JP5259311B2 - Water treatment method and water treatment system used therefor - Google Patents

Water treatment method and water treatment system used therefor Download PDF

Info

Publication number
JP5259311B2
JP5259311B2 JP2008228107A JP2008228107A JP5259311B2 JP 5259311 B2 JP5259311 B2 JP 5259311B2 JP 2008228107 A JP2008228107 A JP 2008228107A JP 2008228107 A JP2008228107 A JP 2008228107A JP 5259311 B2 JP5259311 B2 JP 5259311B2
Authority
JP
Japan
Prior art keywords
water
ozone
treatment
treated
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008228107A
Other languages
Japanese (ja)
Other versions
JP2010058078A (en
Inventor
健一 宍田
研吾 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2008228107A priority Critical patent/JP5259311B2/en
Publication of JP2010058078A publication Critical patent/JP2010058078A/en
Application granted granted Critical
Publication of JP5259311B2 publication Critical patent/JP5259311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、水処理方法及びそれに用いる水処理システムに関する。さらに詳しくは、例えば最終処分場浸出水や下水二次処理水といった廃水等の被処理水中の、特に化学的酸素要求量(以下、CODという)を著しく低減させ、次亜塩素酸の発生を充分に抑制し、安全で水質変動が極めて少ない安定した処理水を低コストで得ることが可能な水処理方法、及びそれに用いる水処理システムに関する。   The present invention relates to a water treatment method and a water treatment system used therefor. More specifically, for example, chemical oxygen demand (hereinafter referred to as COD) in treated water such as final disposal site leachate and sewage secondary treated water is significantly reduced, and hypochlorous acid is sufficiently generated. The present invention relates to a water treatment method and a water treatment system used therefor, which can obtain stable treated water that is safe and has little fluctuation in water quality at low cost.

なお、本明細書において「水処理」とは「水浄化」を意味し、被処理水中のCODを低減させる操作に加え、被処理水を消毒、殺菌、脱色等する操作や、被処理水中の生物学的酸素要求量(以下、BODという)、難生物分解性物質、菌類等の低減や有機物の分解、透明度の改善等を行う操作も含む。   In this specification, “water treatment” means “water purification”, in addition to operations for reducing COD in treated water, operations for disinfecting, sterilizing, and decolorizing treated water, This includes operations for reducing biological oxygen demand (hereinafter referred to as BOD), non-biodegradable substances, fungi, etc., decomposing organic substances, and improving transparency.

近年、水資源は有限なものであることから、廃水を浄化して再利用することの重要性が再認識されてきている。一方、上水道水源では微量汚染物質による汚染が問題となっており、従来の窒素やリンの除去を目的とした高度処理に加え、脱臭、脱色、殺菌、微量汚染物質の除去を目的とした処理方法の導入が検討されている。   In recent years, since water resources are limited, the importance of purifying and reusing wastewater has been recognized again. On the other hand, contamination by trace pollutants is a problem in water supply sources, and in addition to the conventional advanced treatment aimed at removing nitrogen and phosphorus, treatment methods aimed at deodorizing, decolorizing, sterilizing and removing trace pollutants The introduction of is being considered.

廃水処理には、一般に、活性汚泥法を代表とする生物処理法が適用される。しかしながら、該生物処理法はBODの低減効果は非常に高いものの、難生物分解性物質由来のCODを低減する効果は小さいため、高いCOD低減効果を得るには、別途処理が必要である。特に近年は、閉鎖性水域におけるCODが環境基準を達成していない箇所も多く、CODの低減が重要視されている。   In general, biological treatment methods represented by the activated sludge method are applied to wastewater treatment. However, although the biological treatment method has a very high BOD reduction effect, the effect of reducing the COD derived from a hardly biodegradable substance is small. Therefore, a separate treatment is required to obtain a high COD reduction effect. Particularly in recent years, there are many places where COD in closed waters has not achieved environmental standards, and reduction of COD is regarded as important.

そこで、生物処理後のCODを低減するために、従来は活性炭処理が行われていたが、吸着後の活性炭を廃棄もしくは再生しなければならず、廃水処理の維持管理費が上昇するという問題があった。   Therefore, in order to reduce COD after biological treatment, activated carbon treatment has been conventionally performed. However, activated carbon after adsorption must be discarded or regenerated, which increases the maintenance cost of wastewater treatment. there were.

これに対して、前記活性炭処理の代わりにオゾンを利用してCODを低減する試みもなされている。オゾンを利用した場合には、活性炭処理を行った場合と比較してランニングコストを低くすることが可能である。しかしながら、オゾンは反応初期には速やかにCODを低減させることが可能であるものの、その処理効果には限界があり、通常廃水の30〜60%程度のCODを低減させた後は、オゾン注入率を増大させても、CODの低減効果は低下してしまう。したがって、オゾン処理は、目的とするCOD低減率が低い場合でなければ効果的ではない。しかも、一般にオゾン処理を行うと、難生物分解性物質が易生物分解性物質へと変換されてBODが増加してしまう。   In contrast, attempts have been made to reduce COD using ozone instead of the activated carbon treatment. When ozone is used, it is possible to reduce the running cost as compared with the case where activated carbon treatment is performed. However, although ozone can reduce COD quickly at the beginning of the reaction, its treatment effect is limited, and after reducing COD of about 30-60% of normal wastewater, the ozone injection rate Even if it increases, the reduction effect of COD will fall. Therefore, the ozone treatment is not effective unless the target COD reduction rate is low. Moreover, in general, when ozone treatment is performed, the hardly biodegradable substance is converted into an easily biodegradable substance, resulting in an increase in BOD.

そこで、オゾン処理と前記生物処理とを併用し、廃水中のBODの増加を抑制しながらCODを低減させる方法が各種提案されている(例えば、特許文献1〜8参照)。   Therefore, various methods for reducing COD while suppressing increase in BOD in wastewater using ozone treatment and the biological treatment in combination have been proposed (see, for example, Patent Documents 1 to 8).

しかしながら、生物処理において生物活性炭を用いる場合、CODが高い廃水を処理する際に生物活性炭の負荷が上昇し、CODの低減に伴って発生する汚泥量が多くなる。その結果、生物活性炭層が閉塞する危険性が高まって生物活性炭層の逆洗頻度が上昇し、水処理システムを満足に運転することができなくなる。   However, when biological activated carbon is used in biological treatment, the load of biological activated carbon rises when wastewater with high COD is treated, and the amount of sludge generated with a reduction in COD increases. As a result, the risk of clogging the biological activated carbon layer increases, the frequency of backwashing the biological activated carbon layer increases, and the water treatment system cannot be operated satisfactorily.

また、オゾン処理において廃水に大量のオゾンを注入すると、ランニングコストが上昇するだけでなく、オゾンは被酸化性物質の酸化に利用されると共に、廃水中の塩素イオンと反応してしまうため、オゾンの注入量に比例して次亜塩素酸の発生量が増加する。発生した次亜塩素酸は、次の生物処理において生物を死滅させてしまうため、期待されるCOD低減効果が得られないといった悪影響が現れる。またオゾン処理水を次工程で利用しない場合には、高濃度の次亜塩素酸を含んでいるため、次亜塩素酸を分解した後に放流しなければならない。   In addition, injecting a large amount of ozone into wastewater during ozone treatment not only increases running costs, but ozone is used to oxidize oxidizable substances and reacts with chlorine ions in wastewater. The amount of hypochlorous acid generated increases in proportion to the amount of injected hydrogen. The generated hypochlorous acid kills organisms in the next biological treatment, and thus has an adverse effect that the expected COD reduction effect cannot be obtained. When ozone-treated water is not used in the next process, it must be discharged after decomposing hypochlorous acid because it contains high-concentration hypochlorous acid.

このように、高いCOD低減効果を得ようとする場合には、オゾン処理で必要とされるオゾン量が多くなるため、単にオゾン処理と生物処理とを行うだけでは目標とするCOD低減効果を期待することができない他、廃水中の塩素イオン濃度が高い場合には特に、前記次亜塩素酸の発生に起因する悪影響が生じるという問題がある。
特開平09−511448号公報 特開平10−192892号公報 特開平11−342398号公報 特開2000−000595号公報 特開2000−079384号公報 特開2001−149982号公報 特開2001−300576号公報 特開2002−292395号公報
As described above, when a high COD reduction effect is to be obtained, the amount of ozone required for the ozone treatment increases. Therefore, simply performing the ozone treatment and the biological treatment is expected to achieve the target COD reduction effect. In addition, there is a problem that an adverse effect caused by the generation of hypochlorous acid occurs particularly when the chlorine ion concentration in the wastewater is high.
JP 09-511448 A Japanese Patent Laid-Open No. 10-192892 JP 11-342398 A JP 2000-000595 A JP 2000-079384 A JP 2001-149982 A Japanese Patent Laid-Open No. 2001-300576 JP 2002-292395 A

本発明は、前記背景技術に鑑みてなされたものであり、例えば廃水等の被処理水中の、特にCODを著しく低減させ、CODが高い被処理水からも、次亜塩素酸の発生が充分に抑制され、安全で水質変動が極めて少ない安定した処理水を低コストで得ることができる水処理方法及びそれに用いる水処理システムを提供することを目的とする。   The present invention has been made in view of the background art described above. For example, COD is significantly reduced in water to be treated such as waste water, and hypochlorous acid is sufficiently generated from water to be treated having high COD. It is an object of the present invention to provide a water treatment method and a water treatment system used therefor, which can obtain stable treated water that is suppressed, is safe and has very little fluctuation in water quality, at low cost.

すなわち、本発明は、
被処理水に対して、オゾンを供給するオゾン処理(1A)と、微生物により有機物を分解する生物処理(2)とを少なくとも行う水処理方法であって、
前記被処理水が、化学的酸素要求量(CODMn)が20mg/Lを超える被処理水であり、
前記オゾン処理(1A)において、オゾン注入率を、前記被処理水中の溶存オゾン濃度を測定することによって、被処理水中の溶存オゾン濃度が決定された範囲内となるように制御するとともに、前記オゾン注入率、該被処理水中の化学的酸素要求量の1〜3倍(重量比)となるように制御し、
前記オゾン処理(1A)の後に、プラスチック担体保持型の生物膜にて前記生物処理(2)を行うと共に、
前記生物処理(2)による生物処理水を、前記オゾン処理(1A)に使用することによって、オゾン処理(1A)と生物処理(2)との間で循環処理を行うことを特徴とする、水処理方法、及び
オゾン処理(1A)のためのオゾン処理槽と、生物処理(2)のための生物処理槽とを少なくとも備えた水処理システムであって、
化学的酸素要求量(CODMn)が20mg/Lを超える被処理水の処理に用いられ、
前記オゾン処理槽が、溶存オゾン濃度測定部を備え、オゾン注入率を、溶存オゾン濃度測定部にて測定された溶存オゾン濃度が決定された範囲内となるように制御するとともに、前記オゾン注入率が、前記被処理水中の化学的酸素要求量の1〜3倍(重量比)となるように制御することが可能な構造を有し、
前記オゾン処理槽の後段に、プラスチック担体保持型の生物膜を有する前記生物処理槽が備えられ、
前記オゾン処理槽と前記生物処理槽との間が循環構造であることを特徴とする、前記水処理方法に用いる水処理システム
に関する。
That is, the present invention
A water treatment method for performing at least ozone treatment (1A) for supplying ozone to a water to be treated and biological treatment (2) for decomposing organic matter by microorganisms,
The treated water is treated water having a chemical oxygen demand (COD Mn ) exceeding 20 mg / L,
In the ozone treatment (1A), the ozone injection rate is controlled so that the dissolved ozone concentration in the treated water is within the determined range by measuring the dissolved ozone concentration in the treated water, and the ozone The injection rate is controlled to be 1 to 3 times (weight ratio) the chemical oxygen demand in the water to be treated,
After the ozone treatment (1A), the biological treatment (2) is performed with a plastic carrier-holding biofilm,
By using the biologically treated water from the biological treatment (2) for the ozone treatment (1A), the water treatment is carried out between the ozone treatment (1A) and the biological treatment (2). A water treatment system comprising at least a treatment method, an ozone treatment tank for ozone treatment (1A), and a biological treatment tank for biological treatment (2),
Used to treat water to be treated with chemical oxygen demand (COD Mn ) exceeding 20 mg / L,
The ozone treatment tank includes a dissolved ozone concentration measurement unit, and controls the ozone injection rate so that the dissolved ozone concentration measured by the dissolved ozone concentration measurement unit falls within the determined range. but has a structure capable of controlling so that the a 1-3 times the chemical oxygen demand of the water to be treated (weight ratio),
Subsequent to the ozone treatment tank, the biological treatment tank having a plastic carrier holding biofilm is provided,
It is related with the water treatment system used for the said water treatment method characterized by the circulation structure between the said ozone treatment tank and the said biological treatment tank.

