JP3201077B2 - Advanced water treatment method - Google Patents

Advanced water treatment method

Info

Publication number
JP3201077B2
JP3201077B2 JP17240193A JP17240193A JP3201077B2 JP 3201077 B2 JP3201077 B2 JP 3201077B2 JP 17240193 A JP17240193 A JP 17240193A JP 17240193 A JP17240193 A JP 17240193A JP 3201077 B2 JP3201077 B2 JP 3201077B2
Authority
JP
Japan
Prior art keywords
treatment
activated carbon
trihalomethane
granular activated
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17240193A
Other languages
Japanese (ja)
Other versions
JPH07124593A (en
Inventor
真人 大西
啓子 宮森
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP17240193A priority Critical patent/JP3201077B2/en
Publication of JPH07124593A publication Critical patent/JPH07124593A/en
Application granted granted Critical
Publication of JP3201077B2 publication Critical patent/JP3201077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高度浄水処理方法に係
り、特にオゾン処理と粒状活性炭処理を組み入れた高度
浄水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an advanced water purification method, and more particularly to an advanced water purification method incorporating ozone treatment and granular activated carbon treatment.

【0002】[0002]

【従来の技術】近年、水道水源の汚濁進行に伴い、微量
有機塩素化合物や異臭味の問題がクローズアップされて
いる。従来の浄水処理は、前塩素処理、凝集沈殿、砂濾
過及び後塩素処理工程で構成され、前塩素処理によるト
リハロメタン生成や異臭味(かび臭)を除去できないと
いう問題があった。
2. Description of the Related Art In recent years, problems with trace amounts of organic chlorine compounds and off-flavors have been highlighted with the progress of pollution of tap water sources. The conventional water purification treatment includes pre-chlorination, coagulation sedimentation, sand filtration, and post-chlorination treatment steps, and has a problem in that trihalomethane generation and off-flavor (mold odor) cannot be removed by the pre-chlorination treatment.

【0003】このような背景を踏まえ、近年、高度浄水
処理の検討が進められ、特に、生物活性炭処理が脚光を
浴びている。生物活性炭処理とは、好気状態に保たれた
粒状活性炭層に棲息する好気性微生物の働きによりアン
モニア性窒素の硝化や有機物分解を行う処理方法で、活
性炭に付着した微生物が活性炭に吸着された有機物を分
解除去することによる生物再生効果により、活性炭寿命
が延びるといわれている。この生物活性炭処理によるト
リハロメタンの低減化は、トリハロメタンの前駆物質
(フミン質等)を除去することによって行われる。
[0003] In view of such a background, studies on advanced water purification treatment have been advanced in recent years, and in particular, biological activated carbon treatment has been spotlighted. Biological activated carbon treatment is a method of nitrifying ammonia nitrogen and decomposing organic substances by the action of aerobic microorganisms living in a granular activated carbon layer maintained in an aerobic state, and microorganisms attached to activated carbon are adsorbed on activated carbon. It is said that the activated carbon life is prolonged due to the biological regeneration effect by decomposing and removing organic substances. The reduction of trihalomethane by the biological activated carbon treatment is performed by removing a precursor (such as humic substance) of trihalomethane.

【0004】ところで、一般にトリハロメタンとは、ク
ロロホルム(CHCl3 )、ブロモジクロロメタン(C
HBrCl2 )、ジブロモクロロメタン(CHBr2
l)及びブロモホルム(CHBr3 )の4種のトリハロ
メタン化合物の総称であり、これら4物質の生成量は、
水中に存在する臭素イオン量により変化し、臭素イオン
が多いほど臭素系トリハロメタンが多くなり、その結
果、総トリハロメタン量も増加する。我が国では、19
81年3月の厚生省通達により、水道水中の総トリハロ
メタンの制御目標値を0.1mg/l以下とするように行
政指導されてきたが、1992年12月の大幅な水質基
準見直しによりトリハロメタンについては総量の他に4
物質個別についても基準値が設けられ、規制が強化され
た。
Incidentally, trihalomethane generally means chloroform (CHCl 3 ), bromodichloromethane (C
HBrCl 2 ), dibromochloromethane (CHBr 2 C)
l) and bromoform (CHBr 3 ), which is a general term for four types of trihalomethane compounds.
It changes depending on the amount of bromine ions present in the water. As the amount of bromine ions increases, the amount of brominated trihalomethane increases, and as a result, the total amount of trihalomethane also increases. In Japan, 19
Although the Ministry of Health and Welfare issued a directive in March 1981 to control the total target trihalomethane in tap water to 0.1 mg / l or less, a major review of water quality standards in December 1992 revealed that 4 in addition to the total amount
Standards were set for individual substances, and regulations were strengthened.

