JP3918199B2 - Activated carbon treatment equipment - Google Patents
Activated carbon treatment equipment Download PDFInfo
- Publication number
- JP3918199B2 JP3918199B2 JP25242995A JP25242995A JP3918199B2 JP 3918199 B2 JP3918199 B2 JP 3918199B2 JP 25242995 A JP25242995 A JP 25242995A JP 25242995 A JP25242995 A JP 25242995A JP 3918199 B2 JP3918199 B2 JP 3918199B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- packed bed
- water
- treatment apparatus
- carbon treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は活性炭処理装置に係り、特に、少量の殺菌剤で効果的に殺菌処理することができる活性炭処理装置に関する。
【0002】
【従来の技術】
従来、各種排水のCODや色度等の難生物分解性物質を処理する方法として、活性炭処理法がある。この方法は、活性炭充填層が形成された活性炭吸着塔内に、被処理排水を上向流又は下向流で通水することにより排水を活性炭と接触させ、活性炭の吸着作用等で、CODや色度等を除去する方法である。
【0003】
活性炭処理法における排水処理のメカニズムは、排水の通水初期においては、主に活性炭による吸着作用によるものであるが、通水を継続することにより、活性炭表面に生物膜が形成され、この生物膜による分解作用が主体となる。この生物膜が過度に成長すると、活性炭の吸着作用が低下し、総合的な処理効率は低下してくる。
【0004】
このような生物膜の形成で吸着効率が低下した場合、活性炭充填層を逆洗すると共に、微生物の活性を低下させるための殺菌処理を施すことがある。具体的な殺菌方法としては、熱水殺菌、蒸気殺菌、塩素殺菌がある。
【0005】
この熱水殺菌は、80℃以上の熱水を1時間以上活性炭吸着塔に通水、保持する方法であるが、生菌量が多く、例えば、108個/ml以上の場合には、高温の熱水を長時間通水、保持する必要があり、工業的に有利な方法とは言えない。
【0006】
また、蒸気殺菌は、120℃以上の蒸気を15分以上通すことで、ほぼ完全な殺菌状態とすることができるが、吸着塔を耐高圧性のものとする必要があり、設備コストが嵩むという不具合がある。
【0007】
これに対し、塩素殺菌であれば、次亜塩素酸ナトリウム(NaClO)等の塩素系殺菌剤を添加した薬液を一定量通水することで、上記のような問題を生じることなく、比較的良好な殺菌効果を得ることができる。この塩素殺菌法としては、特開平5−64782号公報に、逆洗水にNaClO等を添加して逆洗を行う方法が提案されている。
【0008】
【発明が解決しようとする課題】
一般に、排水の活性炭処理においては、下向流で排水を通水処理し、逆洗に当っては上向流洗浄の向流逆洗を行った場合に、最も良好な処理水質を得ることができる。
【0009】
しかしながら、塩素系殺菌剤は活性炭と接触すると分解してCl- を生成して殺菌効果が失われるところから、下向流通水を行った活性炭吸着塔を、NaClO等の塩素系殺菌剤を添加した逆洗水を用いて上向流洗浄を行った場合には、被処理排水の導入側であって、最も生物膜による汚染が激しい活性炭充填層の殺菌が不十分になり易い。即ち、この下降流通水・上向流逆洗の場合、逆洗水中に添加された塩素系殺菌剤はまず活性炭充填層下部の生物膜があまり付着していない活性炭と接触するため、塩素系殺菌剤中の塩素成分の多くが活性炭充填層の下部においてCl-となってしまい、活性炭充填層の上部までは十分な量の未分解塩素系殺菌剤が供給されないことになる。この結果、生物膜付着量の多く、強い殺菌処理が必要な活性炭充填層上部の殺菌が不十分になってしまう。
【0010】
下向流通水・上向流逆洗の場合においても、充填層全体を十分に殺菌するためには、活性炭吸着塔内の活性炭充填層高さを低くするか、或いは、殺菌剤を高濃度に添加することが必要となる。しかしながら、活性炭充填層高さを低くする場合には、相対的に、活性炭吸着塔の塔径を大きくする必要があり、装置設置スペースの面で不利である。また、殺菌剤濃度を高めることは、薬剤コストの高騰を招く上に、塩素を分解することで活性炭が消耗するため、好ましいことではない。