本発明の水処理方法及びそれに用いる水処理システムによれば、例えば廃水等の被処理水中の、特にCODを著しく低減させ、CODが高い被処理水からも、次亜塩素酸の発生が充分に抑制され、安全で水質変動が極めて少ない安定した処理水を得ることができる。しかも被処理水の水質に関らず、また同じ水質の被処理水を従来の方法で処理した場合と比較して、少量かつ適量のオゾンでの処理が可能で、効率的に低ランニングコストで操業することができるといった優れた効果が同時に発現される。   According to the water treatment method of the present invention and the water treatment system used therefor, for example, COD is remarkably reduced in water to be treated such as waste water, and hypochlorous acid is sufficiently generated even from water to be treated having a high COD. It is possible to obtain stable treated water that is suppressed, is safe, and has very little fluctuation in water quality. Moreover, regardless of the quality of the water to be treated, compared to the case where the water to be treated with the same water quality is treated by the conventional method, it can be treated with a small amount of ozone and efficiently at a low running cost. The excellent effect of being able to operate is expressed at the same time.

本発明の水処理方法では、被処理水に対して、オゾンを供給するオゾン処理(1A)と、微生物により有機物を分解する生物処理(2)とを少なくとも行い、オゾン処理(1A)において、オゾン注入率を一定範囲に制御し、オゾン処理(1A)の後に生物処理(2)を行うと共に、生物処理(2)による生物処理水を、オゾン処理(1A)に使用することによって、オゾン処理(1A)と生物処理(2)との間で循環処理を行うことを特徴とするものである。   In the water treatment method of the present invention, at least ozone treatment (1A) for supplying ozone and biological treatment (2) for decomposing organic matter by microorganisms are performed on the water to be treated. By controlling the injection rate within a certain range, performing the biological treatment (2) after the ozone treatment (1A), and using the biologically treated water from the biological treatment (2) for the ozone treatment (1A), A circulation process is performed between 1A) and the biological process (2).

なお本発明の対象となる「被処理水」には特に限定がないが、例えば最終処分場浸出水、下水二次処理水、河川水、地下水、湖沼、工場排水、農業排水、ゴミ処理排水といった水処理を要するものをいい、本発明の水処理方法及び水処理システムは、塩化物イオン濃度が高く、次亜塩素酸が生成し易い最終処分場浸出水や、水浄化の必要性及び得られる処理水の利用性がより高い下水二次処理水の水処理に特に好適である。また本発明の水処理方法及び水処理システムは、CODMnが20mg/Lを超える被処理水のCOD低減に有効利用され、塩素イオン濃度が300mg/L程度の被処理水は勿論のこと、塩素イオン濃度が500mg/Lを超える被処理水を対象とすることが可能である。 There is no particular limitation on the “treated water” that is the subject of the present invention. For example, final disposal site leachate, secondary sewage treatment water, river water, groundwater, lakes, factory wastewater, agricultural wastewater, wastewater treatment wastewater, etc. The water treatment method and the water treatment system of the present invention, which require water treatment, have a high chloride ion concentration, and the final disposal site leachate that easily generates hypochlorous acid, and the necessity and need for water purification. It is particularly suitable for water treatment of sewage secondary treated water with higher utilization of treated water. Moreover, the water treatment method and the water treatment system of the present invention are effectively used for COD reduction of water to be treated with COD Mn exceeding 20 mg / L, not to mention the water to be treated having a chlorine ion concentration of about 300 mg / L, chlorine It is possible to target treated water having an ion concentration exceeding 500 mg / L.

以下に本発明の水処理方法及びこれに用いる水処理システムを図面に基づいて説明する。   Below, the water treatment method of this invention and the water treatment system used for this are demonstrated based on drawing.

(実施の形態1)
図1は、本発明の実施の形態1に係る水処理方法に用いる水処理システムを示す模式図である。図1において、1aは被処理水にオゾン処理(1A)を施すオゾン処理槽、4a1は該オゾン処理槽1aに備えられた溶存オゾン濃度測定部、4a2は該オゾン処理槽1aに備えられた廃オゾンガス濃度測定部、2は被処理水に生物処理(2)を施す生物処理槽である。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a water treatment system used in the water treatment method according to Embodiment 1 of the present invention. In FIG. 1, 1a is an ozone treatment tank for performing ozone treatment (1A) on the water to be treated, 4a1 is a dissolved ozone concentration measuring unit provided in the ozone treatment tank 1a, and 4a2 is a waste provided in the ozone treatment tank 1a. An ozone gas concentration measuring unit 2 is a biological treatment tank that performs biological treatment (2) on the water to be treated.

オゾン処理槽1aは、後述するように、オゾン処理(1A)においてオゾン注入率を一定範囲に制御することが可能な構造を有している。また、オゾン処理槽1aと生物処理槽2との間は、後述するように、オゾン処理(1A)と生物処理(2)との間で循環処理を行うことが可能な循環構造である。   As will be described later, the ozone treatment tank 1a has a structure capable of controlling the ozone injection rate within a certain range in the ozone treatment (1A). Moreover, between the ozone treatment tank 1a and the biological treatment tank 2, as will be described later, there is a circulation structure capable of performing circulation treatment between the ozone treatment (1A) and the biological treatment (2).

まず被処理水槽5内の被処理水αは、ポンプ51にてオゾン処理槽1aへ移送される。次にオゾン処理槽1aへ移送された被処理水αに対して、酸素発生器7よりオゾン発生器8を経たオゾンβを供給する。供給されたオゾンβは被処理水αと接触して吸収され、これによって被処理水α中の難生物分解性物質等の汚濁物質が分解される等、被酸化性物質が酸化され、COD、菌類等が低減される。なおかかるオゾンβは、図1及び以下に説明する図2及び図4に示すように、酸素発生器7からオゾン発生器8を経て供給されてもよいが、これら酸素発生器7及びオゾン発生器8を経ずに直接供給する手段によって供給されてもよく、オゾンβの供給方法は限定されない。   First, the water to be treated α in the water tank 5 to be treated is transferred to the ozone treatment tank 1 a by the pump 51. Next, ozone β which has passed through the ozone generator 8 is supplied from the oxygen generator 7 to the water to be treated α transferred to the ozone treatment tank 1a. The supplied ozone β is absorbed in contact with the water to be treated α, and thereby, the oxidizable material is oxidized, such as decomposition of the pollutant such as a non-biodegradable material in the water to be treated α, COD, Fungi and the like are reduced. The ozone β may be supplied from the oxygen generator 7 via the ozone generator 8 as shown in FIG. 1 and FIGS. 2 and 4 described below. 8 may be supplied by means of supplying directly without going through 8, and the supply method of ozone β is not limited.

オゾン処理(1A)において、被処理水αへのオゾンβの供給量、すなわちオゾン注入率を一定範囲に制御する。かかるオゾン注入率は、例えば、被処理水α中の溶存オゾン濃度を測定したり、オゾン処理(1A)にて排出される廃オゾンガス濃度を測定することによって制御することができる。   In the ozone treatment (1A), the supply amount of ozone β to the water to be treated α, that is, the ozone injection rate is controlled within a certain range. Such ozone injection rate can be controlled, for example, by measuring the concentration of dissolved ozone in the water to be treated α or measuring the concentration of waste ozone gas discharged in the ozone treatment (1A).

被処理水α中の溶存オゾン濃度を測定してオゾン注入率を制御する場合、オゾン処理槽1aに備えられた溶存オゾン濃度測定部4a1にて溶存オゾン濃度を測定する。このように、オゾン処理槽1aにてオゾン処理(1A)を施す際に被処理水α中の溶存オゾン濃度を測定し、オゾン注入率を正確に一定範囲に制御することにより、被処理水αが水質変動した場合であっても、水質変動が極めて小さく、一定の良範囲に水質が維持された安定した処理水を得ることができる。   When the dissolved ozone concentration in the water to be treated α is measured to control the ozone injection rate, the dissolved ozone concentration is measured by the dissolved ozone concentration measuring unit 4a1 provided in the ozone treatment tank 1a. As described above, when the ozone treatment (1A) is performed in the ozone treatment tank 1a, the dissolved ozone concentration in the treated water α is measured, and the ozone injection rate is accurately controlled within a certain range, whereby the treated water α Even when the water quality fluctuates, it is possible to obtain stable treated water in which the water quality fluctuation is extremely small and the water quality is maintained within a certain good range.

オゾン注入率は、被処理水αの水質及び目標とする処理水の水質に応じて溶存オゾン濃度の範囲を決定して制御することが好ましいが、オゾン注入率が高すぎる場合には、オゾンが被酸化性物質の酸化に利用されるだけでなく、被処理水α中の塩素イオンと反応して次亜塩素酸を発生する恐れがあるので、溶存オゾン濃度が10mg/L以下、さらには5mg/L以下、特に1mg/L以下となるようにオゾン注入率を制御することが好ましい。逆に、オゾン注入率が低すぎる場合には、被処理水α中の被酸化性物質の酸化が不充分となり、COD、菌類等が充分に低減されない恐れがあるので、溶存オゾンが検知される濃度以上となるようにオゾン注入率を制御することが好ましい。   The ozone injection rate is preferably controlled by determining the range of the dissolved ozone concentration according to the quality of the water to be treated α and the target quality of the treated water, but if the ozone injection rate is too high, Not only is it used to oxidize oxidizable substances, but also reacts with chlorine ions in the water to be treated α to generate hypochlorous acid, so the dissolved ozone concentration is 10 mg / L or less, and further 5 mg It is preferable to control the ozone injection rate so as to be / L or less, particularly 1 mg / L or less. On the other hand, when the ozone injection rate is too low, oxidation of the oxidizable substance in the water to be treated α becomes insufficient and COD, fungi, etc. may not be sufficiently reduced, so that dissolved ozone is detected. It is preferable to control the ozone injection rate so that the concentration becomes higher than the concentration.

なお、オゾンを被酸化性物質と反応させ、かつ次亜塩素酸の生成を抑制するという点を考慮して、オゾン処理(1A)におけるオゾン注入率を、重量比で、被処理水α中のCODの3倍以下となるように制御、また溶存オゾン濃度を確保するという点を考慮して、該オゾン注入率を、重量比で、被処理水α中のCODの1倍以上となるように制御する。 Incidentally, the ozone is reacted with oxidizable substances, and in consideration of suppressing the generation of hypochlorous acid, ozone injection rate in ozone treatment (1A), by weight, in the water to be treated α was controlled so that the COD of 3 times or less, also in consideration of ensuring the dissolved ozone concentration, the ozone injection rate, by weight, such as a 1-fold or more COD in the water to be treated α It controls to.

オゾン処理槽1aに備える溶存オゾン濃度測定部4a1としては、溶存オゾン濃度の測定が容易であり、溶存オゾン濃度をより正確に一定範囲に制御することが可能であるという点から、例えば溶存オゾン濃度計が好適に用いられる。   As the dissolved ozone concentration measurement unit 4a1 provided in the ozone treatment tank 1a, for example, the dissolved ozone concentration can be easily measured, and the dissolved ozone concentration can be more accurately controlled within a certain range. A meter is preferably used.

溶存オゾン濃度計としては、例えば紫外線吸収方式の濃度計や隔膜ポーラログラフ方式の濃度計が、精度及び取り扱い性に優れる点から好ましい。溶存オゾン濃度は、被処理水を採取してからモニタリングするまでの距離や被処理水の水量等によって測定値が変化する場合があるので、かかる溶存オゾン濃度計としては、例えば検出部及び制御部を有し、オゾン処理槽1aと検出部とを接続することによって被処理水α中の溶存オゾン濃度を連続的に測定し得るもの、あるいは連続的にオゾン処理槽1aより検出部に被処理水αを導入させ得るもの等が好適に用いられる。また被処理水の流量、水温や使用時の湿度といった溶存オゾン濃度計の使用環境は、用いる濃度計の適用範囲に応じて適宜調整することが好ましい。   As the dissolved ozone concentration meter, for example, an ultraviolet absorption type concentration meter or a diaphragm polarographic type concentration meter is preferable because it is excellent in accuracy and handleability. Since the measured value of the dissolved ozone concentration may vary depending on the distance from collection of the treated water to monitoring and the amount of treated water, etc., such a dissolved ozone concentration meter is, for example, a detection unit and a control unit. Which can continuously measure the dissolved ozone concentration in the water to be treated α by connecting the ozone treatment tank 1a and the detection part, or continuously from the ozone treatment tank 1a to the detection part. What can introduce | transduce (alpha) etc. are used suitably. Moreover, it is preferable to appropriately adjust the usage environment of the dissolved ozone concentration meter such as the flow rate of the water to be treated, the water temperature, and the humidity during use according to the application range of the concentration meter to be used.

