JP2019135054A - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
JP2019135054A
JP2019135054A JP2019096072A JP2019096072A JP2019135054A JP 2019135054 A JP2019135054 A JP 2019135054A JP 2019096072 A JP2019096072 A JP 2019096072A JP 2019096072 A JP2019096072 A JP 2019096072A JP 2019135054 A JP2019135054 A JP 2019135054A
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
water
concentration
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096072A
Other languages
Japanese (ja)
Other versions
JP6752932B2 (en
Inventor
賢治 柴崎
Kenji Shibazaki
賢治 柴崎
日高 真生
Masanari Hidaka
真生 日高
慶介 佐々木
Keisuke Sasaki
慶介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019096072A priority Critical patent/JP6752932B2/en
Publication of JP2019135054A publication Critical patent/JP2019135054A/en
Application granted granted Critical
Publication of JP6752932B2 publication Critical patent/JP6752932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide a water treatment device capable of suppressing a deterioration of quality of treated water while suppressing a decrease in the amount of treated water and generation of scale.SOLUTION: A plurality of electric deionized water production apparatuses each have include, between an anode and a cathode: a demineralized chamber which is partitioned by a first anion exchange membrane located on the anode side and a cation exchange membrane located on the cathode side and filled with an ion exchanger; a first concentration chamber adjacent to the demineralized chamber via the cation exchange membrane and having a cathode side partitioned by a second anion exchange membrane; and a second concentration chamber adjacent to the demineralized chamber via the first anion exchange membrane. The demineralization chambers of the respective electric deionized water production apparatuses communicate in series, and treating target water is passed therethrough and flowed out as treated water. The anion exchanger is charged into the first concentration chamber adjacent to the first-stage demineralizing chamber through which the treating target water is first passed, and in the first concentration chamber adjacent to the last stage demineralizing chamber through which the treated water flows out via the cation exchange membrane, the cation exchanger is charged alone into the cathode side of the cation exchange membrane, and the anion exchanger is charged alone into the other regions.SELECTED DRAWING: Figure 1

Description

本発明は、水処理装置および水処理方法に関し、特には、電気式脱イオン水製造装置を用いた水処理装置および水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method, and more particularly to a water treatment apparatus and a water treatment method using an electric deionized water production apparatus.

イオン交換樹脂などのイオン交換体に被処理水を通水させてイオン交換反応により脱イオンを行う脱イオン水製造装置が知られている。このような装置は、イオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、酸やアルカリなどの薬剤によってイオン交換体を再生する処理(再生処理)を行う必要がある。再生処理は、イオン交換体に吸着した陽イオン(カチオン)や陰イオン(アニオン)を、酸あるいはアルカリに由来する水素イオン(H+)、水酸化物イオン(OH-)で置き換え、これによってイオン交換体の脱塩性能を復活させる処理である。薬剤による再生処理が必要な脱イオン水製造装置は、連続運転を行えず、再生処理のための薬剤補充の手間もかかる、という課題を有する。 2. Description of the Related Art A deionized water production apparatus is known in which water to be treated is passed through an ion exchanger such as an ion exchange resin and deionized by an ion exchange reaction. Such an apparatus needs to perform a process (regeneration process) of regenerating the ion exchanger with a chemical such as acid or alkali when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered. In the regeneration process, cations (cations) and anions (anions) adsorbed on the ion exchanger are replaced with hydrogen ions (H + ) or hydroxide ions (OH ) derived from acids or alkalis. This process restores the desalination performance of the exchanger. A deionized water production apparatus that requires a regeneration process with a drug cannot perform continuous operation, and has a problem that it takes time to replenish the drug for the regeneration process.

近年、これらの課題を解決するものとして、薬剤による再生処理が不要な電気式脱イオン水製造装置(EDI(Electro DeIonization)装置ともいう)が開発され、実用化されている。   In recent years, as a solution to these problems, an electric deionized water production apparatus (also referred to as an EDI (Electro DeIonization) apparatus) that does not require regeneration treatment with a drug has been developed and put into practical use.

EDI装置は、電気泳動と電気透析とを組み合わせた装置である。EDI装置は、アニオンのみを透過させるアニオン交換膜とカチオンのみを透過させるカチオン交換膜との間にイオン交換体(アニオン交換体および/またはカチオン交換体)が充填された脱塩室を備える。EDI装置では、脱塩室から見てアニオン交換膜およびカチオン交換膜の各々の外側に濃縮室が配置される。そして、脱塩室と各濃縮室が、陽極を備える陽極室と陰極を備える陰極室との間に配置される。脱塩室では、陽極に近い側にアニオン交換膜が配置され、陰極に近い側にカチオン交換膜が配置される。脱塩室とアニオン交換膜を介して隣接する濃縮室は、カチオン交換膜を介して陽極室と隣接する。脱塩室とカチオン交換膜を介して隣接する濃縮室は、アニオン交換膜を介して陰極室と隣接する。   The EDI device is a device that combines electrophoresis and electrodialysis. The EDI apparatus includes a desalting chamber filled with an ion exchanger (anion exchanger and / or cation exchanger) between an anion exchange membrane that allows only anions to pass therethrough and a cation exchange membrane that allows only cations to pass through. In the EDI apparatus, a concentration chamber is disposed outside each of the anion exchange membrane and the cation exchange membrane as viewed from the desalting chamber. And a desalination chamber and each concentration chamber are arrange | positioned between the anode chamber provided with an anode, and the cathode chamber provided with the cathode. In the desalting chamber, an anion exchange membrane is disposed on the side close to the anode, and a cation exchange membrane is disposed on the side close to the cathode. The concentration chamber adjacent to the desalting chamber via the anion exchange membrane is adjacent to the anode chamber via the cation exchange membrane. The concentration chamber adjacent to the desalting chamber via the cation exchange membrane is adjacent to the cathode chamber via the anion exchange membrane.

EDI装置により被処理水から脱イオン水(処理水)を製造するには、陽極と陰極との間に直流電圧を印加した状態で、脱塩室に被処理水を通水する。すると、被処理水中のイオン成分は脱塩室内のイオン交換体に吸着され、脱イオン化(脱塩)処理が行われ、脱塩室から脱イオン水が流出する。このとき脱塩室では、印加電圧によって異種のイオン交換性物質間の界面、例えば、アニオン交換体とカチオン交換体との界面や、アニオン交換体とカチオン交換膜との界面や、アニオン交換膜とカチオン交換体との界面において、下記式に示すように水の解離反応が起こり、水素イオンおよび水酸化物イオンが生成する。
2O→H++OH-
この水素イオンと水酸化物イオンによって、先に脱塩室内のイオン交換体に吸着されていたイオン成分がイオン交換されてイオン交換体から遊離する。遊離したイオン成分のうちアニオンは、アニオン交換膜まで電気泳動してアニオン交換膜で電気透析されて、脱塩室から見て陽極側の濃縮室を流れる濃縮水に排出される。同様に、遊離したイオン成分のうちカチオンは、カチオン交換膜まで電気泳動してカチオン交換膜で電気透析されて、脱塩室から見て陰極側の濃縮室を流れる濃縮水に排出される。結局、脱塩室に供給された被処理水中のイオン成分は濃縮室に移行して排出されることとなり、同時に、脱塩室のイオン交換体も再生されることになる。
このようにEDI装置では、直流電圧の印加によって生じる水素イオンおよび水酸化物イオンが、イオン交換体を再生する酸およびアルカリの再生剤として連続的に作用する。このため、EDI装置では、外部から供給される薬剤による再生処理は基本的に不要となり、薬剤によるイオン交換体の再生を行うことなく連続運転を行うことができる。
In order to produce deionized water (treated water) from the treated water by the EDI apparatus, the treated water is passed through the desalting chamber in a state where a DC voltage is applied between the anode and the cathode. Then, the ionic component in the for-treatment water is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment, and deionized water flows out from the demineralization chamber. At this time, in the desalination chamber, an interface between different ion exchange materials, for example, an anion exchanger and a cation exchanger, an anion exchanger and a cation exchange membrane, an anion exchange membrane, At the interface with the cation exchanger, a water dissociation reaction occurs as shown in the following formula, and hydrogen ions and hydroxide ions are generated.
H 2 O → H + + OH
By this hydrogen ion and hydroxide ion, the ion component previously adsorbed on the ion exchanger in the desalting chamber is ion-exchanged and released from the ion exchanger. Of the released ionic components, the anion is electrophoresed to the anion exchange membrane, electrodialyzed on the anion exchange membrane, and discharged to the concentrated water flowing through the concentration chamber on the anode side as viewed from the desalting chamber. Similarly, cations out of the free ionic components are electrophoresed to the cation exchange membrane, electrodialyzed on the cation exchange membrane, and discharged to the concentrated water flowing through the cathode-side concentration chamber as viewed from the desalting chamber. Eventually, the ion component in the for-treatment water supplied to the desalting chamber is transferred to the concentration chamber and discharged, and at the same time, the ion exchanger in the desalting chamber is also regenerated.
In this way, in the EDI apparatus, hydrogen ions and hydroxide ions generated by application of a DC voltage continuously act as acid and alkali regenerants for regenerating the ion exchanger. For this reason, in the EDI apparatus, the regeneration process using the medicine supplied from the outside is basically unnecessary, and the continuous operation can be performed without the regeneration of the ion exchanger by the medicine.

しかしながら、EDI装置を連続運転すると、被処理水中の硬度成分が析出し、水酸化カルシウムや水酸化マグネシウム等のスケールが発生する。その理由は以下のとおりである。
陰極室内での電気分解によって生成された水酸化物イオンが、陰極側の濃縮室のアニオン交換膜を通過することによって、該アニオン交換膜の濃縮室側の表面はアルカリ性となる。すると、脱塩室からカチオン交換膜を通過して陰極側の濃縮室に移動してきた硬度成分イオン(マグネシウムイオンMg2+やカルシウムイオンCa2+)が、アルカリ性になっているアニオン交換膜表面において反応し、水酸化マグネシウムや水酸化カルシウム等のスケールが生成される。
スケールが発生すると、スケール発生部分における電気抵抗が上昇し、EDI装置に電流が流れにくくなる。よって、スケールの発生が無い場合と同一の電流値を得るためには印加電圧を上昇させる必要があり、消費電力の増加を招く。また、濃縮室内における電流密度が不均一になる場合もある。スケールの量がさらに増加すると、通水差圧の上昇が生じるとともに、電気抵抗がさらに上昇する。この場合、イオン除去に必要な量の電流が流せなくなり、処理水質の低下を招く。
However, when the EDI apparatus is continuously operated, hardness components in the water to be treated are deposited, and scales such as calcium hydroxide and magnesium hydroxide are generated. The reason is as follows.
When hydroxide ions generated by electrolysis in the cathode chamber pass through the anion exchange membrane in the cathode-side concentration chamber, the surface on the concentration chamber side of the anion exchange membrane becomes alkaline. Then, the hardness component ions (magnesium ions Mg 2+ and calcium ions Ca 2+ ) that have passed through the cation exchange membrane from the desalting chamber and moved to the concentrating chamber on the cathode side are converted to alkaline at the surface of the anion exchange membrane. Reacts to produce scales such as magnesium hydroxide and calcium hydroxide.
When the scale is generated, the electrical resistance in the scale generating portion increases, and it becomes difficult for the current to flow to the EDI device. Therefore, in order to obtain the same current value as when no scale is generated, it is necessary to increase the applied voltage, resulting in an increase in power consumption. In addition, the current density in the concentration chamber may be non-uniform. As the amount of scale further increases, the water flow differential pressure increases and the electrical resistance further increases. In this case, an amount of current necessary for ion removal cannot flow, and the quality of the treated water is deteriorated.

