いる水処理装置であって、イオン交換体を例えば粒状のものや繊維状のものとすることができ、バイポーラ膜での水の解離作用によって生じる水素イオン及び水酸化物イオンによってイオン交換体の再生を行えるようにした水処理装置が示されている。粒状または繊維状のイオン交換体とすることにより、被処理水との接触効率の向上が期待できる。しかしながら特許文献4に示されたものでは、脱塩処理時には電圧を印加しないか水の分解電圧未満の電圧を印加するのみなので、イオン交換体として強塩基性陰イオン交換樹脂及び強酸性陽イオン交換樹脂を使用しないと、被処理水のpHによっては十分な脱塩性能を得ることができない。強塩基性陰イオン交換樹脂及び強酸性陽イオン交換樹脂の使用は、再生時に多くのエネルギーを必要とする、という課題ももたらす。 Japanese Patent Application Laid-Open No. 2011-78936 (Patent Document 4) discloses a water treatment apparatus using an ion exchange membrane having a two-layer structure in which a cation exchanger and an anion exchanger are joined, that is, a bipolar membrane. There is provided a water treatment apparatus in which the exchanger can be made granular or fibrous, for example, and the ion exchanger can be regenerated by hydrogen ions and hydroxide ions generated by the dissociation action of water in the bipolar membrane. It is shown. By using a granular or fibrous ion exchanger, the contact efficiency with water to be treated can be expected. However, in the thing shown in patent document 4, since a voltage is not applied at the time of a desalination process, or only the voltage less than the decomposition voltage of water is applied, a strong basic anion exchange resin and a strong acidic cation exchange are used as an ion exchanger. If the resin is not used, sufficient desalting performance cannot be obtained depending on the pH of the water to be treated. The use of strongly basic anion exchange resins and strongly acidic cation exchange resins also brings about the problem that much energy is required for regeneration.
 本発明の目的は、バイポーラ膜を用いる脱塩方法及び脱塩装置であって、脱塩性能が高く、装置サイズを小型化することができ、さらに再生効率も高い脱塩方法及び脱塩装置を提供することにある。 An object of the present invention is a desalting method and desalting apparatus using a bipolar membrane, which has a high desalting performance, can reduce the size of the apparatus, and has a high regeneration efficiency. It is to provide.
 上記課題を解決するため、本発明者らは鋭意検討を行った結果、バイポーラ膜を備える脱塩装置において、バイポーラ膜間の空間、あるいはバイポーラ膜と電極との間の空間に、陽イオン交換体と陰イオン交換体とを配置し、バイポーラ膜における陽イオン交換膜に面する電極が陽極、陰イオン交換膜に面する電極が陰極となるようにしてこれらの電極間に直流電圧を印加することによって、効率よく脱塩を行えることを見出した。また、電極に印加される直流電圧の極性を反転することにより、バイポーラ膜とイオン交換領域の両方を再生できることも見出した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, in a desalination apparatus including a bipolar membrane, a cation exchanger is provided in the space between the bipolar membranes or in the space between the bipolar membrane and the electrode. And an anion exchanger are arranged, and a DC voltage is applied between these electrodes so that the electrode facing the cation exchange membrane in the bipolar membrane is an anode and the electrode facing the anion exchange membrane is a cathode. Thus, it was found that desalting can be performed efficiently. It has also been found that both the bipolar membrane and the ion exchange region can be regenerated by reversing the polarity of the DC voltage applied to the electrode.
 したがって本発明の脱塩装置は、印加する直流電圧の極性反転が可能な一対の電極と、一対の電極によって電圧が印加される空間内に配置されたバイポーラ膜と、を備え、被処理水に対する脱塩処理を行う脱塩装置において、陽イオン交換体及び陰イオン交換体が配置されたイオン交換領域を空間内に有し、陽イオン交換体及び陰イオン交換体は、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかの組み合わせであり、バイポーラ膜における陽イオン交換膜に面する電極が陽極となりバイポーラ膜における陰イオン交換膜に面する電極が陰極となるように一対の電極間に電圧を印加しながら被処理水を空間に通水して脱塩処理が行なわれ、陽イオン交換膜に面する電極が陰極となり、陰イオン交換膜に面する電極が陽極となるように一対の電極間に電圧を印加することによってバイポーラ膜、陽イオン交換体及び陰イオン交換体の再生処理が行われることを特徴とする。 Therefore, the desalinating apparatus of the present invention comprises a pair of electrodes capable of reversing the polarity of the DC voltage to be applied, and a bipolar membrane disposed in a space to which a voltage is applied by the pair of electrodes, In a desalination apparatus for performing a desalting treatment, the space has an ion exchange region in which a cation exchanger and an anion exchanger are arranged, and the cation exchanger and the anion exchanger are weakly acidic cation exchangers. And a weakly basic anion exchanger, a weakly acidic cation exchanger and a strongly basic anion exchanger, and a strongly acidic cation exchanger and a weakly basic anion exchanger. The voltage between a pair of electrodes is such that the electrode facing the cation exchange membrane in the bipolar membrane becomes the anode and the electrode facing the anion exchange membrane in the bipolar membrane becomes the cathode. The water to be treated is passed through the space while being applied, and desalting is performed. The electrode facing the cation exchange membrane serves as the cathode, and the electrode facing the anion exchange membrane serves as the anode. The bipolar membrane, the cation exchanger and the anion exchanger are regenerated by applying a voltage to them.
 本発明の脱塩方法は、被処理水の脱塩方法において、陽イオン交換体及び陰イオン交換体が配置された領域であるイオン交換領域とバイポーラ膜とが配置された空間に対して被処理水を通水しながら、バイポーラ膜における陽イオン交換膜に面する電極が陽極となり、バイポーラ膜における陰イオン交換膜に面する電極が陰極となるように一対の電極間に電圧を印加することにより空間に電圧を印加する脱塩処理と、陽イオン交換膜に面する電極が陰極となり、陰イオン交換膜に面する電極が陽極となるように一対の電極間に電圧を印加することによって空間に印加される電圧の極性を反転させ、バイポーラ膜、陽イオン交換体及び陰イオン交換体を再生する再生処理と、を交互に実施し、陽イオン交換体及び陰イオン交換体は、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかの組み合わせであることを特徴とする。 The desalinating method of the present invention is a desalting method of water to be treated, in which a space in which an ion exchange region and a bipolar membrane are disposed, which is a region in which a cation exchanger and an anion exchanger are disposed, is treated. While passing water, by applying a voltage between a pair of electrodes so that the electrode facing the cation exchange membrane in the bipolar membrane becomes the anode and the electrode facing the anion exchange membrane in the bipolar membrane becomes the cathode Applying a voltage between a pair of electrodes so that the electrode facing the cation exchange membrane serves as a cathode and the electrode facing the anion exchange membrane serves as an anode. The polarity of the applied voltage is reversed, and a regeneration process for regenerating the bipolar membrane, the cation exchanger, and the anion exchanger is alternately performed, and the cation exchanger and the anion exchanger are weakly acidic cation. A combination of an on-exchanger with a weakly basic anion exchanger, a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, and a combination of a strongly acidic cation exchanger with a weakly basic anion exchanger It is characterized by being any combination of combinations.
 本発明においては、脱塩処理時に一対の電極に印加される電圧Eは、水の理論分解電圧以上とすることが好ましい。特に、電極間の距離をLとして、E/Lが0.1V/mm以上15V/mm以下となるようにすることが好ましい。 In the present invention, the voltage E applied to the pair of electrodes during the desalting treatment is preferably equal to or higher than the theoretical decomposition voltage of water. In particular, it is preferable that the distance between the electrodes is L, and E / L is 0.1 V / mm or more and 15 V / mm or less.
 本発明において、陽イオン交換体及び陰イオン交換体が配置されたイオン交換領域は、通水性を有する領域であって、例えば、陽イオン交換体と陰イオン交換体とが混合して配置された領域である。このようなイオン交換領域は、例えば、バイポーラ膜を構成する陽イオン交換膜に接するか近接するように陽イオン交換体を配置し、バイポーラ膜の陰イオン交換膜に接するか近接するように陰イオン交換体を配置することによって構成される。あるいは、これとは逆にバイポーラ膜の陽イオン交換膜側に陰イオン交換体を配置し、陰イオン交換膜側に陽イオン交換体を配置してもイオン交換領域を構成してもよい。バイポーラ膜間の空間における通水方向に沿って、陽イオン交換体、陰イオン交換体の順で、またはその逆の陰イオン交換体、陽イオン交換体の順で配置してイオン交換領域を形成してもよい。さらには、例えば、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを均一に分散させた混床のものとしてイオン交換領域を構成してもよい。一対の電極間の空間がバイポーラ膜によって多数の小空間に分割される場合には、小空間ごとに陽イオン交換体または陰イオン交換体の一方を設けることにより、1つの電極を結ぶ方向に沿って、バイポーラ膜を挟んで陽イオン交換体と陰イオン交換体とが交互に配置されるようにしてイオン交換領域を構成してもよい。 In the present invention, the ion exchange region in which the cation exchanger and the anion exchanger are arranged is a water-permeable region, for example, a mixture of the cation exchanger and the anion exchanger is arranged. It is an area. In such an ion exchange region, for example, a cation exchanger is disposed so as to be in contact with or close to the cation exchange membrane constituting the bipolar membrane, and an anion is so formed as to be in contact with or close to the anion exchange membrane of the bipolar membrane. It is configured by arranging an exchanger. Alternatively, on the contrary, an anion exchanger may be disposed on the cation exchange membrane side of the bipolar membrane, and the cation exchanger may be disposed on the anion exchange membrane side to constitute the ion exchange region. An ion exchange region is formed by arranging the cation exchanger and anion exchanger in this order along the direction of water flow in the space between the bipolar membranes, or vice versa. May be. Further, for example, the ion exchange region may be configured as a mixed bed in which a granular cation exchange resin and a granular anion exchange resin are uniformly dispersed. When the space between the pair of electrodes is divided into a large number of small spaces by the bipolar membrane, one of the cation exchanger or the anion exchanger is provided for each small space along the direction connecting one electrode. Thus, the ion exchange region may be configured such that the cation exchanger and the anion exchanger are alternately arranged with the bipolar membrane interposed therebetween.