なお本実施の形態1においては、前記溶存オゾン濃度計以外の手段を溶存オゾン濃度測定部4a1として用いることもできる。   In the first embodiment, means other than the dissolved ozone concentration meter can be used as the dissolved ozone concentration measuring unit 4a1.

被処理水α中の溶存オゾン濃度を測定する他、例えば前記したように、オゾン処理(1A)にて排出される廃オゾンガス濃度を測定してオゾン注入率を制御することができる。   Besides measuring the concentration of dissolved ozone in the water to be treated α, for example, as described above, the ozone injection rate can be controlled by measuring the concentration of waste ozone gas discharged in the ozone treatment (1A).

前記廃オゾンガス濃度は、溶存オゾン濃度と一定の範囲内で相関関係にあるので、その範囲内であれば被処理水α中の溶存オゾン濃度を測定する代わりに、オゾン処理槽1aに備えられた廃オゾンガス濃度測定部4a2にて廃オゾンガス濃度を測定してオゾン注入率を制御してもよい。   Since the waste ozone gas concentration is correlated with the dissolved ozone concentration within a certain range, the ozone concentration is provided in the ozone treatment tank 1a instead of measuring the dissolved ozone concentration in the water to be treated α within that range. The ozone injection rate may be controlled by measuring the waste ozone gas concentration in the waste ozone gas concentration measuring unit 4a2.

オゾン注入率は、前記したように、被処理水αの水質及び目標とする処理水の水質に応じて廃オゾンガス濃度の範囲を決定して制御することが好ましいが、オゾン注入率が高すぎる場合には、オゾンが被酸化性物質の酸化に利用されるだけでなく、被処理水α中の塩素イオンと反応して次亜塩素酸を発生する恐れがある。ただし、廃オゾンガス濃度は初期オゾン濃度やオゾン反応塔での吸収効率によっても異なるので、システムに応じて実験的かつ経験的に適宜定めることが好ましい。   As described above, the ozone injection rate is preferably determined by controlling the range of the waste ozone gas concentration according to the quality of the treated water α and the target treated water quality, but the ozone injection rate is too high. In this case, ozone is not only used for oxidizing the oxidizable substance, but may react with chlorine ions in the water to be treated α to generate hypochlorous acid. However, since the waste ozone gas concentration varies depending on the initial ozone concentration and the absorption efficiency in the ozone reaction tower, it is preferable that the waste ozone gas concentration is appropriately determined experimentally and empirically according to the system.

オゾン処理槽1aに備える廃オゾンガス濃度測定部4a2としては、廃オゾンガス濃度の測定が容易で正確であるという点から、例えばオゾンガス濃度計が好適に用いられる。   As the waste ozone gas concentration measurement unit 4a2 provided in the ozone treatment tank 1a, for example, an ozone gas concentration meter is preferably used from the viewpoint of easy and accurate measurement of the waste ozone gas concentration.

オゾンガス濃度計としては、最も普及している紫外線吸収方式の濃度計が、経済面、性能面からみて好ましいが、これに限定されるものではない。   As the ozone gas concentration meter, the most popular ultraviolet absorption type concentration meter is preferable from the viewpoint of economy and performance, but is not limited thereto.

なお本実施の形態1においては、前記オゾンガス濃度計以外の手段を廃オゾンガス濃度測定部4a2として用いることもできる。   In the first embodiment, means other than the ozone gas concentration meter can be used as the waste ozone gas concentration measuring unit 4a2.

被処理水の水質変動が大きくない場合には、あらかじめオゾン注入率と被処理水α中の溶存オゾン濃度との関係を定め、この定めた関係に従ってオゾン注入率を制御することも可能である。   When the water quality variation of the water to be treated is not large, the relationship between the ozone injection rate and the dissolved ozone concentration in the water to be treated α can be determined in advance, and the ozone injection rate can be controlled according to this determined relationship.

オゾン処理槽1aにおける被処理水αのオゾン処理条件は、被処理水αへのオゾン注入率が一定範囲に制御され、所望の効果が充分に発現される限り特に限定がなく、被処理水αの水質や目的とする処理水の水質等に応じて適宜変更することができるが、例えばオゾン処理時間(滞留時間)は3〜60分間程度、さらには5〜15分間程度であることが好ましい。   The ozone treatment condition of the water to be treated α in the ozone treatment tank 1a is not particularly limited as long as the ozone injection rate into the water to be treated α is controlled within a certain range and a desired effect is sufficiently exhibited. However, the ozone treatment time (residence time) is preferably about 3 to 60 minutes, and more preferably about 5 to 15 minutes.

なお前記オゾン処理(1A)にて用いられたオゾンの一部は、オゾン処理槽1aから廃オゾン分解装置10に移送されて分解された後、ポンプ101にてシステム外へと排出される。   A part of the ozone used in the ozone treatment (1A) is transferred from the ozone treatment tank 1a to the waste ozone decomposing apparatus 10 and decomposed, and then discharged out of the system by the pump 101.

オゾン処理槽1aにて前記のごとくオゾン処理(1A)が施された被処理水αは、生物処理槽2へ移送される。該生物処理槽2では微生物による被処理水α中の有機物の分解が行われ、主に被処理水αに含有される易生物分解性物質が分解される。   The treated water α that has been subjected to the ozone treatment (1A) in the ozone treatment tank 1a as described above is transferred to the biological treatment tank 2. In the biological treatment tank 2, organic substances in the water to be treated α are decomposed by microorganisms, and readily biodegradable substances mainly contained in the water to be treated α are decomposed.

このようにオゾン処理(1A)の後に生物処理(2)を行うと、被処理水α中の難生物分解性物質が、オゾン処理(1A)にて、微生物に分解され易い易生物分解性物質にあらかじめ分解され、次いで生物処理(2)にて、微生物による有機物(易生物分解性物質)の分解が充分に進行するという大きな利点がある。また後の生物処理(2)にて易生物分解性物質の分解が行われることから、オゾン処理(1A)では有機物(難生物分解性物質)を完全に分解してしまうのではなく、有機物の易生物分解性を高めればよいので、従来の方法と比較してオゾン注入率を低減させることができるという利点もある。また同時に、かかる生物処理(2)によって被処理水αのBODも低減され、生物処理(2)に先立って行われたオゾン処理(1A)で用いたオゾンによってBODが増加した場合であっても、かかるBODは充分に低減され得る。   Thus, when the biological treatment (2) is performed after the ozone treatment (1A), the hardly biodegradable substance in the water to be treated α is easily decomposed into microorganisms by the ozone treatment (1A). In the biological treatment (2), the organic matter (easily biodegradable substance) is sufficiently decomposed by the microorganisms. In addition, since biodegradable substances are decomposed in the subsequent biological treatment (2), the ozone treatment (1A) does not completely decompose organic substances (refractory biodegradable substances), Since it is sufficient to increase the biodegradability, there is an advantage that the ozone injection rate can be reduced as compared with the conventional method. At the same time, the BOD of the water to be treated α is reduced by the biological treatment (2), and the BOD is increased by the ozone used in the ozone treatment (1A) performed prior to the biological treatment (2). , Such BOD can be sufficiently reduced.

生物処理(2)の方法には、例えば生物膜法、好気性ろ床法、活性汚泥処理法等があるが、本実施の形態1では生物膜法を採用する。なお、生物処理の方法としては、これらの他にも生物活性炭処理法が一般的であるが、CODが高い場合には、生物活性炭層が閉塞して生物活性炭層の逆洗頻度が上昇する恐れが大きいので、該生物活性炭処理法は採用しない。 The method of biological treatment (2), for example, biofilm process, aerobic filter bed method, there are activated sludge treatment method, we adopt biofilm process in the first embodiment. In addition to these, biological activated carbon treatment is generally used as a biological treatment method. However, when COD is high, the biological activated carbon layer may be blocked and the frequency of back washing of the biological activated carbon layer may increase. since large, the organism activated carbon treatment method do not want to adopt.

生物膜法は、多種の微生物の膜を利用する方法であり、例えば接触曝気法が多用される。該接触曝気法は、例えばプラスチックの担体に微生物の膜を付着させ、その微生物によって有機物等を摂取、分解させる、担体保持型の生物膜にて処理する方法である。   The biofilm method is a method using a film of various microorganisms, and for example, a contact aeration method is often used. The contact aeration method is, for example, a method of treating with a carrier-supporting biofilm in which a microorganism film is attached to a plastic carrier, and organic matter is ingested and decomposed by the microorganism.

好気性ろ床法は、内部にろ材を充填した生物膜ろ過方式の好気性ろ床を用いる方法であり、移動床式方法と固定床式方法とがある。ろ材としては、例えば多孔質セラミック等があげられ、該ろ材表面の好気性微生物により有機物を分解させ、BODを低減するものである。   The aerobic filter bed method uses a biofilm filtration type aerobic filter bed filled with a filter medium, and includes a moving bed type method and a fixed bed type method. Examples of the filter medium include porous ceramics, and the organic substances are decomposed by aerobic microorganisms on the surface of the filter medium to reduce BOD.

活性汚泥処理法は、多種の微生物を含んだ活性汚泥を利用する方法であり、生物処理槽内の被処理水を活性汚泥と撹拌、曝気して被処理水中の有機物を酸化分解させるものである。処理物を分離、沈殿させて上澄水を得た後の生成汚泥の一部は、返送汚泥として生物処理槽に送られ、槽内汚泥の微生物濃度の調整に用いられる。   The activated sludge treatment method uses activated sludge containing various microorganisms. The treated water in the biological treatment tank is agitated and aerated with activated sludge to oxidize and decompose organic matter in the treated water. . Part of the generated sludge after separating and precipitating the treated product to obtain the supernatant water is sent to the biological treatment tank as return sludge and used for adjusting the microorganism concentration of the sludge in the tank.

これら生物処理(2)の方法の中でも、有機物の分解効果及びBODの低減効果が大きく、たとえ前段のオゾン処理(1A)におけるオゾンが少量、生物処理槽2に流入したとしても、生物機能が保持され易いという点から、生物膜法が好適に採用される。なお生物処理(2)に用いることができる微生物として、通常、例えば従属栄養細菌、硝化菌、大腸菌、原生動物、ワムシ類、貧毛類、線虫類等があげられるが、本発明においては、微生物としては被処理水の水質や処理方法に適したものが自然に順養されていく場合が多い。   Among these biological treatment methods (2), the organic matter decomposition effect and the BOD reduction effect are large, and even if a small amount of ozone in the preceding ozone treatment (1A) flows into the biological treatment tank 2, the biological function is retained. The biofilm method is preferably employed because it is easily performed. Examples of microorganisms that can be used in the biological treatment (2) are usually heterotrophic bacteria, nitrifying bacteria, Escherichia coli, protozoa, rotifers, oligochaetes, nematodes, etc. In the present invention, In many cases, microorganisms that are suitable for the quality of the water to be treated and the treatment method are naturally adapted.

生物処理槽2における被処理水αの生物処理条件は、充分な処理効果が得られる限り特に限定がなく、被処理水αの水質や目的とする処理水の水質、用いる微生物の活性適用温度等に応じて適宜変更することができるが、例えば生物処理時間(滞留時間)は5〜600分間程度、さらには7〜60分間程度であることが好ましい。   The biological treatment conditions of the water to be treated α in the biological treatment tank 2 are not particularly limited as long as a sufficient treatment effect can be obtained. Water quality of the water to be treated α, water quality of the target treated water, active application temperature of microorganisms to be used, etc. The biological treatment time (residence time) is, for example, preferably about 5 to 600 minutes, more preferably about 7 to 60 minutes.

なお生物処理槽2では微生物の増殖による目詰まりを防止するために、通常逆洗が行われる。   The biological treatment tank 2 is usually backwashed to prevent clogging due to the growth of microorganisms.

生物処理槽2にて生物処理(2)が施された後、該生物処理(2)による生物処理水を前記オゾン処理(1A)に使用することによって、オゾン処理(1A)と生物処理(2)との間で循環処理を行う。   After the biological treatment (2) is performed in the biological treatment tank 2, the biological treatment water by the biological treatment (2) is used for the ozone treatment (1A), so that the ozone treatment (1A) and the biological treatment (2 ).