【0011】
本発明は上記従来の問題点を解決し、少量の殺菌剤で塔内を均一かつ効率的に殺菌処理することができる活性炭処理装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の活性炭処理装置は、活性炭充填層と逆洗水導入手段とを備える活性炭処理装置において、通水方向に対して多段に設けられた各活性炭充填層にそれぞれ殺菌剤を導入する手段を設けるか、或いは、活性炭充填層の通水方向の末端部と途中部分とに殺菌剤を導入する手段を設けたものであり、各活性炭充填層の高さ、或いは、活性炭充填層における、殺菌剤を導入する手段間の小区画の高さが30〜50cmであり、殺菌剤として塩素系殺菌剤を用い、逆洗水通水LV10〜20m/hr、各活性炭充填層又は各小区画の入口部Cl 2 濃度5〜10mg/lの条件で殺菌処理が行われるものである。
【0013】
本発明の活性炭処理装置では、多段に設けた活性炭充填層の各々に殺菌剤を導入するか、或いは、活性炭充填層の途中部分にも殺菌剤を導入することにより、塔内の活性炭を通水方向に対して複数に分割して殺菌処理することができる。このため、少量の殺菌剤使用量で塔内を均一かつ効率的に殺菌処理することができる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について詳細に説明する。
【0015】
図1,2は各々本発明の活性炭処理装置の一実施例を示す系統図である。
【0016】
図1に示す活性炭処理装置1は、活性炭吸着塔2内に、活性炭充填層3A,3B,3Cを多段(本実施例においては、3段であるが、2段或いは4段以上であっても良い。)に形成した多段方式のものであり、各活性炭充填層3A,3B,3Cの下部に殺菌剤導入手段を設けたものである。即ち、各活性炭充填層3A,3B,3Cの下部には、散水板4A,4B,4Cが設けられ、NaClO水溶液貯槽5内のNaClO水溶液が、ポンプP1 を備える配管6及び各分岐配管6A,6B,6Cを経て注入されるように構成されている。図中、7はポンプP2
を備える逆洗水導入配管であり、逆洗水貯槽8内の逆洗水は、配管7より活性炭吸着塔2の底部より導入され、逆洗排水は、活性炭吸着塔2の頂部より、配管9を経て系外へ排出される。
【0017】
なお、この活性炭処理装置1の活性炭吸着塔2には、図示しない被処理水の導入配管と処理水の排出配管が設けられており、被処理水が上向流又は下向流、好ましくは下向流で通水処理されるように構成されている。
【0018】
本実施例の活性炭処理装置1において、活性炭吸着塔2内の殺菌を行うには、ポンプP1 ,P2 を作動させて、NaClO水溶液貯槽5内のNaClO水溶液を配管6及び各分岐配管6A,6B,6C、散水板4A,4B,4Cを経て、各活性炭充填層3A,3B,3Cに添加すると共に、逆洗水貯槽8内の逆洗水を所定の通水LVで配管7より上向流通水して逆洗を行う。
【0019】
これにより、各活性炭充填層3A,3B,3Cは、各々層毎に添加されるNaClOにより均一かつ効果的に殺菌される。
【0020】
なお、図1において、NaClO水溶液注入配管6Cは、逆洗水導入配管7に接続し、NaClOを注入した逆洗水を最下段の散水板4Cから導入するようにしても良い。
【0021】
図2に示す活性炭処理装置1Aは、活性炭吸着塔2内に1層の活性炭充填層3のみを設けた単層方式のものであり、図2において、図1に示す部材と同一機能を奏する部材には、同一符号を付してある。
【0022】
本実施例の活性炭処理装置1Aでは、活性炭充填層3の通水方向の途中部分に散水板4A,4B,4Cを設け、各散水板4A,4B,4Cに、配管6及び配管6A,6B,6Cを経てNaClO水溶液を注入するように構成されると共に、活性炭充填層3の下部に設けられた散水板4Dに連通する逆洗水導入配管7にも、配管6及び配管6Dを経てNaClO水溶液を注入するように構成されている。
【0023】
従って、本実施例の活性炭処理装置1Aでは、配管6A,6B,6C,6D及び散水板4A,4B,4C,4Dを経て注入されるNaClO水溶液により、活性炭充填層3が散水板間の小区画3a,3b,3c,3d毎に殺菌されるようになり、各々の小区画3a〜3dが均一かつ効率的に殺菌される。
【0024】
なお、図1の如く、活性炭充填層を多段に設けた場合の各充填層3A〜3Cの高さ(第1図のL)、或いは、図2の、単層の活性炭充填層3における散水板間の小区画3a〜3dの高さ(第2図のL’)が過度に高い場合、本発明による殺菌効率の改善効果が十分に得られず、殺菌剤濃度の低減が図れない。逆に、このL,L’の値が過度に小さいと装置が複雑化する。従って、L,L’は30〜50cmとする。また、逆洗時においては、充填層展開率30%以上、特に30〜80%で逆洗を行うのが好ましい。