 本発明者らの知見によれば、バイポーラ膜における陽イオン交換膜に接して設けられて陽イオン交換体を有する通水性の陽イオン交換領域と、バイポーラ膜における陰イオン交換膜に接して設けられて陰イオン交換体を有する通水性の陰イオン交換領域と、によってイオン交換領域を構成するとともに、一対の電極によって電圧が印加される空間内で陽イオン交換領域と陰イオン交換領域とを相互に接するか対面するように配置することで、脱塩性能のみならず再生効率も向上する。バイポーラ膜における陽イオン交換膜に接して陽イオン交換領域を設け、陰イオン交換膜に接して陰イオン交換領域を設ける場合には、一対の電極の一方に接しても陽イオン交換領域を設け、他方の電極に接しても陰イオン交換領域を設けることが好ましい。この場合、バイポーラ膜における陽イオン交換膜に面する電極に接して陰イオン交換領域が配置され、バイポーラ膜における陰イオン交換膜に面する電極に接して陽イオン交換領域が配置される。またこのとき、一対の電極間の空間がバイポーラ膜によって多数の小空間に分割されている場合には、一対の電極を結ぶ方向に沿って、一方の電極、陰イオン交換領域、陽イオン交換領域、バイポーラ膜、陰イオン交換領域、陽イオン交換領域、バイポーラ膜、…、陽イオン交換領域、他方の電極、というように、陽イオン交換領域、バイポーラ膜、陰イオン交換領域が繰り返して現れることになる。 According to the knowledge of the present inventors, a water-permeable cation exchange region having a cation exchanger provided in contact with the cation exchange membrane in the bipolar membrane and an anion exchange membrane in the bipolar membrane are provided. A water-permeable anion exchange region having an anion exchanger and forming an ion exchange region, and the cation exchange region and the anion exchange region are mutually connected in a space where a voltage is applied by a pair of electrodes. By arranging so as to contact or face each other, not only the desalting performance but also the regeneration efficiency is improved. In the case of providing a cation exchange region in contact with a cation exchange membrane in a bipolar membrane, and in providing an anion exchange region in contact with an anion exchange membrane, a cation exchange region is provided even in contact with one of a pair of electrodes, It is preferable to provide an anion exchange region even in contact with the other electrode. In this case, the anion exchange region is disposed in contact with the electrode facing the cation exchange membrane in the bipolar membrane, and the cation exchange region is disposed in contact with the electrode facing the anion exchange membrane in the bipolar membrane. Also, at this time, when the space between the pair of electrodes is divided into a large number of small spaces by the bipolar membrane, one electrode, the anion exchange region, the cation exchange region along the direction connecting the pair of electrodes , Cation exchange region, bipolar membrane, anion exchange region repeatedly appear, such as bipolar membrane, anion exchange region, cation exchange region, bipolar membrane, ..., cation exchange region, the other electrode Become.
 上述した構成によれば、電圧を印加することによって、一般にイオン交換容量が大きいが中性pH領域では脱イオン能力が発揮されないとされる弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂を広いpH領域で使用することが可能になり、脱塩性能が向上する。脱塩と再生との1回のサイクルにおいて脱塩処理できる被処理水の量も多くなり、家電製品への搭載が可能な程度まで脱塩装置の小型化を図ることができる。また、弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂は、それぞれ、強酸性陽イオン交換樹脂や強塩基性陰イオン交換樹脂に比べて再生効率が高いため、本発明では、再生処理での省電力化が可能となる。特に、バイポーラ膜における陽イオン交換膜に接して陽イオン交換領域を設けるとともに、バイポーラ膜における陰イオン交換膜に接して陰イオン交換領域を設けた場合には、再生処理時にバイポーラ膜からの水素イオン及び水酸化物イオンが陽イオン交換領域及び陰イオン交換領域にそれぞれ効率よく移動することとなり、陽イオン交換領域及び陰イオン交換領域を高い効率で再生することができるようになる。 According to the configuration described above, by applying a voltage, a weakly acidic cation exchange resin or a weakly basic anion exchange resin, which generally has a large ion exchange capacity but does not exhibit a deionizing ability in a neutral pH region, is used. It becomes possible to use in a wide pH range, and the desalting performance is improved. The amount of water to be treated that can be desalted in one cycle of desalting and regeneration increases, and the desalination apparatus can be miniaturized to the extent that it can be mounted on home appliances. In addition, the weak acid cation exchange resin and the weak base anion exchange resin have higher regeneration efficiency than the strong acid cation exchange resin and the strong base anion exchange resin, respectively. It is possible to save power. In particular, when a cation exchange region is provided in contact with the cation exchange membrane in the bipolar membrane, and an anion exchange region is provided in contact with the anion exchange membrane in the bipolar membrane, hydrogen ions from the bipolar membrane during the regeneration process are provided. In addition, the hydroxide ions move efficiently to the cation exchange region and the anion exchange region, respectively, and the cation exchange region and the anion exchange region can be regenerated with high efficiency.
本発明の実施の一形態の脱塩装置の構成を示す図である。It is a figure which shows the structure of the desalination apparatus of one Embodiment of this invention. 本発明の別の実施形態の脱塩装置の構成を示す図である。It is a figure which shows the structure of the desalination apparatus of another embodiment of this invention. 実施例1及び比較例1での硬度の時間変化を示すグラフである。5 is a graph showing changes in hardness over time in Example 1 and Comparative Example 1. 実施例2及び比較例2での硬度の時間変化を示すグラフである。It is a graph which shows the time change of the hardness in Example 2 and Comparative Example 2. FIG. 実施例3で用いた脱塩装置の構成を示す図である。It is a figure which shows the structure of the desalination apparatus used in Example 3. FIG. 実施例3での硬度の時間変化を示すグラフである。6 is a graph showing a change with time in hardness in Example 3; 実施例4,5での脱塩回数と硬度との関係を示すグラフである。It is a graph which shows the relationship between the desalination frequency in Examples 4 and 5, and hardness.
 図1は、本発明の実施の一形態の脱塩装置を示している。この脱塩装置は、脱塩モジュール10と、電極12,13に印加する直流電圧を発生する直流電源21と、直流電源21と電極12,13との間に設けられて電極12,13の極性を切り替える切替スイッチ22と、を備えている。脱塩モジュール10は、バイポーラ膜11と、一対の電極12,13と、イオン交換樹脂層16と、を備えている。 FIG. 1 shows a desalination apparatus according to an embodiment of the present invention. This desalination apparatus is provided between the desalting module 10, a DC power source 21 that generates a DC voltage applied to the electrodes 12 and 13, and the polarity of the electrodes 12 and 13 provided between the DC power source 21 and the electrodes 12 and 13. And a changeover switch 22 for switching between. The desalting module 10 includes a bipolar membrane 11, a pair of electrodes 12 and 13, and an ion exchange resin layer 16.
 脱塩モジュール10では、配管23,24が接続する容器内に一対の電極12,13が離隔して配置しており、その間の空間に対して電極12,13によって電圧を印加できるようになっている。断面構成として見たときに電極12,13間の空間を複数の部分に仕切るように電極12,13から離れてバイポーラ膜11が配置している。図示したものでは、電極12,13間の空間が、バイポーラ膜11によって5つの部分に仕切られている。そして、このように仕切られた各部分、すなわち電極12とバイポーラ膜11の間の空間、隣接するバイポーラ膜11間の空間、及びバイポーラ膜11と電極13の間の空間には、イオン交換樹脂層16が配置されている。 In the desalting module 10, a pair of electrodes 12 and 13 are arranged separately in a container to which the pipes 23 and 24 are connected, and a voltage can be applied to the space between them by the electrodes 12 and 13. Yes. The bipolar film 11 is disposed away from the electrodes 12 and 13 so as to partition the space between the electrodes 12 and 13 into a plurality of portions when viewed as a cross-sectional configuration. In the illustrated example, the space between the electrodes 12 and 13 is divided into five parts by the bipolar film 11. In each of the partitioned parts, that is, the space between the electrode 12 and the bipolar film 11, the space between the adjacent bipolar films 11, and the space between the bipolar film 11 and the electrode 13, an ion exchange resin layer is provided. 16 is arranged.
 電極12,13としては、陰極及び陽極として機能を発揮するものであればよく、例えば、白金、パラジウム、イリジウム等の貴金属、あるいはこれらの貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。電極12,13の形状としては、平板、エクスパンド、パンチング、丸棒、ワイヤーなどが考えられるが、バイポーラ膜11の形状にあわせ、バイポーラ膜11やバイポーラ膜11間の空間に対して均一に電圧をかけられるようなものである必要がある。 The electrodes 12 and 13 are not particularly limited as long as they function as a cathode and an anode, and examples thereof include noble metals such as platinum, palladium and iridium, or net-like or plate-like electrodes in which these noble metals are coated with titanium or the like. be able to. The shape of the electrodes 12 and 13 may be a flat plate, expand, punching, round bar, wire, or the like. In accordance with the shape of the bipolar film 11, a voltage is uniformly applied to the bipolar film 11 and the space between the bipolar films 11. It must be something that can be applied.
 バイポーラ膜11は、陽イオン交換膜14と陰イオン交換膜15とを張り合わせた構造を有するものである。図1では、断面構成として、電極12,13間に複数枚のバイポーラ膜11が配置されているように描かれているが、平行平板状の電極12,13の間に相互に平行かつ電極12,13にも平行となるように実際に複数枚のバイポーラ膜11を配置してもよいし、あるいは、一方の電極を中心電極とし他方の電極を円筒電極として電極12,13を同心円状に配置し、これらの電極間で1枚のバイポーラ膜を渦巻き状に巻回するように配置してもよい。バイポーラ膜11の配置としてどのような構成を採用したとしても、配管23から脱塩モジュール10に供給された被処理水が、電極12,13とバイポーラ膜11の間の空間やバイポーラ膜11の相互間の空間に設けられているイオン交換樹脂層16を均等に通水できるようにすることが必要である。このとき、いずれのバイポーラ膜11も、陽イオン交換膜14側の面が電極12に向き、陰イオン交換膜15側の面がもう1つの電極13に向くように、電極11,12の間に配置されている。 The bipolar membrane 11 has a structure in which a cation exchange membrane 14 and an anion exchange membrane 15 are bonded together. In FIG. 1, the cross-sectional configuration is illustrated such that a plurality of bipolar films 11 are arranged between the electrodes 12 and 13, but the electrodes 12 and 13 having parallel plate shapes are parallel to each other and the electrodes 12. , 13 may be arranged in parallel so that a plurality of bipolar films 11 may actually be arranged, or electrodes 12, 13 are arranged concentrically with one electrode as a central electrode and the other electrode as a cylindrical electrode. However, one bipolar film may be wound between these electrodes in a spiral shape. Whatever configuration is adopted for the arrangement of the bipolar membrane 11, the water to be treated supplied from the pipe 23 to the desalting module 10 is not limited to the space between the electrodes 12, 13 and the bipolar membrane 11 or between the bipolar membranes 11. It is necessary to allow the ion exchange resin layer 16 provided in the space between them to pass evenly. At this time, both bipolar membranes 11 are arranged between the electrodes 11 and 12 so that the surface on the cation exchange membrane 14 side faces the electrode 12 and the surface on the anion exchange membrane 15 side faces the other electrode 13. Is arranged.
 次に、本実施形態におけるイオン交換樹脂層16について説明する。イオン交換樹脂層16は、通水性を有しており、陽イオン交換体と陰イオン交換体とが混合して配置したイオン交換領域となるものである。陽イオン交換体は例えば陽イオン交換樹脂であり、陰イオン交換体は例えば陰イオン交換樹脂である。イオン交換樹脂層16を構成する陽イオン交換体と陰イオン交換体との組み合わせは、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかである。 Next, the ion exchange resin layer 16 in this embodiment will be described. The ion exchange resin layer 16 has water permeability and serves as an ion exchange region in which a cation exchanger and an anion exchanger are mixed and arranged. The cation exchanger is, for example, a cation exchange resin, and the anion exchanger is, for example, an anion exchange resin. The combination of the cation exchanger and the anion exchanger constituting the ion exchange resin layer 16 is a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, or a weakly acidic cation exchanger and a strongly basic substance. Either a combination with an anion exchanger or a combination of a strongly acidic cation exchanger and a weakly basic anion exchanger.