従来のように、オゾン処理と生物処理とを順次複数回繰り返す処理を行った場合には、後段での処理ほど、被処理水中の汚濁物質濃度が低下して溶存オゾン濃度が上昇し易く、これによって次亜塩素酸が発生し易い状態となり、被処理水の濃度といった水質変動の影響を受けて処理が不安定になるという問題が生じてしまう。しかしながら、本発明の水処理方法では、オゾン処理(1A)と生物処理(2)との間で循環処理を行うので、このような従来の問題が生じることはなく、安全で水質変動が極めて少ない安定した処理水を、被処理水の水質に関らず、少量かつ適量のオゾンで効率的に低ランニングコストで得ることができる。   As in the conventional case, when ozone treatment and biological treatment are sequentially repeated several times, the concentration of pollutants in the water to be treated decreases and the dissolved ozone concentration easily rises as the treatment in the later stage. As a result, hypochlorous acid is likely to be generated, and a problem arises that the treatment becomes unstable under the influence of water quality fluctuations such as the concentration of water to be treated. However, in the water treatment method of the present invention, since the circulation treatment is performed between the ozone treatment (1A) and the biological treatment (2), such a conventional problem does not occur, and the water quality fluctuation is safe and extremely small. Stable treated water can be efficiently obtained at a low running cost with a small amount and an appropriate amount of ozone regardless of the quality of the water to be treated.

オゾン処理(1A)と生物処理(2)との間で循環処理を行う回数には特に限定がなく、例えば被処理水の水質や目標とする処理水の水質に応じて適宜決定すればよいが、通常オゾン処理(1A)と生物処理(2)とのセットを2〜20回程度行うことが好ましい。   There is no particular limitation on the number of times that the circulation treatment is performed between the ozone treatment (1A) and the biological treatment (2). For example, the number of treatments may be appropriately determined according to the quality of the treated water and the target treated water quality. Usually, it is preferable to perform the ozone treatment (1A) and the biological treatment (2) for about 2 to 20 times.

オゾン処理(1A)と生物処理(2)との間で所望の回数の循環処理を行った後、生物処理槽2から処理水槽11に移送された処理水δは、種々目的に応じて再利用される。なお必要に応じて、処理水槽11中の処理水δをポンプ111にて生物処理槽2へ移送し、生物処理槽2内の逆洗を行ってもよい。   After performing a desired number of circulation treatments between the ozone treatment (1A) and the biological treatment (2), the treated water δ transferred from the biological treatment tank 2 to the treated water tank 11 is reused according to various purposes. Is done. If necessary, the treated water δ in the treated water tank 11 may be transferred to the biological treatment tank 2 by the pump 111 and backwashed in the biological treatment tank 2 may be performed.

(実施の形態2)
図1に示す水処理システムで行われる、前記実施の形態1に係る水処理方法では、オゾン処理槽1aにて、オゾン注入率を一定範囲に制御して被処理水にオゾン処理(1A)を施し、次いで生物処理槽2にて、被処理水に生物処理(2)を施し、これらオゾン処理(1A)及び生物処理(2)との間で循環処理を行うが、本発明の実施の形態2に係る水処理方法では、オゾン処理槽1aにおけるオゾン処理(1A)に代えて、促進酸化処理槽1bにおいて、被処理水にオゾン及び過酸化水素を供給して促進酸化処理(1B)を施す。
(Embodiment 2)
In the water treatment method according to Embodiment 1 performed in the water treatment system shown in FIG. 1, ozone treatment (1A) is performed on the water to be treated by controlling the ozone injection rate within a certain range in the ozone treatment tank 1a. Then, in the biological treatment tank 2, the biological treatment (2) is performed on the water to be treated, and the circulation treatment is performed between the ozone treatment (1A) and the biological treatment (2). In the water treatment method according to 2, in place of ozone treatment (1A) in the ozone treatment tank 1a, ozone and hydrogen peroxide are supplied to the water to be treated in the accelerated oxidation treatment tank 1b to perform accelerated oxidation treatment (1B). .

このように、本実施の形態2に係る水処理方法は、オゾン処理(1A)以外は前記実施の形態1に係る水処理方法と同じであるので、該オゾン処理(1A)に代わる促進酸化処理(1B)についてのみ、以下に詳細に説明する。   Thus, since the water treatment method according to the second embodiment is the same as the water treatment method according to the first embodiment except for the ozone treatment (1A), the accelerated oxidation treatment that replaces the ozone treatment (1A) is performed. Only (1B) will be described in detail below.

図2は、本発明の実施の形態2に係る水処理方法に用いる水処理システムを示す模式図である。図2において、1bは被処理水に促進酸化処理(1B)を施す促進酸化処理槽、4b1は該促進酸化処理槽1bに備えられた溶存オゾン濃度測定部、4b2は該促進酸化処理槽1bに備えられた廃オゾンガス濃度測定部、2は被処理水に生物処理(2)を施す生物処理槽である。   FIG. 2 is a schematic diagram showing a water treatment system used in the water treatment method according to Embodiment 2 of the present invention. In FIG. 2, 1b is an accelerated oxidation treatment tank for performing accelerated oxidation treatment (1B) on the water to be treated, 4b1 is a dissolved ozone concentration measuring unit provided in the accelerated oxidation treatment tank 1b, and 4b2 is placed in the accelerated oxidation treatment tank 1b. The waste ozone gas concentration measuring unit 2 provided is a biological treatment tank that performs biological treatment (2) on the water to be treated.

促進酸化処理槽1bは、後述するように、促進酸化処理(1B)においてオゾン注入率を一定範囲に制御することが可能な構造を有している。また、促進酸化処理槽1bと生物処理槽2との間は、後述するように、促進酸化処理(1B)と生物処理(2)との間で循環処理を行うことが可能な循環構造である。   As will be described later, the accelerated oxidation treatment tank 1b has a structure capable of controlling the ozone injection rate within a certain range in the accelerated oxidation treatment (1B). Moreover, between the acceleration | stimulation oxidation treatment tank 1b and the biological treatment tank 2, it is a circulation structure which can perform a circulation process between an accelerated oxidation process (1B) and a biological treatment (2) so that it may mention later. .

まず被処理水槽5内の被処理水αは、ポンプ51にて促進酸化処理槽1bへ移送される。次に促進酸化処理槽1bへ移送された被処理水αに対して、酸素発生器7よりオゾン発生器8を経たオゾンβを供給し、過酸化水素タンク9のポンプ91にて過酸化水素γの水溶液を供給する。これらオゾンβ及び過酸化水素γの供給により、被処理水α中の溶存オゾンと過酸化水素とが反応して強力な酸化剤であるヒドロキシルラジカル(以下、OHラジカルという)が発生し、該OHラジカルの強い酸化力により被処理水α中の難生物分解性物質等の汚濁物質が分解されされる等、被酸化性物質が酸化され、COD、菌類等が低減される。なおかかるオゾンβは、図2に示すように、酸素発生器7からオゾン発生器8を経て供給されてもよいが、これら酸素発生器7及びオゾン発生器8を経ずに直接供給する手段によって供給されてもよく、オゾンβの供給方法は限定されない。   First, the to-be-treated water α in the to-be-treated water tank 5 is transferred to the accelerated oxidation treatment tank 1b by the pump 51. Next, the ozone β that has passed through the ozone generator 8 is supplied from the oxygen generator 7 to the water to be treated α transferred to the accelerated oxidation treatment tank 1 b, and the hydrogen peroxide γ is supplied by the pump 91 of the hydrogen peroxide tank 9. An aqueous solution of is supplied. By supplying these ozone β and hydrogen peroxide γ, the dissolved ozone in the water to be treated α reacts with hydrogen peroxide to generate hydroxyl radicals (hereinafter referred to as OH radicals) which are strong oxidizing agents, and the OH Oxidizable substances are oxidized and COD, fungi and the like are reduced, for example, pollutants such as hardly biodegradable substances in the water to be treated α are decomposed by the strong oxidizing power of radicals. The ozone β may be supplied from the oxygen generator 7 via the ozone generator 8 as shown in FIG. 2, but by means of supplying directly without passing through the oxygen generator 7 and the ozone generator 8. The method of supplying ozone β is not limited.

促進酸化処理(1B)において、被処理水αへのオゾンβの供給量、すなわちオゾン注入率を一定範囲に制御する。かかるオゾン注入率は、例えば、被処理水α中の溶存オゾン濃度を測定したり、促進酸化処理(1B)にて排出される廃オゾンガス濃度を測定することによって制御することができる。   In the accelerated oxidation treatment (1B), the supply amount of ozone β to the water to be treated α, that is, the ozone injection rate is controlled within a certain range. Such ozone injection rate can be controlled, for example, by measuring the concentration of dissolved ozone in the water to be treated α or measuring the concentration of waste ozone gas discharged in the accelerated oxidation treatment (1B).

被処理水α中の溶存オゾン濃度を測定してオゾン注入率を制御する場合、促進酸化処理槽1bに備えられた溶存オゾン濃度測定部4b1にて溶存オゾン濃度を測定する。このように、促進酸化処理槽1bにて促進酸化処理(1B)を施す際に被処理水α中の溶存オゾン濃度を測定し、オゾン注入率を正確に一定範囲に制御することにより、被処理水αが水質変動した場合であっても、水質変動が極めて小さく、一定の良範囲に水質が維持された安定した処理水を得ることができる。   When the dissolved ozone concentration in the water to be treated α is measured to control the ozone injection rate, the dissolved ozone concentration is measured by the dissolved ozone concentration measuring unit 4b1 provided in the accelerated oxidation treatment tank 1b. As described above, when the accelerated oxidation treatment (1B) is performed in the accelerated oxidation treatment tank 1b, the dissolved ozone concentration in the water to be treated α is measured, and the ozone injection rate is accurately controlled within a certain range. Even when the water α changes in water quality, it is possible to obtain stable treated water in which the water quality change is extremely small and the water quality is maintained within a certain good range.

オゾン注入率は、被処理水αの水質及び目標とする処理水の水質に応じて溶存オゾン濃度の範囲を決定して制御することが好ましいが、オゾン注入率が高すぎる場合には、オゾンが被酸化性物質の酸化に利用されるだけでなく、被処理水α中の塩素イオンと反応して次亜塩素酸を発生する恐れがある他、発生したOHラジカルが汚濁物質の分解やCOD、菌類等の低減効果を発現する前に溶存オゾンと反応して消失してしまい、充分な効果が得られない恐れがあるので、溶存オゾン濃度が10mg/L以下、さらには5mg/L以下、特に1mg/L以下となるようにオゾン注入率を制御することが好ましい。逆に、オゾン注入率が低すぎる場合には、被処理水α中の被酸化性物質の酸化が不充分となり、COD、菌類等が充分に低減されない恐れがあるので、溶存オゾンが検知される濃度以上となるようにオゾン注入率を制御することが好ましい。   The ozone injection rate is preferably controlled by determining the range of the dissolved ozone concentration according to the quality of the water to be treated α and the target quality of the treated water, but if the ozone injection rate is too high, In addition to being used to oxidize oxidizable substances, it may react with chlorine ions in the water to be treated α to generate hypochlorous acid, and the generated OH radicals can decompose pollutants, COD, Before the effect of reducing fungi and the like is manifested, it reacts with dissolved ozone and disappears, and there is a possibility that a sufficient effect cannot be obtained. Therefore, the dissolved ozone concentration is 10 mg / L or less, further 5 mg / L or less, especially It is preferable to control the ozone injection rate so as to be 1 mg / L or less. On the other hand, when the ozone injection rate is too low, oxidation of the oxidizable substance in the water to be treated α becomes insufficient and COD, fungi, etc. may not be sufficiently reduced, so that dissolved ozone is detected. It is preferable to control the ozone injection rate so that the concentration becomes higher than the concentration.

なお、オゾンを被酸化性物質と反応させ、かつ次亜塩素酸の生成を抑制するという点を考慮して、促進酸化処理(1B)におけるオゾン注入率を、重量比で、被処理水α中のCODの3倍以下となるように制御、また溶存オゾン濃度を確保するという点を考慮して、該オゾン注入率を、重量比で、被処理水α中のCODの1倍以上となるように制御する。 Incidentally, the ozone is reacted with oxidizable substances, and in consideration of suppressing the generation of hypochlorous acid, ozone injection rate in advanced oxidation processes (1B), a weight ratio of the water to be treated α Medium controlled to be less than three times the COD, also in consideration of ensuring the dissolved ozone concentration, the ozone injection rate, by weight, of 1 or more times the COD in the water to be treated α that controls so.

促進酸化処理槽1bに備える溶存オゾン濃度測定部4b1としては、溶存オゾン濃度の測定が容易であり、溶存オゾン濃度をより正確に一定範囲に制御することが可能であるという点から、例えば溶存オゾン濃度計が好適に用いられる。   As the dissolved ozone concentration measuring unit 4b1 provided in the accelerated oxidation treatment tank 1b, for example, the dissolved ozone concentration can be easily measured, and the dissolved ozone concentration can be more accurately controlled within a certain range, for example, dissolved ozone. A densitometer is preferably used.