【0005】実原水中の臭素イオン濃度は、塩素イオン
濃度に比例し、海水等の影響により塩素イオン濃度が上
昇すると、臭素イオン濃度も上昇する。我々は、海水遡
上の影響を受けて塩素イオン及び臭素イオン濃度が比較
的高い原水を用いて高度浄水処理実験を行ったところ、
生物活性炭処理においては、塩素系のトリハロメタン前
駆物質は良好に除去できるが、臭素系のものは塩素系の
ものより除去しにくいことを発見した。また、生物が関
与しない粒状活性炭への吸着性は、臭素系のトリハロメ
タンの方が塩素系のものより高いことが判明した。
[0005] The bromine ion concentration in actual raw water is proportional to the chloride ion concentration, and when the chloride ion concentration increases due to the influence of seawater or the like, the bromine ion concentration also increases. We conducted an advanced water purification treatment experiment using raw water with a relatively high concentration of chlorine and bromine ions due to the effect of seawater intrusion.
In biological activated carbon treatment, it was discovered that chlorine-based trihalomethane precursors could be removed well, but bromine-based ones were more difficult to remove than chlorine-based ones. In addition, it was found that bromine-based trihalomethane had higher adsorptivity to granular activated carbon that did not involve living matter than chlorine-based one.

【0006】このように、トリハロメタンを構成する物
質毎に、活性炭による除去性が異なっており、特に、海
水等の影響により塩素イオン濃度が高い原水を生物活性
炭で処理する際には、臭素系のトリハロメタン前駆物質
が除去できず、最終処理水中に臭素系トリハロメタンが
残存するという問題点があった。
[0006] As described above, the removability of activated carbon is different for each substance constituting trihalomethane. Particularly, when raw water having a high chloride ion concentration due to the influence of seawater or the like is treated with biological activated carbon, a bromine-based material is used. There was a problem that the trihalomethane precursor could not be removed and the brominated trihalomethane remained in the final treated water.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解消し、塩素系トリハロメタン及び
臭素系トリハロメタンの両者の濃度を効率よく著しく低
減しうる高度浄水処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an advanced water purification method which solves the above-mentioned problems of the prior art and can efficiently and remarkably reduce the concentration of both chlorinated trihalomethanes and brominated trihalomethanes. It is in.

【0008】[0008]

【課題を解決するための手段】本発明は、生物活性炭処
理では臭素系トリハロメタンの前駆物質が除去しにく
く、また、粒状活性炭への吸着性は臭素系のトリハロメ
タンの方が塩素系より高いことを実験により確認し、凝
集沈殿処理と砂濾過処理と塩素消毒処理から構成される
浄水処理プロセスに、オゾン処理と粒状活性炭処理を付
加した高度浄水処理方法において、実原水中の臭素系ト
リハロメタン前駆物質濃度が高い場合に、粒状活性炭処
理を生物活性炭処理と粒状活性炭吸着処理の二工程で行
うことによって、臭素系のトリハロメタンが残存しない
最終処理水が得られるように構成したものである。
SUMMARY OF THE INVENTION The present invention is based on the finding that the treatment of biological activated carbon makes it difficult to remove the precursor of brominated trihalomethane, and that the adsorption of granular activated carbon to brominated trihalomethane is higher than that of chlorine-based trihalomethane. Confirmed by experiments, the concentration of bromine-based trihalomethane precursors in actual raw water was determined by an advanced water purification method that added ozone treatment and granular activated carbon treatment to a water purification process consisting of coagulation sedimentation, sand filtration, and chlorination. Is high, the granular activated carbon treatment is performed in two steps of biological activated carbon treatment and granular activated carbon adsorption treatment, so that final treated water in which brominated trihalomethane does not remain can be obtained.