スケールの生成を抑制する手法の一つとして、濃縮室内にアニオン交換体を充填する手法が特許文献1に記載されている。
濃縮室内にアニオン交換体が充填されていると、陰極側の濃縮室のアニオン交換膜表面に存在する水酸化物イオンの濃縮水への拡散希釈が、濃縮室内のアニオン交換体によって促進され、該アニオン交換膜表面の水酸化物イオンの濃度が速やかに低減する。他方、硬度成分イオンは、濃縮室内のアニオン交換体の存在によって、該アニオン交換膜表面に到達し難くなる。この結果、水酸化物イオンと硬度成分イオンとが接触し反応する機会が減少し、スケールの発生が抑制される。
As one of the methods for suppressing the generation of scale, Patent Document 1 describes a method of filling an anion exchanger in a concentration chamber.
When the anion exchanger is filled in the concentration chamber, diffusion dilution of hydroxide ions present on the surface of the anion exchange membrane in the concentration chamber on the cathode side into the concentrated water is promoted by the anion exchanger in the concentration chamber, The hydroxide ion concentration on the anion exchange membrane surface is rapidly reduced. On the other hand, hardness component ions are difficult to reach the anion exchange membrane surface due to the presence of the anion exchanger in the concentration chamber. As a result, the opportunity for the hydroxide ions and the hardness component ions to contact and react with each other is reduced, and the generation of scale is suppressed.

しかし、濃縮室へのアニオン交換体の充填は、濃縮水に含まれる炭酸やシリカに代表される弱酸アニオン成分が濃縮室と脱塩室とを仕切るカチオン交換膜を通過して処理水中に拡散し処理水の純度を低下させる問題を引き起こす。以下、この問題について炭酸とシリカを例に挙げて説明する。   However, when the anion exchanger is filled in the concentration chamber, the weak acid anion component typified by carbonic acid or silica contained in the concentrated water diffuses into the treated water through the cation exchange membrane that separates the concentration chamber and the desalting chamber. Causes the problem of reducing the purity of the treated water. Hereinafter, this problem will be described by taking carbon dioxide and silica as an example.

一般的に、カチオン交換膜はカチオンのみを選択的に透過させるイオン交換膜である。その原理は、カチオン交換膜自体に負電荷を持たせ、負電荷を有するアニオンに対して反発力を働かせて透過を阻止するものである。
一方、炭酸(二酸化炭素)やシリカは水溶液中で以下のような各イオン種の形態を取り、それらは平衡状態にある。
CO2⇔HCO3 -⇔CO3 2-
SiO2⇔Si(OH)4⇔Si(OH)3-
上記のような平衡状態において各イオン種が全体に占める割合は、pHによって大きく変化する。pHが低い領域では炭酸やシリカの大部分はイオン化していない、つまり電荷を持たない状態でCO2、SiO2として存在している。
脱塩室と濃縮室とを区画するカチオン交換膜は、被処理水中のカチオン成分と共に水解離反応により生じる多量の水素イオン(H+)を、脱塩室から濃縮室に透過する。このため、カチオン交換膜の濃縮室側表面は、水素イオン(H+)が多い状態(=pHが低い状態)になる。
一方、濃縮水に含まれる炭酸やシリカは、濃縮室内のアニオン交換体によりアニオンとして捕捉され、アニオン交換体を伝って、濃縮室側のカチオン交換膜(脱塩室と濃縮室とを区画するカチオン交換膜)表面まで移動する。濃縮室側のカチオン交換膜表面は上述したようにpHが低くなっている。このため、pHが低い条件下でイオン化しない炭酸やシリカは、アニオン交換体から遊離した後に電荷を失い、濃縮室からカチオン交換膜を透過して脱塩室内の被処理水に拡散する。よって、処理水の純度が低下してしまう。
Generally, a cation exchange membrane is an ion exchange membrane that selectively permeates only cations. The principle is that the cation exchange membrane itself has a negative charge, and a repulsive force acts on the negatively charged anion to block the permeation.
On the other hand, carbonic acid (carbon dioxide) and silica take the form of the following ionic species in an aqueous solution, and they are in an equilibrium state.
CO 2 ⇔HCO 3 - ⇔CO 3 2-
SiO 2 ⇔Si (OH) 4 ⇔Si (OH) 3 O
The proportion of each ionic species in the entire equilibrium state as described above varies greatly depending on the pH. In the region where the pH is low, most of carbonic acid and silica are not ionized, that is, exist as CO 2 and SiO 2 in a state having no charge.
The cation exchange membrane that divides the desalting chamber and the concentration chamber allows a large amount of hydrogen ions (H + ) generated by the water dissociation reaction together with the cation component in the water to be treated to pass from the desalting chamber to the concentration chamber. For this reason, the concentration chamber side surface of the cation exchange membrane is in a state in which there are many hydrogen ions (H + ) (= a state in which pH is low).
On the other hand, carbonic acid and silica contained in the concentrated water are captured as anions by the anion exchanger in the concentration chamber, and are transmitted through the anion exchanger to the cation exchange membrane on the concentration chamber side (cations that partition the desalination chamber and the concentration chamber). Exchange membrane) Move to the surface. As described above, the pH of the cation exchange membrane surface on the concentration chamber side is low. For this reason, carbonic acid and silica that are not ionized under low pH conditions lose their charge after being released from the anion exchanger, and permeate through the cation exchange membrane from the concentration chamber and diffuse into the water to be treated in the desalting chamber. Therefore, the purity of treated water will fall.

特許文献2には、濃縮水に含まれるシリカ等のアニオン成分がカチオン交換膜を通過して処理水中に拡散することを抑制可能な技術が記載されている。特許文献2に記載の技術では、被処理水よりシリカ濃度の低い処理水の一部を濃縮室に通水する。これにより、濃縮室から脱塩室へのシリカの拡散が抑制される。   Patent Document 2 describes a technique capable of suppressing anion components such as silica contained in concentrated water from passing through a cation exchange membrane and diffusing into treated water. In the technique described in Patent Document 2, a part of the treated water having a silica concentration lower than that of the treated water is passed through the concentration chamber. Thereby, the diffusion of silica from the concentration chamber to the desalting chamber is suppressed.

国際公開第2011/152226号International Publication No. 2011/152226 特開2004−33977号公報JP 2004-33977 A

特許文献1に記載のように濃縮室内にアニオン交換体を充填する場合、スケールの生成を抑制できても、濃縮水に含まれる炭酸やシリカ等の弱酸アニオン成分がカチオン交換膜を通過して処理水中に拡散してしまう。また、この拡散を抑制するために、特許文献2に記載のように処理水の一部を濃縮室に通水すると、処理水量が減少してしまう。   When an anion exchanger is filled in the concentration chamber as described in Patent Document 1, a weak acid anion component such as carbonic acid or silica contained in the concentrated water passes through the cation exchange membrane even if the generation of scale can be suppressed. It will diffuse into the water. Moreover, in order to suppress this spreading | diffusion, when a part of treated water is passed through the concentration chamber as described in Patent Document 2, the amount of treated water is reduced.

本発明の目的は、処理水量の減少およびスケールの生成を抑制しつつ、処理水の水質の低下を抑制可能な水処理装置および水処理方法を提供することである。   The objective of this invention is providing the water treatment apparatus and the water treatment method which can suppress the fall of the quality of treated water, suppressing the reduction | decrease of the amount of treated water, and the production | generation of a scale.

本発明による水処理装置は、複数の電気式脱イオン水製造装置を有する水処理装置において、前記複数の電気式脱イオン水製造装置の各々は、陽極と陰極との間に、前記陽極側に位置する第1アニオン交換膜と前記陰極側に位置するカチオン交換膜とで区画されイオン交換体が充填された脱塩室と、前記カチオン交換膜を介して前記脱塩室と隣接し前記陰極側が第2アニオン交換膜で区画された第1濃縮室と、前記第1アニオン交換膜を介して前記脱塩室と隣接する第2濃縮室と、を有し、複数の前記脱塩室は、直列に連通しており、前記直列に連通する複数の脱塩室は、被処理水を通水して処理水を流出し、前記被処理水が最初に通水される1段目の前記脱塩室と隣接する前記第1濃縮室にアニオン交換体が充填され、前記処理水を流出する最終段の前記脱塩室と前記カチオン交換膜を介して隣接する前記第1濃縮室では、当該カチオン交換膜の前記陰極側にカチオン交換体が単独で充填され、他の領域にアニオン交換体が単独で充填されている。
本発明による水処理方法は、陽極と陰極との間に、前記陽極側に位置する第1アニオン交換膜と前記陰極側に位置するカチオン交換膜とで区画されイオン交換体が充填された脱塩室と、前記カチオン交換膜を介して前記脱塩室と隣接し前記陰極側が第2アニオン交換膜で区画された第1濃縮室と、前記第1アニオン交換膜を介して前記脱塩室と隣接する第2濃縮室と、を有する複数の電気式脱イオン水製造装置を備え、前記複数の電気式脱イオン水製造装置の各々の前記脱塩室は、直列に連通しており、前記直列に連通する複数の脱塩室は、被処理水を通水して処理水を流出し、前記被処理水が最初に通水される1段目の前記脱塩室と隣接する前記第1濃縮室にアニオン交換体が充填され、前記処理水を流出する最終段の前記脱塩室と前記カチオン交換膜を介して隣接する前記第1濃縮室では、当該カチオン交換膜の前記陰極側にカチオン交換体が単独で充填され、他の領域にアニオン交換体が単独で充填されている水処理装置を用いた水処理方法であって、前記陽極と前記陰極との間に直流電圧を印加しつつ前記直列に連通する複数の脱塩室に前記被処理水を通水して前記被処理水を処理して前記処理水を流出する。
The water treatment apparatus according to the present invention is a water treatment apparatus having a plurality of electric deionized water production apparatuses, wherein each of the plurality of electric deionized water production apparatuses is disposed between the anode and the cathode, on the anode side. A demineralization chamber which is partitioned by a first anion exchange membrane located and a cation exchange membrane located on the cathode side and is filled with an ion exchanger; and the cathode side adjacent to the desalination chamber via the cation exchange membrane A first concentration chamber partitioned by a second anion exchange membrane; and a second concentration chamber adjacent to the desalination chamber via the first anion exchange membrane, wherein the plurality of desalination chambers are in series. A plurality of desalting chambers communicating in series with each other, the treated water flows through the treated water, and the treated water flows out first. The first concentration chamber adjacent to the chamber is filled with an anion exchanger and the treated water flows out. In the first concentration chamber adjacent to the final stage of the desalting chamber via the cation exchange membrane, the cathode side of the cation exchange membrane is filled with the cation exchanger alone, and the anion exchanger is filled in the other region. Filled alone.
The water treatment method according to the present invention is a desalting method in which an ion exchanger is packed between an anode and a cathode, which is partitioned by a first anion exchange membrane located on the anode side and a cation exchange membrane located on the cathode side. A first concentrating chamber adjacent to the desalting chamber via the cation exchange membrane and having the cathode side partitioned by a second anion exchange membrane, and adjacent to the desalting chamber via the first anion exchange membrane A plurality of electric deionized water production devices having a second concentrating chamber, wherein each of the demineralization chambers of the plurality of electric deionized water production devices communicates in series, The plurality of desalting chambers communicating with each other pass the treated water and flow out the treated water, and the first concentration chamber adjacent to the first-stage desalting chamber through which the treated water is first passed. The anion exchanger is packed in the final stage of the desalting chamber and the cap In the first concentrating chamber adjacent via the on-exchange membrane, a water treatment device in which the cation exchanger is filled alone on the cathode side of the cation exchange membrane and the anion exchanger is filled alone in other regions A water treatment method using the water, wherein the water to be treated is passed through the plurality of desalting chambers communicating in series while applying a DC voltage between the anode and the cathode. Treat and discharge the treated water.