溶存オゾン濃度計としては、例えば前記実施の形態1にて例示したものがあげられるが、隔膜ポーラログラフ方式の濃度計は誤動作する可能性があるため、その場合は紫外線吸収方式の濃度計が好適である。また、被処理水の流量、水温や使用時の湿度といった溶存オゾン濃度計の使用環境は、用いる濃度計の適用範囲に応じて適宜調整することが好ましい。   As the dissolved ozone concentration meter, for example, the one exemplified in the first embodiment is mentioned. However, since the diaphragm polarographic concentration meter may malfunction, in that case, an ultraviolet absorption concentration meter is suitable. is there. In addition, it is preferable to appropriately adjust the usage environment of the dissolved ozone concentration meter such as the flow rate of water to be treated, the water temperature, and the humidity during use according to the application range of the concentration meter to be used.

なお本実施の形態2においても、前記溶存オゾン濃度計以外の手段を溶存オゾン濃度測定部4b1として用いることができる。   In the second embodiment, means other than the dissolved ozone concentration meter can be used as the dissolved ozone concentration measuring unit 4b1.

被処理水α中の溶存オゾン濃度を測定する他、例えば前記したように、促進酸化処理(1B)にて排出される廃オゾンガス濃度を測定してオゾン注入率を制御することができる。   In addition to measuring the dissolved ozone concentration in the water to be treated α, for example, as described above, the ozone injection rate can be controlled by measuring the concentration of waste ozone gas discharged in the accelerated oxidation treatment (1B).

前記廃オゾンガス濃度は、溶存オゾン濃度と一定の範囲内で相関関係にあるので、その範囲内であれば被処理水α中の溶存オゾン濃度を測定する代わりに、促進酸化処理槽1bに備えられた廃オゾンガス濃度測定部4b2にて廃オゾンガス濃度を測定してオゾン注入率を制御してもよい。   Since the waste ozone gas concentration has a correlation with the dissolved ozone concentration within a certain range, it is included in the accelerated oxidation treatment tank 1b instead of measuring the dissolved ozone concentration in the water to be treated α within that range. The waste ozone gas concentration may be measured by the waste ozone gas concentration measuring unit 4b2 to control the ozone injection rate.

オゾン注入率は、前記したように、被処理水αの水質及び目標とする処理水の水質に応じて廃オゾンガス濃度の範囲を決定して制御することが好ましいが、オゾン注入率が高すぎる場合には、オゾンが被酸化性物質の酸化に利用されるだけでなく、被処理水α中の塩素イオンと反応して次亜塩素酸を発生する恐れがある他、発生したOHラジカルが汚濁物質の分解やCOD、菌類等の低減効果を発現する前に溶存オゾンと反応して消失してしまい、充分な効果が得られない恐れがある。ただし、廃オゾンガス濃度は初期オゾン濃度やオゾン反応塔での吸収効率によっても異なるので、システムに応じて実験的かつ経験的に適宜定めることが好ましい。   As described above, the ozone injection rate is preferably determined by controlling the range of the waste ozone gas concentration according to the quality of the treated water α and the target treated water quality, but the ozone injection rate is too high. In addition to being used for the oxidation of oxidizable substances, ozone may react with chlorine ions in the water to be treated α to generate hypochlorous acid, and the generated OH radicals are polluted substances. It may disappear due to the reaction with dissolved ozone before the effect of reducing COD, COD, fungi, etc. is manifested, and a sufficient effect may not be obtained. However, since the waste ozone gas concentration varies depending on the initial ozone concentration and the absorption efficiency in the ozone reaction tower, it is preferable that the waste ozone gas concentration is appropriately determined experimentally and empirically according to the system.

促進酸化処理槽1bに備える廃オゾンガス濃度測定部4b2としては、廃オゾンガス濃度の測定が容易で正確であるという点から、例えばオゾンガス濃度計が好適に用いられる。オゾンガス濃度計としては、例えば前記実施の形態1にて例示したものがあげられる。   As the waste ozone gas concentration measuring unit 4b2 provided in the accelerated oxidation treatment tank 1b, for example, an ozone gas concentration meter is preferably used from the viewpoint that the measurement of the waste ozone gas concentration is easy and accurate. Examples of the ozone gas concentration meter include those exemplified in the first embodiment.

なお本実施の形態2においても、前記オゾンガス濃度計以外の手段を廃オゾンガス濃度測定部4b2として用いることができる。   In the second embodiment, means other than the ozone gas concentration meter can be used as the waste ozone gas concentration measuring unit 4b2.

被処理水の水質変動が大きくない場合には、あらかじめオゾン注入率と被処理水α中の溶存オゾン濃度との関係を定め、この定めた関係に従ってオゾン注入率を制御することも可能である。   When the water quality variation of the water to be treated is not large, the relationship between the ozone injection rate and the dissolved ozone concentration in the water to be treated α can be determined in advance, and the ozone injection rate can be controlled according to this determined relationship.

さらに本実施の形態2に係る水処理方法においては、促進酸化処理(1B)にて被処理水αへのオゾン注入率を一定範囲に制御すると同時に、かかる被処理水αへの過酸化水素注入率も一定範囲に制御してもよい。このようにオゾン注入率だけでなく過酸化水素注入率も一定範囲に制御して促進酸化処理(1B)を行った場合には、被処理水αが水質変動した場合であっても、水質変動が極めて小さく、一定の良範囲に水質が維持された安定した処理水を得ることができ、しかも被処理水の水質にかかわらず、極めて少量のオゾンや過酸化水素での処理が可能であるという優れた効果が大きく発現されるという利点がある。   Furthermore, in the water treatment method according to the second embodiment, the ozone injection rate into the water to be treated α is controlled within a certain range in the accelerated oxidation treatment (1B), and at the same time, hydrogen peroxide is injected into the water to be treated α. The rate may also be controlled within a certain range. In this way, when not only the ozone injection rate but also the hydrogen peroxide injection rate is controlled within a certain range and the accelerated oxidation treatment (1B) is performed, even if the water to be treated α changes in water quality, the water quality changes. It is possible to obtain stable treated water whose water quality is maintained within a certain good range, and that it can be treated with extremely small amounts of ozone and hydrogen peroxide regardless of the quality of the treated water. There is an advantage that an excellent effect is greatly expressed.

促進酸化処理(1B)において、被処理水αへの過酸化水素γの供給量、すなわち過酸化水素注入率を一定範囲に制御するには、例えば、被処理水α中の溶存過酸化水素濃度を測定すればよい。   In the accelerated oxidation treatment (1B), in order to control the supply amount of hydrogen peroxide γ to the water to be treated α, that is, the hydrogen peroxide injection rate within a certain range, for example, the dissolved hydrogen peroxide concentration in the water to be treated α Can be measured.

被処理水α中の溶存過酸化水素濃度を一定範囲に制御するには、促進酸化処理槽1bに溶存過酸化水素濃度測定部を設置し(図2中には示さず)、該溶存過酸化水素濃度測定部にて溶存過酸化水素濃度を測定すればよい。   In order to control the dissolved hydrogen peroxide concentration in the water to be treated within a certain range, a dissolved hydrogen peroxide concentration measuring unit is installed in the accelerated oxidation treatment tank 1b (not shown in FIG. 2), and the dissolved peroxidation is performed. What is necessary is just to measure the dissolved hydrogen peroxide concentration in the hydrogen concentration measuring section.

過酸化水素注入率は、被処理水αの水質及び目標とする処理水の水質や、オゾン注入率の制御範囲に応じて、溶存過酸化水素濃度の範囲を決定して制御することが好ましいが、過酸化水素注入率が高すぎる場合には、発生したOHラジカルが汚濁物質の分解やCOD、菌類等の低減効果を発現する前に溶存過酸化水素と反応して消失してしまい、充分な効果が得られない恐れがあるので、溶存過酸化水素濃度が10mg/L以下、さらには5mg/L以下となるように過酸化水素注入率を制御することが好ましい。逆に、過酸化水素注入率が低すぎる場合には、OHラジカルの発生が少なく、やはり汚濁物質の分解やCOD、菌類等の低減が不充分になる恐れがあるので、溶存過酸化水素濃度が0.01mg/L以上、さらには0.1mg/L以上となるように過酸化水素注入率を制御することが好ましい。   The hydrogen peroxide injection rate is preferably controlled by determining the range of dissolved hydrogen peroxide concentration according to the quality of the water to be treated α and the target water quality of the treated water and the control range of the ozone injection rate. If the hydrogen peroxide injection rate is too high, the generated OH radicals will disappear by reacting with dissolved hydrogen peroxide before the degradation effect of pollutants and the effect of reducing COD, fungi, etc. will be lost. Since the effect may not be obtained, it is preferable to control the hydrogen peroxide injection rate so that the dissolved hydrogen peroxide concentration is 10 mg / L or less, more preferably 5 mg / L or less. Conversely, if the hydrogen peroxide injection rate is too low, the generation of OH radicals is small, and there is a risk that the decomposition of pollutants and the reduction of COD, fungi, etc. will be insufficient. It is preferable to control the hydrogen peroxide injection rate so as to be 0.01 mg / L or more, and further 0.1 mg / L or more.

促進酸化処理槽1bに備える溶存過酸化水素濃度測定部としては、溶存過酸化水素濃度の測定が容易であり、より正確に一定範囲に制御することが可能であるという点から、例えば溶存過酸化水素濃度計が好適に用いられる。   The dissolved hydrogen peroxide concentration measuring unit provided in the accelerated oxidation treatment tank 1b is easy to measure the dissolved hydrogen peroxide concentration, and can be controlled within a certain range more accurately, for example, dissolved peroxidation. A hydrogen concentration meter is preferably used.

溶存過酸化水素濃度計としては、例えば酸性過マンガン酸カリウム滴定方式の濃度計、紫外線透過吸収方式の濃度計、ヨウ素電量滴定方式(逆滴定方式)の濃度計等があげられるが、精度及び取り扱い性に優れる点から酸性過マンガン酸カリウム滴定方式の濃度計が好ましい。ただしこの場合、被処理水α中のオゾンも測定濃度に影響を及ぼすことがあるので、曝気する等して被処理水α中のオゾンを除去してから測定に供することが望ましい。また溶存過酸化水素濃度は、被処理水を採取してからモニタリングするまでの距離や被処理水の水量等によって変化する場合があるので、かかる溶存過酸化水素濃度計としては、例えば検出部及び制御部を有し、促進酸化処理槽1bと検出部とを接続することによって被処理水α中の溶存過酸化水素濃度を連続的に測定し得るもの、あるいは連続的に促進酸化処理槽1bより検出部に被処理水αを導入させ得るもの等が好適に用いられる。被処理水の流量、水温や使用時の湿度といった溶存過酸化水素濃度計の使用環境は、用いる濃度計の適用範囲に応じて適宜調整することが好ましい。   Examples of the dissolved hydrogen peroxide concentration meter include an acid potassium permanganate titration meter, an ultraviolet transmission absorption concentration meter, and an iodine coulometric titration method (reverse titration method). From the viewpoint of excellent properties, an acid potassium permanganate titration type concentration meter is preferable. However, in this case, ozone in the water to be treated α may also affect the measurement concentration. Therefore, it is desirable to remove the ozone in the water to be treated α by aeration or the like before use in the measurement. Further, since the dissolved hydrogen peroxide concentration may vary depending on the distance from collection of the treated water to monitoring and the amount of water to be treated, etc., the dissolved hydrogen peroxide concentration meter includes, for example, a detection unit and Having a control unit and connecting the accelerated oxidation treatment tank 1b and the detection unit to continuously measure the dissolved hydrogen peroxide concentration in the water to be treated α, or continuously from the accelerated oxidation treatment tank 1b What can introduce the to-be-processed water (alpha) into a detection part etc. are used suitably. It is preferable to appropriately adjust the usage environment of the dissolved hydrogen peroxide concentration meter such as the flow rate of water to be treated, the water temperature, and the humidity during use according to the application range of the concentration meter to be used.

なお本実施の形態2においては、前記溶存過酸化水素濃度計以外の手段を溶存過酸化水素濃度測定部として用いることもできる。   In the second embodiment, means other than the dissolved hydrogen peroxide concentration meter can be used as the dissolved hydrogen peroxide concentration measuring unit.