【0009】すなわち、本発明による高度浄水処理方法
は、凝集沈殿処理と砂濾過処理と塩素消毒処理から構成
される浄水処理プロセスに、オゾン処理と粒状活性炭処
理を付加した高度浄水処理方法において、実原水中の塩
素イオン濃度、臭素イオン濃度及び電導度のうち少なく
とも一つを連続的にモニタリングし、その濃度が設定値
よりも高い場合に、粒状活性炭処理を生物活性炭処理と
粒状活性炭吸着処理との二工程で行うことを特徴とす
る。
[0009] That is, the advanced water purification method according to the present invention is an advanced water purification method in which ozone treatment and granular activated carbon treatment are added to a water purification treatment process comprising coagulation sedimentation treatment, sand filtration treatment and chlorination treatment. Continuously monitor at least one of chloride ion concentration, bromide ion concentration and conductivity in raw water and set the concentration to the set value.
If higher than, and performing granular activated carbon treatment in two steps with the biological activated carbon treatment and granular activated carbon adsorption treatment.

【0010】本発明の方法において、生物活性炭処理だ
けでなく粒状活性炭吸着処理も行うのは、臭素系トリハ
ロメタン前駆物質が含まれる原水を処理する場合である
が、原水の臭素系トリハロメタン前駆物質濃度は、原水
の塩素イオン濃度、臭素イオン濃度及び電導度のうちの
少なくとも一つをモニタリングすることによって知るこ
とができる。すなわち、直接、臭素イオン濃度をモニタ
リングしてもよいが、一般に塩素イオン濃度が高い場合
には、臭素イオン濃度も高いので、塩素イオン濃度をモ
ニタリングしてもよいし、電導度を測定することによっ
て、臭素イオン濃度を推測することもできる。もちろ
ん、前記の複数のモニタリング項目を計測してもよい。
[0010] In the method of the present invention, not only the biological activated carbon treatment but also the granular activated carbon adsorption treatment is performed when treating raw water containing a brominated trihalomethane precursor. , By monitoring at least one of the chloride ion concentration, the bromine ion concentration and the conductivity of the raw water. That is, although the bromine ion concentration may be directly monitored, generally, when the chloride ion concentration is high, since the bromine ion concentration is also high, the chloride ion concentration may be monitored, or by measuring the conductivity. And the bromine ion concentration can also be estimated. Of course, the plurality of monitoring items may be measured.

【0011】上記のモニタリングにより原水中に臭素系
トリハロメタン前駆物質が高濃度に含まれると計測され
た場合には、生物活性炭処理で未処理となった臭素系ト
リハロメタン前駆物質を塩素消毒処理により臭素系トリ
ハロメタンに変換した後、これを粒状活性炭に吸着させ
て除去する。そのため、本発明の方法においては、上記
のモニタリングにより、塩素消毒処理後の臭素系トリハ
ロメタンの生成量が0.03mg/l以上になると推定さ
れる場合に、生物活性炭処理と粒状活性炭処理とを併用
するのが好ましい。なお、本発明の方法において、生物
活性炭処理及び粒状活性炭吸着処理は、固定層式、流動
層式のいずれでもよい。
In the case where the above monitoring shows that the raw water contains a high concentration of a brominated trihalomethane precursor, the brominated trihalomethane precursor which has not been treated by the biological activated carbon treatment is treated with a chlorine-based disinfecting treatment to obtain a brominated trihalomethane precursor. After conversion to trihalomethane, it is removed by adsorption on granular activated carbon. Therefore, in the method of the present invention, when it is estimated from the above monitoring that the production amount of brominated trihalomethane after the chlorination treatment is 0.03 mg / l or more, the biological activated carbon treatment and the granular activated carbon treatment are used in combination. Is preferred. In the method of the present invention, the biological activated carbon treatment and the granular activated carbon adsorption treatment may be any of a fixed bed type and a fluidized bed type.