本発明によれば、複数の電気式脱イオン水製造装置の各々の脱塩室が直列に連通され、被処理水が最初に通水される1段目の脱塩室と隣接する第1濃縮室にアニオン交換体が充填され、処理水を流出する最終段の脱塩室とカチオン交換膜を介して隣接する第1濃縮室では、該カチオン交換膜の陰極側にカチオン交換体が充填されている。このため、後述する実施例等からも明らかになるように、処理水量の減少およびスケールの生成を抑制しつつ、処理水の水質の低下を抑制可能になる。   According to the present invention, each of the demineralization chambers of the plurality of electric deionized water production apparatuses is connected in series, and the first concentration adjacent to the first-stage demineralization chamber through which the water to be treated is first fed. The chamber is filled with an anion exchanger, and in the first concentration chamber adjacent to the final desalting chamber through which the treated water flows out via the cation exchange membrane, the cation exchanger is filled on the cathode side of the cation exchange membrane. Yes. For this reason, it becomes possible to suppress the fall of the quality of treated water, suppressing the reduction | decrease of the amount of treated water, and the production | generation of a scale so that it may become clear also from the Example etc. which are mentioned later.

本発明の第1の実施形態の水処理装置101を示した図である。It is the figure which showed the water treatment apparatus 101 of the 1st Embodiment of this invention. 本発明の第2の実施形態の水処理装置201を示した図である。It is the figure which showed the water treatment apparatus 201 of the 2nd Embodiment of this invention. 実施例1〜5および比較例1〜2での処理水の水質の測定結果を示した図である。It is the figure which showed the measurement result of the quality of the treated water in Examples 1-5 and Comparative Examples 1-2. 実施例6での処理水の水質の測定結果を示した図である。It is the figure which showed the measurement result of the quality of the treated water in Example 6.

<第1の実施形態>
図1は、本発明の第1の実施形態の水処理装置101を示した図である。
水処理装置101は、EDI装置(電気式脱イオン水製造装置)101aと、EDI装置101bと、を有する。
<First Embodiment>
FIG. 1 is a diagram showing a water treatment apparatus 101 according to the first embodiment of the present invention.
The water treatment apparatus 101 includes an EDI apparatus (electric deionized water production apparatus) 101a and an EDI apparatus 101b.

EDI装置101aは、陽極11aを備えた陽極室21aと、陰極12aを備えた陰極室25aとの間に、陽極室21a側から順に、濃縮室22a、脱塩室23aおよび濃縮室24aが設けられている。濃縮室24aは第1濃縮室の一例であり、濃縮室22aは、第2濃縮室の一例である。
陽極室21aと濃縮室22aはカチオン交換膜31aを隔てて隣接し、濃縮室22aと脱塩室23aはアニオン交換膜32aを隔てて隣接し、脱塩室23aと濃縮室24aとはカチオン交換膜33aを隔てて隣接し、濃縮室24aと陰極室25aはアニオン交換膜34aを隔てて隣接している。脱塩室23aは、アニオン交換膜32aとカチオン交換膜33aとによって区画されている。アニオン交換膜32aは第1アニオン交換膜の一例であり、アニオン交換膜34aは、第2アニオン交換膜の一例である。
脱塩室23a内には、イオン交換体が充填されている。本実施形態では、脱塩室23a内には、アニオン交換体AERとカチオン交換体CERとが混床形態で充填されている。アニオン交換体AERとしては、例えばアニオン交換樹脂が使用され、カチオン交換体CERとしては、例えばカチオン交換樹脂が使用される。
濃縮室22aおよび24aには、アニオン交換体AERが単床形態で充填されている。
被処理水は、脱塩室23aに通水される。また、濃縮室22aおよび24aと陽極室21aと陰極室25aには、それぞれ、供給水が通水される。供給水の通水方向は適宜変更可能である。
In the EDI apparatus 101a, a concentrating chamber 22a, a desalting chamber 23a, and a concentrating chamber 24a are provided in this order from the anode chamber 21a side between an anode chamber 21a including the anode 11a and a cathode chamber 25a including the cathode 12a. ing. The concentration chamber 24a is an example of a first concentration chamber, and the concentration chamber 22a is an example of a second concentration chamber.
The anode chamber 21a and the concentration chamber 22a are adjacent to each other with a cation exchange membrane 31a therebetween, the concentration chamber 22a and the desalting chamber 23a are adjacent to each other with an anion exchange membrane 32a therebetween, and the desalting chamber 23a and the concentration chamber 24a are cation exchange membranes. The concentration chamber 24a and the cathode chamber 25a are adjacent to each other across the anion exchange membrane 34a. The desalting chamber 23a is partitioned by an anion exchange membrane 32a and a cation exchange membrane 33a. The anion exchange membrane 32a is an example of a first anion exchange membrane, and the anion exchange membrane 34a is an example of a second anion exchange membrane.
The desalting chamber 23a is filled with an ion exchanger. In this embodiment, the anion exchanger AER and the cation exchanger CER are filled in the desalting chamber 23a in a mixed bed form. As the anion exchanger AER, for example, an anion exchange resin is used, and as the cation exchanger CER, for example, a cation exchange resin is used.
The concentration chambers 22a and 24a are filled with an anion exchanger AER in a single bed form.
The water to be treated is passed through the desalting chamber 23a. The supply water is passed through the concentration chambers 22a and 24a, the anode chamber 21a, and the cathode chamber 25a. The direction of water supply can be changed as appropriate.

EDI装置101bは、陽極11bを備えた陽極室21bと、陰極12bを備えた陰極室25bとの間に、陽極室21b側から順に、濃縮室22b、脱塩室23bおよび濃縮室24bが設けられている。濃縮室24bは第1濃縮室の一例であり、濃縮室22bは、第2濃縮室の一例である。
陽極室21bと濃縮室22bはカチオン交換膜31bを隔てて隣接し、濃縮室22bと脱塩室23bはアニオン交換膜32bを隔てて隣接し、脱塩室23bと濃縮室24bとはカチオン交換膜33bを隔てて隣接し、濃縮室24bと陰極室25bはアニオン交換膜34bを隔てて隣接している。脱塩室23bは、アニオン交換膜32bとカチオン交換膜33bとによって区画されている。アニオン交換膜32bは第1アニオン交換膜の一例であり、アニオン交換膜34bは、第2アニオン交換膜の一例である。
脱塩室23b内には、イオン交換体が充填されている。本実施形態では、脱塩室23b内には、アニオン交換体AERとカチオン交換体CERとが混床形態で充填されている。なお、脱塩室23bへのイオン交換体の充填形態としては、アニオン交換体AERとカチオン交換体CERの混床形態(MB)、アニオン交換体AERの単床形態(A)、カチオン交換体CERの単床形態(K)を組み合わせた複床形態が採用されてもよい。脱塩室23bは、EDI装置101aの脱塩室23aと直列に連通している。
濃縮室22bおよび24bには、カチオン交換体CERが単床形態で充填されている。
脱塩室23bには、脱塩室23aで処理された被処理水が通水される。濃縮室22bおよび24bと陽極室21bと陰極室25bには、それぞれ、供給水が通水される。供給水の通水方向は、適宜変更可能である。
In the EDI apparatus 101b, a concentrating chamber 22b, a desalting chamber 23b, and a concentrating chamber 24b are provided in this order from the anode chamber 21b side between an anode chamber 21b including the anode 11b and a cathode chamber 25b including the cathode 12b. ing. The concentration chamber 24b is an example of a first concentration chamber, and the concentration chamber 22b is an example of a second concentration chamber.
The anode chamber 21b and the concentration chamber 22b are adjacent to each other with a cation exchange membrane 31b therebetween, the concentration chamber 22b and the desalting chamber 23b are adjacent to each other with an anion exchange membrane 32b, and the desalting chamber 23b and the concentration chamber 24b are cation exchange membranes. The concentrating chamber 24b and the cathode chamber 25b are adjacent to each other across the anion exchange membrane 34b. The desalting chamber 23b is partitioned by an anion exchange membrane 32b and a cation exchange membrane 33b. The anion exchange membrane 32b is an example of a first anion exchange membrane, and the anion exchange membrane 34b is an example of a second anion exchange membrane.
The desalting chamber 23b is filled with an ion exchanger. In this embodiment, the anion exchanger AER and the cation exchanger CER are filled in the desalting chamber 23b in a mixed bed form. In addition, as a filling form of the ion exchanger to the desalting chamber 23b, the mixed bed form (MB) of the anion exchanger AER and the cation exchanger CER, the single bed form of the anion exchanger AER (A), the cation exchanger CER A multiple floor form combining a single floor form (K) may be employed. The desalting chamber 23b communicates with the desalting chamber 23a of the EDI apparatus 101a in series.
The concentration chambers 22b and 24b are filled with a cation exchanger CER in a single bed form.
The treated water treated in the desalting chamber 23a is passed through the desalting chamber 23b. Supply water is passed through the concentration chambers 22b and 24b, the anode chamber 21b, and the cathode chamber 25b, respectively. The direction of water supply can be changed as appropriate.

次に、水処理装置101で行われる水処理について説明する。
EDI装置101aおよび101bにおいて、陽極室21aおよび21bと濃縮室22a、24a、22bおよび24bと陰極室25aおよび25bに供給水を通水し、陽極11aと陰極12aとの間および陽極11bと陰極12bとの間に直流電圧を印加した状態で、EDI装置101aの脱塩室23aに被処理水を通水する。
Next, water treatment performed in the water treatment apparatus 101 will be described.
In the EDI devices 101a and 101b, water is supplied to the anode chambers 21a and 21b, the concentration chambers 22a, 24a, 22b and 24b, and the cathode chambers 25a and 25b, and between the anode 11a and the cathode 12a and between the anode 11b and the cathode 12b. In a state where a DC voltage is applied between the two, the water to be treated is passed through the desalting chamber 23a of the EDI apparatus 101a.

EDI装置101aでは、被処理水に対して以下の処理が行われると推測される。
被処理水中のイオン成分は、脱塩室23a内のイオン交換体に吸着され、脱イオン化(脱塩)処理が行われる。脱塩室23aで脱イオン化(脱塩)処理が施された被処理水は、脱塩室23bに通水される。
このとき、脱塩室23aでは、陽極11aと陰極12aの間の印加電圧によって上述した水の解離反応が起こり、水素イオンおよび水酸化物イオンが生成される。この水素イオンと水酸化物イオンによって、脱塩室23a内のイオン交換体に吸着されていたイオン成分がイオン交換されてイオン交換体から遊離する。遊離したイオン成分のうち、アニオンは、アニオン交換膜32aを介して濃縮室22aに移動し濃縮室22aから濃縮水として排出され、カチオンは、カチオン交換膜33aを介して濃縮室24aに移動し濃縮室24aから濃縮水として排出される。なお、陽極室21aおよび陰極室25aからは電極水が排出される。
この際、被処理水中の硬度成分イオン(マグネシウムイオンMg2+やカルシウムイオンCa2+)は、カチオン交換膜33aを透過して濃縮室24aに移動するが、濃縮室24aにはアニオン交換体AERが充填されているので、アニオン交換膜34aに硬度成分イオンに起因するスケールの発生が抑制される。また、濃縮室22aにもアニオン交換体AERが充填されているので、硬度成分イオンに起因するスケールの発生が抑制される。
しかしながら、濃縮室24aにアニオン交換体AERが充填されているため、濃縮水に含まれている炭酸やシリカの弱酸アニオン成分が、濃縮室24aからカチオン交換膜33aを通過して脱塩室23a内へ拡散する。このため、脱塩室23aから脱塩室23bに流れ出る被処理水には、濃縮水に含まれていた炭酸やシリカの弱酸アニオン成分が含有されてしまう。
In the EDI apparatus 101a, it is estimated that the following processing is performed on the water to be treated.
The ion component in the for-treatment water is adsorbed by the ion exchanger in the demineralization chamber 23a and subjected to deionization (demineralization) treatment. The treated water that has been deionized (desalted) in the desalting chamber 23a is passed through the desalting chamber 23b.
At this time, in the desalting chamber 23a, the dissociation reaction of water mentioned above occurs by the applied voltage between the anode 11a and the cathode 12a, and hydrogen ions and hydroxide ions are generated. By this hydrogen ion and hydroxide ion, the ion component adsorbed on the ion exchanger in the desalting chamber 23a is ion-exchanged and released from the ion exchanger. Among the released ion components, the anion moves to the concentration chamber 22a through the anion exchange membrane 32a and is discharged as concentrated water from the concentration chamber 22a, and the cation moves to the concentration chamber 24a through the cation exchange membrane 33a and concentrates. It is discharged as concentrated water from the chamber 24a. Electrode water is discharged from the anode chamber 21a and the cathode chamber 25a.
At this time, hardness component ions (magnesium ions Mg 2+ and calcium ions Ca 2+ ) in the water to be treated permeate the cation exchange membrane 33a and move to the concentration chamber 24a, and the concentration chamber 24a has an anion exchanger AER. Therefore, generation of scale due to hardness component ions is suppressed in the anion exchange membrane 34a. Moreover, since the concentration chamber 22a is also filled with the anion exchanger AER, generation of scale due to hardness component ions is suppressed.
However, since the concentration chamber 24a is filled with the anion exchanger AER, the weak acid anion component of carbonic acid or silica contained in the concentrated water passes through the cation exchange membrane 33a from the concentration chamber 24a and enters the desalting chamber 23a. To spread. For this reason, the to-be-processed water which flows into the desalting chamber 23b from the desalting chamber 23a will contain the weak acid anion component of the carbonic acid and silica which were contained in the concentrated water.