このように、促進酸化処理(1B)における被処理水αへの過酸化水素注入率は、例えば、被処理水α中の溶存過酸化水素濃度を測定することによって制御することができ、該過酸化水素注入率は、オゾン注入率1に対して0.01以上、さらには0.02以上とすることが好ましく、また0.5以下、さらには0.3以下とすることが好ましい。   Thus, the hydrogen peroxide injection rate into the water to be treated α in the accelerated oxidation treatment (1B) can be controlled, for example, by measuring the dissolved hydrogen peroxide concentration in the water to be treated α. The hydrogen oxide injection rate is preferably 0.01 or more, more preferably 0.02 or more with respect to the ozone injection rate 1, and is preferably 0.5 or less, and more preferably 0.3 or less.

なお促進酸化処理(1B)において、溶存オゾン濃度を測定することによって被処理水αへのオゾン注入率を一定範囲に制御する場合には、溶存オゾン濃度と併せて溶存過酸化水素濃度も同時に測定して調整してもよい。   In the accelerated oxidation treatment (1B), when the ozone injection rate into the water to be treated α is controlled within a certain range by measuring the dissolved ozone concentration, the dissolved hydrogen peroxide concentration is also measured simultaneously with the dissolved ozone concentration. You may adjust it.

促進酸化処理槽1bにおける被処理水αの促進酸化処理条件は、被処理水αへのオゾン注入率、及び必要に応じて過酸化水素注入率が一定範囲に制御され、所望の効果が充分に発現される限り特に限定がなく、被処理水αの水質や目的とする処理水の水質等に応じて適宜変更することができるが、例えば促進酸化処理時間(滞留時間)は3〜60分間程度、さらには5〜15分間程度であることが好ましい。   The accelerated oxidation treatment conditions for the water to be treated α in the accelerated oxidation treatment tank 1b are such that the ozone injection rate into the water to be treated α and, if necessary, the hydrogen peroxide injection rate are controlled within a certain range, and the desired effect is sufficiently obtained. There is no particular limitation as long as it is expressed, and it can be appropriately changed according to the quality of the water to be treated α, the quality of the target treated water, etc. For example, the accelerated oxidation treatment time (residence time) is about 3 to 60 minutes. Furthermore, it is preferably about 5 to 15 minutes.

なお前記促進酸化処理(1B)にて用いられたオゾンの一部は、促進酸化処理槽1bから廃オゾン分解装置10に移送されて分解された後、ポンプ101にてシステム外へと排出される。   A part of ozone used in the accelerated oxidation treatment (1B) is transferred from the accelerated oxidation treatment tank 1b to the waste ozone decomposing apparatus 10 and decomposed, and then discharged to the outside by the pump 101. .

また、本実施の形態2においては、被処理水にオゾン及び過酸化水素を供給して促進酸化処理(1B)を施すが、このようなオゾンと過酸化水素との組み合わせの代わりに、オゾンと紫外線との組み合わせを採用することもできる。被処理水にオゾンを供給し、かつ紫外線を照射することによって、前記のごとくオゾン及び過酸化水素を供給した際と同様の促進酸化処理(1B)の効果を得ることができる。   In the second embodiment, ozone and hydrogen peroxide are supplied to the water to be treated to perform the accelerated oxidation treatment (1B). Instead of such a combination of ozone and hydrogen peroxide, ozone and hydrogen peroxide are used. A combination with ultraviolet rays can also be employed. By supplying ozone to the water to be treated and irradiating it with ultraviolet rays, the effect of the accelerated oxidation treatment (1B) similar to that when ozone and hydrogen peroxide are supplied as described above can be obtained.

促進酸化処理槽1bにて前記のごとく促進酸化処理(1B)が施された被処理水αは、生物処理槽2へ移送され、前記実施の形態1に係る水処理方法と同様に、該生物処理槽2において生物処理(2)が施される。   The treated water α that has been subjected to the accelerated oxidation treatment (1B) in the accelerated oxidation treatment tank 1b as described above is transferred to the biological treatment tank 2, and the organism is treated in the same manner as the water treatment method according to the first embodiment. Biological treatment (2) is performed in the treatment tank 2.

生物処理槽2にて生物処理(2)が施された後、該生物処理(2)による生物処理水を前記促進酸化処理(1B)に使用することによって、促進酸化処理(1B)と生物処理(2)との間で循環処理を行う。   After the biological treatment (2) is performed in the biological treatment tank 2, the biological treatment water by the biological treatment (2) is used for the accelerated oxidation treatment (1B), whereby the accelerated oxidation treatment (1B) and the biological treatment are performed. Cycle processing with (2).

従来のように、促進酸化処理と生物処理とを順次複数回繰り返す処理を行った場合には、後段での処理ほど、被処理水中の汚濁物質濃度が低下して溶存オゾン濃度や溶存過酸化水素濃度が上昇し易く、これによってOHラジカルや次亜塩素酸が発生し易い状態となり、被処理水の濃度といった水質変動の影響を受けて処理が不安定になるという問題が生じてしまう。しかしながら、本発明の水処理方法では、促進酸化処理(1B)と生物処理(2)との間で循環処理を行うので、このような従来の問題が生じることはなく、安全で水質変動が極めて少ない安定した処理水を、被処理水の水質に関らず、少量かつ適量のオゾンで効率的に低ランニングコストで得ることができる。   As in the past, in the case where the accelerated oxidation treatment and the biological treatment are sequentially repeated several times, the concentration of pollutants in the water to be treated decreases and the dissolved ozone concentration and dissolved hydrogen peroxide increase as the treatment in the later stage. The concentration is likely to increase, and thus OH radicals and hypochlorous acid are likely to be generated, which causes a problem that the treatment becomes unstable due to the influence of water quality fluctuations such as the concentration of water to be treated. However, in the water treatment method of the present invention, since the circulation treatment is performed between the accelerated oxidation treatment (1B) and the biological treatment (2), such a conventional problem does not occur, and the water quality variation is extremely safe. Regardless of the quality of the water to be treated, a small amount of stable treated water can be efficiently obtained at a low running cost with a small amount and an appropriate amount of ozone.

促進酸化処理(1B)と生物処理(2)との間で循環処理を行う回数には特に限定がなく、例えば被処理水の水質や目標とする処理水の水質に応じて適宜決定すればよいが、通常促進酸化処理(1B)と生物処理(2)とのセットを2〜20回程度行うことが好ましい。   There is no particular limitation on the number of times that the circulation treatment is performed between the accelerated oxidation treatment (1B) and the biological treatment (2). For example, the number may be appropriately determined according to the quality of the water to be treated and the quality of the target treated water. However, it is preferable to perform the set of the normal oxidation treatment (1B) and the biological treatment (2) about 2 to 20 times.

促進酸化処理(1B)と生物処理(2)との間で所望の回数の循環処理を行った後、生物処理槽2から処理水槽11に移送された処理水δは、種々目的に応じて再利用される。なお必要に応じて、処理水槽11中の処理水δをポンプ111にて生物処理槽2へ移送し、生物処理槽2内の逆洗を行ってもよい。   After performing the desired number of circulation treatments between the accelerated oxidation treatment (1B) and the biological treatment (2), the treated water δ transferred from the biological treatment tank 2 to the treated water tank 11 is recycled according to various purposes. Used. If necessary, the treated water δ in the treated water tank 11 may be transferred to the biological treatment tank 2 by the pump 111 and backwashed in the biological treatment tank 2 may be performed.

なお、本実施の形態2に係る水処理方法では、前記促進酸化処理(1B)を多段階にて行うこともできる。   In the water treatment method according to Embodiment 2, the accelerated oxidation treatment (1B) can be performed in multiple stages.

図3は、本発明の実施の形態2に係る水処理方法に用いる水処理システムにおいて、多段で備えられた促進酸化処理槽を示す模式図である。図3において、1b1、1b2、1b3はいずれも、被処理水に促進酸化処理(1B)を施す促進酸化処理槽である。   FIG. 3 is a schematic diagram showing accelerated oxidation treatment tanks provided in multiple stages in the water treatment system used in the water treatment method according to Embodiment 2 of the present invention. In FIG. 3, 1b1, 1b2, and 1b3 are all accelerated oxidation treatment tanks that perform accelerated oxidation treatment (1B) on the water to be treated.

まず促進酸化処理槽1b1へ移送された被処理水に対して、オゾンβ1及び過酸化水素γ1の水溶液を供給した後、被処理水を促進酸化処理槽1b2へと移送し、オゾンβ2及び過酸化水素γ2の水溶液を供給する。次いで被処理水を促進酸化処理槽1b3へと移送し、オゾンβ3及び過酸化水素γ3の水溶液を供給した後、後段の生物処理槽2へと被処理水を移送する。   First, an aqueous solution of ozone β1 and hydrogen peroxide γ1 is supplied to the treated water transferred to the accelerated oxidation treatment tank 1b1, and then the treated water is transferred to the accelerated oxidation treatment tank 1b2, where ozone β2 and peroxidation are transferred. An aqueous solution of hydrogen γ2 is supplied. Next, the water to be treated is transferred to the accelerated oxidation treatment tank 1b3, and after supplying an aqueous solution of ozone β3 and hydrogen peroxide γ3, the water to be treated is transferred to the biological treatment tank 2 at the subsequent stage.

このように促進酸化処理(1B)を多段階にて行う際には、オゾン及び過酸化水素の注入を分割して行うことができるので、例えば被処理水中の溶存オゾン濃度や溶存過酸化水素濃度が一度に高くなりすぎず、同じ酸化剤量であってもより高い処理効果が発揮され、さらに次亜塩素酸の生成を抑制したり、一度に過剰なOHラジカルが発生するのを防止することができるという利点がある。したがって、促進酸化処理(1B)を多段階にて行うことにより、安全で水質変動が極めて少ない安定した処理水を、さらに効率的に、かつ、より低ランニングコストで得ることができる。   In this way, when the accelerated oxidation treatment (1B) is performed in multiple stages, the injection of ozone and hydrogen peroxide can be performed separately. For example, the dissolved ozone concentration or dissolved hydrogen peroxide concentration in the water to be treated Is not too high at the same time, and even with the same amount of oxidant, a higher treatment effect is exhibited, and further, generation of hypochlorous acid is suppressed and excessive generation of OH radicals is prevented at one time. There is an advantage that can be. Therefore, by performing the accelerated oxidation treatment (1B) in multiple stages, it is possible to obtain stable treated water that is safe and has very little fluctuation in water quality, more efficiently and at a lower running cost.

なお、促進酸化処理(1B)を多段階にて行う場合、その回数には特に限定がなく、例えば被処理水の水質や目標とする処理水の水質に応じて適宜決定すればよいが、通常2〜4段階程度行うことが好ましい。   When the accelerated oxidation treatment (1B) is performed in multiple stages, the number of times is not particularly limited. For example, the number may be appropriately determined according to the quality of the water to be treated and the target quality of the treated water. It is preferable to carry out about 2 to 4 steps.

(実施の形態3)
さらに本発明の水処理方法の一実施形態として、オゾン処理(1A)又は促進酸化処理(1B)の前に砂ろ過処理(3)を行うことができる。かかる砂ろ過処理(3)を行う場合の一実施形態を図面に基づいて説明する。なお、以下に示すのは、オゾン処理(1A)を行う実施形態において、あらかじめ砂ろ過処理(3)を行う水処理方法であるが、該オゾン処理(1A)の代わりに促進酸化処理(1B)を行う実施形態の場合も同様である。
(Embodiment 3)
Furthermore, as one embodiment of the water treatment method of the present invention, the sand filtration treatment (3) can be performed before the ozone treatment (1A) or the accelerated oxidation treatment (1B). One embodiment in the case of performing such sand filtration processing (3) is described based on a drawing. The following is a water treatment method in which sand filtration treatment (3) is performed in advance in the embodiment in which ozone treatment (1A) is performed, but accelerated oxidation treatment (1B) instead of ozone treatment (1A). The same applies to the embodiment that performs the above.

図4は、本発明の実施の形態3に係る水処理方法に用いる水処理システムを示す模式図である。図4において、1aは被処理水にオゾン処理(1A)を施すオゾン処理槽、4a1は該オゾン処理槽1aに備えられた溶存オゾン濃度測定部、4a2は該オゾン処理槽1aに備えられた廃オゾンガス濃度測定部、2は被処理水に生物処理(2)を施す生物処理槽、3は被処理水に砂ろ過処理(3)を施す砂ろ過器である。   FIG. 4 is a schematic diagram showing a water treatment system used in the water treatment method according to Embodiment 3 of the present invention. In FIG. 4, 1a is an ozone treatment tank for performing ozone treatment (1A) on the water to be treated, 4a1 is a dissolved ozone concentration measuring unit provided in the ozone treatment tank 1a, and 4a2 is a waste provided in the ozone treatment tank 1a. The ozone gas concentration measuring unit 2 is a biological treatment tank 2 for subjecting the water to be treated to biological treatment (2), and 3 is a sand filter for subjecting the water to be treated to sand filtration (3).