【0012】[0012]

【実施例】次に、図面を参照して本発明を実施例に基づ
いてさらに具体的に説明するが、本発明はこれによって
制限されるものではない。図1は、本発明の高度浄水処
理方法の第一の実施例を示す概略系統図である。図1に
おいて、実原水は凝集沈殿処理槽1、オゾン処理槽2及
び生物活性炭処理槽3順次通水され、処理される。次い
で、塩素消毒液槽4から塩素消毒液を注入した後、砂濾
過処理槽5に通水される。砂濾過処理槽5の後段には三
方弁6が設けられており、処理水を最終処理水として系
外に排出するラインと粒状活性炭吸着処理槽7に導入す
るラインとに分かれている。原水を凝集沈殿処理槽1に
流入するラインには、塩素イオン濃度モニタ8が設置さ
れており、このモニタの測定濃度により三方弁6の開閉
動作が制御されるように制御機構(図示していない)を
備える。
Next, the present invention will be described more specifically based on embodiments with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a schematic system diagram showing a first embodiment of the advanced water purification treatment method of the present invention. In FIG. 1, actual raw water is sequentially passed through a coagulation / sedimentation treatment tank 1, an ozone treatment tank 2, and a biological activated carbon treatment tank 3, and is treated. Next, after the chlorine disinfecting solution is injected from the chlorine disinfecting solution tank 4, the water is passed through the sand filtration treatment tank 5. A three-way valve 6 is provided at the subsequent stage of the sand filtration tank 5 and is divided into a line for discharging the treated water out of the system as the final treated water and a line for introducing the treated water into the granular activated carbon adsorption treatment tank 7. A chlorine ion concentration monitor 8 is provided in a line for flowing the raw water into the coagulation / sedimentation treatment tank 1, and a control mechanism (not shown) controls the opening and closing operation of the three-way valve 6 based on the measured concentration of the monitor. ).

【0013】前記のように、原水中の塩素イオン濃度が
低い場合は、臭素イオン濃度も低いため、生物活性炭処
理に供されるトリハロメタン前駆物質もほとんど塩素系
であるから、生物活性炭処理でトリハロメタン前駆物質
が良好に除去され、最終処理水中のトリハロメタンは極
めて微量に抑えることができる。したがって、この場合
には、砂濾過処理槽5からの処理水を最終処理水として
流出させて差し支えない。一方、原水中の塩素イオン濃
度が高い場合には、臭素系のトリハロメタン前駆物質を
多量に含んだ水が生物活性炭処理に供され、臭素系のト
リハロメタン前駆物質があまり除去されずに塩素消毒処
理され、臭素系トリハロメタンを生成する。この臭素系
トリハロメタンは、砂濾過処理では除去できない。した
がって、この場合には、砂濾過処理槽5からの処理水を
さらに粒状活性炭吸着処理槽7へ流入させる。臭素系ト
リハロメタンは、粒状活性炭に効率よく吸着されるの
で、粒状活性炭吸着処理槽7で充分に除去される。
As described above, when the chlorine ion concentration in the raw water is low, the bromine ion concentration is low, and the trihalomethane precursor supplied to the biological activated carbon treatment is almost chlorine-based. The material is well removed and the trihalomethane in the final treated water can be kept very small. Therefore, in this case, the treated water from the sand filtration tank 5 may flow out as the final treated water. On the other hand, when the chlorine ion concentration in the raw water is high, water containing a large amount of bromine-based trihalomethane precursor is subjected to biological activated carbon treatment, and chlorine-disinfection treatment is performed without removing much of the bromine-based trihalomethane precursor. To produce brominated trihalomethanes. This brominated trihalomethane cannot be removed by sand filtration. Therefore, in this case, the treated water from the sand filtration tank 5 is further flowed into the granular activated carbon adsorption tank 7. Since the brominated trihalomethane is efficiently adsorbed on the granular activated carbon, it is sufficiently removed in the granular activated carbon adsorption treatment tank 7.