 図示したものでは、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを混合して両者が均一に混じり合った状態のものをイオン交換樹脂層16とし、このようなイオン交換樹脂層16が、電極12,13とバイポーラ膜11の間の空間、及び、バイポーラ膜11の相互間の空間に充填されている。もっとも、本実施形態で利用可能なイオン交換樹脂層16は、これに限られるものではなく、バイポーラ膜11の陽イオン交換膜14に陽イオン交換樹脂が接し陰イオン交換膜15に陰イオン交換樹脂が接するように両方のイオン交換樹脂を配したものや、これとは逆に陽イオン交換膜14に陰イオン交換樹脂が接し陰イオン交換膜15に陽イオン交換樹脂が接するように両方のイオン交換樹脂を配したものであってもよい。また、バイポーラ膜11で仕切られた空間ごとに陽イオン交換樹脂と陰イオン交換樹脂のいずれかを充填して、全体として陽イオン交換樹脂と陰イオン交換樹脂とが交互に配置されるようにしてイオン交換樹脂層を設けてもよい。 In the illustrated example, a granular cation exchange resin and a granular anion exchange resin are mixed, and a state in which both are uniformly mixed is used as an ion exchange resin layer 16. The space between the electrodes 12 and 13 and the bipolar film 11 and the space between the bipolar films 11 are filled. However, the ion exchange resin layer 16 that can be used in the present embodiment is not limited to this. The cation exchange resin is in contact with the cation exchange membrane 14 of the bipolar membrane 11 and the anion exchange membrane 15 is in contact with the anion exchange membrane 15. Both ion exchange resins are arranged so as to be in contact with each other, and conversely, both ion exchanges are made so that the cation exchange membrane 14 is in contact with the anion exchange resin and the anion exchange membrane 15 is in contact with the cation exchange resin. A resin may be provided. Further, each space partitioned by the bipolar membrane 11 is filled with either a cation exchange resin or an anion exchange resin so that the cation exchange resin and the anion exchange resin are alternately arranged as a whole. An ion exchange resin layer may be provided.
 次に、この脱塩装置による脱塩処理について説明する。 Next, the desalting process using this desalting apparatus will be described.
 電極12が陽極となり、電極13が陰極となるように切替スイッチ22を操作し、すなわち図1に示す切替スイッチ22の状態とし、直流電源21によって電極12,13間に直流電圧を印加する。このとき、バイポーラ膜11において、陽イオン交換膜14が陽極側となり、陰イオン交換膜15が陰極側となる。配管23を介して脱塩モジュール10内に被処理水を通水すると、被処理水中に含まれる陽イオンは、バイポーラ膜11の陽イオン交換膜14側に移動し、そこで水素イオンとイオン交換して陽イオン交換膜14内に吸着される。同様に被処理水中に含まれる陰イオンは、バイポーラ膜11の陰イオン交換膜15側に移動し、そこで水酸化物イオンとイオン交換して陰イオン交換膜15内に吸着される。イオン交換によって被処理水中に移動した水素イオン及び水酸化物イオンは、再結合して水となる。被処理水中の陽イオンや陰イオンのうち、バイポーラ膜11においてイオン交換されなかったものも、イオン交換樹脂層16でイオン交換されて吸着される。その結果、配管24から脱塩水すなわち処理水が得られる。 The changeover switch 22 is operated so that the electrode 12 becomes an anode and the electrode 13 becomes a cathode, that is, the changeover switch 22 shown in FIG. 1 is set, and a DC voltage is applied between the electrodes 12 and 13 by the DC power source 21. At this time, in the bipolar membrane 11, the cation exchange membrane 14 is on the anode side, and the anion exchange membrane 15 is on the cathode side. When the water to be treated is passed through the desalination module 10 via the pipe 23, the cations contained in the water to be treated move to the cation exchange membrane 14 side of the bipolar membrane 11, where they are ion exchanged with hydrogen ions. And adsorbed in the cation exchange membrane 14. Similarly, anions contained in the water to be treated move to the anion exchange membrane 15 side of the bipolar membrane 11, where they are ion-exchanged with hydroxide ions and adsorbed in the anion exchange membrane 15. Hydrogen ions and hydroxide ions that have moved into the water to be treated by ion exchange are recombined to become water. Of the cations and anions in the water to be treated, those not ion-exchanged in the bipolar membrane 11 are also ion-exchanged and adsorbed by the ion-exchange resin layer 16. As a result, demineralized water, that is, treated water is obtained from the pipe 24.
 本実施形態の脱塩装置では、イオン交換樹脂層16には、少なくとも弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂の一方が含まれる。通常であれば、弱酸性陽イオン交換樹脂は被処理水の液性がアルカリ性でなければ、弱塩基性陰イオン交換樹脂は液性が酸性でなければ、十分な脱塩性能を発揮しない。しかしながら本実施形態の脱塩装置では、電極12,13によって直流電圧を印加することにより被処理水内に微視的なpHの偏りが発生するので、被処理水の液性に関わらず弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂を用いて脱塩処理を行うことが可能となり、それらのイオン交換樹脂の大きなイオン交換容量を活用することができるようになる。 In the desalting apparatus of the present embodiment, the ion exchange resin layer 16 includes at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin. Normally, a weakly acidic cation exchange resin does not exhibit sufficient desalting performance unless the liquidity of the water to be treated is alkaline, and a weakly basic anion exchange resin is not acidic. However, in the desalination apparatus according to the present embodiment, since a microscopic pH deviation occurs in the water to be treated by applying a DC voltage by the electrodes 12 and 13, it is weakly acidic regardless of the liquidity of the water to be treated. Desalination treatment can be performed using a cation exchange resin or a weakly basic anion exchange resin, and the large ion exchange capacity of those ion exchange resins can be utilized.
 次に、再生処理について説明する。 Next, the playback process will be described.
 脱塩モジュール10内に水が存在する状態で、脱塩処理時とは電圧極性を反転させ、電極12が陰極、電極13が陽極となるように電極12,13間に直流電圧を印加する。すると、バイポーラ膜11での陽イオン交換膜14と陰イオン交換膜15との界面で水の解離が起こり、水素イオンと水酸化物イオンが生成される。水素イオンは陽イオン交換膜14内を移動し、それによって陽イオン交換膜14が再生され、水酸化物イオンは陰イオン交換膜15内を移動し、それによって陰イオン交換膜15が再生されて、バイポーラ膜11が再生されたことになる。さらに電圧印加を続けると、バイポーラ膜11で生成した水素イオン及び水酸化物イオンが、イオン交換樹脂層16内の陽イオン交換樹脂及び陰イオン交換樹脂にそれぞれ移動し、これらのイオン交換樹脂の再生が行われることになる。イオン交換樹脂層16は、少なくとも弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂の一方を含んでいるが、弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂は強酸性陽イオン交換樹脂や強塩基性陰イオン交換樹脂に比べて再生効率が高いので、本実施形態の脱塩装置では、省電力での再生処理が可能になる。 In the state where water is present in the desalting module 10, the voltage polarity is reversed from that in the desalting process, and a DC voltage is applied between the electrodes 12 and 13 so that the electrode 12 becomes a cathode and the electrode 13 becomes an anode. Then, dissociation of water occurs at the interface between the cation exchange membrane 14 and the anion exchange membrane 15 in the bipolar membrane 11, and hydrogen ions and hydroxide ions are generated. Hydrogen ions move in the cation exchange membrane 14, thereby regenerating the cation exchange membrane 14, and hydroxide ions move in the anion exchange membrane 15, thereby regenerating the anion exchange membrane 15. The bipolar film 11 has been regenerated. When the voltage is further applied, hydrogen ions and hydroxide ions generated in the bipolar membrane 11 move to the cation exchange resin and the anion exchange resin in the ion exchange resin layer 16 respectively, and the regeneration of these ion exchange resins is performed. Will be done. The ion exchange resin layer 16 includes at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin. The weakly acidic cation exchange resin and the weakly basic anion exchange resin are strongly acidic cation exchanges. Since the regeneration efficiency is higher than that of a resin or a strongly basic anion exchange resin, the desalination apparatus according to the present embodiment enables regeneration processing with power saving.
 このように本実施形態の脱塩装置では、電極12,13に印加される直流電圧の極性を切り替えることで、バイポーラ膜11及びイオン交換樹脂層16による脱塩処理と、これらの再生処理とを繰り返し行うことができる。 Thus, in the desalination apparatus of this embodiment, by switching the polarity of the DC voltage applied to the electrodes 12 and 13, the desalting process by the bipolar membrane 11 and the ion exchange resin layer 16 and these regeneration processes are performed. Can be repeated.
 図1に示した脱塩装置では、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを混合することによってイオン交換領域を構成しているが、本発明におけるイオン交換領域は図1に示したものに限られるものではない。バイポーラ膜における陽イオン交換膜に接して設けられて陽イオン交換体を有する通水性の陽イオン交換領域と、バイポーラ膜における陰イオン交換膜に接して設けられて陰イオン交換体を有する通水性の陰イオン交換領域と、から構成され、陽イオン交換領域と陰イオン交換領域とが相互に接するか対面するように配置されているイオン交換領域を用いることもできる。 In the desalination apparatus shown in FIG. 1, an ion exchange region is formed by mixing a granular cation exchange resin and a granular anion exchange resin. The ion exchange region in the present invention is shown in FIG. It is not restricted to the thing. A water-permeable cation exchange region having a cation exchanger provided in contact with a cation exchange membrane in a bipolar membrane, and a water-permeable cation exchange region provided in contact with an anion exchange membrane in a bipolar membrane and having an anion exchanger. It is also possible to use an anion exchange region that is composed of an anion exchange region and is arranged so that the cation exchange region and the anion exchange region are in contact with each other or face each other.
 図2は、このようにバイポーラ膜における陽イオン交換膜に接して陽イオン交換領域が設けられ、陰イオン交換膜に接して陰イオン交換領域が設けられた、本発明の別の実施形態の脱塩装置の構成を示している。この脱塩装置では、図1に示した脱塩装置と同様に、脱塩モジュール10と直流電源21とスイッチ22とが備えられているが、脱塩モジュール10の構成が図1に示したものと異なっている。 FIG. 2 shows an embodiment of the present invention in which a cation exchange region is provided in contact with a cation exchange membrane in a bipolar membrane, and an anion exchange region is provided in contact with an anion exchange membrane. The structure of a salt apparatus is shown. In this desalting apparatus, as in the desalting apparatus shown in FIG. 1, a desalting module 10, a DC power source 21 and a switch 22 are provided. The configuration of the desalting module 10 is shown in FIG. Is different.
 脱塩モジュール10では、配管23,24が接続する容器内に一対の電極12,13が離隔して配置しており、その間の空間に対して電極12,13によって電圧を印加できるようになっている。断面構成として見たときに電極12,13間の空間を複数の部分に仕切るように電極12,13から離れてバイポーラ膜11が配置している。図示したものでは、電極12,13間の空間が、バイポーラ膜11によって5つの部分に仕切られている。ここでは、いずれのバイポーラ膜11も、陽イオン交換膜14側の面が電極12に向き、陰イオン交換膜15側の面がもう1つの電極13に向くように、電極12,13の間に配置されている。 In the desalting module 10, a pair of electrodes 12 and 13 are arranged separately in a container to which the pipes 23 and 24 are connected, and a voltage can be applied to the space between them by the electrodes 12 and 13. Yes. The bipolar film 11 is disposed away from the electrodes 12 and 13 so as to partition the space between the electrodes 12 and 13 into a plurality of portions when viewed as a cross-sectional configuration. In the illustrated example, the space between the electrodes 12 and 13 is divided into five parts by the bipolar film 11. Here, both bipolar membranes 11 are arranged between the electrodes 12 and 13 so that the surface on the cation exchange membrane 14 side faces the electrode 12 and the surface on the anion exchange membrane 15 side faces the other electrode 13. Is arranged.