EDI装置101bでは、以下の処理が行われると推測される。
EDI装置101bに流入する被処理水中のイオン成分(濃縮水から移動してきた炭酸やシリカの弱酸アニオン成分を含む)は、脱塩室23bのイオン交換体に吸着され、脱イオン化処理が行われる。脱塩室23bで脱イオン化処理が行われた被処理水は、処理水として排出される。EDI装置101bでは、EDI装置101aと同様に、脱塩室23bのイオン交換体においてイオン交換が行われ、脱塩室23bに供給された被処理水中のイオン成分は濃縮室22b、24bに移動して排出され、同時に、脱塩室23bのイオン交換体も再生される。
EDI装置101bに流入する被処理水は、既にEDI装置101aで処理されているため、被処理水内の硬度成分イオンの濃度は、EDI装置101aに流入する前の濃度より低くなっている。このため、濃縮室24bでのスケールの発生が抑制される。
また、濃縮室24bにはカチオン交換体CERが充填されているため、カチオン交換膜33bの濃縮室24b側の表面に存在する水素イオンの濃縮水への拡散希釈が、濃縮室24b内のカチオン交換体CERにより促進され、カチオン交換膜33bの濃縮室24b側の表面における水素イオンの濃度が速やかに低減する(pHが低い状態でなくなる)。また、濃縮水に含まれる炭酸やシリカ等の弱酸アニオン成分は、濃縮室24b内のカチオン交換体CERの存在によって、カチオン交換膜33bの濃縮室24b側の表面に到達し難くなる。また、炭酸やシリカ等の弱酸アニオン成分が、カチオン交換膜33bの濃縮室24b側の表面に到達しても、その表面のpHが低くないため、アニオン成分として維持され、カチオン交換膜33bを通過することが困難になる。よって、濃縮水に含まれる炭酸やシリカ等の弱酸アニオン成分が脱塩室23bへ拡散することを抑制可能になる。また、弱酸アニオン成分の脱塩室23bへの拡散を抑制するために、処理水の一部を濃縮室に供給する供給水として用いる必要もなくなる。したがって、処理水量の減少およびスケールの生成を抑制しつつ、処理水の水質の低下を抑制可能になる。
In the EDI apparatus 101b, it is estimated that the following processing is performed.
Ionic components (including weak acid anion components of carbonic acid and silica transferred from the concentrated water) flowing into the EDI apparatus 101b are adsorbed to the ion exchanger in the desalting chamber 23b and subjected to deionization processing. The treated water that has been deionized in the desalting chamber 23b is discharged as treated water. In the EDI apparatus 101b, as in the EDI apparatus 101a, ion exchange is performed in the ion exchanger of the desalting chamber 23b, and the ionic components in the water to be treated supplied to the desalting chamber 23b move to the concentration chambers 22b and 24b. At the same time, the ion exchanger in the desalting chamber 23b is also regenerated.
Since the treated water flowing into the EDI apparatus 101b has already been treated by the EDI apparatus 101a, the concentration of hardness component ions in the treated water is lower than the concentration before flowing into the EDI apparatus 101a. For this reason, generation | occurrence | production of the scale in the concentration chamber 24b is suppressed.
In addition, since the concentration chamber 24b is filled with the cation exchanger CER, diffusion dilution of hydrogen ions existing on the surface of the cation exchange membrane 33b on the concentration chamber 24b side into the concentrated water causes cation exchange in the concentration chamber 24b. Promoted by the body CER, the hydrogen ion concentration on the surface of the cation exchange membrane 33b on the concentration chamber 24b side is rapidly reduced (the pH is no longer low). Also, weak acid anion components such as carbonic acid and silica contained in the concentrated water are difficult to reach the surface of the cation exchange membrane 33b on the side of the concentration chamber 24b due to the presence of the cation exchanger CER in the concentration chamber 24b. Further, even if weak acid anion components such as carbonic acid and silica reach the surface of the cation exchange membrane 33b on the concentration chamber 24b side, the pH of the surface is not low, so that it is maintained as an anion component and passes through the cation exchange membrane 33b. It becomes difficult to do. Therefore, it is possible to suppress the weak acid anion components such as carbonic acid and silica contained in the concentrated water from diffusing into the desalting chamber 23b. Further, in order to suppress the diffusion of the weak acid anion component into the desalting chamber 23b, it is not necessary to use a part of the treated water as the supply water for supplying the concentration chamber. Therefore, it is possible to suppress a decrease in the quality of the treated water while suppressing a decrease in the amount of treated water and generation of scale.

<第2の実施形態>
図2は、本発明の第2の実施形態の水処理装置201を示した図である。
水処理装置201は、EDI装置101cと、EDI装置101dと、を有する。
<Second Embodiment>
FIG. 2 is a view showing a water treatment apparatus 201 according to the second embodiment of the present invention.
The water treatment apparatus 201 includes an EDI apparatus 101c and an EDI apparatus 101d.

EDI装置101cは、陽極11cを備えた陽極室21cと、陰極12cを備えた陰極室25cとの間に、陽極室21c側から順に、濃縮室22c、脱塩室23cおよび濃縮室24cが設けられている。濃縮室24cは第1濃縮室の一例であり、濃縮室22cは、第2濃縮室の一例である。
陽極室21cと濃縮室22cはカチオン交換膜31cを隔てて隣接し、濃縮室22cと脱塩室23cはアニオン交換膜32cを隔てて隣接し、脱塩室23cと濃縮室24cとはカチオン交換膜33cを隔てて隣接し、濃縮室24cと陰極室25cはアニオン交換膜34cを隔てて隣接している。脱塩室23cは、アニオン交換膜32cとカチオン交換膜33cとによって区画されている。アニオン交換膜32cは第1アニオン交換膜の一例であり、アニオン交換膜34cは、第2アニオン交換膜の一例である。
脱塩室23cでは、アニオン交換膜32cカチオン交換膜33cとの間に中間イオン交換膜36cが設けられている。脱塩室23cは、中間イオン交換膜36cによって小脱塩室23c−1と小脱塩室23c−2に区画されている。中間イオン交換膜36cとしては、アニオン交換膜、カチオン交換膜、バイポーラ膜のいずれも使用できる。本実施形態では、中間イオン交換膜36cとして、アニオン交換膜を用いる。陰極側の小脱塩室23c−1は第1小脱塩室の一例であり、陽極側の小脱塩室23c−2は第2小脱塩室の一例である。
小脱塩室23c−1にはカチオン交換体CERが単床形態で充填され、小脱塩室23c−2にはアニオン交換体AERが単床形態で充填されている。小脱塩室23c−1に被処理水が通水され、小脱塩室23c−1から流出する水が小脱塩室23c−2に流入するように(矢印104a、矢印104b、矢印104c参照)、小脱塩室23c−1と小脱塩室23c−2は直列に連通されている。
濃縮室22cおよび24cと陽極室21cと陰極室25cには、それぞれ、供給水が通水される。なお、供給水の通水方向は、適宜変更可能である。
In the EDI apparatus 101c, a concentrating chamber 22c, a desalting chamber 23c, and a concentrating chamber 24c are provided in this order from the anode chamber 21c side between an anode chamber 21c including the anode 11c and a cathode chamber 25c including the cathode 12c. ing. The concentration chamber 24c is an example of a first concentration chamber, and the concentration chamber 22c is an example of a second concentration chamber.
The anode chamber 21c and the concentration chamber 22c are adjacent to each other with a cation exchange membrane 31c therebetween, the concentration chamber 22c and the desalting chamber 23c are adjacent to each other with an anion exchange membrane 32c therebetween, and the desalting chamber 23c and the concentration chamber 24c are cation exchange membranes. The concentration chamber 24c and the cathode chamber 25c are adjacent to each other across the anion exchange membrane 34c. The desalting chamber 23c is partitioned by an anion exchange membrane 32c and a cation exchange membrane 33c. The anion exchange membrane 32c is an example of a first anion exchange membrane, and the anion exchange membrane 34c is an example of a second anion exchange membrane.
In the desalting chamber 23c, an intermediate ion exchange membrane 36c is provided between the anion exchange membrane 32c and the cation exchange membrane 33c. The desalting chamber 23c is divided into a small desalting chamber 23c-1 and a small desalting chamber 23c-2 by an intermediate ion exchange membrane 36c. Any of an anion exchange membrane, a cation exchange membrane, and a bipolar membrane can be used as the intermediate ion exchange membrane 36c. In the present embodiment, an anion exchange membrane is used as the intermediate ion exchange membrane 36c. The cathode side small desalting chamber 23c-1 is an example of a first small desalting chamber, and the anode side small desalting chamber 23c-2 is an example of a second small desalting chamber.
The small desalting chamber 23c-1 is filled with a cation exchanger CER in a single bed form, and the small desalting chamber 23c-2 is filled with an anion exchanger AER in a single bed form. The treated water is passed through the small desalting chamber 23c-1, and the water flowing out from the small desalting chamber 23c-1 flows into the small desalting chamber 23c-2 (see arrows 104a, 104b, and 104c). ), The small desalting chamber 23c-1 and the small desalting chamber 23c-2 are connected in series.
Supply water is passed through the concentration chambers 22c and 24c, the anode chamber 21c, and the cathode chamber 25c, respectively. In addition, the direction of water supply can be changed as appropriate.