【0014】本発明の第一の実施例において、粒状活性
炭吸着処理槽7に通水するか否かは、原水中の塩素イオ
ン濃度をモニタリングし、その濃度によって決定する
が、その設定値は原水の性状、例えば有機物量なども考
慮して決定する必要がある。例えば、同じ塩素イオン濃
度でも原水の種類により臭素イオン濃度も異なり、ま
た、有機物量が少ないと、生成するトリハロメタン量も
少なく、基準値以下となることもある。したがって、事
前に処理対象となる原水中の塩素イオン濃度と臭素イオ
ン濃度の相関式、有機物量とトリハロメタン前駆物質量
の関係等の調査をし、設定値を決定する。
In the first embodiment of the present invention, whether or not water is passed through the granular activated carbon adsorption treatment tank 7 is determined by monitoring the chloride ion concentration in the raw water, and the set value is determined by the raw water. It is necessary to determine in consideration of the properties of, for example, the amount of organic substances. For example, even at the same chloride ion concentration, the bromine ion concentration varies depending on the type of raw water, and when the amount of organic matter is small, the amount of trihalomethane generated is small and may be below the reference value. Therefore, the correlation value between the chloride ion concentration and the bromine ion concentration in the raw water to be treated and the relationship between the amount of organic substances and the amount of the trihalomethane precursor are investigated in advance to determine the set value.

【0015】以上のように、原水中の塩素イオン濃度に
より、生物活性炭処理に供されるトリハロメタン前駆物
質の構成を予想し、除去できなかった臭素系トリハロメ
タン前駆物質については、塩素消毒処理により臭素系ト
リハロメタンに変換した後、粒状活性炭吸着処理槽7で
臭素系トリハロメタンを吸着除去することにより、総ト
リハロメタン量を低減化することができる。
As described above, the composition of the trihalomethane precursor to be subjected to the biological activated carbon treatment is predicted based on the chlorine ion concentration in the raw water. For the bromine-based trihalomethane precursor that could not be removed, the bromine-based trihalomethane precursor was removed by the chlorine disinfection treatment. After conversion into trihalomethane, the total amount of trihalomethane can be reduced by adsorbing and removing brominated trihalomethane in the granular activated carbon adsorption treatment tank 7.

【0016】図2は、本発明の第二の実施例を示すもの
で、三方弁6を塩素消毒液注入点と砂濾過処理槽5との
間に設け、砂濾過処理槽5に導入され、最終処理水を得
るラインと、粒状活性炭吸着処理槽7に導入されるライ
ンに分かれている点で、図1に示した第一の実施例と相
違する。この実施例によれば、粒状活性炭吸着処理が必
要な際のプロセス全体での処理時間の短縮化を図ること
ができ、しかも第一の実施例と同等の処理効果が達成さ
れる。
FIG. 2 shows a second embodiment of the present invention, in which a three-way valve 6 is provided between the injection point of the chlorine disinfectant and the sand filtration tank 5, and is introduced into the sand filtration tank 5. It differs from the first embodiment shown in FIG. 1 in that it is divided into a line for obtaining the final treated water and a line introduced into the granular activated carbon adsorption treatment tank 7. According to this embodiment, it is possible to reduce the processing time of the entire process when the granular activated carbon adsorption treatment is required, and to achieve the same processing effect as that of the first embodiment.

【0017】本発明の方法において、高度浄水処理の処
理工程の順序は、粒状活性炭吸着処理を最終工程とする
こと以外は、前記の実施例に限定されるものではなく、
図3あるいは図4に示した順序で処理を行ってもよい。
図3は、本発明の第三の実施例を示すもので、砂濾過処
理槽5を凝集沈殿処理槽1とオゾン処理槽2の間に配置
した点で図1に示した第一の実施例と異なる。また、図
4は、本発明の第四の実施例を示すもので、砂濾過処理
槽5をオゾン処理槽2と生物活性炭処理槽3との間に配
置した点で第一の実施例と異なる。
In the method of the present invention, the order of the treatment steps of the advanced water purification treatment is not limited to the above embodiment except that the granular activated carbon adsorption treatment is the final step.
The processing may be performed in the order shown in FIG. 3 or FIG.
FIG. 3 shows a third embodiment of the present invention. The first embodiment shown in FIG. 1 is different from the first embodiment in that the sand filtration tank 5 is disposed between the coagulation / sedimentation tank 1 and the ozone treatment tank 2. And different. FIG. 4 shows a fourth embodiment of the present invention, which differs from the first embodiment in that a sand filtration tank 5 is disposed between an ozone treatment tank 2 and a biological activated carbon treatment tank 3. .