オゾン処理槽1aは、前記したように、オゾン処理(1A)においてオゾン注入率を一定範囲に制御することが可能な構造を有している。また、オゾン処理槽1aと生物処理槽2との間は、前記したように、オゾン処理(1A)と生物処理(2)との間で循環処理を行うことが可能な循環構造である。   As described above, the ozone treatment tank 1a has a structure capable of controlling the ozone injection rate within a certain range in the ozone treatment (1A). Moreover, between the ozone treatment tank 1a and the biological treatment tank 2, as described above, a circulation structure capable of performing a circulation treatment between the ozone treatment (1A) and the biological treatment (2).

まず被処理水槽5内の被処理水αは、ポンプ51にて砂ろ過器3へ移送される。かかる砂ろ過器3では被処理水α中に含まれる浮遊物質、リン等があらかじめ除去されたり、BODがあらかじめ低減される。このような砂ろ過処理(3)により、後のオゾン処理(1A)での溶存オゾンの必要量を低減させることができ、オゾンの使用量をより少量とすることが可能である。   First, the water to be treated α in the water tank 5 to be treated is transferred to the sand filter 3 by the pump 51. In the sand filter 3, suspended substances, phosphorus, etc. contained in the water to be treated α are removed in advance, or BOD is reduced in advance. By such sand filtration (3), the required amount of dissolved ozone in the subsequent ozone treatment (1A) can be reduced, and the amount of ozone used can be reduced.

なお被処理水α中のリンを除去したい場合等は、前処理として凝集剤を添加し、スタティックミキサ内で凝集剤と被処理水αとを混合して被処理水α中に含まれるリン等を固形化させ、砂ろ過処理(3)に供することも可能である。   In addition, when it is desired to remove phosphorus in the water to be treated α, a flocculant is added as a pretreatment, and the flocculant and the water to be treated α are mixed in a static mixer to contain phosphorus contained in the water to be treated α. Can be solidified and subjected to sand filtration (3).

前記凝集剤には無機系凝集剤と有機系凝集剤とがある。無機系凝集剤としては、例えば硫酸アルミニウム、ポリ塩化アルミニウム(以下、PACという)等のアルミニウム系凝集剤や塩化第二鉄等の鉄系凝集剤があげられる。また有機系凝集剤としては、例えばポリアクリルアミド系高分子凝集剤等があげられる。かかる凝集剤は、その効果の発現を考慮して被処理水αの種類及び目的に応じた量で被処理水αに添加することが好ましい。   The flocculant includes inorganic flocculants and organic flocculants. Examples of inorganic flocculants include aluminum flocculants such as aluminum sulfate and polyaluminum chloride (hereinafter referred to as PAC), and iron flocculants such as ferric chloride. Examples of organic flocculants include polyacrylamide polymer flocculants. Such a flocculant is preferably added to the water to be treated α in an amount according to the type and purpose of the water to be treated α in consideration of the manifestation of the effect.

砂ろ過処理(3)に用いられる砂ろ過器3には特に限定がないが、例えば上向流移床型砂ろ過器等が例示され、ろ床上にろ過砂利層及びろ過砂層が順次積層されたものが通常用いられる。かかるろ過砂としては、不純物や扁平、脆弱な砂を多く含まず、石英質が多く、堅い均等なものが好ましい。また例えば有効径が0.8〜2.5mm程度、均等係数が1.5程度以下のろ過砂を好適に用いることができる。   Although there is no limitation in particular in the sand filter 3 used for sand filtration process (3), for example, an upward flow moving bed type sand filter etc. are illustrated, and the filter gravel layer and the filter sand layer are laminated | stacked sequentially on the filter bed. Is usually used. As such filtration sand, it is preferable to use a hard, uniform sand that does not contain many impurities, flatness, and fragile sand, is rich in quartz, and is hard. For example, filter sand having an effective diameter of about 0.8 to 2.5 mm and a uniformity coefficient of about 1.5 or less can be suitably used.

前記砂ろ過器3における被処理水αの砂ろ過処理条件は、充分な処理効果が得られる限り特に限定がなく、被処理水αの水質や目的とする処理水の水質等に応じて適宜変更することができるが、例えばろ過速度は100〜1000m/日程度、さらには200〜700m/日程度であることが好ましい。またかかる砂ろ過処理中には、ろ過砂の洗浄のために、10〜30L/m2/分程度の流量で適宜空気を供給することが好ましい。 The sand filtration treatment conditions of the water to be treated α in the sand filter 3 are not particularly limited as long as a sufficient treatment effect can be obtained, and appropriately changed according to the quality of the water to be treated α, the quality of the target treated water, and the like. For example, the filtration rate is preferably about 100 to 1000 m / day, and more preferably about 200 to 700 m / day. Further, during the sand filtration treatment, it is preferable to supply air appropriately at a flow rate of about 10 to 30 L / m 2 / min for washing the filtration sand.

また砂ろ過器3では、通常被処理水αのろ過と並行してろ床の洗浄が行われる。汚れたろ床は空気と水とで混合洗浄され、この後、逆洗排水から分離したろ床はろ過水と対向流で洗浄され、再びろ床面に戻る。   In the sand filter 3, the filter bed is usually washed in parallel with the filtration of the water to be treated α. The dirty filter bed is mixed and washed with air and water. Thereafter, the filter bed separated from the backwash waste water is washed with filtered water and counterflow, and returns to the filter bed surface again.

砂ろ過器3にて砂ろ過処理(3)が施された被処理水αには、図1の模式図にて示した実施の形態1の水処理システムと同様に、前記オゾン処理槽1aでのオゾン処理(1A)及び生物処理槽2での生物処理(2)が循環して施され、処理水槽11に移送された処理水δは、種々目的に応じて再利用される場合もある。なお必要に応じて、処理水槽11中の処理水δをポンプ111にて生物処理槽2へ移送し、生物処理槽2内の逆洗を行ってもよい。   The water to be treated α subjected to the sand filtration process (3) in the sand filter 3 is similar to the water treatment system of the first embodiment shown in the schematic diagram of FIG. 1 in the ozone treatment tank 1a. The ozone treatment (1A) and the biological treatment (2) in the biological treatment tank 2 are circulated and the treated water δ transferred to the treated water tank 11 may be reused for various purposes. If necessary, the treated water δ in the treated water tank 11 may be transferred to the biological treatment tank 2 by the pump 111 and backwashed in the biological treatment tank 2 may be performed.

なお本発明の水処理システムにおいて、図1、2及び4の模式図には示していないが、システム全体が効率的かつ安全で正確に連続操業されるように、溶存オゾン濃度測定部4a1、4b1、廃オゾンガス濃度測定部4a2、4b2、被処理水槽5のポンプ51、酸素発生器7、オゾン発生器8、過酸化水素タンク9のポンプ91、廃オゾン分解装置10のポンプ101、処理水槽11のポンプ111等は、それぞれが運転制御されている。   In the water treatment system of the present invention, although not shown in the schematic diagrams of FIGS. 1, 2, and 4, the dissolved ozone concentration measuring units 4a1, 4b1 are provided so that the entire system can be operated efficiently, safely and accurately. , Waste ozone gas concentration measuring units 4a2, 4b2, pump 51 of water tank 5 to be treated, oxygen generator 7, ozone generator 8, pump 91 of hydrogen peroxide tank 9, pump 101 of waste ozone decomposition apparatus 10, and water tank 11 Each of the pumps 111 and the like is controlled for operation.

このように本発明によれば、例えば廃水等の被処理水中の、特にCODを著しく低減させ、CODが高い被処理水からも、次亜塩素酸の発生が充分に抑制され、安全で水質変動が極めて少ない安定した処理水を得ることができる。しかも被処理水の水質に関らず、また同じ水質の被処理水を従来の方法で処理した場合と比較して、少量かつ適量のオゾンでの処理が可能で、効率的に低ランニングコストで操業することができる。   Thus, according to the present invention, for example, COD in treated water such as waste water is remarkably reduced, and generation of hypochlorous acid is sufficiently suppressed even from treated water having a high COD, so that the water quality can be changed safely. Therefore, stable treated water can be obtained. Moreover, regardless of the quality of the water to be treated, compared to the case where the water to be treated with the same water quality is treated by the conventional method, it can be treated with a small amount of ozone and efficiently at a low running cost. Can operate.

次に本発明の水処理方法及びそれに用いる水処理システムを以下の実施例に基づいてさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, although the water treatment method of this invention and the water treatment system used therewith are demonstrated more concretely based on the following Examples, this invention is not limited only to this Example.

実施例1(オゾン処理(1A)+生物処理(2)の循環処理)
図1の模式図に示す水処理システムにて最終処分場浸出水生物処理水の処理を24時間連続して行った。なお用いた最終処分場浸出水生物処理水のCODMnは80mg/Lであり、塩素イオン濃度は10000mg/Lであった。各処理の条件は以下のとおりである。
Example 1 (circulation treatment of ozone treatment (1A) + biological treatment (2))
In the water treatment system shown in the schematic diagram of FIG. 1, the final disposal site leachate biological treatment water was treated continuously for 24 hours. The COD Mn of the final disposal site leachate biological treatment water used was 80 mg / L, and the chloride ion concentration was 10000 mg / L. The conditions for each process are as follows.

(ア)オゾン処理
溶存オゾン濃度:手分析にて適時確認
オゾン注入率:溶存オゾン濃度が約0.3mg/L以下となるように手調整
滞留時間:10分間
(A) Ozone treatment dissolved ozone concentration: timely confirmation by manual analysis Ozone injection rate: hand-adjusted residence time so that the dissolved ozone concentration is about 0.3 mg / L or less: 10 minutes

(イ)生物処理
処理方法:接触曝気法(担体保持型の生物膜を使用)
処理温度:最終処分場浸出水生物処理水温度20℃
滞留時間:20分間
(I) Biological treatment method: Contact aeration method (using carrier-supported biofilm)
Treatment temperature: Final disposal site leachate biological treatment water temperature 20 ° C
Residence time: 20 minutes

(ウ)循環処理
オゾン処理と生物処理とのセット:3回
(C) Set of circulation treatment ozone treatment and biological treatment: 3 times

前記各条件にて処理を行った結果、得られた処理水のCODMnは21mg/Lとなっており、処理前と比較して充分に低減していた。なお、処理水からの塩素臭は感じられなかった。 As a result of performing the treatment under the above-mentioned conditions, the COD Mn of the obtained treated water was 21 mg / L, which was sufficiently reduced as compared with that before the treatment. In addition, the chlorine smell from the treated water was not felt.

実施例2(促進酸化処理(1B)+生物処理(2)の循環処理)
実施例1において、オゾン処理に代えて促進酸化処理を行った他は、実施例1と同様にして最終処分場浸出水生物処理水の処理を行った。なお水処理システムとしては、図2の模式図に示す水処理システムを使用した。促進酸化処理及び循環処理の条件は以下のとおりである。
Example 2 (accelerated oxidation treatment (1B) + biological treatment (2) circulation treatment)
In Example 1, the final disposal site leachate biological treatment water was treated in the same manner as in Example 1 except that the accelerated oxidation treatment was performed instead of the ozone treatment. As the water treatment system, the water treatment system shown in the schematic diagram of FIG. 2 was used. The conditions for the accelerated oxidation treatment and the circulation treatment are as follows.

(ア)促進酸化処理
溶存オゾン濃度:手分析にて適時確認
オゾン注入率:溶存オゾン濃度が約0.3mg/L以下となるように手調整
過酸化水素注入率:3mg/L(一定)
滞留時間:10分間
(A) Accelerated oxidation treatment dissolved ozone concentration: timely confirmed by manual analysis Ozone injection rate: hand-adjusted hydrogen peroxide injection rate so that the dissolved ozone concentration is about 0.3 mg / L or less: 3 mg / L (constant)
Residence time: 10 minutes

(ウ)循環処理
促進酸化処理と生物処理とのセット:3回
(C) Set of circulatory treatment-promoting oxidation treatment and biological treatment: 3 times

前記各条件にて処理を行った結果、得られた処理水のCODMnは12mg/Lとなっており、処理前と比較して著しく低減していた。なお、処理水からの塩素臭は感じられなかった。 As a result of the treatment under each of the above conditions, the COD Mn of the obtained treated water was 12 mg / L, which was significantly reduced as compared to before treatment. In addition, the chlorine smell from the treated water was not felt.