EDI装置101dは、陽極11dを備えた陽極室21dと、陰極12dを備えた陰極室25dとの間に、陽極室21d側から順に、濃縮室22d、脱塩室23dおよび濃縮室24dが設けられている。濃縮室24dは第1濃縮室の一例であり、濃縮室22dは、第2濃縮室の一例である。
陽極室21dと濃縮室22dはカチオン交換膜31dを隔てて隣接し、濃縮室22dと脱塩室23dはアニオン交換膜32dを隔てて隣接し、脱塩室23dと濃縮室24dとはカチオン交換膜33dを隔てて隣接し、濃縮室24dと陰極室25dはアニオン交換膜34dを隔てて隣接している。脱塩室23dは、アニオン交換膜32dとカチオン交換膜33dとによって区画されている。アニオン交換膜32dは第1アニオン交換膜の一例であり、アニオン交換膜34dは、第2アニオン交換膜の一例である。
脱塩室23dでは、アニオン交換膜32dとカチオン交換膜33dとの間に中間イオン交換膜36dが設けられている。脱塩室23dは、中間イオン交換膜36dによって小脱塩室23d−1と小脱塩室23d−2に区画されている。中間イオン交換膜36dとしては、アニオン交換膜が用いられる。陽極側の小脱塩室23d−1は第2小脱塩室の一例であり、陰極側の小脱塩室23d−2は第1小脱塩室の一例である。
小脱塩室23d−1にはアニオン交換体AERが単床形態で充填され、小脱塩室23d−2には入口側23d−21の領域にカチオン交換体CERが単独で充填され出口側23d−22の領域にアニオン交換体AERが単独で充填されている。小脱塩室23d−1に被処理水が通水され、小脱塩室23d−1から流出する水が小脱塩室23d−2に入口側23d−21から流入するように(矢印104c、矢印104d、矢印104e参照)、小脱塩室23d−1と小脱塩室23d−2は直列に連通されている。
濃縮室22dおよび24dと陽極室21dと陰極室25dには、それぞれ、供給水が通水される。なお、供給水の通水方向は、適宜変更可能である。
In the EDI apparatus 101d, a concentrating chamber 22d, a desalting chamber 23d, and a concentrating chamber 24d are provided in this order from the anode chamber 21d side between the anode chamber 21d including the anode 11d and the cathode chamber 25d including the cathode 12d. ing. The concentration chamber 24d is an example of a first concentration chamber, and the concentration chamber 22d is an example of a second concentration chamber.
The anode chamber 21d and the concentration chamber 22d are adjacent to each other with a cation exchange membrane 31d therebetween, the concentration chamber 22d and the desalting chamber 23d are adjacent to each other with an anion exchange membrane 32d therebetween, and the desalting chamber 23d and the concentration chamber 24d are cation exchange membranes. The concentrating chamber 24d and the cathode chamber 25d are adjacent to each other across the anion exchange membrane 34d. The desalting chamber 23d is partitioned by an anion exchange membrane 32d and a cation exchange membrane 33d. The anion exchange membrane 32d is an example of a first anion exchange membrane, and the anion exchange membrane 34d is an example of a second anion exchange membrane.
In the desalting chamber 23d, an intermediate ion exchange membrane 36d is provided between the anion exchange membrane 32d and the cation exchange membrane 33d. The desalting chamber 23d is divided into a small desalting chamber 23d-1 and a small desalting chamber 23d-2 by an intermediate ion exchange membrane 36d. An anion exchange membrane is used as the intermediate ion exchange membrane 36d. The small desalination chamber 23d-1 on the anode side is an example of a second small desalination chamber, and the small desalination chamber 23d-2 on the cathode side is an example of a first small desalination chamber.
The small desalting chamber 23d-1 is filled with the anion exchanger AER in a single bed form, and the small desalting chamber 23d-2 is filled with the cation exchanger CER alone in the region of the inlet side 23d-21 and the outlet side 23d. The region of −22 is filled with the anion exchanger AER alone. The treated water is passed through the small desalting chamber 23d-1, and the water flowing out from the small desalting chamber 23d-1 flows into the small desalting chamber 23d-2 from the inlet side 23d-21 (arrow 104c, The small desalting chamber 23d-1 and the small desalting chamber 23d-2 are connected in series.
Supply water is passed through the concentration chambers 22d and 24d, the anode chamber 21d, and the cathode chamber 25d, respectively. In addition, the direction of water supply can be changed as appropriate.

次に、水処理装置201で行われる水処理について説明する。
EDI装置101cおよび101dにおいて、陽極室21cおよび21dと、濃縮室22c、24c、22dおよび24dと、陰極室25cおよび25dに供給水を通水し、陽極11cと陰極12cとの間および陽極11dと陰極12dとの間に直流電圧を印加した状態で、EDI装置101cの小脱塩室23c−1に被処理水を通水する。
Next, water treatment performed in the water treatment apparatus 201 will be described.
In the EDI devices 101c and 101d, supply water is passed through the anode chambers 21c and 21d, the concentration chambers 22c, 24c, 22d and 24d, and the cathode chambers 25c and 25d, and between the anode 11c and the cathode 12c and the anode 11d. In a state where a DC voltage is applied to the cathode 12d, water to be treated is passed through the small desalting chamber 23c-1 of the EDI apparatus 101c.

EDI装置101cでは、被処理水に対して以下の処理が行われると推測される。
被処理水中のカチオンは、脱塩室23c−1のカチオン交換体CERに吸着され、脱イオン化処理が行われる。脱塩室23c−1で脱イオン化処理が行われた被処理水は、脱塩室23c−2に通水される。
このとき、脱塩室23cでは、陽極11cと陰極12cとの間の印加電圧によって水の解離反応が起こり、水素イオンおよび水酸化物イオンが生成される。この水素イオンによって、脱塩室23c−1内のカチオン交換体CERに吸着されていたカチオンがイオン交換されてカチオン交換体CERから遊離する。遊離したカチオンは、カチオン交換膜33cを介して濃縮室24cに移動し、濃縮室24cから濃縮水として排出される。
この際、被処理水中の硬度成分イオン(マグネシウムイオンMg2+やカルシウムイオンCa2+)は、カチオン交換膜33cを透過して濃縮室24cに移動するが、濃縮室24cにはアニオン交換体AERが充填されているので、アニオン交換膜34cでの硬度成分イオンに起因するスケールの発生が抑制される。
しかしながら、濃縮水に含まれている炭酸やシリカ等の弱酸アニオン成分が、濃縮室24cからカチオン交換膜33cを通過して脱塩室23c−1内へ拡散する。このため、脱塩室23c−1から脱塩室23c−2に流れ出る被処理水には、濃縮水に含まれていた炭酸やシリカが含有されてしまう。
In the EDI apparatus 101c, it is estimated that the following processing is performed on the water to be treated.
The cations in the water to be treated are adsorbed by the cation exchanger CER in the desalting chamber 23c-1, and a deionization process is performed. The treated water that has been deionized in the desalting chamber 23c-1 is passed through the desalting chamber 23c-2.
At this time, in the desalting chamber 23c, a dissociation reaction of water occurs by an applied voltage between the anode 11c and the cathode 12c, and hydrogen ions and hydroxide ions are generated. By this hydrogen ion, the cation adsorbed on the cation exchanger CER in the desalting chamber 23c-1 is ion-exchanged and released from the cation exchanger CER. The liberated cations move to the concentration chamber 24c through the cation exchange membrane 33c and are discharged from the concentration chamber 24c as concentrated water.
At this time, hardness component ions (magnesium ions Mg 2+ and calcium ions Ca 2+ ) in the water to be treated permeate the cation exchange membrane 33c and move to the concentration chamber 24c, and the concentration chamber 24c has an anion exchanger AER. Therefore, generation of scale due to hardness component ions in the anion exchange membrane 34c is suppressed.
However, weak acid anion components such as carbonic acid and silica contained in the concentrated water diffuse from the concentration chamber 24c through the cation exchange membrane 33c and diffuse into the desalting chamber 23c-1. For this reason, the to-be-processed water which flows into the desalting chamber 23c-2 from the desalting chamber 23c-1 will contain the carbonic acid and the silica which were contained in the concentrated water.

脱塩室23c−2では、被処理水中のアニオンは、脱塩室23c−2のアニオン交換体AERに吸着され、脱イオン化処理が行われる。脱塩室23c−2で脱イオン化処理が行われた被処理水は、脱塩室23d−1に通水される。
この際、脱塩室23c−2内のアニオン交換体AERに吸着されていたアニオンが、水の解離反応で生成された水酸化物イオンによってイオン交換されて、アニオン交換体AERから遊離する。遊離したアニオンは、アニオン交換膜32cを介して濃縮室22cに移動し、濃縮室22cから濃縮水として排出される。また、濃縮室24c内の濃縮水から小脱塩室23c−1内の被処理水に移動してきた炭酸やシリカの弱酸アニオン成分も、アニオン交換膜32cを介して濃縮室22cに移動し、濃縮室22cから濃縮水として排出される。
In the desalting chamber 23c-2, the anion in the water to be treated is adsorbed to the anion exchanger AER in the desalting chamber 23c-2, and a deionization process is performed. The treated water that has been deionized in the desalting chamber 23c-2 is passed through the desalting chamber 23d-1.
At this time, the anion adsorbed on the anion exchanger AER in the desalting chamber 23c-2 is ion-exchanged by the hydroxide ions generated by the water dissociation reaction and is released from the anion exchanger AER. The liberated anion moves to the concentration chamber 22c through the anion exchange membrane 32c, and is discharged from the concentration chamber 22c as concentrated water. Further, the weak acid anion component of carbonic acid or silica that has moved from the concentrated water in the concentrating chamber 24c to the water to be treated in the small desalting chamber 23c-1 also moves to the concentrating chamber 22c through the anion exchange membrane 32c, and is concentrated. It is discharged as concentrated water from the chamber 22c.

脱塩室23d−1では、被処理水中のアニオンは、脱塩室23d−1のアニオン交換体AERに吸着され、脱イオン化処理が行われる。脱塩室23d−1で脱イオン化処理が行われた被処理水は、脱塩室23d−2に入口側23d−21から通水される。
この際、脱塩室23d−1では、脱塩室23d−1内のアニオン交換体AERに吸着されていたアニオンが、水の解離反応で生成された水酸化物イオンによってイオン交換されて、アニオン交換体AERから遊離する。遊離したアニオンは、アニオン交換膜32dを介して濃縮室22dに移動し、濃縮室22dから濃縮水として排出される。
In the desalting chamber 23d-1, the anion in the water to be treated is adsorbed to the anion exchanger AER in the desalting chamber 23d-1, and a deionization process is performed. The treated water that has been deionized in the desalting chamber 23d-1 is passed through the desalting chamber 23d-2 from the inlet side 23d-21.
At this time, in the desalting chamber 23d-1, the anion adsorbed on the anion exchanger AER in the desalting chamber 23d-1 is ion-exchanged by hydroxide ions generated by the water dissociation reaction, and the anion Released from the exchanger AER. The liberated anion moves to the concentration chamber 22d through the anion exchange membrane 32d and is discharged from the concentration chamber 22d as concentrated water.

脱塩室23d−2では、被処理水中のカチオンが、入口側23d−21の領域のカチオン交換体CERに吸着され、脱イオン化処理が行われる。その後、被処理水は、脱塩室23d−2の出口側23d−22の領域に通水される。
このとき、入口側23d−21の領域のカチオン交換体CERでは、入口側23d−21の領域のカチオン交換体CERに吸着されていたカチオンが、水の解離反応で生成された水素イオンによってイオン交換されてカチオン交換体CERから遊離する。遊離したカチオンは、カチオン交換膜33dを介して濃縮室24dに移動し、濃縮室24dから濃縮水として排出される。
入口側23d−21の領域のカチオン交換体CERに流入する被処理水は、既にEDI装置101cで処理されているので、該被処理水内の硬度成分イオンの濃度は、EDI装置101cに流入する前の濃度より低くなっている。このため、濃縮室24dでのスケールの発生が抑制される。
また、濃縮室24dにはカチオン交換体CERが充填されているため、濃縮水に含まれる炭酸やシリカ等の弱酸アニオン成分の脱塩室23d−2への拡散を抑制可能になる。また、弱酸アニオン成分の脱塩室23d−2への拡散を抑制するために、処理水の一部を濃縮室に供給する供給水として用いる必要もなくなる。したがって、処理水量の減少およびスケールの生成を抑制しつつ、処理水の水質の低下を抑制可能になる。
そして、脱塩室23d−2の出口側23d−22の領域に通水された被処理水中のアニオンは、出口側23d−22の領域のアニオン交換体AERに吸着され、脱イオン化処理が行われる。その後、出口側23d−22の領域のアニオン交換体AERを通った水は、処理水として排出される。
このとき、出口側23d−22の領域のアニオン交換体AERでは、吸着されていたアニオンが、水の解離反応で生成された水酸化物イオンによってイオン交換されてアニオン交換体AERから遊離する。遊離したアニオンは、中間イオン膜36dを介して脱塩室23d−1に移動し、その後濃縮室22dに移動し、濃縮室22dから濃縮水として排出される。
In the desalting chamber 23d-2, cations in the water to be treated are adsorbed by the cation exchanger CER in the region on the inlet side 23d-21, and deionization processing is performed. Thereafter, the water to be treated is passed through the region on the outlet side 23d-22 of the desalting chamber 23d-2.
At this time, in the cation exchanger CER in the region on the inlet side 23d-21, the cations adsorbed on the cation exchanger CER in the region on the inlet side 23d-21 are ion-exchanged by hydrogen ions generated by the water dissociation reaction. And released from the cation exchanger CER. The liberated cations move to the concentration chamber 24d through the cation exchange membrane 33d and are discharged as concentrated water from the concentration chamber 24d.
Since the water to be treated flowing into the cation exchanger CER in the region on the inlet side 23d-21 has already been treated by the EDI device 101c, the concentration of hardness component ions in the water to be treated flows into the EDI device 101c. It is lower than the previous concentration. For this reason, generation | occurrence | production of the scale in the concentration chamber 24d is suppressed.
Further, since the concentration chamber 24d is filled with the cation exchanger CER, diffusion of weak acid anion components such as carbonic acid and silica contained in the concentrated water to the desalting chamber 23d-2 can be suppressed. Further, in order to suppress the diffusion of the weak acid anion component to the desalting chamber 23d-2, it is not necessary to use a part of the treated water as the supply water for supplying the concentration chamber. Therefore, it is possible to suppress a decrease in the quality of the treated water while suppressing a decrease in the amount of treated water and generation of scale.
And the anion in to-be-processed water passed through the area | region of the exit side 23d-22 of the desalination chamber 23d-2 is adsorbed by the anion exchanger AER of the area | region of the exit side 23d-22, and a deionization process is performed. . Thereafter, the water that has passed through the anion exchanger AER in the region of the outlet side 23d-22 is discharged as treated water.
At this time, in the anion exchanger AER in the region of the outlet side 23d-22, the adsorbed anion is ion-exchanged by the hydroxide ion generated by the water dissociation reaction and is released from the anion exchanger AER. The liberated anion moves to the desalting chamber 23d-1 through the intermediate ion membrane 36d, then moves to the concentration chamber 22d, and is discharged from the concentration chamber 22d as concentrated water.