 このように仕切られた各部分に関し、電極12とバイポーラ膜11の間の空間では、電極12の表面に接して陰イオン交換樹脂層18が設けられ、バイポーラ膜11の陽イオン交換膜14に接して陽イオン交換樹脂層17が設けられている。隣接するバイポーラ膜11間の空間では、図面において電極12側に位置するバイポーラ膜11の陰イオン交換膜15に接して陰イオン交換樹脂層18が設けられ、電極13側に位置するバイポーラ膜11の陽イオン交換膜14に接して陽イオン交換樹脂層17が設けられている。電極13とバイポーラ膜11の間の空間では、電極13の表面に接して陽イオン交換樹脂層17が設けられ、バイポーラ膜11の陰イオン交換膜15に接して陰イオン交換樹脂層18が設けられている。バイポーラ膜11によって仕切られている各部分では、その部分内の陽イオン交換樹脂層17と陰イオン交換樹脂層18とがその部分のほぼ中央付近で相互に接している。後述するように、陽イオン交換樹脂層17と陰イオン交換樹脂層18との間に通水性のスペーサなどを配置して、陽イオン交換樹脂層17と陰イオン交換樹脂層18とが対面して配置するようにしてもよい。 With respect to each part thus partitioned, in the space between the electrode 12 and the bipolar membrane 11, an anion exchange resin layer 18 is provided in contact with the surface of the electrode 12 and in contact with the cation exchange membrane 14 of the bipolar membrane 11. A cation exchange resin layer 17 is provided. In the space between the adjacent bipolar membranes 11, an anion exchange resin layer 18 is provided in contact with the anion exchange membrane 15 of the bipolar membrane 11 located on the electrode 12 side in the drawing, and the bipolar membrane 11 located on the electrode 13 side is provided. A cation exchange resin layer 17 is provided in contact with the cation exchange membrane 14. In the space between the electrode 13 and the bipolar membrane 11, a cation exchange resin layer 17 is provided in contact with the surface of the electrode 13, and an anion exchange resin layer 18 is provided in contact with the anion exchange membrane 15 of the bipolar membrane 11. ing. In each part partitioned by the bipolar membrane 11, the cation exchange resin layer 17 and the anion exchange resin layer 18 in the part are in contact with each other in the vicinity of the center of the part. As will be described later, a water-permeable spacer or the like is disposed between the cation exchange resin layer 17 and the anion exchange resin layer 18 so that the cation exchange resin layer 17 and the anion exchange resin layer 18 face each other. It may be arranged.
 電極12,13としては、図1に示した実施形態で用いられるものと同様のものが用いられる。またバイポーラ膜11としても、図1に示した実施形態で用いられるものと同様のものが用いられる。一方の電極を中心電極とし他方の電極を円筒電極として電極12,13を同心円状に配置し、これらの電極間で1枚のバイポーラ膜を渦巻き状に巻回するように配置する場合には、例えば、バイポーラ膜11の両面にそれぞれ陽イオン交換樹脂層17及び陰イオン交換樹脂層18をあらかじめ設けたシート状の積層体を用意して、この積層体を中心電極に巻き付ければよい。バイポーラ膜11の配置としてどのような構成を採用したとしても、配管23から脱塩モジュール10に供給された被処理水が、電極12,13とバイポーラ膜11の間の空間やバイポーラ膜11の相互間の空間に設けられている陽イオン交換樹脂層17及び陰イオン交換樹脂層18を均等に通水できるようにすることが必要である。 As the electrodes 12 and 13, the same electrodes as those used in the embodiment shown in FIG. 1 are used. As the bipolar film 11, the same film as that used in the embodiment shown in FIG. 1 is used. When one electrode is a center electrode and the other electrode is a cylindrical electrode, the electrodes 12 and 13 are arranged concentrically, and a bipolar film is wound between these electrodes so as to be spirally wound. For example, a sheet-like laminate in which the cation exchange resin layer 17 and the anion exchange resin layer 18 are previously provided on both surfaces of the bipolar membrane 11 is prepared, and the laminate may be wound around the center electrode. Whatever configuration is adopted for the arrangement of the bipolar membrane 11, the water to be treated supplied from the pipe 23 to the desalting module 10 is not limited to the space between the electrodes 12, 13 and the bipolar membrane 11 or between the bipolar membranes 11. It is necessary to allow the cation exchange resin layer 17 and the anion exchange resin layer 18 provided in the space between them to pass evenly.
 次に、陽イオン交換樹脂層17及び陰イオン交換樹脂層18について説明する。 Next, the cation exchange resin layer 17 and the anion exchange resin layer 18 will be described.
 陽イオン交換樹脂層17は、通水性を有し、陽イオン交換体が配置された陽イオン交換領域となるものであり、陰イオン交換樹脂層18は、通水性を有し、陰イオン交換体が配置された陰イオン交換領域となるものである。陽イオン交換体及び陰イオン交換体は、それぞれ、例えば、陽イオン交換樹脂及び陰イオン交換樹脂である。陽イオン交換樹脂層17を構成する陽イオン交換体と陰イオン交換樹脂層18を構成する陰イオン交換体との組み合わせは、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかである。 The cation exchange resin layer 17 has water permeability and serves as a cation exchange region in which the cation exchanger is arranged. The anion exchange resin layer 18 has water permeability and has an anion exchanger. Is an anion exchange region in which is arranged. The cation exchanger and the anion exchanger are, for example, a cation exchange resin and an anion exchange resin, respectively. The combination of the cation exchanger constituting the cation exchange resin layer 17 and the anion exchanger constituting the anion exchange resin layer 18 is a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, Either a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, or a combination of a strongly acidic cation exchanger and a weakly basic anion exchanger.
 図示したものでは、陽イオン交換樹脂層17は粒状の陽イオン交換樹脂の層からなり、陰イオン交換樹脂層18は粒状の陰イオン交換樹脂の層からなり、脱塩モジュール10においてバイポーラ膜11によって仕切られた各部分ごとに、陽イオン交換樹脂層17と陰イオン交換樹脂層18とが接して配置している。後述するように、再生処理での再生効率を高めるためには、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とが混ざり合わないようにすることが好ましいから、陽イオン交換樹脂層17と陰イオン交換樹脂層18との間に、例えば通水性のスペーサを設け、両方のイオン交換樹脂の混合を防ぐようにしてもよい。また、スペーサを設けることによって、陽イオン交換樹脂層17を構成する陽イオン交換樹脂と陰イオン交換樹脂層18を構成する陰イオン交換樹脂の充填作業の効率化を図ることもできる。 In the illustrated example, the cation exchange resin layer 17 is composed of a granular cation exchange resin layer, and the anion exchange resin layer 18 is composed of a granular anion exchange resin layer. The cation exchange resin layer 17 and the anion exchange resin layer 18 are disposed in contact with each partitioned part. As will be described later, in order to increase the regeneration efficiency in the regeneration process, it is preferable that the granular cation exchange resin and the granular anion exchange resin are not mixed with each other. For example, a water-permeable spacer may be provided between the anion exchange resin layer 18 and the mixing of both ion exchange resins may be prevented. Further, by providing the spacer, it is possible to improve the efficiency of the filling operation of the cation exchange resin constituting the cation exchange resin layer 17 and the anion exchange resin constituting the anion exchange resin layer 18.
 さらには、陽イオン交換樹脂層17として、多孔性の陽イオン交換体や繊維状の陽イオン交換体、陽イオン交換繊維などを用いることができる。同様に、陰イオン交換樹脂層18として、多孔性の陰イオン交換体や繊維状の陰イオン交換体、陰イオン交換繊維などを用いることができる。 Furthermore, as the cation exchange resin layer 17, a porous cation exchanger, a fibrous cation exchanger, a cation exchange fiber, or the like can be used. Similarly, a porous anion exchanger, a fibrous anion exchanger, an anion exchange fiber, or the like can be used as the anion exchange resin layer 18.
 次に、この脱塩装置による脱塩処理について説明する。 Next, the desalting process using this desalting apparatus will be described.
 電極12が陽極、電極13が陰極となるように切替スイッチ22を操作し,
すなわち図2に示す切替スイッチ22の状態とし、直流電源21によって電極12,13間に直流電圧を印加すると、図1に示した脱塩装置の場合と同様に、被処理水中に含まれる陽イオン及び陰イオンがバイポーラ膜11によってイオン交換され、脱塩処理が行われる。このとき、被処理水中の陽イオンや陰イオンのうち、バイポーラ膜11においてイオン交換されなかったものも、陽イオン交換樹脂層17あるいは陰イオン交換樹脂層18を通過する際にイオン交換されてこれらのイオン交換樹脂層に吸着される。その結果、配管24から脱塩水が得られる。
The changeover switch 22 is operated so that the electrode 12 becomes an anode and the electrode 13 becomes a cathode.
That is, when the direct current voltage is applied between the electrodes 12 and 13 by the direct current power source 21 in the state of the changeover switch 22 shown in FIG. 2, the cation contained in the water to be treated is the same as in the case of the desalination apparatus shown in FIG. And anion is ion-exchanged by the bipolar membrane 11, and a desalination process is performed. At this time, among the cations and anions in the water to be treated, those not ion-exchanged in the bipolar membrane 11 are also ion-exchanged when passing through the cation exchange resin layer 17 or the anion exchange resin layer 18. Adsorbed on the ion exchange resin layer. As a result, demineralized water is obtained from the pipe 24.
 図2に示した脱塩装置では、陽イオン交換樹脂層17及び陰イオン交換樹脂層18とを合わせた領域内に、少なくとも弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂の一方が含まれる。通常であれば、弱酸性陽イオン交換樹脂は被処理水の液性がアルカリ性でなければ、弱塩基性陰イオン交換樹脂は液性が酸性でなければ、十分な脱塩性能を発揮しない。しかしながら図2に示した脱塩装置では、電極12,13によって直流電圧を印加することにより被処理水内に局所的にpHの偏りが発生するので、被処理水の液性に関わらず弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂を用いて脱塩処理を行うことが可能となり、それらのイオン交換樹脂の大きなイオン交換容量を活用することができるようになる。その結果、本実施形態の脱塩装置は、高い脱塩性能を示すようになる。 In the desalting apparatus shown in FIG. 2, at least one of the weakly acidic cation exchange resin and the weakly basic anion exchange resin is included in the region where the cation exchange resin layer 17 and the anion exchange resin layer 18 are combined. It is. Normally, a weakly acidic cation exchange resin does not exhibit sufficient desalting performance unless the liquidity of the water to be treated is alkaline, and a weakly basic anion exchange resin is not acidic. However, in the desalination apparatus shown in FIG. 2, when a DC voltage is applied by the electrodes 12 and 13, a local pH deviation occurs in the water to be treated, so that it is weakly acidic regardless of the liquidity of the water to be treated. Desalination treatment can be performed using a cation exchange resin or a weakly basic anion exchange resin, and the large ion exchange capacity of those ion exchange resins can be utilized. As a result, the desalting apparatus of this embodiment comes to show high desalting performance.
 次に、再生処理について説明する。 Next, the playback process will be described.