【0025】
本発明の活性炭処理装置において、殺菌剤としては、NaClOの他、NaClO2 、サラシ粉等を用いることができ、特にNaClO等の塩素系殺菌剤の添加量が、各活性炭充填層のCl2濃度、即ち、逆洗排水のCl2 濃度が5〜10mg/lとなるように各殺菌剤導入手段から注入する。
【0026】
特に、本発明においては、生菌数105 〜108 個/mlの活性炭吸着塔に対して、逆洗水通水LV10〜20m/hr、活性炭充填層の入口部Cl2濃度5〜10mg/lの条件で殺菌処理を行う。
【0027】
また、殺菌処理時間については、長い程殺菌効果が高いが、反面、活性炭がCl2 を徐々に分解することにより活性炭寿命が短くなる。一般に、塔内生菌数が106個/mlの場合において、活性炭充填層入口部Cl2 濃度5mg/lで殺菌した場合、1分以内で生菌数10個/ml以下に殺菌することが可能であるが、Cl2濃度変化を考慮した場合、20分程度の殺菌処理を行うのが好ましい。
【0028】
なお、前述の如く、活性炭処理装置においては、被処理水を下向流で通水し、上向流で逆洗水を通水する向流洗浄を行うのが、処理水質の面から最も好適であるが、本発明の活性炭処理装置では、これに限らず、上向流通水及び上向流逆洗の並(順)流洗浄を適用しても良い。
【0029】
【実施例】
以下、参考例、実施例及び比較例を挙げて本発明をより具体的に説明する。
【0030】
実施例1,2、参考例1〜3
図1に示すような本発明の活性炭処理装置を用いて、活性炭の逆洗を行った。
【0031】
直径30mm,高さ3000mmの塩化ビニル製カラムに20/40メッシュの活性炭を、高さ50cmに充填した活性炭充填層を1段、2段又は3段に形成したものを各々準備し、各カラムに水道水を通水処理することにより、活性炭により生菌を繁殖させカラム流出水の生菌数を約106 個/mlとした。
【0032】
各々のカラムに各層の入口部のCl2 濃度が表1の値となるようにNaClO水溶液を注入すると共に、逆洗水として水道水を一定のLV(10m/hr)で通水し(逆洗時の活性炭展開率30%)、逆洗開始から10分後の逆洗排水中の残留Cl2濃度と、生菌数を調べ、結果を表1に示した。
【0033】
【表1】
【0034】
なお、逆洗水の通水LVを20m/hr,充填層展開率80%として上記と同様の操作を行った場合も同様の結果が得られたが、逆洗水の通水LVを5m/hrとして、上記と同様の操作を行ったところ、層高0.5m,充填層の入口Cl2 濃度200mg/lの場合であっても残留Cl2 は不検出となり、逆洗水の通水LVが低いとCl2の分解が促進されることが確認された。
【0035】
これらの結果から、各充填層入口Cl2 濃度を5〜10mg/lとし、逆洗水通水LV10〜20m/hrとした場合において、効率的な逆洗を行えることがわかる。
【0036】
比較例1
実施例1,2及び参考例1〜3において、最下段の活性炭充填層にのみNaClO水溶液の注入を行ったところ、層高0.5mの場合には、実施例1,2、参考例1〜3と同様の操作が行われるため、同様の結果が得られたが、層高1m及び1.5mの場合には、各充填層の入口Cl2 濃度200mg/lでも、残留Cl2 は不検出となり、生菌数は300〜700個/mlで、十分な殺菌効果が得られなかった。
【0037】
【発明の効果】
以上詳述した通り、本発明の活性炭処理装置によれば、少ない殺菌剤使用量で塔内を均一かつ効率的に殺菌することができるため、活性炭充填層高の低減、即ち、装置設置スペースの増大を招くことなく、活性炭処理装置を低コストにかつ効率的に殺菌することができる。
【図面の簡単な説明】
【図1】 本発明の活性炭処理装置の一実施例を示す系統図である。
【図2】 本発明の活性炭処理装置の他の実施例を示す系統図である。
【符号の説明】
1,1A 活性炭処理装置
2 活性炭吸着塔
3,3A,3B,3C 活性炭充填層
4A,4B,4C,4D 散水板
5 NaClO水溶液貯槽
8 逆洗水貯槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an activated carbon treatment apparatus, and more particularly to an activated carbon treatment apparatus that can be effectively sterilized with a small amount of a sterilizing agent.