比較例1(オゾン処理のみ)
実施例1において、生物処理(オゾン処理と生物処理との循環処理)を行わず、オゾン処理のみを24時間連続して行った他は、実施例1と同様にして最終処分場浸出水生物処理水の処理を行った。なお、水処理システムとしては、図1の模式図に示す水処理システムにおいて、オゾン処理槽1aの後段に生物処理槽2を備えず、オゾン処理槽1aからの処理水が処理水槽11へ直接移送されるものを使用した。
Comparative Example 1 (only ozone treatment)
In Example 1, biological treatment (circulation treatment between ozone treatment and biological treatment) was not performed, and only ozone treatment was continuously performed for 24 hours, and the final disposal site leachate biological treatment was performed in the same manner as in Example 1. Water treatment was performed. In addition, as a water treatment system, in the water treatment system shown in the schematic diagram of FIG. 1, the biological treatment tank 2 is not provided after the ozone treatment tank 1 a, and the treated water from the ozone treatment tank 1 a is directly transferred to the treatment water tank 11. Using what will be.

前記条件にて処理を行った結果、得られた処理水のCODMnは35mg/Lであり、処理前と比較して充分には低減していなかった。また、処理水からは塩素臭が強く感じられた。 As a result of the treatment under the above conditions, the COD Mn of the obtained treated water was 35 mg / L, which was not sufficiently reduced as compared with that before the treatment. Further, a strong chlorine odor was felt from the treated water.

実施例1及び2のように、オゾン処理又は促進酸化処理においてオゾン注入率を一定範囲に制御し、かつ、オゾン処理又は促進酸化処理と生物処理との間で循環処理を行った場合には、最終処分場浸出水生物処理水のCODMnが80mg/Lと極めて高いにも関らず、オゾン注入率を低く制御することができ、CODMnが約10〜20mg/Lと極めて低く、さらには次亜塩素酸の発生も充分に抑制され、安全で水質変動が少ない安定した処理水を容易に得ることができることがわかる。 As in Examples 1 and 2, when the ozone injection rate is controlled within a certain range in the ozone treatment or accelerated oxidation treatment, and the circulation treatment is performed between the ozone treatment or accelerated oxidation treatment and the biological treatment, Despite the extremely high COD Mn of leachate and biological treatment water of final disposal site 80 mg / L, the ozone injection rate can be controlled low, and COD Mn is extremely low, about 10 to 20 mg / L. It can be seen that generation of hypochlorous acid is sufficiently suppressed, and stable treated water that is safe and has little fluctuation in water quality can be easily obtained.

さらに、実施例1と実施例2とを比較すると、実施例2のように促進酸化処理を行った場合には、CODの低減効果がより大きいことがわかる。   Further, comparing Example 1 and Example 2, it can be seen that the effect of reducing COD is greater when the accelerated oxidation treatment is performed as in Example 2.

これに対して、比較例1では生物処理(オゾン処理と生物処理との循環処理)を行わずにオゾン処理のみを行ったため、CODMnが35mg/Lと高いままで、かつ次亜塩素酸が発生した処理水しか得ることができないことがわかる。 In contrast, in Comparative Example 1, only ozone treatment was performed without performing biological treatment (circulation treatment between ozone treatment and biological treatment), so COD Mn remained as high as 35 mg / L and hypochlorous acid was present. It can be seen that only the generated treated water can be obtained.

本発明の水処理方法及び水処理システムは、例えば最終処分場浸出水、下水二次処理水、河川水、地下水、湖沼、工場排水、農業排水、ゴミ処理排水等の被処理水の水処理に有効利用が可能である。   The water treatment method and water treatment system of the present invention are used for water treatment of treated water such as final disposal site leachate, secondary sewage treatment water, river water, ground water, lakes, factory effluent, agricultural effluent, garbage treatment effluent, etc. Effective use is possible.

実施の形態1に係る水処理方法に用いる水処理システムを示す模式図The schematic diagram which shows the water treatment system used for the water treatment method which concerns on Embodiment 1. FIG. 実施の形態2に係る水処理方法に用いる水処理システムを示す模式図The schematic diagram which shows the water treatment system used for the water treatment method which concerns on Embodiment 2. FIG. 実施の形態2に係る水処理方法に用いる水処理システムにおいて、多段で備えられた促進酸化処理槽を示す模式図In the water treatment system used for the water treatment method which concerns on Embodiment 2, the schematic diagram which shows the accelerated oxidation treatment tank provided with the multistage 実施の形態3に係る水処理方法に用いる水処理システムを示す模式図The schematic diagram which shows the water treatment system used for the water treatment method which concerns on Embodiment 3. FIG.

符号の説明Explanation of symbols

1a オゾン処理槽
1b、1b1、1b2、1b3 促進酸化処理槽
2 生物処理槽
3 砂ろ過器
4a1、4b1 溶存オゾン濃度測定部
4a2、4b2 廃オゾンガス濃度測定部
1a Ozone treatment tank 1b, 1b1, 1b2, 1b3 Accelerated oxidation treatment tank 2 Biological treatment tank 3 Sand filter 4a1, 4b1 Dissolved ozone concentration measurement unit 4a2, 4b2 Waste ozone gas concentration measurement unit

Claims (7)

被処理水に対して、オゾンを供給するオゾン処理(1A)と、微生物により有機物を分解する生物処理(2)とを少なくとも行う水処理方法であって、
前記被処理水が、化学的酸素要求量(CODMn)が20mg/Lを超える被処理水であり、
前記オゾン処理(1A)において、オゾン注入率を、前記被処理水中の溶存オゾン濃度を測定することによって、被処理水中の溶存オゾン濃度が決定された範囲内となるように制御するとともに、前記オゾン注入率、該被処理水中の化学的酸素要求量の1〜3倍(重量比)となるように制御し、
前記オゾン処理(1A)の後に、プラスチック担体保持型の生物膜にて前記生物処理(2)を行うと共に、
前記生物処理(2)による生物処理水を、前記オゾン処理(1A)に使用することによって、オゾン処理(1A)と生物処理(2)との間で循環処理を行うことを特徴とする、水処理方法。
A water treatment method for performing at least ozone treatment (1A) for supplying ozone to a water to be treated and biological treatment (2) for decomposing organic matter by microorganisms,
The treated water is treated water having a chemical oxygen demand (COD Mn ) exceeding 20 mg / L,
In the ozone treatment (1A), the ozone injection rate is controlled so that the dissolved ozone concentration in the treated water is within the determined range by measuring the dissolved ozone concentration in the treated water, and the ozone The injection rate is controlled to be 1 to 3 times (weight ratio) the chemical oxygen demand in the water to be treated,
After the ozone treatment (1A), the biological treatment (2) is performed with a plastic carrier-holding biofilm,
By using the biologically treated water from the biological treatment (2) for the ozone treatment (1A), the water treatment is carried out between the ozone treatment (1A) and the biological treatment (2). Processing method.
溶存オゾン濃度が10mg/L以下となるようにオゾン注入率を制御する、請求項に記載の水処理方法。 The water treatment method according to claim 1 , wherein the ozone injection rate is controlled so that the dissolved ozone concentration is 10 mg / L or less. オゾン処理(1A)に代えて、オゾン及び過酸化水素を供給する促進酸化処理(1B)を行う、請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2 , wherein an accelerated oxidation treatment (1B) for supplying ozone and hydrogen peroxide is performed instead of the ozone treatment (1A). 促進酸化処理(1B)を多段階にて行う、請求項に記載の水処理方法。 The water treatment method according to claim 3 , wherein the accelerated oxidation treatment (1B) is performed in multiple stages. オゾン処理(1A)のためのオゾン処理槽と、生物処理(2)のための生物処理槽とを少なくとも備えた水処理システムであって、
化学的酸素要求量(CODMn)が20mg/Lを超える被処理水の処理に用いられ、
前記オゾン処理槽が、溶存オゾン濃度測定部を備え、オゾン注入率を、溶存オゾン濃度測定部にて測定された溶存オゾン濃度が決定された範囲内となるように制御するとともに、前記オゾン注入率が、前記被処理水中の化学的酸素要求量の1〜3倍(重量比)となるように制御することが可能な構造を有し、
前記オゾン処理槽の後段に、プラスチック担体保持型の生物膜を有する前記生物処理槽が備えられ、
前記オゾン処理槽と前記生物処理槽との間が循環構造であることを特徴とする、請求項1に記載の水処理方法に用いる水処理システム。
A water treatment system comprising at least an ozone treatment tank for ozone treatment (1A) and a biological treatment tank for biological treatment (2),
Used to treat water to be treated with chemical oxygen demand (COD Mn ) exceeding 20 mg / L,
The ozone treatment tank includes a dissolved ozone concentration measurement unit, and controls the ozone injection rate so that the dissolved ozone concentration measured by the dissolved ozone concentration measurement unit falls within the determined range. but has a structure capable of controlling so that the a 1-3 times the chemical oxygen demand of the water to be treated (weight ratio),
Subsequent to the ozone treatment tank, the biological treatment tank having a plastic carrier holding biofilm is provided,
The water treatment system used for the water treatment method according to claim 1, wherein a circulation structure is provided between the ozone treatment tank and the biological treatment tank.
オゾン処理槽の代わりに、促進酸化処理(1B)のための促進酸化処理槽が備えられた、請求項に記載の水処理システム。 The water treatment system of Claim 5 provided with the accelerated oxidation treatment tank for accelerated oxidation treatment (1B) instead of the ozone treatment tank. 促進酸化処理槽が多段で備えられた、請求項に記載の水処理システム。 The water treatment system according to claim 6 , wherein the accelerated oxidation treatment tank is provided in multiple stages.
JP2008228107A 2008-09-05 2008-09-05 Water treatment method and water treatment system used therefor Active JP5259311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228107A JP5259311B2 (en) 2008-09-05 2008-09-05 Water treatment method and water treatment system used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228107A JP5259311B2 (en) 2008-09-05 2008-09-05 Water treatment method and water treatment system used therefor

Publications (2)

Publication Number Publication Date
JP2010058078A JP2010058078A (en) 2010-03-18
JP5259311B2 true JP5259311B2 (en) 2013-08-07

Family

ID=42185492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228107A Active JP5259311B2 (en) 2008-09-05 2008-09-05 Water treatment method and water treatment system used therefor

Country Status (1)

Country Link
JP (1) JP5259311B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212562A (en) * 2010-03-31 2011-10-27 Sumitomo Precision Prod Co Ltd Method for treating organic wastewater
JP5686465B2 (en) * 2010-08-26 2015-03-18 株式会社タクマ Water treatment method and water treatment system using the same
JP2014094322A (en) * 2012-11-07 2014-05-22 Sumitomo Precision Prod Co Ltd Multistage organic waste water treatment system
CN105618080A (en) * 2016-01-30 2016-06-01 凯姆德(北京)能源环境科技有限公司 Ozone catalytic oxidation catalyst for treating reverse osmosis concentrated water and preparation method of catalyst
CN109452222B (en) * 2018-08-27 2023-11-03 福州绿新晨能源科技有限公司 Efficient pure oxygen mixing device and dissolved oxygen adjusting method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165991A (en) * 1996-12-11 1998-06-23 Ebara Corp Method for treating waste water containing biologically hardly decomposable organic matter
JP3795268B2 (en) * 1999-08-17 2006-07-12 アタカ工業株式会社 Method and apparatus for treating wastewater containing organochlorine compounds
JP2001239280A (en) * 2000-03-03 2001-09-04 Ataka Construction & Engineering Co Ltd Method of processing polluted water containing hardly biodegradable organic substance

Also Published As

Publication number Publication date
JP2010058078A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
Zhang et al. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater
Castro et al. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products
Wang et al. Effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor
Leyva-Díaz et al. Kinetic study of the combined processes of a membrane bioreactor and a hybrid moving bed biofilm reactor-membrane bioreactor with advanced oxidation processes as a post-treatment stage for wastewater treatment
Xing et al. Treatment of antibiotic fermentation‐based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
JP4673709B2 (en) Water treatment system
JP5259311B2 (en) Water treatment method and water treatment system used therefor
Sun et al. Investigation on pretreatment of centrifugal mother liquid produced in the production of polyvinyl chloride by air-Fenton technique
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
Manyuchi et al. Distillery effluent treatment using membrane bioreactor technology utilising pseudomonas fluorescens
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
Xu et al. Fenton-Anoxic–Oxic/MBR process as a promising process for avermectin fermentation wastewater reclamation
Aziz et al. PERFORMANCE OF COMBINED OZONE AND FENTON PROCESS
JP2006272081A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
EP4208412A1 (en) Wastewater ozone treatment
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP2000350997A (en) Method and apparatus for treating sewage
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JP2946163B2 (en) Wastewater treatment method
JP6540438B2 (en) Biological treatment method of treated water by aerobic fixed bed
JPH05277475A (en) Treatment method for water containing organic substance
JP2006272082A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JPH02303598A (en) Treatment of organic matter-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5259311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250