 脱塩モジュール10内に水が存在する状態で、脱塩処理時とは電圧極性を反転させ、電極12が陰極、電極13が陽極となるように電極12,13間に直流電圧を印加する。すると、バイポーラ膜11での陽イオン交換膜14と陰イオン交換膜15との界面で水の解離が起こり、水素イオンと水酸化物イオンが生成される。水素イオンは陽イオン交換膜14内を移動し、それによって陽イオン交換膜14が再生され、水酸化物イオンは陰イオン交換膜15内を移動し、それによって陰イオン交換膜15が再生されて、バイポーラ膜11が再生されたことになる。さらに電圧印加を続けると、バイポーラ膜11で生成した水素イオンが、陽イオン交換膜14に接して設けられている陽イオン交換樹脂層17内に移動し、陽イオン交換樹脂層17を構成する陽イオン交換樹脂が再生される。同様に、バイポーラ膜11で生成した水酸化物イオンが、陰イオン交換膜15に接して設けられている陰イオン交換樹脂層18内に移動し、陰イオン交換樹脂層18を構成する陰イオン交換樹脂が再生される。さらに再生処理時には、電極12とその電極12に接する陰イオン交換樹脂層18との界面でも水酸化物イオンが発生し、この水酸化物イオンによって、電極12に接する陰イオン交換樹脂層18が再生される。電極13とその電極13に接する陽イオン交換樹脂層17との界面では、水素イオンが発生し、この水素イオンによって、電極13に接する陽イオン交換樹脂層17が再生される。結局、再生処理時には、バイポーラ膜11だけでなく、陽イオン交換樹脂層17及び陰イオン交換樹脂層18の再生も行われることになる。 In the state where water is present in the desalting module 10, the voltage polarity is reversed from that in the desalting process, and a DC voltage is applied between the electrodes 12 and 13 so that the electrode 12 becomes a cathode and the electrode 13 becomes an anode. Then, dissociation of water occurs at the interface between the cation exchange membrane 14 and the anion exchange membrane 15 in the bipolar membrane 11, and hydrogen ions and hydroxide ions are generated. Hydrogen ions move in the cation exchange membrane 14, thereby regenerating the cation exchange membrane 14, and hydroxide ions move in the anion exchange membrane 15, thereby regenerating the anion exchange membrane 15. The bipolar film 11 has been regenerated. When the voltage is further applied, the hydrogen ions generated in the bipolar membrane 11 move into the cation exchange resin layer 17 provided in contact with the cation exchange membrane 14 to form the cation exchange resin layer 17. The ion exchange resin is regenerated. Similarly, hydroxide ions generated in the bipolar membrane 11 move into the anion exchange resin layer 18 provided in contact with the anion exchange membrane 15 to form the anion exchange resin layer 18. The resin is regenerated. Further, during the regeneration process, hydroxide ions are also generated at the interface between the electrode 12 and the anion exchange resin layer 18 in contact with the electrode 12, and the anion exchange resin layer 18 in contact with the electrode 12 is regenerated by the hydroxide ion. Is done. Hydrogen ions are generated at the interface between the electrode 13 and the cation exchange resin layer 17 in contact with the electrode 13, and the cation exchange resin layer 17 in contact with the electrode 13 is regenerated by this hydrogen ion. Eventually, not only the bipolar membrane 11 but also the cation exchange resin layer 17 and the anion exchange resin layer 18 are regenerated during the regeneration process.
 ここで、図1に示した脱塩装置のように、隣接するバイポーラ膜11間の空間に粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とが混ざり合って存在する場合を考える。この場合、バイポーラ膜11の陽イオン交換膜14の近くに存在する陰イオン交換樹脂は、バイポーラ膜11の陰イオン交換膜15から放出された水酸化物イオンによって再生されるべきものであるが、この陰イオン交換樹脂の周辺には陽イオン交換膜14から放出された水素イオンが存在するので、陰イオン交換樹脂を再生すべき水酸化物イオンは、陰イオン交換樹脂に到達する前に水素イオンと反応して水となってしまう可能性があり、その結果、この陰イオン交換樹脂の十分な再生が行われなくなる可能性がある。同様の理由により、バイポーラ膜11の陰イオン交換膜15の近くに存在する陽イオン交換樹脂についても十分な再生が行われなくなる可能性がある。その結果、陽イオン交換樹脂と陰イオン交換樹脂とが混ざり合って存在する場合には、脱塩処理と再生処理とのサイクルを繰り返した場合に、脱塩性能が低下することが懸念される。 Here, let us consider a case where a granular cation exchange resin and a granular anion exchange resin are mixed together in the space between adjacent bipolar membranes 11 as in the desalting apparatus shown in FIG. In this case, the anion exchange resin existing near the cation exchange membrane 14 of the bipolar membrane 11 should be regenerated by the hydroxide ions released from the anion exchange membrane 15 of the bipolar membrane 11. Since there are hydrogen ions released from the cation exchange membrane 14 around the anion exchange resin, the hydroxide ions to be regenerated from the anion exchange resin are hydrogen ions before reaching the anion exchange resin. May be converted to water, and as a result, the anion exchange resin may not be sufficiently regenerated. For the same reason, there is a possibility that the cation exchange resin existing near the anion exchange membrane 15 of the bipolar membrane 11 is not sufficiently regenerated. As a result, when the cation exchange resin and the anion exchange resin are mixed and present, there is a concern that the desalting performance is lowered when the cycle of the desalting treatment and the regeneration treatment is repeated.
 これに対し、陽イオン交換樹脂と陰イオン交換樹脂とが相互に混ざり合わないように、バイポーラ膜11の陽イオン交換膜14に接して陽イオン交換樹脂層17を設け、陰イオン交換膜15に接して陰イオン交換樹脂層18を設けた場合には、陽イオン交換膜14側から移動する水素イオンによる陽イオン交換樹脂層17の再生と、陰イオン交換膜15側から移動する水酸化物イオンによる陰イオン交換樹脂層18の再生とを効率よく行うことが可能になる。なお、本実施形態の脱塩装置では、陽イオン交換樹脂層17及び陰イオン交換樹脂層18とを合わせた領域内に、少なくとも弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂の一方が含まれるが、弱酸性陽イオン交換樹脂や弱塩基性陰イオン交換樹脂は強酸性陽イオン交換樹脂や強塩基性陰イオン交換樹脂に比べて再生効率が高いので、この脱塩装置は、その点でも省電力での再生処理を可能とする。 On the other hand, a cation exchange resin layer 17 is provided in contact with the cation exchange membrane 14 of the bipolar membrane 11 so that the cation exchange resin and the anion exchange resin do not mix with each other. When the anion exchange resin layer 18 is provided in contact, the regeneration of the cation exchange resin layer 17 by hydrogen ions moving from the cation exchange membrane 14 side and the hydroxide ions moving from the anion exchange membrane 15 side are performed. Thus, the anion exchange resin layer 18 can be efficiently regenerated. In the desalination apparatus of this embodiment, at least one of the weakly acidic cation exchange resin and the weakly basic anion exchange resin is in the region where the cation exchange resin layer 17 and the anion exchange resin layer 18 are combined. Although it is included, the weakly acidic cation exchange resin and weakly basic anion exchange resin have higher regeneration efficiency than the strongly acidic cation exchange resin and strong basic anion exchange resin. However, it enables playback processing with low power consumption.
 このように図2に示した脱塩装置では、電極12,13に印加される直流電圧の極性を切り替えることで、バイポーラ膜11、陽イオン交換樹脂層17及び陰イオン交換樹脂層18による脱塩処理と、これらの再生処理とを多数回にわたって繰り返し行うことができる。 As described above, in the desalting apparatus shown in FIG. 2, desalting by the bipolar membrane 11, the cation exchange resin layer 17, and the anion exchange resin layer 18 is performed by switching the polarity of the DC voltage applied to the electrodes 12 and 13. The process and these reproduction processes can be repeated many times.
 以下、本発明を実施例に基づき詳細に説明する。ただし本発明は、下記の実施例により限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
 [実施例1]
 図1に示す脱塩装置を組み立てた。バイポーラ膜11として、弱酸性陽イオン交換膜と強塩基性陰イオン交換膜とを張り合わせたものを使用した。弱酸性陽イオン交換膜におけるイオン交換容量(陽イオン交換容量)は2.2meq/g-バイポーラ膜であり、強塩基性陰イオン交換膜におけるイオン交換容量(陰イオン交換容量)は0.8meq/g-バイポーラ膜)であった。イオン交換樹脂層16を構成する陽イオン交換樹脂及び陰イオン交換樹脂として、弱酸性陽イオン交換樹脂(アンバーライト(登録商標)IRC76、ダウ・ケミカル社製)及び弱塩基性陰イオン交換樹脂(アンバーライト(登録商標)IRA96、ダウ・ケミカル社製)をそれぞれ使用した。
[Example 1]
The desalination apparatus shown in FIG. 1 was assembled. The bipolar membrane 11 used was a laminate of a weakly acidic cation exchange membrane and a strongly basic anion exchange membrane. The ion exchange capacity (cation exchange capacity) of the weakly acidic cation exchange membrane is 2.2 meq / g-bipolar membrane, and the ion exchange capacity (anion exchange capacity) of the strongly basic anion exchange membrane is 0.8 meq / g. g-bipolar membrane). As the cation exchange resin and anion exchange resin constituting the ion exchange resin layer 16, a weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and a weakly basic anion exchange resin (Amber) are used. Light (registered trademark) IRA96, manufactured by Dow Chemical Co., Ltd. was used.
 内容積が40×50×20mmの容器内に、40×50×1mmの白金イリジウム被覆チタン電極を2枚配置し、この電極間に40×50mmの大きさにカットしたバイポーラ膜を4枚、電極とバイポーラ膜との間隔、バイポーラ膜相互の間隔が均等になるように配置した。そして、弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂とを体積比で1対3の割合で混合し、相互に均等に分散するようにして、このようなイオン交換樹脂を電極とバイポーラ膜との間、及びバイポーラ膜相互間に充填した。被処理水として硬度を250mg-CaCO3/Lに調整した水を使用し、通水速度40ml/minで被処理水を通水して脱塩処理を行った。脱塩処理時に電極に印加される電圧及び電流の最大値をそれぞれ、200V、0.5Aとし、脱塩処理後の処理水の硬度を時間変化を調べた。結果を図3に示す。 Two 40 × 50 × 1 mm platinum iridium-coated titanium electrodes are placed in a container with an internal volume of 40 × 50 × 20 mm, and four bipolar membranes cut into a size of 40 × 50 mm are provided between the electrodes. And the bipolar film are arranged so that the distance between the bipolar films and the distance between the bipolar films are equal. Then, the weakly acidic cation exchange resin and the weakly basic anion exchange resin are mixed at a volume ratio of 1: 3, and the ion exchange resin is mixed with the electrode and the bipolar so that they are uniformly dispersed. Packed between membranes and between bipolar membranes. Water having a hardness adjusted to 250 mg-CaCO 3 / L was used as the water to be treated, and the desalting treatment was performed by passing the water to be treated at a water flow rate of 40 ml / min. The maximum values of the voltage and current applied to the electrode during the desalting treatment were 200 V and 0.5 A, respectively, and the hardness of the treated water after the desalting treatment was examined over time. The results are shown in FIG.