[0002]
[Prior art]
Conventionally, there is an activated carbon treatment method as a method of treating difficult biodegradable substances such as COD and chromaticity of various wastewaters. In this method, the wastewater to be treated is brought into contact with activated carbon by passing the wastewater to be treated in an upward flow or a downward flow in an activated carbon adsorption tower in which an activated carbon packed bed is formed. This is a method for removing chromaticity and the like.
[0003]
The mechanism of wastewater treatment in the activated carbon treatment method is mainly due to the adsorption action of activated carbon in the initial stage of drainage water flow. By continuing the water flow, a biofilm is formed on the activated carbon surface. Decomposition action by the main. When this biofilm grows excessively, the adsorption action of activated carbon decreases, and the overall treatment efficiency decreases.
[0004]
When the adsorption efficiency decreases due to the formation of such a biofilm, the activated carbon packed bed may be backwashed and sterilized to reduce the activity of microorganisms. Specific sterilization methods include hot water sterilization, steam sterilization, and chlorine sterilization.
[0005]
The hot water sterilization, passed through a 80 ° C. or more hot water in 1 hour or more activated carbon adsorption tower, is a method of retaining, many viable amounts, for example, in the case of more than 10 8 / ml is hot It is necessary to pass and maintain hot water for a long time, which is not an industrially advantageous method.
[0006]
In addition, steam sterilization can be almost completely sterilized by passing steam at 120 ° C. or higher for 15 minutes or more, but it is necessary to make the adsorption tower resistant to high pressure, which increases equipment costs. There is a bug.
[0007]
On the other hand, in the case of chlorine sterilization, a certain amount of chemical solution to which a chlorine-based disinfectant such as sodium hypochlorite (NaClO) is added is relatively good without causing the above problems. Sterilizing effect can be obtained. As this chlorine sterilization method, Japanese Patent Laid-Open No. 5-64782 proposes a method of performing backwashing by adding NaClO or the like to backwashing water.
[0008]
[Problems to be solved by the invention]
Generally, in the activated carbon treatment of wastewater, the best treated water quality can be obtained when the wastewater is treated in the downflow and the backwashing is performed in the upward flow. it can.
[0009]
However, since chlorine-based disinfectant decomposes when it comes into contact with activated carbon and Cl - is generated and the disinfection effect is lost, an activated carbon adsorption tower in which downward circulating water is added is added chlorine-based disinfectant such as NaClO. When up-flow washing is performed using backwash water, sterilization of the activated carbon packed bed on the introduction side of the wastewater to be treated and which is most heavily contaminated with the biofilm tends to be insufficient. That is, in the case of this downward circulation water / upward flow backwashing, the chlorine-based disinfectant added to the backwash water first comes into contact with the activated carbon to which the biofilm below the activated carbon packed bed is not attached so much. many chlorine component in the agent Cl at the bottom of the activated carbon packed bed - and will become in, so that the undecomposed chlorine-based germicide to the top of the activated carbon packed bed sufficient amount is not supplied. As a result, the sterilization of the upper part of the activated carbon packed bed that requires a large amount of biofilm and requires a strong sterilization treatment becomes insufficient.