【0018】[0018]

【発明の効果】本発明の高度浄水処理方法によれば、塩
素系トリハロメタン前駆物質ばかりでなく、臭素系トリ
ハロメタン前駆物質を高濃度に含む原水が流入した場合
にも、それに容易に対処でき、効率よく高度処理するこ
とができ、総トリハロメタン量が著しく低減した最終処
理水を得ることができる。
According to the high-purity water treatment method of the present invention, it is possible to easily cope with the inflow of raw water containing not only a chlorine-based trihalomethane precursor but also a bromine-based trihalomethane precursor at a high concentration. Advanced treatment can be performed well, and final treated water in which the total amount of trihalomethane is significantly reduced can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例を示す概略系統図であ
る。
FIG. 1 is a schematic system diagram showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示す概略系統図であ
る。
FIG. 2 is a schematic system diagram showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す概略系統図であ
る。
FIG. 3 is a schematic system diagram showing a third embodiment of the present invention.

【図4】本発明の第四の実施例を示す概略系統図であ
る。
FIG. 4 is a schematic system diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 凝集沈殿処理槽 2 オゾン処理槽 3 生物活性炭処理槽 4 塩素消毒液槽 5 砂濾過処理槽 6 三方弁 7 粒状活性炭吸着処理槽 8 塩素イオン濃度モニタ 1 Coagulation sedimentation treatment tank 2 Ozone treatment tank 3 Biological activated carbon treatment tank 4 Chlorine disinfectant tank 5 Sand filtration treatment tank 6 Three-way valve 7 Granular activated carbon adsorption treatment tank 8 Chloride ion concentration monitor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 9/00 503 C02F 9/00 503A 504 504A 504E 1/28 ZAB 1/28 ZABF 1/52 1/52 Z 1/78 1/78 3/06 3/06 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C02F 9/00 503 C02F 9/00 503A 504 504A 504E 1/28 ZAB 1/28 ZABF 1/52 1/52 Z 1/78 1 / 78 3/06 3/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】凝集沈殿処理と砂濾過処理と塩素消毒処理
から構成される浄水処理プロセスに、オゾン処理と粒状
活性炭処理を付加した高度浄水処理方法において、実原
水中の塩素イオン濃度、臭素イオン濃度及び電導度のう
ち少なくとも一つを連続的にモニタリングし、その濃度
設定値よりも高い場合に、粒状活性炭処理を生物活性
炭処理と粒状活性炭吸着処理との二工程で行うことを特
徴とする高度浄水処理方法。
An advanced water purification method in which an ozone treatment and a granular activated carbon treatment are added to a water purification treatment process comprising a coagulation sedimentation treatment, a sand filtration treatment, and a chlorine disinfection treatment. At least one of the concentration and the conductivity is continuously monitored, and when the concentration is higher than a set value , the granular activated carbon treatment is performed in two steps of a biological activated carbon treatment and a granular activated carbon adsorption treatment. Advanced water treatment method.
【請求項2】 二工程に分けられた粒状活性炭処理のう
ち、前段を生物活性炭処理とする請求項1記載の高度浄
水処理方法。
2. The advanced water purification method according to claim 1, wherein, of the granular activated carbon treatment divided into two steps, the former stage is a biological activated carbon treatment.
JP17240193A 1993-06-18 1993-06-18 Advanced water treatment method Expired - Lifetime JP3201077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17240193A JP3201077B2 (en) 1993-06-18 1993-06-18 Advanced water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17240193A JP3201077B2 (en) 1993-06-18 1993-06-18 Advanced water treatment method