 図3に示すように、実施例3の装置では、脱塩処理を150分間継続した後も処理水硬度は30mg-CaCO3/Lであり、約90%の脱塩が可能であった。 As shown in FIG. 3, in the apparatus of Example 3, the treated water hardness was 30 mg-CaCO 3 / L even after the desalting treatment was continued for 150 minutes, and about 90% desalting was possible.
 [比較例1]
 脱塩処理時に電極に直流電圧を印加しないほかは実施例1と同じ条件で脱塩処理を行い、処理水硬度の時間変化を調べた。結果を図3に示す。電圧を印加しなかった場合には、30分後には処理水硬度が100mg-CaCO3/Lを超えており、十分な脱塩を行えなかった。
[Comparative Example 1]
The desalting treatment was performed under the same conditions as in Example 1 except that no DC voltage was applied to the electrode during the desalting treatment, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. When no voltage was applied, the treated water hardness exceeded 100 mg-CaCO 3 / L after 30 minutes, and sufficient desalting could not be performed.
 [実施例2]
 図1に示す脱塩装置を組み立てた。容器の寸法、電極の構成及び寸法、バイポーラ膜の構成及び配置は実施例1と同じにした。イオン交換樹脂層16を構成する陽イオン交換樹脂及び陰イオン交換樹脂として、弱酸性陽イオン交換樹脂(アンバーライト(登録商標)IRC76、ダウ・ケミカル社製)及び強塩基性陰イオン交換樹脂(アンバージェット(登録商標)4002(OH)、ダウ・ケミカル社製)を使用し、弱酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂とを体積比で1対3の割合で混合し、相互に均等に分散するようにして、このようなイオン交換樹脂を電極とバイポーラ膜との間、及びバイポーラ膜相互間に充填した。実施例1と同じ処理条件で脱塩処理を行い、処理水の硬度の時間変化を調べた。結果を図4に示す。
[Example 2]
The desalination apparatus shown in FIG. 1 was assembled. The dimensions of the container, the configuration and dimensions of the electrodes, and the configuration and arrangement of the bipolar membrane were the same as in Example 1. As the cation exchange resin and anion exchange resin constituting the ion exchange resin layer 16, a weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and a strongly basic anion exchange resin (Amber) Jet (registered trademark) 4002 (OH), manufactured by Dow Chemical Co., Ltd.), a weakly acidic cation exchange resin and a strongly basic anion exchange resin are mixed at a volume ratio of 1: 3, Such an ion exchange resin was filled between the electrode and the bipolar membrane and between the bipolar membranes so as to be evenly dispersed. Desalination treatment was performed under the same treatment conditions as in Example 1, and the change over time in the hardness of the treated water was examined. The results are shown in FIG.
 図4に示すように、実施例2の装置では、脱塩処理を150分間継続した後も処理水硬度は30mg-CaCO3/Lであり、約90%の脱塩が可能であった。 As shown in FIG. 4, in the apparatus of Example 2, the treated water hardness was 30 mg-CaCO 3 / L even after the desalting treatment was continued for 150 minutes, and about 90% desalting was possible.
 [比較例2]
 脱塩処理時に電極に直流電圧を印加しないほかは実施例2と同じ条件で脱塩処理を行い、処理水硬度の時間変化を調べた。結果を図4に示す。電圧を印加しなかった場合には、100分後には処理水硬度が90mg-CaCO3/Lを超えており、十分な脱塩を行えなかった。
[Comparative Example 2]
A desalting treatment was performed under the same conditions as in Example 2 except that no DC voltage was applied to the electrode during the desalting treatment, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. When no voltage was applied, the treated water hardness exceeded 90 mg-CaCO 3 / L after 100 minutes, and sufficient desalting could not be performed.
 [実施例3]
 図5に示す脱塩装置を組み立てた。この脱塩装置は、実施例1での脱塩装置と同様のものであるが、弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂とを均一に混合したイオン交換樹脂層を設ける代わりに、弱酸性陽イオン交換樹脂からなる陽イオン交換樹脂層17と弱塩基性陰イオン交換樹脂からなる陰イオン交換樹脂層18とを別個に設けている点で、実施例1のものと相違する。具体的に説明すれば、容器の寸法、電極の構成及び寸法、バイポーラ膜の構成及び配置は実施例1と同じであり、電極とバイポーラ膜との間の空間には陽イオン交換樹脂層16が設けられ、バイポーラ膜相互間の空間には、空間ごとに、陰イオン交換樹脂層17と陽イオン交換樹脂層16のいずれかが設けられている。全体としてみると、陽イオン交換樹脂層16と陰イオン交換樹脂層17とがバイポーラ膜11を挟んで交互に配置されている。弱酸性陽イオン交換樹脂及び弱塩基性陰イオン交換樹脂として、弱酸性陽イオン交換樹脂(アンバーライト(登録商標)IRC76、ダウ・ケミカル社製)及び弱塩基性陰イオン交換樹脂(アンバーライト(登録商標)IRA96、ダウ・ケミカル社製)をそれぞれ使用した。
[Example 3]
The desalination apparatus shown in FIG. 5 was assembled. This desalting apparatus is the same as the desalting apparatus in Example 1, but instead of providing an ion exchange resin layer in which a weakly acidic cation exchange resin and a weakly basic anion exchange resin are uniformly mixed. The second embodiment is different from the first embodiment in that a cation exchange resin layer 17 made of weakly acidic cation exchange resin and an anion exchange resin layer 18 made of weakly basic anion exchange resin are separately provided. More specifically, the dimensions of the container, the configuration and dimensions of the electrode, and the configuration and arrangement of the bipolar membrane are the same as those in Example 1, and the cation exchange resin layer 16 is formed in the space between the electrode and the bipolar membrane. In the space between the bipolar membranes, either the anion exchange resin layer 17 or the cation exchange resin layer 16 is provided for each space. As a whole, the cation exchange resin layer 16 and the anion exchange resin layer 17 are alternately arranged with the bipolar membrane 11 interposed therebetween. As weakly acidic cation exchange resin and weakly basic anion exchange resin, weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) and weakly basic anion exchange resin (Amberlite (registered)) (Trademark) IRA96, manufactured by Dow Chemical Co., Ltd.).
 実施例1と同じ処理条件で脱塩処理を行い、処理水の硬度の時間変化を調べた。結果を図6に示す。図6に示されるように実施例3では20分後には処理水硬度が50mg-CaCO3/Lを超えており、弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂とを均一に混合した方が脱塩性能が高いことが確認された。 Desalination treatment was performed under the same treatment conditions as in Example 1, and the change over time in the hardness of the treated water was examined. The results are shown in FIG. As shown in FIG. 6, in Example 3, the treated water hardness exceeded 50 mg-CaCO 3 / L after 20 minutes, and the weakly acidic cation exchange resin and the weakly basic anion exchange resin were uniformly mixed. It was confirmed that the desalting performance was higher.
 [実施例4]
 実施例1の脱塩装置を使用し、20分間の脱塩処理と20分間の再生処理とを組み合わせて1サイクルとし、このようなサイクルを繰り返し行ったときの処理水の硬度の変化を調べた。被処理水として、硬度を250mg-CaCO3/Lに調整した水を使用し、これを通水速度40ml/minで通水して脱塩処理を行った。脱塩処理時及び再生処理時に電極に印加される電圧及び電流の最大値をそれぞれ、200V、0.5Aとした。10サイクルごとに脱塩開始から15分後の処理水を採取して硬度を測定した。結果を図7に示す。
[Example 4]
Using the desalination apparatus of Example 1, 20 minutes of desalination treatment and 20 minutes of regeneration treatment were combined to form one cycle, and the change in the hardness of the treated water when such a cycle was repeated was examined. . As water to be treated, water having a hardness adjusted to 250 mg-CaCO 3 / L was used, and water was passed through at a water flow rate of 40 ml / min for desalting treatment. The maximum values of the voltage and current applied to the electrodes during the desalting treatment and the regeneration treatment were 200 V and 0.5 A, respectively. The treated water 15 minutes after the start of desalting was collected every 10 cycles, and the hardness was measured. The results are shown in FIG.
 [実施例5]
 イオン交換樹脂層16に含まれる陽イオン交換樹脂として、強酸性陽イオン交換樹脂(アンバーライト(登録商標)252、ダウ・ケミカル社製)を用いる以外は実施例4と同条件とし、脱塩処理と再生処理とのサイクルを繰り返し行ったときに処理水の硬度の変化を調べた。結果を図7に示す。
[Example 5]
Desalination treatment was performed under the same conditions as in Example 4 except that a strongly acidic cation exchange resin (Amberlite (registered trademark) 252 manufactured by Dow Chemical Company) was used as the cation exchange resin contained in the ion exchange resin layer 16. The change in the hardness of the treated water was examined when the cycle of the regeneration treatment was repeated. The results are shown in FIG.
 図7から、イオン交換樹脂層16に含まれる陽イオン交換樹脂として、強酸性陽イオン交換樹脂よりも弱酸性陽イオン交換樹脂を用いた方が、脱塩処理及び再生処理の繰り返しにおいて処理水硬度が低くなり、安定して脱塩が行われていることが確認できた。 From FIG. 7, the treatment water hardness in the repetition of the desalting treatment and the regeneration treatment is more when the weak acid cation exchange resin is used as the cation exchange resin contained in the ion exchange resin layer 16 than the strong acid cation exchange resin. It was confirmed that the desalting was performed stably.
 [実施例6]
 図2に示す脱塩装置を組み立てた。バイポーラ膜11として、弱酸性陽イオン交換膜と強塩基性陰イオン交換膜とを張り合わせたものを使用した。弱酸性陽イオン交換膜におけるイオン交換容量(陽イオン交換容量)は、2.2meq/g-バイポーラ膜であり、と強塩基性陰イオン交換膜におけるイオン交換容量(陰イオン交換容量は0.8meq/g-バイポーラ膜であった。陽イオン交換樹脂層17を構成する陽イオン交換樹脂として弱酸性陽イオン交換樹脂(アンバーライト(登録商標)IRC76、ダウ・ケミカル社製)を使用し、陰イオン交換樹脂層18を構成する陰イオン交換樹脂として、弱塩基性陰イオン交換樹脂(アンバーライト(登録商標)IRA96、ダウ・ケミカル社製)を使用した。
[Example 6]
The desalination apparatus shown in FIG. 2 was assembled. The bipolar membrane 11 used was a laminate of a weakly acidic cation exchange membrane and a strongly basic anion exchange membrane. The ion exchange capacity (cation exchange capacity) in the weakly acidic cation exchange membrane is 2.2 meq / g-bipolar membrane, and the ion exchange capacity in the strongly basic anion exchange membrane (anion exchange capacity is 0.8 meq). / G-bipolar membrane A weakly acidic cation exchange resin (Amberlite (registered trademark) IRC76, manufactured by Dow Chemical Company) was used as the cation exchange resin constituting the cation exchange resin layer 17. As the anion exchange resin constituting the exchange resin layer 18, a weakly basic anion exchange resin (Amberlite (registered trademark) IRA96, manufactured by Dow Chemical Co., Ltd.) was used.