[0010]
Even in the case of downward circulating water / upward backwashing, in order to sufficiently sterilize the entire packed bed, the activated carbon packed bed height in the activated carbon adsorption tower should be lowered, or the sterilizing agent should be in a high concentration. It is necessary to add. However, when the activated carbon packed bed height is lowered, it is necessary to relatively increase the diameter of the activated carbon adsorption tower, which is disadvantageous in terms of apparatus installation space. In addition, increasing the concentration of the bactericidal agent is not preferable because the activated carbon is consumed by decomposing chlorine as well as causing an increase in drug cost.
[0011]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide an activated carbon treatment apparatus that can uniformly and efficiently sterilize the inside of a tower with a small amount of a sterilizing agent.
[0012]
[Means for Solving the Problems]
The activated carbon treatment apparatus of the present invention is an activated carbon treatment apparatus provided with an activated carbon packed bed and backwashing water introduction means, and is provided with means for introducing a bactericide into each activated carbon packed bed provided in multiple stages in the direction of water flow. Or, a means for introducing a bactericidal agent is provided at the end portion and the middle portion of the activated carbon packed bed in the direction of water flow, and the height of each activated carbon packed bed or the bactericidal agent in the activated carbon packed bed is changed. the height of the small section between the means for introducing the Ri 30~50cm der, using a chlorine-based germicide as fungicides, backwash water through water LV10~20m / hr, inlet of the activated carbon packed bed or each cubicle conditions sterilization of Cl 2 concentration 5 to 10 mg / l is shall take place.
[0013]
In the activated carbon treatment apparatus of the present invention, the activated carbon in the tower is allowed to flow by introducing a bactericidal agent into each of the activated carbon packed beds provided in multiple stages or by introducing a bactericidal agent into the middle part of the activated carbon packed bed. The sterilization process can be performed by dividing into a plurality of directions. For this reason, the inside of the tower can be uniformly and efficiently sterilized with a small amount of the sterilizing agent used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
1 and 2 are system diagrams each showing an embodiment of the activated carbon treatment apparatus of the present invention.
[0016]
The activated carbon treatment apparatus 1 shown in FIG. 1 has activated carbon packed
The backwash water in the backwash
[0017]
The activated
[0018]
In the activated carbon treatment apparatus 1 of the present embodiment, in order to sterilize the activated
[0019]
Thereby, each activated
[0020]
In FIG. 1, the NaClO aqueous
[0021]
The activated
[0022]
In the activated
[0023]
Therefore, in the activated
[0024]
As shown in FIG. 1, the height of each of the packed
[0025]
In the activated carbon treatment apparatus of the present invention, as the sterilizing agent, NaClO 2 , NaClO 2 , salty powder, etc. can be used. In particular , the addition amount of a chlorine-based sterilizing agent such as NaClO is the Cl 2 concentration of each activated carbon packed bed. , i.e., it injected from the sterilizing agent inlet means so as Cl 2 concentration of the backwash effluent is 5 to 10 mg / l.
[0026]
In particular, in the present invention, with respect to the activated carbon adsorption tower having 10 5 to 10 8 viable bacteria / ml, the backwash water flow LV is 10 to 20 m / hr, and the Cl 2 concentration at the inlet portion of the activated carbon packed bed is 5 to 10 mg / hr. It intends line sterilization treatment under the conditions of l.
[0027]
As for the sterilization treatment time, the longer the sterilization effect, the higher the sterilization effect. On the other hand, the activated carbon gradually decomposes Cl 2 and the activated carbon life is shortened. In general, when the number of viable bacteria in the tower is 10 6 / ml, sterilization with an activated carbon packed bed inlet portion Cl 2 concentration of 5 mg / l can be sterilized to 10 viable cells or less within 1 minute. Although it is possible, when considering the change in the Cl 2 concentration, it is preferable to perform sterilization treatment for about 20 minutes.
[0028]
As described above, in the activated carbon treatment apparatus, it is most preferable in terms of the quality of the treated water to perform the countercurrent washing in which the water to be treated is passed downward and the backwash water is passed upward. However, the activated carbon treatment apparatus of the present invention is not limited to this, and parallel (forward) washing of upward circulation water and upward flow backwashing may be applied.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to reference examples, examples and comparative examples.