以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。   In each embodiment described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.

例えば、濃縮室24bや濃縮室24dでは、カチオン交換膜33bやカチオン交換膜33dの陰極側にカチオン交換体CERが単独で充填され、他の領域にアニオン交換体AERが充填されてもよい。   For example, in the concentration chamber 24b and the concentration chamber 24d, the cation exchanger CER may be filled alone on the cathode side of the cation exchange membrane 33b or the cation exchange membrane 33d, and the anion exchanger AER may be filled in other regions.

上述した各実施形態では、2台のEDI装置を用いた水処理装置が示された。しかしながら、被処理水が最初に通水される1段目の脱塩室と隣接する第1および第2濃縮室にアニオン交換体が充填され、処理水を流出する最終段の脱塩室とカチオン交換膜を介して隣接する第1濃縮室では、該カチオン交換膜の陰極側にカチオン交換体が充填されていれば、EDI装置の数は2台に限らず3台以上でもよい。また、EDI装置一台(1つの筐体)の中で、脱塩室ブロックと濃縮室ブロックをそれぞれ2段以上配置し内部にてそれぞれの脱塩室を直列に接続する構造としてもよい。   In each embodiment mentioned above, the water treatment apparatus using two EDI apparatuses was shown. However, the first and second concentrating chambers adjacent to the first-stage desalting chamber through which the water to be treated is first passed are filled with anion exchangers, and the final-stage desalting chamber and the cation are discharged from the treated water. In the first concentrating chambers adjacent via the exchange membrane, the number of EDI devices is not limited to two but may be three or more as long as the cation exchanger is filled on the cathode side of the cation exchange membrane. Moreover, it is good also as a structure which arrange | positions each demineralization chamber in series inside a single EDI apparatus (one housing | casing), and arrange | positions each demineralization chamber block in two or more steps.

また、上記では[濃縮室(C)|アニオン交換膜(AEM)|脱塩室(D)|カチオン交換膜(CEM)|濃縮室(C)]からなる基本構成(セルセット)が陽極と陰極との間に配置されているものとした。しかしながら、電極間にこのようなセルセットを複数個並置し、電気的には複数個のセルセットが一端を陽極とし他端を陰極として直列接続されるようにして処理能力の増大を図ってもよい。
この場合、隣接するセルセット間で隣り合う濃縮室を共有することができる。よって、EDI装置の構成としては、[陽極室|C|AEM|D|CEM|C|AEM|D|CEM|C|AEM|D|CEM|…|C|陰極室]の構成が用いられてもよい。このような直列構造のEDI装置における脱塩室の数を「脱塩室セルペア数」とも称される。
また、このような直列構造において、陽極室に最も近い脱塩室については、陽極室との間に独立の濃縮室を介在させることなく陽極室自体を濃縮室としても機能させることができ、陰極室に最も近い脱塩室については、陰極室との間に濃縮室を介在させることなく陰極室自体を濃縮室としても機能させることができる。直流電圧の印加によって消費する電力を抑えるためには、陽極室および陰極室にもイオン交換体を充填して電気抵抗を下げてもよい。
In the above, the basic configuration (cell set) consisting of [concentration chamber (C) | anion exchange membrane (AEM) | desalination chamber (D) | cation exchange membrane (CEM) | concentration chamber (C)] is an anode and a cathode. Between the two. However, even if a plurality of such cell sets are juxtaposed between the electrodes, and the plurality of cell sets are electrically connected in series with one end as an anode and the other end as a cathode, the processing capacity can be increased. Good.
In this case, adjacent concentrating chambers can be shared between adjacent cell sets. Therefore, as the configuration of the EDI apparatus, the configuration of [anode chamber | C | AEM | D | CEM | C | AEM | D | CEM | C | AEM | D | CEM | ... | C | cathode chamber] is used. Also good. The number of desalting chambers in such a series-structured EDI apparatus is also referred to as “number of desalting chamber cell pairs”.
Further, in such a series structure, for the desalination chamber closest to the anode chamber, the anode chamber itself can function as a concentration chamber without interposing an independent concentration chamber between the anode chamber and the cathode chamber. For the desalting chamber closest to the chamber, the cathode chamber itself can also function as a concentrating chamber without interposing a concentrating chamber between it and the cathode chamber. In order to suppress the power consumed by the application of the DC voltage, the anode chamber and the cathode chamber may be filled with an ion exchanger to lower the electric resistance.

<実施例1〜5>
実施例1〜4の水処理装置として、第1の実施形態の水処理装置101を用いた。実施例1〜4の各々の違いは、濃縮室への供給水の通水方向(以下「濃縮室通水方向」と称する)と脱塩室への被処理水の通水方向(以下「脱塩室通水方向」と称する)との関係(並流か向流)の違いである。
実施例1では、1段目のEDI装置101aおよび2段目のEDI装置101bにおいて、濃縮室通水方向と脱塩室通水方向とを並流の関係とした。
実施例2では、1段目のEDI装置101aにおいては濃縮室通水方向と脱塩室通水方向とを並流の関係とし、2段目のEDI装置101bにおいては濃縮室通水方向と脱塩室通水方向とを向流の関係とした。この場合、2段目の濃縮室の入口と2段目の脱塩室の出口が隣接する。
実施例3では、1段目のEDI装置101aにおいては濃縮室通水方向と脱塩室通水方向とを向流の関係とし、2段目のEDI装置101bにおいては濃縮室通水方向と脱塩室通水方向とを並流の関係とした。この場合、1段目の濃縮室の入口と1段目の脱塩室の出口が隣接する。
実施例4では、1段目のEDI装置101aおよび2段目のEDI装置101bにおいて濃縮室通水方向と脱塩室通水方向とを向流の関係とした。この場合、1段目の濃縮室の入口と1段目の脱塩室の出口が隣接し、2段目の濃縮室の入口と2段目の脱塩室の出口が隣接する。
また、実施例5の水処理装置として、第2の実施形態の水処置装置201を用いた。実施例5では、1段目のEDI装置101cにおいては濃縮室通水方向と脱塩室通水方向とを向流の関係とし、2段目のEDI装置101dにおいては濃縮室通水方向と脱塩室23d−2での脱塩室通水方向とを向流の関係とした。
<Examples 1-5>
The water treatment apparatus 101 of 1st Embodiment was used as a water treatment apparatus of Examples 1-4. The difference between each of Examples 1 to 4 is that the direction of water supply to the concentrating chamber (hereinafter referred to as “concentrating chamber water passing direction”) and the direction of water to be treated to the desalting chamber (hereinafter “dewatering”). (Referred to as “salt chamber water flow direction”).
In Example 1, in the first-stage EDI apparatus 101a and the second-stage EDI apparatus 101b, the concentration chamber water flow direction and the desalination chamber water flow direction were in a parallel flow relationship.
In Example 2, in the first-stage EDI apparatus 101a, the flow direction of the concentrating chamber and the flow direction of the desalting chamber are in a co-current relationship, and in the second-stage EDI apparatus 101b, the flow direction of the concentrating chamber and the dewatering direction are removed. The flow direction of the salt room was considered as a countercurrent relationship. In this case, the inlet of the second stage enrichment chamber and the outlet of the second stage desalination chamber are adjacent.
In Example 3, in the first stage EDI apparatus 101a, the flow direction of the concentrating chamber and the direction of flow of the desalting chamber are countercurrently related, and in the second stage EDI apparatus 101b, the flow direction of the concentrating chamber and the direction of dewatering. The flow direction of the salt room was in a parallel flow relationship. In this case, the inlet of the first stage concentration chamber and the outlet of the first stage desalination chamber are adjacent.
In Example 4, in the first-stage EDI apparatus 101a and the second-stage EDI apparatus 101b, the water flow direction in the concentrating chamber and the water flow direction in the desalination chamber were in a countercurrent relationship. In this case, the inlet of the first-stage concentrating chamber and the outlet of the first-stage desalting chamber are adjacent, and the inlet of the second-stage concentrating chamber and the outlet of the second-stage desalting chamber are adjacent.
Moreover, the water treatment apparatus 201 of 2nd Embodiment was used as a water treatment apparatus of Example 5. FIG. In Example 5, the first-stage EDI device 101c has a countercurrent relationship between the flow direction of the concentrating chamber and the flow direction of the desalination chamber, and the second-stage EDI device 101d has a flow direction of the concentrating chamber and the dewatering direction. The water flow direction in the salt chamber 23d-2 was defined as a countercurrent relationship.

<比較例1〜2>
比較例1の水処理装置として、第1の実施形態の水処理装置101において、1段目のEDI装置101aの濃縮室22aおよび24aにアニオン交換体AERの代わりにカチオン交換体CERを単床形態で充填し、2段目のEDI装置101bの濃縮室22bおよび24bにカチオン交換体CERの代わりにアニオン交換体AERを単床形態で充填した水処理装置を用いた。比較例1では、1段目のEDI装置101aおよび2段目のEDI装置101bにおいて濃縮室通水方向と脱塩室通水方向とを向流の関係とした。
比較例2の水処理装置として、第1の実施形態の水処理装置101において、1段目のEDI装置101aの濃縮室22aおよび24aにアニオン交換体AERの代わりにアニオン交換体とカチオン交換体CERを混床形態で充填し、2段目のEDI装置101bの濃縮室22bおよび24bにカチオン交換体CERの代わりにアニオン交換体AERとカチオン交換体CERを混床形態で充填した水処理装置を用いた。比較例2では、1段目のEDI装置101aおよび2段目のEDI装置101bにおいて濃縮室通水方向と脱塩室通水方向とを向流の関係とした。
<Comparative Examples 1-2>
As a water treatment apparatus of Comparative Example 1, in the water treatment apparatus 101 of the first embodiment, a cation exchanger CER is used instead of the anion exchanger AER in the concentration chambers 22a and 24a of the first stage EDI apparatus 101a. The water treatment apparatus was used in which the concentration chambers 22b and 24b of the second stage EDI apparatus 101b were filled with an anion exchanger AER in a single bed form instead of the cation exchanger CER. In Comparative Example 1, the flow direction of the concentrating chamber and the direction of passing water of the desalting chamber were set to have a countercurrent relationship in the first stage EDI apparatus 101a and the second stage EDI apparatus 101b.
As the water treatment apparatus of Comparative Example 2, in the water treatment apparatus 101 of the first embodiment, an anion exchanger and a cation exchanger CER are used instead of the anion exchanger AER in the concentration chambers 22a and 24a of the first stage EDI apparatus 101a. Is used in a mixed bed form, and a water treatment apparatus is used in which the concentration chambers 22b and 24b of the second stage EDI apparatus 101b are filled with an anion exchanger AER and a cation exchanger CER in a mixed bed form instead of the cation exchanger CER. It was. In Comparative Example 2, the concentrating chamber water passing direction and the desalting chamber water passing direction were counterflowed in the first stage EDI apparatus 101a and the second stage EDI apparatus 101b.