 内容積が40×50×20mmの容器内に、40×50×1mmの白金イリジウム被覆チタン電極を2枚配置し、この電極間に40×50mmの大きさにカットしたバイポーラ膜を4枚、電極とバイポーラ膜との間隔、バイポーラ膜相互の間隔が均等になるように配置し、これらの間隔内に陽イオン交換樹脂層17と陰イオン交換樹脂層18とが設けられるようにした。実際には、一方の電極を配置した上で、陽イオン交換樹脂層17と陰イオン交換樹脂層18とをこの順で配置し、その上に、陰イオン交換膜側が下になるようにして1枚のバイポーラ膜を載置し、このバイポーラ膜上すなわちバイポーラ膜の陽イオン交換膜上に再び陽イオン交換樹脂層17と陰イオン交換樹脂層18とをこの順で配置し、さらにバイポーラ膜を載置することを繰り返し、最後に他方の電極を配置して脱塩モジュールを完成させた。陽イオン交換樹脂層17を構成する陽イオン交換樹脂の量と陰イオン交換樹脂層18を構成する陰イオン交換樹脂の量は、体積比で1対1とした。 Two 40 × 50 × 1 mm platinum iridium-coated titanium electrodes are placed in a container with an internal volume of 40 × 50 × 20 mm, and four bipolar membranes cut into a size of 40 × 50 mm are provided between the electrodes. The cation exchange resin layer 17 and the anion exchange resin layer 18 are provided within the gaps so that the gap between the bipolar membranes and the gap between the bipolar membranes are equal. Actually, after placing one of the electrodes, the cation exchange resin layer 17 and the anion exchange resin layer 18 are arranged in this order, and the anion exchange membrane side is on top of the cation exchange resin layer 17 and the anion exchange resin layer 18. Two bipolar membranes are placed, and the cation exchange resin layer 17 and the anion exchange resin layer 18 are again arranged in this order on the bipolar membrane, that is, the cation exchange membrane of the bipolar membrane, and further the bipolar membrane is placed. The desalin module was completed by placing the other electrode at the end. The amount of the cation exchange resin constituting the cation exchange resin layer 17 and the amount of the anion exchange resin constituting the anion exchange resin layer 18 were set to 1: 1.
 脱塩処理時の被処理水及び再生処理に使う水として硬度を250mg-CaCO3/Lに調整した水を使用し、通水速度40ml/minで通水した。脱塩処理時及び再生処理時に電極に印加される電圧及び電流の最大値をそれぞれ、200V、0.5Aとした。この条件で5分間脱塩処理を行い、引き続いて5分間再生処理を行うことを1サイクルとし、このサイクルを100サイクル繰り返した。1サイクル目、20サイクル目及び100サイクル目での脱塩処理後の処理水の硬度を測定し、測定された処理水の硬度を被処理水の硬度で除算したものを100%から減ずることによって、脱塩率を計算した。結果を表1に示す。 Water whose hardness was adjusted to 250 mg-CaCO 3 / L was used as water to be treated at the time of desalting treatment and water to be used for regeneration treatment, and water was passed at a flow rate of 40 ml / min. The maximum values of the voltage and current applied to the electrodes during the desalting treatment and the regeneration treatment were 200 V and 0.5 A, respectively. A desalting treatment was performed for 5 minutes under these conditions, followed by a regeneration treatment for 5 minutes as one cycle, and this cycle was repeated 100 cycles. By measuring the hardness of the treated water after the desalting treatment in the first cycle, the 20th cycle and the 100th cycle, and dividing the measured treated water hardness by the treated water hardness from 100% The desalting rate was calculated. The results are shown in Table 1.
 [実施例7]
 実施例6で用いたものと同様の脱塩モジュールであるが、陽イオン交換樹脂層及び陰イオン交換樹脂層を設けず、その代わり、電極とバイポーラ膜との間、及びバイポーラ膜相互間に、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを一様に混合したものを充填した。陽イオン交換樹脂と陰イオン交換樹脂としては、実施例6で用いたものと同じものを使用し、それらの混合比は体積比で1対1とした。
[Example 7]
Desalination module similar to that used in Example 6, but without the cation exchange resin layer and anion exchange resin layer, instead, between the electrode and the bipolar membrane, and between the bipolar membranes, A uniform mixture of a granular cation exchange resin and a granular anion exchange resin was filled. As the cation exchange resin and the anion exchange resin, the same ones as used in Example 6 were used, and the mixing ratio thereof was 1: 1.
 実施例6と同じ条件で脱塩処理と再生処理とのサイクルを100サイクル繰り返し、1サイクル目、20サイクル目及び100サイクル目での脱塩処理後の処理水の硬度を測定し、実施例6と同様の計算によって脱塩率を計算した。結果を表1に示す。 The cycle of the desalting treatment and the regeneration treatment was repeated 100 cycles under the same conditions as in Example 6, and the hardness of the treated water after the desalting treatment in the first cycle, the 20th cycle and the 100th cycle was measured. The desalting rate was calculated by the same calculation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例6と実施例7とを比較すると、脱塩処理と再生処理とのサイクルを繰り返した場合に実施例7の方が脱塩率が高かった。サイクルが進行しても脱塩率が高いことは、当該サイクルの脱塩処理を開始する直前の状態でバイポーラ膜と、バイポーラ膜間に配置されている陽イオン交換樹脂及び陰イオン交換樹脂との再生が十分に行われていることを示ししている。このことから、バイポーラ膜の陽イオン交換膜に接するように通水性の陽イオン交換樹脂層を設け、バイポーラ膜の陰イオン交換膜に接するように通水性の陰イオン交換樹脂層を設け、陽イオン交換樹脂層と陰イオン交換樹脂層とが相互に接するようにした実施例7の方が、バイポーラ膜の相互間の空間を陽イオン交換樹脂と陰イオン交換樹脂とを混床で充填した実施例7に比べ、再生処理における再生効率が高かったことが分かる。 When comparing Example 6 and Example 7, when the cycle of desalting treatment and regeneration treatment was repeated, the desalting rate of Example 7 was higher. The desalination rate is high even when the cycle progresses. The fact that the desalination treatment of the cycle immediately before the start of the cycle is performed between the bipolar membrane and the cation exchange resin and the anion exchange resin disposed between the bipolar membranes. It shows that the reproduction is performed sufficiently. Therefore, a water-permeable cation exchange resin layer is provided so as to be in contact with the cation exchange membrane of the bipolar membrane, and a water-permeable anion exchange resin layer is provided so as to be in contact with the anion exchange membrane of the bipolar membrane. Example 7 in which the exchange resin layer and the anion exchange resin layer are in contact with each other is an example in which the space between the bipolar membranes is filled with a cation exchange resin and an anion exchange resin in a mixed bed It can be seen that the reproduction efficiency in the reproduction process was higher than that in FIG.
 10  脱塩モジュール
 11  バイポーラ膜
 12,13  電極
 14  陽イオン交換膜
 15  陰イオン交換膜
 16  イオン交換樹脂層
 17  陽イオン交換樹脂層
 18  陰イオン交換樹脂層
 21  直流電源
 22  切替スイッチ
 23,24  配管
DESCRIPTION OF SYMBOLS 10 Desalination module 11 Bipolar membrane 12, 13 Electrode 14 Cation exchange membrane 15 Anion exchange membrane 16 Ion exchange resin layer 17 Cation exchange resin layer 18 Anion exchange resin layer 21 DC power supply 22 Changeover switch 23, 24 Piping

Claims (17)

  1.  印加する直流電圧の極性反転が可能な一対の電極と、前記一対の電極によって電圧が印加される空間内に配置されたバイポーラ膜と、を備え、被処理水に対する脱塩処理を行う脱塩装置において、
     陽イオン交換体及び陰イオン交換体が配置されたイオン交換領域を前記空間内に有し、
     前記陽イオン交換体及び前記陰イオン交換体は、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかの組み合わせであり、
     前記バイポーラ膜における陽イオン交換膜に面する電極が陽極となり前記バイポーラ膜における陰イオン交換膜に面する電極が陰極となるように前記一対の電極間に電圧を印加しながら前記被処理水を前記空間に通水して脱塩処理が行なわれ、
     前記陽イオン交換膜に面する電極が陰極となり、前記陰イオン交換膜に面する電極が陽極となるように前記一対の電極間に電圧を印加することによって前記バイポーラ膜、前記陽イオン交換体及び前記陰イオン交換体の再生処理が行われることを特徴とする、脱塩装置。
    A desalting apparatus comprising a pair of electrodes capable of reversing the polarity of a DC voltage to be applied, and a bipolar membrane disposed in a space to which a voltage is applied by the pair of electrodes, and performing a desalting treatment on water to be treated In
    An ion exchange region in which the cation exchanger and the anion exchanger are arranged in the space;
    The cation exchanger and the anion exchanger are a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, and A combination of a strong acid cation exchanger and a weakly basic anion exchanger,
    The water to be treated is applied while applying a voltage between the pair of electrodes so that the electrode facing the cation exchange membrane in the bipolar membrane serves as an anode and the electrode facing the anion exchange membrane in the bipolar membrane serves as a cathode. Desalination treatment is performed by passing water through the space,
    By applying a voltage between the pair of electrodes so that the electrode facing the cation exchange membrane becomes a cathode and the electrode facing the anion exchange membrane becomes an anode, the bipolar membrane, the cation exchanger, and A desalting apparatus, wherein the anion exchanger is regenerated.
  2.  前記イオン交換領域は、前記陽イオン交換体と前記陰イオン交換体とが混合して配置された領域である、請求項1に記載の脱塩装置。 The deionization apparatus according to claim 1, wherein the ion exchange region is a region where the cation exchanger and the anion exchanger are mixed and arranged.
  3.  前記イオン交換領域は、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを混床のものとした領域である、請求項2に記載の脱塩装置。 The deionization apparatus according to claim 2, wherein the ion exchange region is a region in which a granular cation exchange resin and a granular anion exchange resin are mixed.
  4.  前記一対の電極間に印加される直流電圧を発生する電源と、前記一対の電極の極性を反転させる切替スイッチと、をさらに備える請求項1乃至3のいずれか1項に記載の脱塩装置。 The desalination apparatus according to any one of claims 1 to 3, further comprising: a power source that generates a DC voltage applied between the pair of electrodes; and a changeover switch that reverses the polarity of the pair of electrodes.
  5.  前記脱塩処理時に前記一対の電極間に印加される電圧は、水の理論分解電圧以上の電圧である、請求項1乃至3のいずれか1項に記載の脱塩装置。 The desalting apparatus according to any one of claims 1 to 3, wherein a voltage applied between the pair of electrodes during the desalting treatment is a voltage equal to or higher than a theoretical decomposition voltage of water.
  6.  前記イオン交換領域は、前記バイポーラ膜における陽イオン交換膜に接して設けられて陽イオン交換体を有する通水性の陽イオン交換領域と、前記バイポーラ膜における陰イオン交換膜に接して設けられて陰イオン交換体を有する通水性の陰イオン交換領域と、からなり、
     前記空間内で前記陽イオン交換領域と前記陰イオン交換領域とが相互に接するか対面するように配置されている、請求項1に記載の脱塩装置。
    The ion exchange region is provided in contact with the cation exchange membrane in the bipolar membrane and has a water-permeable cation exchange region having a cation exchanger, and is provided in contact with the anion exchange membrane in the bipolar membrane. A water-permeable anion exchange region having an ion exchanger,
    The desalination apparatus according to claim 1, wherein the cation exchange region and the anion exchange region are disposed so as to contact or face each other in the space.