Publications (2)

Publication Number Publication Date
JPH07124593A JPH07124593A (en) 1995-05-16
JP3201077B2 true JP3201077B2 (en) 2001-08-20

Family

ID=15941269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17240193A Expired - Lifetime JP3201077B2 (en) 1993-06-18 1993-06-18 Advanced water treatment method

Country Status (1)

Country Link
JP (1) JP3201077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355376A (en) * 2014-10-20 2015-02-18 苏州富奇诺水治理设备有限公司 Coagulant for industrial water pretreatment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268967B1 (en) * 2009-10-29 2013-05-29 김도환 System purifying water using biological activated carbon and granular activated carbon
CN103241856B (en) * 2012-02-06 2016-04-27 上海市政工程设计研究总院(集团)有限公司 A kind of water treatment device and water technology thereof processing the larger former water of turbidity luffing
KR101360017B1 (en) * 2013-03-12 2014-02-12 재단법인 한국계면공학연구소 Method of water treatment and system using the same
CN103435179A (en) * 2013-08-13 2013-12-11 柳州博泽科技有限公司 Drinking water treatment system
KR101469891B1 (en) * 2014-01-13 2014-12-05 재단법인 한국계면공학연구소 Water-blending treatment system and method using the same
CN104192935B (en) * 2014-08-26 2016-03-23 北京博力扬环保科技有限公司 A kind of method utilizing discarded coke powder to activate rear advanced treatment of landfill leachate
CN104727791A (en) * 2015-01-27 2015-06-24 大庆学府石油科技有限公司 Integrated advanced water treatment purifier
CN105174546A (en) * 2015-09-23 2015-12-23 江西中捷工程建设有限公司 Industrial wastewater treatment system
CN105776672B (en) * 2016-05-12 2019-03-29 秦皇岛佰工钢铁有限公司 A kind of energy-efficient waste water treatment process
CN108217974A (en) * 2018-01-24 2018-06-29 上海华严检测技术有限公司 A kind of preparation method of biological activated carbon filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355376A (en) * 2014-10-20 2015-02-18 苏州富奇诺水治理设备有限公司 Coagulant for industrial water pretreatment

Also Published As

Publication number Publication date
JPH07124593A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
CN101704609B (en) Feedwater treatment method by pre-ozonation and aerated biological activated carbon
CN1257117C (en) Permangnate preoxidation and bioactive carbon combined use to remove contamination technique
JP3201077B2 (en) Advanced water treatment method
Yang et al. Ammonia removal in bubble column by ozonation in the presence of bromide
Wert et al. Biofiltration for removal of BOM and residual ammonia following control of bromate formation
Ivancev-Tumbas et al. The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite
Ferguson et al. Applying ozone for organics control and disinfection: a utility perspective
JP5259311B2 (en) Water treatment method and water treatment system used therefor
Chen et al. Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products
Xie et al. A review on bromate occurrence and removal strategies in water supply
US6602426B2 (en) Water treatment using ozone and having a reduced likelihood of bromate formation from bromides found in the water
JPS6336890A (en) Apparatus for producing high-purity water
JP7212478B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
Wilczak et al. Effects of treatment changes on chloramine demand and decay
Myers Evaluating alternative disinfectants for THM control in small systems
Collivignarelli et al. Chlorite removal with GAC
CN1583580A (en) Method for treating urban drinking water by radiation
JP3918199B2 (en) Activated carbon treatment equipment
Świetlik et al. Reduction of ClO2 demand by ClO2 oxidation and subsequent GAC filtration
Lauer et al. Process selection for potable reuse health effects studies
JP2005131559A (en) Re-purification treatment method of tap water and re-purification treatment equipment therefor
Ke-xin et al. Performance of combined pre-ozonation and biofiltration for the purification of water from ching yellow river
JP2001179296A (en) Method for treating water containing nitrate ions and/or nitrite ions
JPH06285368A (en) Regenerating method of zeolite for removing ammonia
JP3857071B2 (en) Wastewater disinfection method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term