実施例1〜5および比較例1〜2におけるEDI装置の仕様、通水流量、印加電流、被処理水の水質などの運転条件は、以下の通りである。
・アニオン交換体として、アニオン交換樹脂[商品名:アンバージェット4002(強塩基性陰イオン交換樹脂4002)、ダウ・ケミカル社製]を用い、カチオン交換体として、カチオン交換樹脂[商品名:アンバージェット1020(強酸性陽イオン交換樹脂1020)、ダウ・ケミカル社製]を用いた。
・アニオン交換樹脂とカチオン交換樹脂の両方が充填されている脱塩室23d−2では、アニオン交換樹脂とカチオン交換樹脂との体積の割合を1:1にした。
・1段目EDI装置に通水される被処理水として、RO(逆浸透膜)処理水(導電率:3〜4μS/cm、炭酸濃度:5〜6mgCO/L、硬度濃度:500〜600μgCaCO3/L)を用いた。
・セル(脱塩室、濃縮室、陽極室、陰極室)の容積を、100mm×100mm×10mmとした。
・脱塩室セルペア数を、5セルペアとした。
・被処理水流量を、100L/hとした。
・陽極と陰極との間を流れる電流の値を、0.4Aとした。
・濃縮室へ供給する供給水として、別系統からの純水を用いた。
・濃縮室への供給水流量を、25L/hとした。
・陽極室へ供給する供給水および陰極室へ供給する供給水として、別系統からの純水を用いた。
・陽極室へ供給する供給水流量および陰極室への供給水流量を、5L/hとした。
・陽極室および陰極室への供給水の通水方向を、電極室の電極反応にて発生するガスを排出するため、全て装置下部から上部に向かう方向とした(図1、2の下から上への方向)。
The operating conditions such as the specifications of the EDI apparatus, the water flow rate, the applied current, the quality of the water to be treated in Examples 1 to 5 and Comparative Examples 1 and 2 are as follows.
An anion exchange resin [trade name: Amberjet 4002 (strongly basic anion exchange resin 4002), manufactured by Dow Chemical Co., Ltd.] was used as the anion exchanger, and a cation exchange resin [trade name: Amberjet] 1020 (strongly acidic cation exchange resin 1020), manufactured by Dow Chemical Company].
In the desalting chamber 23d-2 filled with both the anion exchange resin and the cation exchange resin, the volume ratio of the anion exchange resin and the cation exchange resin was set to 1: 1.
-RO (reverse osmosis membrane) treated water (conductivity: 3-4 μS / cm, carbonic acid concentration: 5-6 mg CO 2 / L, hardness concentration: 500-600 μg CaCO as treated water to be passed through the first stage EDI apparatus 3 / L) was used.
The volume of the cell (desalting chamber, concentration chamber, anode chamber, cathode chamber) was 100 mm × 100 mm × 10 mm.
-The number of cell pairs in the desalination chamber was 5 cell pairs.
-The flow rate of water to be treated was 100 L / h.
The value of the current flowing between the anode and the cathode was 0.4A.
・ Pure water from another system was used as the supply water to be supplied to the concentrating chamber.
-The flow rate of water supplied to the concentrating chamber was 25 L / h.
-Pure water from another system was used as the supply water supplied to the anode chamber and the supply water supplied to the cathode chamber.
The flow rate of water supplied to the anode chamber and the flow rate of water supplied to the cathode chamber were set to 5 L / h.
-The direction of water supply to the anode and cathode chambers is all directed from the bottom to the top of the device in order to discharge the gas generated by the electrode reaction in the electrode chamber (from bottom to top in Figs. 1 and 2). Direction).

図3は、実施例1〜5および比較例1〜2における1段目のEDI装置でのスケールの発生状況および2段目のEDI装置から流出される処理水の水質の測定結果を示した図である。なお、図3では、アニオン交換体AERとカチオン交換体CERの混床形態を(MB)、アニオン交換体AERの単床形態を(A)、カチオン交換体CERの単床形態を(K)で示している。   FIG. 3 is a diagram showing a scale generation state in the first-stage EDI apparatus in Examples 1 to 5 and Comparative Examples 1 and 2 and a measurement result of the quality of the treated water discharged from the second-stage EDI apparatus. It is. In FIG. 3, the mixed bed form of anion exchanger AER and cation exchanger CER is (MB), the single bed form of anion exchanger AER is (A), and the single bed form of cation exchanger CER is (K). Show.

実施例1と実施例2との比較から分かるように、2段目のEDI装置の濃縮室通水方向を2段目のEDI装置の脱塩室通水方向と向流の関係にすることで、処理水の水質が向上した。これは、向流の場合に、濃縮室から脱塩室への弱酸アニオン成分の逆拡散量が減少していると推定される。   As can be seen from the comparison between Example 1 and Example 2, the flow direction of the concentrating chamber of the second-stage EDI device is made to have a countercurrent relationship with the water flow direction of the desalination chamber of the second-stage EDI device. The quality of treated water has been improved. This is presumed that the back diffusion amount of the weak acid anion component from the concentrating chamber to the desalting chamber decreases in the case of counterflow.

実施例1と実施例3との比較から分かるように、1段目のEDI装置の濃縮室通水方向を1段目のEDI装置の脱塩室通水方向と向流の関係にすることで、1段目EDI装置でのスケールの発生が抑制された。   As can be seen from the comparison between Example 1 and Example 3, the flow direction of the concentrating chamber of the first-stage EDI device is made to have a countercurrent relationship with the direction of water flow of the desalination chamber of the first-stage EDI device. The generation of scale in the first stage EDI apparatus was suppressed.

実施例4と比較例1との比較から分かるように、1段目および2段目のEDI装置の両方で、濃縮室通水方向を脱塩室通水方向と向流の関係にしても、比較例1のように1段目の濃縮室にカチオン交換体CERを充填すると、濃縮室内でのスケールの発生が抑制されなかった。また、比較例1のように2段目のEDI装置の濃縮室にアニオン交換体を充填すると、濃縮室内のアニオン交換体AERに吸着したアニオン成分の脱塩室側への拡散が起こり、処理水の水質低下が発生した。   As can be seen from the comparison between Example 4 and Comparative Example 1, in both the first stage and the second stage EDI devices, the concentration chamber water flow direction is in a relationship between the desalination chamber water flow direction and the countercurrent flow. When the first-stage concentration chamber was filled with the cation exchanger CER as in Comparative Example 1, the generation of scale in the concentration chamber was not suppressed. Moreover, when the anion exchanger is filled in the concentration chamber of the second-stage EDI apparatus as in Comparative Example 1, the anion component adsorbed on the anion exchanger AER in the concentration chamber diffuses to the desalting chamber side, and the treated water The water quality declined.

また、比較例1と比較例2の比較から以下の点が分かる。比較例2では1段目のEDI装置の濃縮室にアニオン交換体AERとカチオン交換体CERが混床形態で充填されているので、比較例1よりも濃縮室内でのカチオン交換体CERの連続性が悪くなる。このため、アニオン交換膜まで移動する硬度成分が減少し、スケールの発生状況は改善するが、スケールの発生は依然として多い。また、同様の理由で、2段目のEDI装置の濃縮室にアニオン交換体AERとカチオン交換体CERが混床形態で充填されていると、比較例1に比べて、濃縮室から脱塩室に拡散するアニオン成分が減少するため、水質は改善するが、高い水質を得ることはできなかった。   Moreover, the following points are understood from the comparison between Comparative Example 1 and Comparative Example 2. In Comparative Example 2, since the anion exchanger AER and the cation exchanger CER are filled in the concentration chamber of the first-stage EDI apparatus in a mixed bed form, the continuity of the cation exchanger CER in the concentration chamber is higher than in Comparative Example 1. Becomes worse. For this reason, the hardness component which moves to an anion exchange membrane decreases, and the generation | occurrence | production condition of a scale improves, but generation | occurrence | production of a scale is still many. For the same reason, when the anion exchanger AER and the cation exchanger CER are filled in the mixed chamber in the concentration chamber of the second-stage EDI apparatus, compared to Comparative Example 1, the concentration chamber is further desalted. Since the anion component diffusing in the water decreases, the water quality is improved, but high water quality cannot be obtained.

実施例4と実施例5との比較から分かるように、脱塩室が2室構造のEDI装置を用いることで、より高いスケール耐性と処理水の水質を得ることができた。   As can be seen from the comparison between Example 4 and Example 5, it was possible to obtain higher scale resistance and quality of the treated water by using an EDI apparatus having a two-salt desalination chamber.

<実施例6>
実施例6は、実施例5において、被処理水の硬度濃度を2000μgCaCO3/Lに固定した状態で、炭酸濃度を1〜25mgCO2/Lの範囲で変更した例である。
図4は、実施例6での2段目のEDI装置の脱塩室23d−1の入口での被処理水の炭酸濃度と、1段目のEDI装置でのスケールの発生状況と、2段目のEDI装置から流出される処理水の水質の測定結果を示した図である。なお、図4では、アニオン交換体AERの単床形態を(A)、カチオン交換体CERの単床形態を(K)で示している。
実施例6から分かるように、1段目のEDI装置への被処理水の炭酸濃度が3〜20mgCO2/Lである状況では、高い処理水質を得られ、さらに、2段目のEDI装置の脱塩室23d−1の入口での被処理水の炭酸濃度が1mgCO2/L以下となっていれば高い処理水質が保たれていた。また、硬度濃度が2000μgCaCO3/Lという高濃度の条件では、1段目のEDI装置への被処理水の炭酸濃度が3mgCO2/L以上でないと極めて多いスケールが発生した。なお、1段目のEDI装置への被処理水の炭酸濃度が1mgCO2/Lのときは安定した運転ができなかったため、図4において、処理水質に関するデータはない。
<Example 6>
Example 6 is an example in which the carbonic acid concentration was changed in the range of 1 to 25 mg CO 2 / L in the state where the hardness concentration of the water to be treated was fixed at 2000 μg CaCO 3 / L in Example 5.
FIG. 4 shows the carbon dioxide concentration of the water to be treated at the inlet of the desalination chamber 23d-1 of the second stage EDI apparatus in Example 6, the state of occurrence of scale in the first stage EDI apparatus, and the second stage. It is the figure which showed the measurement result of the quality of the treated water which flows out of the EDI apparatus of eyes. In FIG. 4, the single bed form of the anion exchanger AER is shown by (A), and the single bed form of the cation exchanger CER is shown by (K).
As can be seen from Example 6, in the situation where the carbon dioxide concentration of the water to be treated in the first stage EDI apparatus is 3 to 20 mg CO 2 / L, high treated water quality can be obtained, and further, the second stage EDI apparatus If the carbon dioxide concentration of the water to be treated at the inlet of the desalting chamber 23d-1 was 1 mg CO 2 / L or less, the quality of the treated water was maintained. In addition, under a high concentration condition of a hardness concentration of 2000 μg CaCO 3 / L, a very large scale was generated unless the carbonate concentration of the water to be treated to the first stage EDI apparatus was 3 mg CO 2 / L or more. Incidentally, carbonate concentration of the water to be treated to the EDI apparatus of the first stage is because when the 1mgCO 2 / L could not be stable operation, in FIG. 4, data relating to processing water is not.