  7.  前記空間内において、前記バイポーラ膜における陽イオン交換膜に面する電極に接して前記陰イオン交換領域が配置され、前記バイポーラ膜における陰イオン交換膜に面する電極に接して前記陽イオン交換領域が配置されている、請求項6に記載の脱塩装置。 In the space, the anion exchange region is disposed in contact with the electrode facing the cation exchange membrane in the bipolar membrane, and the cation exchange region in contact with the electrode facing the anion exchange membrane in the bipolar membrane. The desalination apparatus according to claim 6, which is arranged.
  8.  前記陽イオン交換領域は、粒状の陽イオン交換樹脂の層からなり、前記陰イオン交換領域は、粒状の陰イオン交換樹脂の層からなる、請求項6または7に記載の脱塩装置。 The desalination apparatus according to claim 6 or 7, wherein the cation exchange region is composed of a granular cation exchange resin layer, and the anion exchange region is composed of a granular anion exchange resin layer.
  9.  前記一対の電極間に印加される直流電圧を発生する電源と、前記一対の電極の極性を反転させる切替スイッチと、をさらに備える請求項6または7に記載の脱塩装置。 The desalination apparatus according to claim 6 or 7, further comprising: a power source that generates a DC voltage applied between the pair of electrodes; and a changeover switch that reverses the polarity of the pair of electrodes.
  10.  前記脱塩処理時に前記一対の電極間に印加される電圧は、水の理論分解電圧以上の電圧である、請求項6または7に記載の脱塩装置。 The desalting apparatus according to claim 6 or 7, wherein a voltage applied between the pair of electrodes during the desalting treatment is a voltage equal to or higher than a theoretical decomposition voltage of water.
  11.  被処理水の脱塩方法において、
     陽イオン交換体及び陰イオン交換体が配置された領域であるイオン交換領域とバイポーラ膜とが配置された空間に対して被処理水を通水しながら、前記バイポーラ膜における陽イオン交換膜に面する電極が陽極となり、前記バイポーラ膜における陰イオン交換膜に面する電極が陰極となるように一対の電極間に電圧を印加することにより前記空間に電圧を印加する脱塩処理と、
     前記陽イオン交換膜に面する電極が陰極となり、前記陰イオン交換膜に面する電極が陽極となるように前記一対の電極間に電圧を印加することによって前記空間に印加される電圧の極性を反転させ、前記バイポーラ膜、前記陽イオン交換体及び前記陰イオン交換体を再生する再生処理と、
     を交互に実施し、
     前記陽イオン交換体及び前記陰イオン交換体は、弱酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせ、弱酸性陽イオン交換体と強塩基性陰イオン交換体との組み合わせ、及び強酸性陽イオン交換体と弱塩基性陰イオン交換体との組み合わせのいずれかの組み合わせであることを特徴とする、脱塩方法。
    In the desalting method of treated water,
    A surface of the cation exchange membrane in the bipolar membrane is passed through the treated water through the space in which the ion exchange region and the bipolar membrane are arranged, where the cation exchanger and the anion exchanger are arranged. A desalting treatment in which a voltage is applied to the space by applying a voltage between the pair of electrodes such that the electrode to be an anode and the electrode facing the anion exchange membrane in the bipolar membrane is a cathode;
    By applying a voltage between the pair of electrodes so that the electrode facing the cation exchange membrane becomes a cathode and the electrode facing the anion exchange membrane becomes an anode, the polarity of the voltage applied to the space is changed. Reversing and regenerating the bipolar membrane, the cation exchanger and the anion exchanger;
    Alternately
    The cation exchanger and the anion exchanger are a combination of a weakly acidic cation exchanger and a weakly basic anion exchanger, a combination of a weakly acidic cation exchanger and a strongly basic anion exchanger, and A desalting method, which is a combination of any combination of a strongly acidic cation exchanger and a weakly basic anion exchanger.
  12.  前記イオン交換領域は、前記陽イオン交換体と前記陰イオン交換体とが混合して配置された領域である、請求項11に記載の脱塩方法。 The deionization method according to claim 11, wherein the ion exchange region is a region where the cation exchanger and the anion exchanger are mixed and arranged.
  13.  前記イオン交換領域は、粒状の陽イオン交換樹脂と粒状の陰イオン交換樹脂とを混床のものとした領域である、請求項12に記載の脱塩方法。 The deionization method according to claim 12, wherein the ion exchange region is a region in which a granular cation exchange resin and a granular anion exchange resin are mixed.
  14.  前記脱塩処理時に前記一対の電極間に印加される電圧は、水の理論分解電圧以上の電圧である、請求項11乃至13のいずれか1項に記載の脱塩方法。 The desalting method according to any one of claims 11 to 13, wherein a voltage applied between the pair of electrodes during the desalting treatment is a voltage equal to or higher than a theoretical decomposition voltage of water.
  15.  前記イオン交換領域は、前記バイポーラ膜における陽イオン交換膜に接して設けられて陽イオン交換体を有する通水性の陽イオン交換領域と、前記バイポーラ膜における陰イオン交換膜に接して設けられて陰イオン交換体を有する通水性の陰イオン交換領域と、を備え、前記陽イオン交換領域と前記陰イオン交換領域とは前記空間内で相互に接するか対面するように配置されている、請求項11に記載の脱塩方法。 The ion exchange region is provided in contact with the cation exchange membrane in the bipolar membrane and has a water-permeable cation exchange region having a cation exchanger, and is provided in contact with the anion exchange membrane in the bipolar membrane. A water-permeable anion exchange region having an ion exchanger, wherein the cation exchange region and the anion exchange region are arranged so as to contact or face each other in the space. A desalting method according to 1.
  16.  前記空間内において、前記バイポーラ膜における陽イオン交換膜に面する電極に接して前記陰イオン交換領域が配置され、前記バイポーラ膜における陰イオン交換膜に面する電極に接して前記陽イオン交換領域が配置されている、請求項15に記載の脱塩方法。 In the space, the anion exchange region is disposed in contact with the electrode facing the cation exchange membrane in the bipolar membrane, and the cation exchange region in contact with the electrode facing the anion exchange membrane in the bipolar membrane. The desalting method according to claim 15, which is arranged.
  17.  前記脱塩処理時に前記一対の電極間に印加される電圧は、水の理論分解電圧以上の電圧である、請求項15または16に記載の脱塩方法。 The desalting method according to claim 15 or 16, wherein a voltage applied between the pair of electrodes during the desalting treatment is a voltage equal to or higher than a theoretical decomposition voltage of water.
PCT/JP2014/054157 2013-03-01 2014-02-21 Desalination method and desalination apparatus WO2014132888A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-040688 2013-03-01
JP2013040688A JP6042234B2 (en) 2013-03-01 2013-03-01 Desalination method and desalting apparatus
JP2013-211810 2013-10-09
JP2013211810A JP6163078B2 (en) 2013-10-09 2013-10-09 Desalination method and desalting apparatus

Publications (1)

Publication Number Publication Date
WO2014132888A1 true WO2014132888A1 (en) 2014-09-04

Family

ID=51428158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054157 WO2014132888A1 (en) 2013-03-01 2014-02-21 Desalination method and desalination apparatus

Country Status (1)

Country Link
WO (1) WO2014132888A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152419A (en) * 2015-08-28 2015-12-16 浙江奇彩环境科技有限公司 Method for treating high-concentration organic wastewater with acid or alkali and application of method
TWI622428B (en) * 2017-03-31 2018-05-01 財團法人工業技術研究院 Electrodialysis module and electrodialysis system
CN111233091A (en) * 2020-03-16 2020-06-05 佛山市云米电器科技有限公司 Forming ion exchange unit type water filtering and purifying system and water purifier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JPH07316865A (en) * 1994-05-25 1995-12-05 Arefu:Kk Electrolytic method and electrolytic cell
JPH11319838A (en) * 1998-05-07 1999-11-24 Kurita Water Ind Ltd Apparatus and method for electrolytic capacitor type desalting
JP2001340863A (en) * 2000-06-01 2001-12-11 Matsushita Electric Ind Co Ltd Bathtub water circulating and softening apparatus and bathtub water circulating soft water bath
JP2006043549A (en) * 2004-08-03 2006-02-16 Hitachi Maxell Ltd Pure water making apparatus and soft water making apparatus
JP2010194026A (en) * 2009-02-24 2010-09-09 Panasonic Corp Washing machine
US20110042214A1 (en) * 2006-10-18 2011-02-24 Rath David F Electroregeneration apparatus and water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JPH07316865A (en) * 1994-05-25 1995-12-05 Arefu:Kk Electrolytic method and electrolytic cell
JPH11319838A (en) * 1998-05-07 1999-11-24 Kurita Water Ind Ltd Apparatus and method for electrolytic capacitor type desalting
JP2001340863A (en) * 2000-06-01 2001-12-11 Matsushita Electric Ind Co Ltd Bathtub water circulating and softening apparatus and bathtub water circulating soft water bath
JP2006043549A (en) * 2004-08-03 2006-02-16 Hitachi Maxell Ltd Pure water making apparatus and soft water making apparatus
US20110042214A1 (en) * 2006-10-18 2011-02-24 Rath David F Electroregeneration apparatus and water treatment method
JP2010194026A (en) * 2009-02-24 2010-09-09 Panasonic Corp Washing machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152419A (en) * 2015-08-28 2015-12-16 浙江奇彩环境科技有限公司 Method for treating high-concentration organic wastewater with acid or alkali and application of method
TWI622428B (en) * 2017-03-31 2018-05-01 財團法人工業技術研究院 Electrodialysis module and electrodialysis system
CN108654389A (en) * 2017-03-31 2018-10-16 财团法人工业技术研究院 Electrodialysis module and electrodialysis system
US10688438B2 (en) 2017-03-31 2020-06-23 Industrial Technology Research Institute Electrodialysis module and electrodialysis system
CN108654389B (en) * 2017-03-31 2021-06-29 财团法人工业技术研究院 Electrodialysis module and electrodialysis system
CN111233091A (en) * 2020-03-16 2020-06-05 佛山市云米电器科技有限公司 Forming ion exchange unit type water filtering and purifying system and water purifier

Similar Documents

Publication Publication Date Title
EP0946301B1 (en) Electrodeionization apparatus and method
JP6001400B2 (en) Desalination method and desalting apparatus
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP4855068B2 (en) Electric deionized water production apparatus and deionized water production method
EP2208523B1 (en) Electrodeionization device with hydrodynamic flow splitting
Su et al. Membrane-free electrodeionization for high purity water production
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
Su et al. Membrane-free electrodeionization without electrode polarity reversal for high purity water production
JP6042234B2 (en) Desalination method and desalting apparatus
JP5015990B2 (en) Electric deionized water production equipment
JP4748318B2 (en) Electrodeionization equipment
WO2014132888A1 (en) Desalination method and desalination apparatus
JP6163078B2 (en) Desalination method and desalting apparatus
JP2006015260A (en) Electric deionized water manufacturing apparatus
JP6001399B2 (en) Desalination method and desalting apparatus
JP5114307B2 (en) Electric deionized water production equipment
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2003001258A (en) Electrolytic deionizing apparatus
JP6408361B2 (en) Water softening device and method for regenerating ion exchange resin
JP2005052766A (en) Electric regeneration type pure water making apparatus
JP3729347B2 (en) Electric regenerative desalination equipment
JP6532554B1 (en) Electric deionized water production equipment
JP6034736B2 (en) Electric deionized water production equipment
JP4016663B2 (en) Operation method of electrodeionization equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756679

Country of ref document: EP

Kind code of ref document: A1