[0030]
Examples 1 and 2 and Reference Examples 1 to 3
The activated carbon was washed back using the activated carbon treatment apparatus of the present invention as shown in FIG.
[0031]
Prepare a column of activated carbon with 20/40 mesh activated carbon packed in a 30 mm diameter, 3000 mm high column and a 50 cm high activated carbon packed bed formed in one, two or three stages. By passing tap water through, viable bacteria were propagated by activated carbon, and the viable count of column effluent was about 10 6 cells / ml.
[0032]
A NaClO aqueous solution was injected into each column so that the Cl 2 concentration at the inlet of each layer was the value shown in Table 1, and tap water was passed as a backwash water at a constant LV (10 m / hr) (backwash). The activated charcoal development rate was 30%), the residual Cl 2 concentration in the backwash wastewater 10 minutes after the start of backwashing, and the number of viable bacteria were examined. The results are shown in Table 1.
[0033]
[Table 1]
[0034]
The same result was obtained when the same operation was performed with the backwash water flow rate LV of 20 m / hr and the packed bed expansion rate of 80%, but the backwash water flow rate LV was 5 m / hr. When the same operation as above was performed as hr, residual Cl 2 was not detected even when the bed height was 0.5 m and the inlet Cl 2 concentration of the packed bed was 200 mg / l, and the backwash water flow LV It was confirmed that the decomposition of Cl 2 was promoted at a low value.
[0035]
From these results, each filling layer inlet Cl 2 concentration of 5 to 10 mg / l, in case of the backwash water through water LV10~20m / hr, it is seen that allows efficient backwash.
[0036]
Comparative Example 1
In Examples 1 and 2 and Reference Examples 1 to 3 , when the NaClO aqueous solution was injected only into the lowest activated carbon packed bed, when the layer height was 0.5 m, Examples 1 and 2 and Reference Examples 1 to 2 were used . Since the same operation as in No. 3 was performed, the same result was obtained. However, when the bed height was 1 m and 1.5 m, the residual Cl 2 was not detected even at the inlet Cl 2 concentration of 200 mg / l in each packed bed. Thus, the viable count was 300 to 700 / ml, and a sufficient bactericidal effect was not obtained.
[0037]
【The invention's effect】
As described above in detail, according to the activated carbon treatment apparatus of the present invention, the inside of the tower can be uniformly and efficiently sterilized with a small amount of disinfectant used. Without causing an increase, the activated carbon treatment apparatus can be sterilized at low cost and efficiently.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an activated carbon treatment apparatus of the present invention.
FIG. 2 is a system diagram showing another embodiment of the activated carbon treatment apparatus of the present invention.
[Explanation of symbols]
1, 1A Activated
Claims (2)
該活性炭充填層は、通水方向に対して多段に設けられており、各活性炭充填層にそれぞれ殺菌剤を導入する手段が設けられている活性炭処理装置であって、
各活性炭充填層の高さが30〜50cmであり、殺菌剤として塩素系殺菌剤を用い、逆洗水通水LV10〜20m/hr、各活性炭充填層の入口部Cl 2 濃度5〜10mg/lの条件で殺菌処理が行われることを特徴とする活性炭処理装置。In the activated carbon treatment apparatus comprising the activated carbon packed bed and the backwash water introduction means,
The activated carbon packed bed is provided in multiple stages with respect to the direction of water flow, and is an activated carbon treatment apparatus provided with means for introducing a bactericide into each activated carbon packed bed,
The height of each activated carbon packed bed Ri 30~50cm der, using a chlorine-based germicide as fungicides, backwash water through water LV10~20m / hr, inlet Cl 2 concentration of the activated carbon packed bed 5 to 10 mg / activated carbon treatment apparatus sterilized under conditions of l is carried out, it characterized in Rukoto.