11a、11b、11c、11d 陽極
12a、12b、12c、12d 陰極
21a、21b、21c、21d 陽極室
22a、24a、22b、24b、22c、24c、22d、24d 濃縮室
23a、23b、23c、23d 脱塩室
23c−1、23d−1 第1脱塩室
23c−2、23d−2 第2脱塩室
25a、25b、25c、25d 陰極室
31a、33a、31b、33b、31c、33c、31d、33d カチオン交換膜
32a、34a、32b、34b、32c、34c、32d、34d アニオン交換膜
36a、36b 中間イオン交換膜
CER カチオン交換体
AER アニオン交換体
101、201 水処理装置
101a、101b、101c、101d EDI装置
11a, 11b, 11c, 11d Anode 12a, 12b, 12c, 12d Cathode 21a, 21b, 21c, 21d Anode chamber 22a, 24a, 22b, 24b, 22c, 24c, 22d, 24d Concentration chamber 23a, 23b, 23c, 23d Salt chamber 23c-1, 23d-1 First desalting chamber 23c-2, 23d-2 Second desalting chamber 25a, 25b, 25c, 25d Cathode chamber 31a, 33a, 31b, 33b, 31c, 33c, 31d, 33d Cation Exchange Membrane 32a, 34a, 32b, 34b, 32c, 34c, 32d, 34d Anion Exchange Membrane 36a, 36b Intermediate Ion Exchange Membrane CER Cation Exchanger AER Anion Exchanger 101, 201 Water Treatment Equipment 101a, 101b, 101c, 101d EDI apparatus

Claims (11)

複数の電気式脱イオン水製造装置を有する水処理装置において、
前記複数の電気式脱イオン水製造装置の各々は、陽極と陰極との間に、前記陽極側に位置する第1アニオン交換膜と前記陰極側に位置するカチオン交換膜とで区画されイオン交換体が充填された脱塩室と、前記カチオン交換膜を介して前記脱塩室と隣接し前記陰極側が第2アニオン交換膜で区画された第1濃縮室と、前記第1アニオン交換膜を介して前記脱塩室と隣接する第2濃縮室と、を有し、
複数の前記脱塩室は、直列に連通しており、
前記直列に連通する複数の脱塩室は、被処理水を通水して処理水を流出し、
前記被処理水が最初に通水される1段目の前記脱塩室と隣接する前記第1濃縮室にアニオン交換体が充填され、
前記処理水を流出する最終段の前記脱塩室と前記カチオン交換膜を介して隣接する前記第1濃縮室では、当該カチオン交換膜の前記陰極側にカチオン交換体が単独で充填され、他の領域にアニオン交換体が充填されていることを特徴とする水処理装置。
In a water treatment apparatus having a plurality of electric deionized water production apparatuses,
Each of the plurality of electric deionized water production apparatuses is partitioned between an anode and a cathode by a first anion exchange membrane located on the anode side and a cation exchange membrane located on the cathode side. A first concentration chamber adjacent to the desalting chamber through the cation exchange membrane and having the cathode side partitioned by a second anion exchange membrane, and through the first anion exchange membrane A second concentrating chamber adjacent to the desalting chamber,
The plurality of desalting chambers communicate with each other in series.
The plurality of desalting chambers communicating in series with each other, the treated water is passed and the treated water flows out,
The first concentration chamber adjacent to the first-stage desalting chamber through which the water to be treated is first passed is filled with an anion exchanger,
In the first concentration chamber adjacent via the cation exchange membrane and the demineralization chamber in the final stage for flowing out the treated water, a cation exchanger is filled alone on the cathode side of the cation exchange membrane, A water treatment apparatus, wherein the region is filled with an anion exchanger.
前記1段目の脱塩室と隣接する第1濃縮室の入口と、前記1段目の脱塩室の出口が隣接している、請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein an inlet of the first concentration chamber adjacent to the first-stage desalting chamber and an outlet of the first-stage desalting chamber are adjacent to each other. 前記最終段の脱塩室と隣接する第1濃縮室の入口と、前記最終段の脱塩室の出口が隣接している、請求項1または2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein an inlet of the first concentration chamber adjacent to the final-stage desalting chamber and an outlet of the final-stage desalting chamber are adjacent to each other. 前記複数の脱塩室の少なくとも1つの脱塩室は、
前記アニオン交換膜と前記カチオン交換膜との間に位置する中間イオン交換膜と、
前記カチオン交換膜と前記中間イオン交換膜とで区画された第1小脱塩室と、
前記アニオン交換膜と前記中間イオン交換膜とで区画された第2小脱塩室と、を有し、
前記第1小脱塩室と前記第2小脱塩室とが直列に連通している、請求項1に記載の水処理装置。
At least one desalting chamber of the plurality of desalting chambers is
An intermediate ion exchange membrane located between the anion exchange membrane and the cation exchange membrane;
A first small desalting chamber partitioned by the cation exchange membrane and the intermediate ion exchange membrane;
A second small desalting chamber partitioned by the anion exchange membrane and the intermediate ion exchange membrane,
The water treatment device according to claim 1, wherein the first small desalting chamber and the second small desalting chamber communicate with each other in series.
前記1段目の脱塩室の中間イオン交換膜とカチオン交換膜にて区画された小脱塩室の出口と前記第1濃縮室の入口が隣接している、請求項4に記載の水処理装置。   5. The water treatment according to claim 4, wherein an outlet of a small desalting chamber partitioned by an intermediate ion exchange membrane and a cation exchange membrane of the first stage desalting chamber is adjacent to an inlet of the first concentration chamber. apparatus. 前記最終段の脱塩室の中間イオン交換膜とカチオン交換膜にて区画された小脱塩室の出口と前記第1濃縮室の入口が隣接している、請求項4または5に記載の水処理装置。   The water according to claim 4 or 5, wherein an outlet of a small desalting chamber partitioned by an intermediate ion exchange membrane and a cation exchange membrane of the final-stage desalting chamber and an inlet of the first concentration chamber are adjacent to each other. Processing equipment. 陽極と陰極との間に、前記陽極側に位置する第1アニオン交換膜と前記陰極側に位置するカチオン交換膜とで区画されイオン交換体が充填された脱塩室と、前記カチオン交換膜を介して前記脱塩室と隣接し前記陰極側が第2アニオン交換膜で区画された第1濃縮室と、前記第1アニオン交換膜を介して前記脱塩室と隣接する第2濃縮室と、を有する複数の電気式脱イオン水製造装置を備え、前記複数の電気式脱イオン水製造装置の各々の前記脱塩室は、直列に連通しており、前記直列に連通する複数の脱塩室は、被処理水を通水して処理水を流出し、前記被処理水が最初に通水される1段目の前記脱塩室と隣接する前記第1濃縮室にアニオン交換体が充填され、前記処理水を流出する最終段の前記脱塩室と前記カチオン交換膜を介して隣接する前記第1濃縮室では、当該カチオン交換膜の前記陰極側にカチオン交換体が単独で充填され、他の領域にアニオン交換体が単独で充填されている水処理装置を用いた水処理方法であって、
前記陽極と前記陰極との間に直流電圧を印加しつつ前記直列に連通する複数の脱塩室に前記被処理水を通水して前記被処理水を処理して前記処理水を流出することを特徴とする水処理方法。
A demineralization chamber partitioned between a first anion exchange membrane located on the anode side and a cation exchange membrane located on the cathode side and filled with an ion exchanger between the anode and the cathode, and the cation exchange membrane A first concentrating chamber adjacent to the desalting chamber via the cathode side and partitioned by a second anion exchange membrane, and a second concentrating chamber adjacent to the desalting chamber via the first anion exchange membrane. Each of the plurality of electric deionized water production apparatuses, the demineralization chambers of each of the plurality of electric deionized water production apparatuses are connected in series, and the plurality of demineralization chambers connected in series are The first concentration chamber adjacent to the first-stage desalting chamber through which the treated water flows and the treated water flows out, and the treated water is first passed is filled with an anion exchanger, Adjacent to the final stage of the desalting chamber through which the treated water flows out through the cation exchange membrane The first concentrating chamber is a water treatment method using a water treatment apparatus in which the cation exchanger is filled with the cation exchanger alone on the cathode side of the cation exchange membrane and the anion exchanger is filled alone in other regions. And
Passing the treated water through the plurality of desalting chambers communicating in series while applying a DC voltage between the anode and the cathode, treating the treated water and discharging the treated water A water treatment method characterized by.
前記1段目の脱塩室に供給する前記被処理水の炭酸濃度が、3〜20mgCO2/Lである請求項7に記載の水処理方法。 The water treatment method according to claim 7, wherein the carbon dioxide concentration of the water to be treated supplied to the first-stage desalting chamber is 3 to 20 mg CO 2 / L. 前記最終段の脱塩室に供給する被処理水の炭酸濃度が、1mgCO/L未満である請求項7または8に記載の水処理方法。 The water treatment method according to claim 7 or 8, wherein the carbon dioxide concentration of the water to be treated supplied to the final-stage desalting chamber is less than 1 mg CO 2 / L. 前記1段目の脱塩室に供給する前記被処理水の硬度濃度が、2000μgCaCO3/L以下である請求項7から9のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 7 to 9, wherein a hardness concentration of the water to be treated supplied to the first-stage desalting chamber is 2000 µg CaCO 3 / L or less. 前記最終段の脱塩室に供給する被処理水の硬度濃度が、20μgCaCO3/L以下である請求項7から10のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 7 to 10, wherein the hardness concentration of the water to be treated supplied to the final-stage desalting chamber is 20 µg CaCO 3 / L or less.
JP2019096072A 2019-05-22 2019-05-22 Water treatment equipment and water treatment method Active JP6752932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096072A JP6752932B2 (en) 2019-05-22 2019-05-22 Water treatment equipment and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096072A JP6752932B2 (en) 2019-05-22 2019-05-22 Water treatment equipment and water treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015194387A Division JP6542091B2 (en) 2015-09-30 2015-09-30 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2019135054A true JP2019135054A (en) 2019-08-15
JP6752932B2 JP6752932B2 (en) 2020-09-09

Family

ID=67623781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096072A Active JP6752932B2 (en) 2019-05-22 2019-05-22 Water treatment equipment and water treatment method

Country Status (1)

Country Link
JP (1) JP6752932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323500A (en) * 2020-09-15 2023-06-23 青岛海尔洗衣机有限公司 Electrolytic cell and ozone water dispersing device
WO2024048115A1 (en) * 2022-08-31 2024-03-07 オルガノ株式会社 Water treatment system and water treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694680A (en) * 1952-07-22 1954-11-16 Ionics Transfer of electrolytes in solution
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015083287A (en) * 2013-10-25 2015-04-30 オルガノ株式会社 Electro-type deionized water production apparatus and method for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694680A (en) * 1952-07-22 1954-11-16 Ionics Transfer of electrolytes in solution
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015083287A (en) * 2013-10-25 2015-04-30 オルガノ株式会社 Electro-type deionized water production apparatus and method for operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323500A (en) * 2020-09-15 2023-06-23 青岛海尔洗衣机有限公司 Electrolytic cell and ozone water dispersing device
WO2024048115A1 (en) * 2022-08-31 2024-03-07 オルガノ株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP6752932B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
CA2470633C (en) Fractional deionization process
KR100697049B1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP2007175647A (en) Electric deionized water production apparatus and deionized water production method
JP2022520341A (en) Electrolyzer for hydrogen and oxygen production
JP2009226315A (en) Electric deionized water manufacturing device and manufacturing method of deionized water
JP5295927B2 (en) Electric deionized water production equipment
JP4828242B2 (en) Electric deionized water production apparatus and deionized water production method
JP6752932B2 (en) Water treatment equipment and water treatment method
JP5145305B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP6507258B2 (en) Water treatment apparatus and water treatment method
JP2015226910A (en) Electric deionized water production apparatus
JP5379025B2 (en) Electric deionized water production equipment
KR20130119977A (en) Electric device for producing deionized water
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP6542091B2 (en) Water treatment apparatus and water treatment method
JP5806038B2 (en) Electric deionized water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP3729348B2 (en) Electric regenerative desalination equipment
JP2003326270A (en) Electric regenerative demineralizer
JP2012152740A (en) Electric deionized water producing apparatus, and method of producing deionized water
JP5689032B2 (en) Electric deionized water production equipment
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
KR20150069546A (en) Water softener and method regenerating for ion exchange resin
JP2009214076A (en) Device and system for producing deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250