該活性炭充填層の通水方向の末端部と途中部分とに殺菌剤を導入する手段が設けられている活性炭処理装置であって、
活性炭充填層における、殺菌剤を導入する手段間の小区画の高さが30〜50cmであり、殺菌剤として塩素系殺菌剤を用い、逆洗水通水LV10〜20m/hr、各小区画の入口部Cl 2 濃度5〜10mg/lの条件で殺菌処理が行われることを特徴とする活性炭処理装置。In the activated carbon treatment apparatus comprising the activated carbon packed bed and the backwash water introduction means,
An activated carbon treatment apparatus provided with means for introducing a bactericidal agent into the end portion and the middle portion of the activated carbon packed bed in the direction of water flow,
In the activated carbon packed bed, Ri height 30~50cm der small compartment between means for introducing sterilizing agent, using a chlorine-based germicide as fungicides, backwash water through water LV10~20m / hr, the small compartment activated carbon treatment apparatus conditions in sterilization of the inlet portion Cl 2 concentration 5 to 10 mg / l is carried out, characterized in Rukoto.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25242995A JP3918199B2 (en) | 1995-09-29 | 1995-09-29 | Activated carbon treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25242995A JP3918199B2 (en) | 1995-09-29 | 1995-09-29 | Activated carbon treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0994568A JPH0994568A (en) | 1997-04-08 |
JP3918199B2 true JP3918199B2 (en) | 2007-05-23 |
Family
ID=17237249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25242995A Expired - Fee Related JP3918199B2 (en) | 1995-09-29 | 1995-09-29 | Activated carbon treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3918199B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4608765B2 (en) * | 2000-11-27 | 2011-01-12 | 栗田工業株式会社 | Biodegradation method of TOC component |
JP5061410B2 (en) * | 2001-05-11 | 2012-10-31 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
KR20130014493A (en) | 2010-03-05 | 2013-02-07 | 쿠리타 고교 가부시키가이샤 | Water treatment method and process for producing ultrapure water |
JP5604913B2 (en) * | 2010-03-05 | 2014-10-15 | 栗田工業株式会社 | Water treatment method and ultrapure water production method |
JP5915127B2 (en) * | 2011-12-05 | 2016-05-11 | 栗田工業株式会社 | Backwashing method of biological activated carbon tower |
-
1995
- 1995-09-29 JP JP25242995A patent/JP3918199B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0994568A (en) | 1997-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11891311B2 (en) | Process and system for back-and-forth washing of adsorptive media | |
Laîné et al. | Status after 10 years of operation—overview of UF technology today | |
JP6251095B2 (en) | Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms | |
KR0180853B1 (en) | Ultrapure water production system having pretreatment system for paper forming both anerobic and aerobic organism treatment | |
JP3370576B2 (en) | Ultrapure water production equipment | |
JP2009055821A (en) | Seawater-purifying apparatus for making fish or shellfish to live and method for purifying the seawater | |
JP3918199B2 (en) | Activated carbon treatment equipment | |
JP2004025018A (en) | Sea water desalting apparatus by reverse osmosis | |
JP3201077B2 (en) | Advanced water treatment method | |
JP4608765B2 (en) | Biodegradation method of TOC component | |
JP6742128B2 (en) | Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method | |
JP2008012462A (en) | Method and system for cleaning and sterilizing filter | |
JP7188942B2 (en) | MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD | |
JP5915127B2 (en) | Backwashing method of biological activated carbon tower | |
JP2005131559A (en) | Re-purification treatment method of tap water and re-purification treatment equipment therefor | |
CN102502987A (en) | ClO2 oxidation/sand filtration ClO2 oxidation/sand filtration synergic control method for aquatic organism pollution in waterworks | |
JPH0592183A (en) | Sterilization of actrivated carbon | |
JP3583608B2 (en) | Electrolytic sterilizing apparatus and electrolytic sterilizing method | |
JP2001314851A (en) | Water circulating and sterilizing apparatus | |
JP2732190B2 (en) | Method for controlling trihalomethane formation by low pressure reverse osmosis membrane | |
JPH1119655A (en) | Method for sterilizing bath water | |
JPH0137996B2 (en) | ||
JPH0592182A (en) | Method for sterilizing and neutralizing activeted carbon by acid and alkali | |
JP2005224756A (en) | Water treatment apparatus | |
JP3294681B2 (en) | Activated carbon tower microbe sterilization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061120 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |