JP2008302308A - Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof - Google Patents

Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof Download PDF

Info

Publication number
JP2008302308A
JP2008302308A JP2007152204A JP2007152204A JP2008302308A JP 2008302308 A JP2008302308 A JP 2008302308A JP 2007152204 A JP2007152204 A JP 2007152204A JP 2007152204 A JP2007152204 A JP 2007152204A JP 2008302308 A JP2008302308 A JP 2008302308A
Authority
JP
Japan
Prior art keywords
photocatalyst
water
agcl
silver
conductive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152204A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Akira Watanabe
昭 渡辺
Hiroaki Tada
弘明 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Kinki University
Original Assignee
Ebara Corp
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Kinki University filed Critical Ebara Corp
Priority to JP2007152204A priority Critical patent/JP2008302308A/en
Publication of JP2008302308A publication Critical patent/JP2008302308A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst capable for remarkably improving photocatalyst activity, its production method, a water treatment method, and apparatus using the photocatalyst. <P>SOLUTION: The photocatalyst consists of a silver chloride deposited on a material containing a conductive substance and the silver chloride is preferable to be produced by depositing silver on the material containing a conductive substance and carrying out electrooxidation. Further, the silver chloride produced in such a manner is separated from the material containing the conductive substance to obtain the photocatalyst and the production method is carried out by at first depositing silver on the material containing the conductive substance and next forming silver chloride from silver by electrooxidation. Further, in a water treatment method for removing a harmful substance from water containing the harmful substance, the photocatalyst is brought into contact with water containing the harmful substance. The apparatus for removing the harmful substance from water containing the harmful substance has an introduction inlet 1 for water containing the harmful substance and a wastewater port 4, the photocatalyst 2 in the inside, and a light source 3 for irradiating the photocatalyst with light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高効率に光触媒活性が発揮される光触媒及びその製造方法、それを用いた水処理方法及び装置に関する。
本発明の光触媒は、製薬、医薬、農薬、食品、半導体のような各種化学工程における産業廃水、都市下水、上水、バイオマス等の水処理に適用可能である。特に、有害物質が被酸化性汚染物、例えば有機性物質(有機物)、アンモニアを含む水の酸化処理、無害化(低分子量化あるいは安定物質への変換)処理、細菌や原生動物等の有害生物を含む水の殺菌(不活化)、藻類の死滅化、脱色、脱臭を行う方法及び装置に関する。
The present invention relates to a photocatalyst exhibiting photocatalytic activity with high efficiency, a method for producing the photocatalyst, and a water treatment method and apparatus using the photocatalyst.
The photocatalyst of the present invention can be applied to water treatment of industrial wastewater, municipal sewage, tap water, biomass and the like in various chemical processes such as pharmaceuticals, pharmaceuticals, agricultural chemicals, foods, and semiconductors. In particular, harmful substances are oxidizable pollutants such as organic substances (organic substances), oxidation treatment of water containing ammonia, detoxification (low molecular weight or conversion to stable substances), pests such as bacteria and protozoa The present invention relates to a method and an apparatus for sterilization (inactivation) of water containing algae, killing algae, decolorization, and deodorization.

表1に、本発明の用途並びに用途に対応した利用分野の例を示す。

Figure 2008302308
Table 1 shows examples of applications of the present invention and application fields corresponding to the applications.
Figure 2008302308

近年、環境汚染に対する認識が益々高まっている。中でも水(処理)に対する認識は高く、一層効果的で良質な水質が得られる水処理方式の出現が期待されている。
従来の水処理方式として、水中の有機性物質(有機物)処理について説明する。
従来、水中の有機物除去方法としては、活性炭法、オゾン法、電気分解法などが知られている。しかしながら、これらの処理法には次のような問題点がある。
活性炭法は、処理効率は比較的高いが、活性炭の再生が煩雑でありコストが高い。
オゾン法は、有機物処理として脱色、脱臭、分解作用の効果は比較的良く、他に殺菌作用が存在するが、オゾンは製造するのにコスト高であり、また、未利用のオゾンが廃オゾンとして放出されるため、リーク廃オゾンの環境に対する二次汚染対策が必要である。
電気分解法は、有機物処理としての脱色の効率は比較的良いが、有機物分解には充分な効果が得られない。また、コスト高である。
In recent years, awareness of environmental pollution has been increasing. In particular, recognition of water (treatment) is high, and the emergence of water treatment methods that can obtain more effective and high-quality water quality is expected.
As a conventional water treatment method, treatment of an organic substance (organic matter) in water will be described.
Conventionally, an activated carbon method, an ozone method, an electrolysis method, and the like are known as methods for removing organic substances in water. However, these processing methods have the following problems.
The activated carbon method has a relatively high treatment efficiency, but the regeneration of the activated carbon is complicated and expensive.
The ozone method has relatively good effects of decolorization, deodorization and decomposition as organic substance treatment, and other sterilization effects exist, but ozone is expensive to produce, and unused ozone is used as waste ozone. Because it is released, it is necessary to take measures against secondary pollution to the environment of leaked waste ozone.
Although the electrolysis method has a relatively good decolorization efficiency as an organic matter treatment, it cannot provide a sufficient effect for organic matter decomposition. In addition, the cost is high.

これらに対し、本発明者らは、光触媒を用いた新規方式を提案した(例:特公平2−55117号、特許第3202863号)。
特公平2−55117号は、過酸化水素のような過酸化物の存在下に空気又は酸素を吹き込み、反応促進を図るものである。
特許第3202863号は、光触媒をファイバー状の様な線状物品となして光触媒面積を大きくすることで、反応促進を図るものである。
また、光触媒材に銀を担持し、殺菌作用の促進を図る提案がある(特開平10−235346号)。
これらの光触媒は、いずれも酸化チタン(TiO)を用いている。
On the other hand, the present inventors have proposed a novel method using a photocatalyst (eg, Japanese Patent Publication No. 2-55117, Japanese Patent No. 3202863).
Japanese Patent Publication No. 2-55117 aims to accelerate the reaction by blowing air or oxygen in the presence of a peroxide such as hydrogen peroxide.
Japanese Patent No. 3202863 promotes the reaction by making the photocatalyst into a linear article such as a fiber to increase the area of the photocatalyst.
There is also a proposal for promoting silver sterilization by supporting silver on a photocatalyst material (Japanese Patent Laid-Open No. 10-235346).
All of these photocatalysts use titanium oxide (TiO 2 ).

これらのこれまでの光触媒方式は、用途、要求性能によっては効果があるが、光触媒として、酸化チタンを用いる方式は、貧酸素状態(水中の酸素濃度が低下した状態)になると、原理的に性能が低下してしまう。従って、このような場合は、水処理効率の低下、不安定化により処理水質が悪化する現象が引き起こされる。
このような中で、突発的な貧酸素状態等、被処理水(負荷)条件が変化しても長時間性能の安定化(一定以上の性能を長時間維持)、維持管理の容易化等、用途や要求性能によっては一層実用上効果的な方式の出現が期待されていた。
特公平2−55117号公報 特許第3202863号公報 特開平10−235346号公報
These conventional photocatalyst methods are effective depending on the application and required performance, but the method using titanium oxide as a photocatalyst is in principle performance when it is in an oxygen-deficient state (a state where the oxygen concentration in water is reduced). Will fall. Therefore, in such a case, a phenomenon in which the quality of the treated water is deteriorated due to a decrease in water treatment efficiency or instability is caused.
Under such circumstances, even if the treated water (load) conditions change, such as sudden hypoxia, stabilization of long-term performance (maintaining performance above a certain level for a long time), facilitation of maintenance management, etc. The appearance of a more practically effective method was expected depending on the application and required performance.
Japanese Examined Patent Publication No. 2-55117 Japanese Patent No. 3202863 JP 10-235346 A

本発明は、上記従来技術に鑑み、より効果的(高性能)な光触媒の開発に関し、母材上に塩化銀を担持させることにより、光触媒活性を顕著に向上させることが出来る光触媒とその製造方法、及び、水中の有害汚染物が高効率で除去出来る水処理方法及び装置を提供することを課題とする。   The present invention relates to the development of a more effective (high performance) photocatalyst in view of the above prior art, and a photocatalyst capable of remarkably improving the photocatalytic activity by supporting silver chloride on a base material and a method for producing the same. Another object of the present invention is to provide a water treatment method and apparatus that can remove harmful pollutants in water with high efficiency.

上記課題を解決するために、本発明では、導電性物質を含む材料上に、塩化銀が担持されていることを特徴とする光触媒としたものである。
前記光触媒において、塩化銀は、導電性物質を含む材料上に銀を担持して電解酸化により生成させるのがよい。
また、本発明では、導電性物質を含む材料上に銀を担持して電解酸化して得られた塩化銀が、導電性物質を含む材料上から分離されたものであることを特徴とする光触媒としたものである。
さらに、本発明では、光触媒を製造する方法においては、導電性物質を含む材料上に、先ず銀を担持させ、次いで電解酸化により該銀から塩化銀を形成させて製造することを特徴とする光触媒の製造方法としたものである。
前記光触媒の製造方法において、導電性物質を含む材料上への銀の担持は、電解還元析出で行うことができる。
In order to solve the above problems, the present invention provides a photocatalyst characterized in that silver chloride is supported on a material containing a conductive substance.
In the photocatalyst, silver chloride is preferably generated by electrolytic oxidation by supporting silver on a material containing a conductive substance.
In the present invention, the photocatalyst is characterized in that silver chloride obtained by carrying out electrolytic oxidation by supporting silver on a material containing a conductive substance is separated from the material containing the conductive substance. It is what.
Furthermore, in the present invention, in the method for producing a photocatalyst, the photocatalyst is produced by first supporting silver on a material containing a conductive substance and then forming silver chloride from the silver by electrolytic oxidation. This is a manufacturing method.
In the method for producing a photocatalyst, the support of silver on a material containing a conductive substance can be performed by electrolytic reduction deposition.

また、本発明では、有害物質を含む水から有害物質を除去する水処理方法において、有害物質を含む水を前記のいずれかの光触媒に、光の照射下に接触させることを特徴とする水処理方法としたものである。
前記水処理方法において、有害物質を含む水は、貧酸素状態であってもよい。
さらに、本発明では、有害物質を含む水から有害物質を除去する装置において、該有害物質を含む水の導入口及び排水口を有し、内部に前記のいずれかの光触媒と、該光触媒に光照射する光源とを有することを特徴とする水処理装置としたものである。
Further, in the present invention, in a water treatment method for removing harmful substances from water containing harmful substances, water containing harmful substances is brought into contact with any one of the photocatalysts under light irradiation. It is a method.
In the water treatment method, the water containing a harmful substance may be in an oxygen-poor state.
Further, according to the present invention, an apparatus for removing harmful substances from water containing harmful substances has an inlet and a water outlet for water containing the harmful substances, and includes any one of the above photocatalysts and light to the photocatalyst. The water treatment apparatus is characterized by having a light source for irradiation.

本発明によれば、次のような効果を奏することができる。
(1)導電性物質を含む材料表面に銀を担持させ製造したことにより、高活性なAgCl光触媒が出来た。
(2)前記光触媒は、少なくとも導電性物質を含む材料上に銀を担持させ、次いで電解酸化を行うことにより形成出来た。
(3)前記光触媒は、水中酸素濃度が例えば1〜3mg/L以下のような貧酸素状態でも高活性を発揮する。
(4)本光触媒は、水中酸素含有濃度が自然状態(通常状態)の濃度域から貧酸素状態においても高活性な酸化力を発揮するので、酸化、殺菌(不活化)、脱色、脱臭等の広い用途、利用分野に適用出来た。
(5)上記より、光触媒技術の実用性が一層高まった。
According to the present invention, the following effects can be achieved.
(1) A highly active AgCl photocatalyst was produced by carrying silver on the surface of a material containing a conductive substance.
(2) The photocatalyst can be formed by supporting silver on a material containing at least a conductive substance and then performing electrolytic oxidation.
(3) The photocatalyst exhibits high activity even in an oxygen-poor state such that the oxygen concentration in water is, for example, 1 to 3 mg / L or less.
(4) Since this photocatalyst exhibits highly active oxidizing power even in anoxic conditions from the concentration range of oxygen content in the natural state (normal state), oxidation, disinfection (deactivation), decolorization, deodorization, etc. It was applicable to a wide range of uses and fields of use.
(5) From the above, the practicality of the photocatalytic technology has further increased.

本発明は、次の4つの知見に基づいて発明されたものである。
(1)光触媒に光照射すると、光励起により荷電子帯に正孔(h+)、伝導帯に電子(e)が生じ、この正孔は強力な酸化力を有するため、有機物やアンモニアのような被酸化性汚染物を分解、無害化できるので環境汚染浄化材料として有用である。この酸化力は、例えば光触媒が酸化チタン(TiO)の場合、TiO表面に生じる正孔は、約+3.0V(v.s. NHE)であり、オゾンの酸化力に対し1.5倍である。(エバラ時報, No.180号,p.3-14, 1998)
(2)従来の光触媒として、例えばTiOの光触媒反応の高効率化には、正孔と電子の再結合を防止(電荷分離促進)することが重要である。従来、このために電子受容体(電子アクセプター)として光触媒周囲に存在する酸素がこの作用をなしていたが、酸素による電子移動は必ずしも十分でない(酸素による電子移動は遅い)。すなわち、電子受容体に対する酸素の利用は、これまでの光触媒反応活性の律速となり、光触媒反応全体の速度を低下させている。
この様に、従来の光触媒のTiOは、酸素の共存が必須であるので、貧酸素状態では光触媒は原理的に使用できないため、用途開発に限界がある。
The present invention has been invented based on the following four findings.
(1) When the photocatalyst is irradiated with light, a hole (h + ) is generated in the valence band and an electron (e ) is generated in the conduction band by photoexcitation, and this hole has a strong oxidizing power. It is useful as an environmental pollution purification material because it can decompose and detoxify various oxidizable contaminants. For example, when the photocatalyst is titanium oxide (TiO 2 ), holes generated on the surface of TiO 2 are about +3.0 V (vs. NHE), which is 1.5 times the oxidizing power of ozone. It is. (Ebara Times, No. 180, p.3-14, 1998)
(2) As a conventional photocatalyst, for example, to increase the efficiency of the photocatalytic reaction of TiO 2 , it is important to prevent recombination of holes and electrons (acceleration of charge separation). Conventionally, for this purpose, oxygen present around the photocatalyst as an electron acceptor (electron acceptor) performs this function, but electron transfer by oxygen is not always sufficient (electron transfer by oxygen is slow). That is, the use of oxygen for the electron acceptor becomes the rate-determining factor of the photocatalytic reaction activity so far, and reduces the overall rate of the photocatalytic reaction.
Thus, since TiO 2 of the conventional photocatalyst must coexist with oxygen, the photocatalyst cannot be used in principle in an oxygen-poor state, and therefore there is a limit in application development.

(3)上記に対し、導電性物質を含む材料(例:SnO)上に塩化銀(AgCl)を担持(AgCl/SnO)し光照射すると、高活性(顕著な光触媒作用)を示す。また、前記AgCl/SnOから粒子状AgClを分離し、粒子状AgClに同様に光照射すると、高活性を示す。この反応機構の詳細は、鋭意検討中であり詳細は不明であるが、AgCl表面への光照射により、AgClの光励起で生じた正孔により、活性種(例:OHラジカル)が発生し、高活性を示すと考えられる。この光触媒は、酸素が存在しない無酸素状態や酸素が少ない状態(貧酸素状態)でも高活性を発揮する特性を有する。
(4)本発明の光触媒(例:AgCl/SnO2、粒子状AgCl)は、導電性物質を含む材料(SnO)表面に、先ずAgを担持させ、次いで、該AgをKCl電解質溶液での電解酸化することにより、実用上効果的なAgClを形成出来る。
(3) above to a material containing a conductive material (eg: SnO 2) silver chloride (AgCl) supported on (AgCl / SnO 2) and the light irradiation, showing a high activity (marked photocatalysis). Further, when particulate AgCl is separated from the AgCl / SnO 2 and light is irradiated to the particulate AgCl in the same manner, high activity is exhibited. Although details of this reaction mechanism are under intensive study and details are unknown, active species (eg, OH radicals) are generated by holes generated by photoexcitation of AgCl due to light irradiation on the AgCl surface, It is considered to show activity. This photocatalyst has the property of exhibiting high activity even in an oxygen-free state where oxygen is not present or in a state where oxygen is low (anoxic state).
(4) a photocatalyst of the present invention (Example: AgCl / SnO 2, particulate AgCl) is the material (SnO 2) surface containing a conductive material, first by supporting Ag, then, the Ag in KCl electrolyte solution Practically effective AgCl can be formed by electrolytic oxidation.

本発明の光触媒は、(1)導電性物質を含む材料(例:SnO)表面に、AgCl(粒子状)が担持されたもの、或いは(2)前記AgCl(粒子状)が導電性物質を含む材料(例:SnO)から分離(脱離)されたものであり、該光触媒は、光吸収によってそのエネルギーを他の反応物(被処理物)に与えて酸化作用を及ぼし、種々の化学反応、例えば酸化反応、殺菌(不活化)、脱色反応、脱臭反応を誘起させ、水中の有害物質(汚染物質)を分解・除去(無害化:低分子量化或いは安定物質への変換)する。 The photocatalyst of the present invention has (1) a material containing a conductive substance (eg SnO 2 ) on which AgCl (particulate) is supported, or (2) the AgCl (particulate) contains a conductive substance. including material (eg: SnO 2) has been separated (desorbed) from photocatalyst exerts an oxidizing effect giving its energy by light absorption in the other reactants (object to be processed), various chemical Reactions such as oxidation reaction, sterilization (inactivation), decolorization reaction, and deodorization reaction are induced to decompose and remove harmful substances (pollutants) in water (detoxification: low molecular weight or conversion to stable substances).

次に、本発明を詳細に説明する。
AgClの担持材(母材)
母材は、本発明の光触媒であるAgClを担持できるものであれば何れでも良い。このような材料としては、導電性物質を含む材料であれば何れでも良く、周知の導電性物質或いは導電性物質を含有する非導電性物質を用いることが出来る。本発明の特徴である導電性物質を含む材料を使用する意義は、本発明の光触媒の製造が簡易に出来ることが有る。即ち、該材料を電極として使用することにより、光触媒の製造が簡易に出来る。例えば、先ず、電解還元によって該材料表面上に銀(Ag)を析出させ、次に、電解酸化することによりAgCl形成を効果的に行うことが出来る。
Next, the present invention will be described in detail.
AgCl support material (base material)
The base material may be any material as long as it can support AgCl which is the photocatalyst of the present invention. As such a material, any material containing a conductive substance may be used, and a known conductive substance or a non-conductive substance containing a conductive substance can be used. The significance of using a material containing a conductive substance which is a feature of the present invention is that the photocatalyst of the present invention can be easily produced. That is, the photocatalyst can be easily manufactured by using the material as an electrode. For example, AgCl can be effectively formed by first depositing silver (Ag) on the surface of the material by electrolytic reduction and then performing electrolytic oxidation.

母材のより好ましい材料は、導電性物質(電極として効果的)である。該材料は、Agの担持及びAgClの電解による形成、を一連の操作で出来るので実用上効果的である。即ち、より簡易に、且つ効果的にAgClが製造出来るので、より好適に用いることが出来る。
この材料は、SnO,Al,W,ステンレス、亜鉛、のような金属酸化物、金属又はカーボンブラックのようなカーボン系のものがある。
前記母材の形状は、板状、網状、シート状、チューブ状、柱状、ロッド状(棒状)、線状、ファイバー状、フィルター状、粒状、球状がある。
前記の母材の材料種類や形状の選択は、下記Agの担持(付加)方法や条件、AgCl形成方法や条件、本光触媒の適用先(用途)、光源種類、装置形状、規模、要求仕様等で適宜検討を行い決めることが出来る。
A more preferable material of the base material is a conductive substance (effective as an electrode). The material is practically effective because it can be supported by Ag and formed by electrolysis of AgCl through a series of operations. That is, since AgCl can be produced more easily and effectively, it can be used more suitably.
This material may be a metal oxide such as SnO 2 , Al, W, stainless steel, zinc, or a carbon-based material such as metal or carbon black.
The base material has a plate shape, a net shape, a sheet shape, a tube shape, a column shape, a rod shape (bar shape), a linear shape, a fiber shape, a filter shape, a granular shape, and a spherical shape.
Selection of the material type and shape of the base material includes the following Ag loading (addition) method and conditions, AgCl formation method and conditions, application destination (use) of the photocatalyst, light source type, device shape, scale, required specifications, etc. You can make an appropriate decision after review.

AgClの形成
本発明の光触媒AgClは、先ず、導電性物質を含む材料にAgの担持(付加)を行い、次いで該AgよりAgClを形成するものである。
(a)Agの担持
Agの担持(付加)方法は、導電性物質を含む材料への担持によりAgClを形成出来るものであれば良く、その担持方法、担持条件は、担持Agから本発明の特徴である光触媒性能を発揮するAgClを形成できるものであれば何れでも良い。
この様なAgの担持方法は、(a)電解還元により、Ag担体結晶微粒子を導電性物質を含む材料上に析出させ付加する方法、(b)銀化合物を含む溶液に少なくとも導電性物質を含む材料を含浸し、加熱処理により付加する方法、がある。
AgCl formation
In the photocatalyst AgCl of the present invention, Ag is first supported (added) on a material containing a conductive substance, and then AgCl is formed from the Ag.
(A) Ag loading The Ag loading (addition) method may be any method as long as AgCl can be formed by loading on a material containing a conductive substance. Any material can be used as long as it can form AgCl that exhibits the photocatalytic performance.
Such a method of supporting Ag includes: (a) a method of depositing Ag carrier crystal fine particles on a material containing a conductive substance by electrolytic reduction; and (b) a solution containing a silver compound containing at least a conductive substance. There is a method in which a material is impregnated and added by heat treatment.

前記担持方法の内、(a)の方法は、母材 にSnOのような導電性材料を用いることで、電解法によるAg担持及びそれに続くAgClの形成を一連の操作で出来るので実用上効果的である。
即ち、より簡易に、且つ効果的にAgClが製造出来るので、より好適に用いることが出来る。
担持形態は、担持AgからAgClを形成できるものであれば良く、Ag粒径として、0.1μm〜500μm、好ましくは1μm〜50μm、より好ましくは1μm〜4μmである。
Among the above-mentioned supporting methods, the method (a) is practically effective since a conductive material such as SnO 2 is used as a base material, so that Ag supporting by electrolytic method and subsequent formation of AgCl can be performed by a series of operations. Is.
That is, since AgCl can be produced more easily and effectively, it can be used more suitably.
The supporting form is not particularly limited as long as AgCl can be formed from the supporting Ag, and the Ag particle diameter is 0.1 μm to 500 μm, preferably 1 μm to 50 μm, more preferably 1 μm to 4 μm.

(b)AgClの形成
AgClは、Agを、Clを含む電解溶液中で電解酸化することで効果的に形成される。
この電解溶液としてはKClがあり、濃度は、0.01M〜10MのKCl、好ましくは0.1 M〜1MのKClにおいて電解酸化を行うと、AgからのAgCl生成が効果的となり、AgClが母材上に形成され、高活性な光触媒が製造される。
(B) formation of AgCl AgCl is a Ag, Cl - effectively formed by electrolytic oxidation in an electrolytic solution containing.
This electrolytic solution includes KCl. When electrolytic oxidation is performed at a concentration of 0.01 M to 10 M KCl, preferably 0.1 M to 1 M KCl, the generation of AgCl from Ag becomes effective. A highly active photocatalyst formed on the material is produced.

本発明の光触媒は、(1)導電性物質を含む材料上にAgClを形成させたもの(例;AgCl/SnO)、(2)前記(1)より粒子状AgClを脱離させたもの、を使用することが出来る。
これらの光触媒は、本光触媒の適用先(用途)、装置形状や運転条件、光源種類や使用方法、規模、要求仕様等からそれぞれの光触媒の利点(特徴)を考え、適宜検討を行い決めることが出来る。それぞれの光触媒の利点(特徴)を下記に示す。
導電性物質を含む材料上にAgClを形成させたもの(例:AgCl/ SnO)は、前記の如く、板状、網状、シート状、チューブ状、柱状、ロッド状(棒状)、線状、ファイバー状、フィルター状等、種種の形状が出来るため、光触媒反応装置の任意の場所への固定化使用が可能である。これにより、(a)光触媒反応装置の設計の自由度が拡大、(b)装置の保守、維持が容易となる利点がある。
The photocatalyst of the present invention includes (1) a material containing a conductive substance formed with AgCl (eg, AgCl / SnO 2 ), (2) a material obtained by detaching particulate AgCl from the above (1), Can be used.
These photocatalysts can be determined by considering the advantages (characteristics) of each photocatalyst based on the application destination (use) of the photocatalyst, the device shape and operating conditions, the type of light source, method of use, scale, and required specifications. I can do it. The advantages (characteristics) of each photocatalyst are shown below.
A material in which AgCl is formed on a material containing a conductive substance (eg, AgCl / SnO 2 ) is, as described above, a plate shape, a net shape, a sheet shape, a tube shape, a column shape, a rod shape (bar shape), a linear shape, Since various shapes such as a fiber shape and a filter shape can be formed, the photocatalytic reaction device can be fixed to any place. As a result, (a) the degree of freedom in designing the photocatalytic reaction device is expanded, and (b) there is an advantage that maintenance and maintenance of the device are facilitated.

一方、粒子状AgClは、みかけの比重が小さく、表面積が広い。これにより、光触媒反応装置において、被処理水中に浮遊状態として使用出来るので、光触媒への光照射及び光触媒と被処理物との接触をより効果的に出来る利点がある。即ち、粒子状AgClは、後述図11、図14の如く浮遊状態となしての使用が可能である。この場合、光触媒の浮遊状態を、空気の導入による気泡としてマイクロバブルにより行うと、容易に浮遊状態が得られ、更にマイクロバブルによる被処理物と光触媒表面との接触効率の向上(平均滞留時間の増大)効果により、効果的処理が出来る。即ち、粒子状AgClは、後述図11、図14の如く空気供給(導入)による気泡下で使用すると、粒子状AgClを好適に用いることが出来る形態となる。   On the other hand, particulate AgCl has a small apparent specific gravity and a large surface area. Thereby, in a photocatalytic reaction apparatus, since it can be used as a floating state in to-be-processed water, there exists an advantage which can perform the light irradiation to a photocatalyst, and the contact of a photocatalyst and a to-be-processed object more effectively. That is, the particulate AgCl can be used in a floating state as shown in FIGS. In this case, the floating state of the photocatalyst can be easily obtained by using microbubbles as bubbles by introducing air, and the floating state can be easily obtained. Further, the contact efficiency between the object to be processed and the surface of the photocatalyst by the microbubbles can be improved (average residence time can be reduced). (Increase) effect can be processed effectively. That is, the particulate AgCl is in a form in which the particulate AgCl can be suitably used when used under air bubbles by air supply (introduction) as shown in FIGS.

通常は、導電性物質を含む材料上にAgClを形成させた光触媒の形態(例:AgCl/SnO)が、反応装置設計の自由度拡大の点、及び取扱い性、保守・維持が容易である点から好ましい。
AgClの好適な粒径は、光触媒の母材の有・無、その形状、適用先(用途)、装置形状や運転条件、規模、要求仕様等から選択出来、その粒径は電解酸化条件により制御可能である。
粒径は、0.1μm〜500μm、好ましくは1μm〜50μm、より好ましくは1μm〜5μmである。
好適な電解酸化条件、濃度、電解電流、形成時間は、用いるAgCl形態により適宜予備試験を行い適宜決めることが出来る。
Usually, the form of a photocatalyst in which AgCl is formed on a material containing a conductive substance (eg, AgCl / SnO 2 ) is easy to handle, maintain, and maintain the degree of freedom in designing the reactor. It is preferable from the point.
The suitable particle size of AgCl can be selected from the presence or absence of the base material of the photocatalyst, its shape, application destination (use), device shape, operating conditions, scale, required specifications, etc. The particle size is controlled by the electrolytic oxidation conditions Is possible.
The particle size is 0.1 μm to 500 μm, preferably 1 μm to 50 μm, more preferably 1 μm to 5 μm.
Suitable electrolytic oxidation conditions, concentration, electrolytic current, and formation time can be appropriately determined by appropriately conducting preliminary tests depending on the form of AgCl used.

光源
光源は、光触媒への照射により、光触媒作用を発揮させるものであれば良く、水銀ランプ、キセノンランプなどの放電ランプ、殺菌灯、ブラックライト、蛍光灯などの蛍光ランプ、白熱灯などのフィラメントランプ、発光ダイオード(LED)、レーザー光などの人工光源、太陽光等を用いることが出来、適用先(用途)、装置形状、装置規模、光触媒種類、要求仕様等で適宜選択して、使用出来る。
例えば、殺菌用途では、殺菌灯あるいは低圧水銀ランプが好ましい。これは、光触媒作用に、殺菌灯の使用では殺菌灯からの殺菌線による殺菌作用が加わり、低圧水銀ランプの使用ではオゾン発生するので、該オゾンによる殺菌作用が加わり、相乗効果が得られるので適宜選択し、使用でき、殺菌や脱臭用途では好ましい。
Light source The light source is not limited as long as it can exhibit photocatalytic action when irradiated to the photocatalyst, such as a discharge lamp such as a mercury lamp or a xenon lamp, a fluorescent lamp such as a germicidal lamp, a black light or a fluorescent lamp, or a filament lamp such as an incandescent lamp. , Artificial light sources such as light emitting diodes (LEDs) and laser light, sunlight, and the like can be used, and can be used by appropriately selecting the application destination (use), apparatus shape, apparatus scale, photocatalyst type, required specifications, and the like.
For example, for sterilization applications, a sterilization lamp or a low-pressure mercury lamp is preferred. This is because the sterilization effect by the sterilization line from the germicidal lamp is added to the photocatalytic action, and ozone is generated by using the low-pressure mercury lamp, so that the bactericidal action by the ozone is added and a synergistic effect is obtained. It can be selected and used, and is preferable for sterilization and deodorizing applications.

一般に、処理水中には自然状態(通常状態)で酸素濃度8.8mg/L(20℃、大気圧)程度含有するが、本発明の光触媒は水中酸素濃度が1mg/L〜3mg/L以下の貧酸素状態でも同様に作用し、本発明の大きな特徴である。
尚、前記酸素濃度は20℃、大気圧での値であり、温度、圧力、水処理方式により変化する。
また、一般に好気性処理では、酸素濃度は1〜3mg/L(20℃、大気下)必要であるが、本発明では、該濃度以下の通常好気性処理が原理的に不可能な状態でも発揮出来る。
本発明の光触媒は、高活性を示す。この反応機構の詳細は、鋭意検討中であり詳細不明であるが次のように考えられる。AgClへの光照射により、AgClの光励起で生じた正孔により、活性種(例:OHラジカル)が発生し、高活性を示すと考えられる。AgClの伝導帯は、従来の光触媒として知られている酸化チタン(TiO)の伝導帯よりも相当高い位置にあるため、生じたプロトンが電子受容体として効果的に作用することが考えられる。
In general, the treated water contains an oxygen concentration of about 8.8 mg / L (20 ° C., atmospheric pressure) in a natural state (normal state), but the photocatalyst of the present invention has an oxygen concentration of 1 mg / L to 3 mg / L or less in water. It acts similarly even in an anoxic state and is a major feature of the present invention.
The oxygen concentration is a value at 20 ° C. and atmospheric pressure, and varies depending on temperature, pressure, and water treatment method.
In general, in the aerobic treatment, an oxygen concentration of 1 to 3 mg / L (20 ° C., in the atmosphere) is necessary. However, in the present invention, even in a state where a normal aerobic treatment below the concentration is not possible in principle. I can do it.
The photocatalyst of the present invention exhibits high activity. Although details of this reaction mechanism are under intensive study and details are unknown, it is considered as follows. It is considered that active species (eg, OH radicals) are generated due to holes generated by photoexcitation of AgCl due to light irradiation to AgCl, and show high activity. Since the conduction band of AgCl is at a position considerably higher than the conduction band of titanium oxide (TiO 2 ), which is known as a conventional photocatalyst, it is considered that the generated protons act effectively as an electron acceptor.

本発明の光触媒は、導電性物質を含む材料上に先ず銀を担持し、次いで電解酸化により生成させたものであり、このようにして製造されたAgClは、結晶構造ではみかけの比重が小さく、表面積が広い粒子状をなし、高純度であることから光触媒として高性能を発揮すると考えられる。
ここで、AgCl/導電性物質への光照射では、粒子状AgClよりも高性能である。この理由として、導電性物質(例:SnO)を用いる場合は、AgClへの光照射により生じた励起電子がAgClの伝導帯から、導電性物質(例:SnO)へ効率良く移動するためAgClの荷電子帯の正孔が反応に効果的に作用するようになるため、と考えられる。
The photocatalyst of the present invention is one in which silver is first supported on a material containing a conductive substance and then produced by electrolytic oxidation. AgCl produced in this way has a small apparent specific gravity in the crystal structure, It is considered that it exhibits high performance as a photocatalyst because it is in the form of particles with a large surface area and high purity.
Here, the light irradiation to AgCl / conductive material has higher performance than particulate AgCl. The reason for this is that when a conductive substance (eg, SnO 2 ) is used, excited electrons generated by light irradiation to AgCl are efficiently transferred from the conduction band of AgCl to the conductive substance (eg, SnO 2 ). This is considered to be because holes in the AgCl valence band effectively act on the reaction.

実施例1
光触媒の製造;下記工程による。
(1);母材(SnO2)上へのAgの担持
SnOを0.2M−NaClOと0.2mM−AgClO溶液に浸漬し、Arを溶液下部から導入し、電解還元を行う(Ag/SnO)。
(対極:ブラッシーカーボンと作用極SnO間に、−1.0Vを60分印加)
(2);Ag/SnOのAgからAgClの形成
Ag/SnOを0.2 M−KCl電解質溶液に浸漬し、電解酸化を行う(AgCl/SnO)。
(対極:ブラッシーカーボンとSnO間に、+0.9mAで60分電解酸化)
Example 1
Production of photocatalyst; according to the following steps.
(1); preform (SnO 2) supported SnO 2 of Ag onto immersed in 0.2 M-NaClO 4 and 0.2 mM-AgClO 4 solution, introducing Ar from the solution under performs electrolytic reduction ( Ag / SnO 2 ).
(Counter electrode: −1.0 V is applied for 60 minutes between brushy carbon and working electrode SnO 2 )
(2); Ag / from SnO 2 of Ag formed Ag / SnO 2 of AgCl was immersed in 0.2 M-KCl electrolyte solution, carrying out electrolytic oxidation (AgCl / SnO 2).
(Counter electrode: between brassie carbon and SnO 2, 60 minutes electrolytic oxidation at + 0.9 mA)

結果
光触媒(AgCl/SnO)のSEM写真、粒径分布及びX線分析
光触媒の製造において、該表面をSEM写真観察、X線分析(XRD)及び粒径分布測定を行い、調べた。
図3は、(a):Ag/SnO、(b):AgCl/SnO(本発明の光触媒) のSEM写真であり、(b)の右上部にはAgCl部の拡大図を示している。尚、図3の下地はSnOである。
図4は、XRDパターンを示す。図4中●はSnO2、○はAg、×はAgClを表しており、(a)はAg/SnO、(b)はAgCl/SnO、(c) は1ヶ月使用後のAgCl/SnOである。
図5は、(a):Ag/SnO、(b):AgCl/SnO(本発明の光触媒) の粒径分布を示している。
これらの写真、XRDパターン及び粒径分布から、電解還元によりSnO上に1μm〜3μm(平均粒径:1.5μm)のAg粒子が担持され、次の電解酸化により、1μm 〜4μm(平均粒径:2.1μm)の AgClがSnO上に形成されていることが観察された。
AgからAgClの形成
図6は、前記のAg/SnOにおけるAgからAgClへの形成(変化量、%)を示す。電解酸化の時間は、10分から180分であり、図6より、60分以上の電解酸化により、AgからAgClは90%(以上)形成されることが分かる。
Results SEM photograph, particle size distribution and X-ray analysis of photocatalyst (AgCl / SnO 2 ) In the production of photocatalyst, the surface was examined by SEM photograph observation, X-ray analysis (XRD) and particle size distribution measurement.
FIG. 3 is an SEM photograph of (a): Ag / SnO 2 and (b): AgCl / SnO 2 (the photocatalyst of the present invention), and an enlarged view of the AgCl part is shown in the upper right part of (b). . Note that the base of FIG. 3 is SnO 2 .
FIG. 4 shows the XRD pattern. In FIG. 4, ● represents SnO 2, ○ represents Ag, × represents AgCl, (a) Ag / SnO 2 , (b) AgCl / SnO 2 , and (c) AgCl / SnO after one month of use. 2 .
FIG. 5 shows the particle size distribution of (a): Ag / SnO 2 and (b): AgCl / SnO 2 (the photocatalyst of the present invention).
From these photographs, XRD pattern and particle size distribution, 1 μm to 3 μm (average particle size: 1.5 μm) of Ag particles are supported on SnO 2 by electrolytic reduction, and 1 μm to 4 μm (average particle size) by the following electrolytic oxidation. It was observed that AgCl (diameter: 2.1 μm) was formed on SnO 2 .
Formation of Ag to AgCl FIG. 6 shows the formation (change amount,%) from Ag to AgCl in the Ag / SnO 2 . The electrolytic oxidation time is 10 minutes to 180 minutes, and it can be seen from FIG. 6 that 90% (or more) of Ag to AgCl is formed by electrolytic oxidation for 60 minutes or more.

実施例2
図1は、難生物分解性有機物を含む水の処理に、本発明の光触媒を用いる水処理を適用した例である。
図1は、本発明の光触媒を用いた光触媒反応工程Aと生物処理工程Bの順より成る難生物分解性有機物を含む水の処理プロセスを示す。
光触媒反応工程Aは、本発明の光触媒反応装置で、又生物処理工程Bは、生物処理装置で実施される。
種々の有機物、例えばフミン系統のCOD、農薬、有機塩素化合物等の難生物分解性有機物を含む処理水1は、光触媒反応装置Aに導入される。
該光触媒反応装置Aは、その主たる構成は図2に示した本発明の光触媒2、光源3より成る。図2において符号4は、光触媒2により処理された処理水(出口)である。
図1と図2で、同一符号は、同じ意味を示す。
Example 2
FIG. 1 is an example in which water treatment using the photocatalyst of the present invention is applied to treatment of water containing a hardly biodegradable organic substance.
FIG. 1 shows a treatment process of water containing a hardly biodegradable organic substance comprising a photocatalytic reaction step A and a biological treatment step B using the photocatalyst of the present invention.
The photocatalytic reaction step A is carried out by the photocatalytic reaction device of the present invention, and the biological treatment step B is carried out by a biological treatment device.
Treated water 1 containing various organic substances, for example, humin-based COD, agricultural chemicals, organic biodegradable organic substances such as organochlorine compounds, is introduced into the photocatalytic reactor A.
The main structure of the photocatalytic reaction apparatus A includes the photocatalyst 2 and the light source 3 of the present invention shown in FIG. In FIG. 2, reference numeral 4 is treated water (outlet) treated by the photocatalyst 2.
In FIG. 1 and FIG. 2, the same symbols indicate the same meaning.

該光触媒反応装置Aは、被処理水1中の被処理有機物は光源3からの光照射によって活性化された光触媒2による酸化作用を受け、易分解性有機物はCO,HOの無害ガスに変換され、大気放出5される。また、難分解性有機物は、易生物分解性有機物に変換され、水中に残る。
次に、易生物分解性有機物を含む水4は、生物処理装置Bに送られる。ここで、光触媒反応装置Aにより低分子量化された易生物分解性有機物は、空気の吹き込み6により好気的条件下とされている該装置B内で生物により処理され、生物学的に低分子量の無害物質に変換される。
ここで使用できる生物処理は、生物ろ過、流動媒体生物処理、ハニカム接触材生物処理、活性汚泥処理があり、適宜仕様等により選択できる。本実施例は、生物膜処理の生物ろ過である。
In the photocatalytic reactor A, the organic matter to be treated in the water to be treated 1 is subjected to an oxidizing action by the photocatalyst 2 activated by light irradiation from the light source 3, and the easily decomposable organic matter is a harmless gas of CO 2 and H 2 O. And is released into the atmosphere 5. In addition, the hardly decomposable organic substance is converted into a readily biodegradable organic substance and remains in water.
Next, the water 4 containing an easily biodegradable organic substance is sent to the biological treatment apparatus B. Here, the readily biodegradable organic substance having a low molecular weight reduced by the photocatalytic reaction apparatus A is treated by a living body in the apparatus B which is brought into an aerobic condition by air blowing 6, and biologically low molecular weight is reduced. Converted into harmless substances.
The biological treatment that can be used here includes biological filtration, fluidized medium biological treatment, honeycomb contact material biological treatment, and activated sludge treatment, and can be selected according to specifications and the like as appropriate. This example is biofiltration for biofilm treatment.

処理対象の難分解性有機物が高濃度含有する場合や高効率の処理を行う場合には、前記生物処理水7をそのまま出口処理水8とするのではなく、前記光触媒反応装置Aに循環9させることにより除去率を向上させることが好ましい。
これは、易生物分解性有機物を生物処理工程で分解した後の未分解の難生物分解性有機物は、再度、くり返し光触媒による酸化反応を行うことにより、易生物分解性有機物に変換されるためである。
このようにして、難生物分解性有機物を含む水1は、前工程で本発明の光触媒反応装置Aで、予備的な処理を行い、次いで後工程で生物処理Bを行うことにより、効果的な処理が行える。
In the case where a high-concentration organic substance to be treated is contained in a high concentration or when high-efficiency treatment is performed, the biologically treated water 7 is not directly used as the outlet treated water 8, but is circulated 9 in the photocatalytic reactor A. It is preferable to improve the removal rate.
This is because the undegraded, hardly biodegradable organic material after decomposing the readily biodegradable organic material in the biological treatment process is converted again into an easily biodegradable organic material by performing an oxidation reaction with a photocatalyst again. is there.
In this way, the water 1 containing a hardly biodegradable organic substance is effectively treated by performing preliminary treatment in the photocatalytic reaction apparatus A of the present invention in the previous step and then performing biological treatment B in the subsequent step. Can be processed.

実施例3
図1の処理プロセスにし尿処理施設の凝集沈殿処理水(COD:98mg/L、色度150度)を導入し、COD及び色度について調べた。
処理条件
処理水の処理量;10L/日。
光触媒反応装置;図2の型式。
大きさ;図2の型式で反応装置の大きさは3L。
光源;殺菌灯(強度2.5mW/cm)。
光触媒;実施例1で製造した光触媒を使用。
生物処理装置
方式:好気性生物ろ過
生物ろ過速度:110m/日
Example 3
The coagulation sedimentation treatment water (COD: 98 mg / L, chromaticity 150 degree | times) of a urine treatment facility was introduce | transduced into the treatment process of FIG. 1, and COD and chromaticity were investigated.
Treatment conditions Treated water treatment amount: 10 L / day.
Photocatalytic reactor; model of FIG.
Size: The size of the reactor in the model of FIG. 2 is 3L.
Light source: germicidal lamp (intensity 2.5 mW / cm 2 ).
Photocatalyst: The photocatalyst produced in Example 1 is used.
Biological treatment system Method: Aerobic biofiltration Biological filtration rate: 110m / day

COD及び色の除去性能
図7に、CODについて、60日間運転の値を示す。
図7中○は、本発明の値、●は比較例としての値で、光源をoffとし、生物処理装置のみ使用した場合を示す。図7中↓は、1mg/Lを示す。
図7は、下記を示している。
初期から生物処理を行うと、有機物除去性能は、変動が大きく、また低い。これは導入される被処理有機物の種類によっては、例えばより難生物分解性有機物(大きい分子量の有機物)が一時的に高濃度導入されると、除去性能は低下するためと考えられる。
前記に対し、先ず、本発明の光触媒反応装置により、多種類含有する水中有機物を低分子化し、次いで生物処理すると、高度に清浄化された水が安定して得られ(到達清浄度が高い水)、信頼性の高い水が長時間連続的に得られる。
表2に色度を示す。比較例の方式は前記の通りである。表2中数値は色度(度)である。
COD and Color Removal Performance FIG. 7 shows the values of 60-day operation for COD.
In FIG. 7, ◯ represents the value of the present invention, and ● represents the value as a comparative example, where the light source is turned off and only the biological treatment apparatus is used. In FIG. 7, ↓ indicates 1 mg / L.
FIG. 7 shows the following.
When biological treatment is performed from the beginning, the organic substance removal performance varies greatly and is low. This is considered to be because, depending on the type of the organic matter to be introduced, for example, when a more highly biodegradable organic matter (high molecular weight organic matter) is introduced at a high concentration temporarily, the removal performance decreases.
In contrast to this, first, by reducing the molecular weight of a large number of organic substances contained in water using the photocatalytic reaction device of the present invention and then biologically treating it, highly purified water can be stably obtained (water having a high ultimate cleanliness). ), Highly reliable water can be obtained continuously for a long time.
Table 2 shows the chromaticity. The method of the comparative example is as described above. The numerical values in Table 2 are chromaticity (degrees).

Figure 2008302308
表2の結果により、本発明の光触媒は、脱色に効果的であることがわかる。
Figure 2008302308
The results in Table 2 show that the photocatalyst of the present invention is effective for decolorization.

実施例4
図8は、クリプトスポリジウムのような有害生物を含む水の殺菌処理に、本発明の光触媒を用いる水処理を適用した例であり、浄水場における凝集沈殿における洗浄排水の殺菌処理(浄水場廃水処理プロセス)である。
通常の沈殿を用いた浄水場では、河川又は井戸などから原水(被処理水)1を取り入れ、急速混和池11、緩速混和池12を経て、沈殿池13で凝集沈殿、ろ過池14で砂ろ過又は膜ろ過が行われ、排水池15へ続く後工程へと流れている。7は、処理水の出口である。
ろ過池14では、ろ材の目詰まりを解消するために、間欠的に逆方向水流により洗浄が行われ、その洗浄排水16は排水池17へ送水される。また、排水池17では、その沈殿物18は排泥池19へ送られ、排泥池19の上澄み液20は、排水池17へと送水される。
Example 4
FIG. 8 is an example in which water treatment using the photocatalyst of the present invention is applied to sterilization treatment of water containing pests such as Cryptosporidium. Process).
In a water purification plant using ordinary sedimentation, raw water (treated water) 1 is taken from a river or a well, passed through a rapid mixing basin 11 and a slow mixing basin 12, coagulating sedimentation in a sedimentation basin 13, and sand in a filtration basin 14. Filtration or membrane filtration is performed, and it flows to the subsequent process that continues to the drainage basin 15. 7 is an outlet of the treated water.
In the filtration basin 14, in order to eliminate clogging of the filter medium, the washing is intermittently performed by the reverse water flow, and the washing drain 16 is sent to the drain 17. Further, in the drainage pond 17, the precipitate 18 is sent to the mud pond 19, and the supernatant 20 of the mud pond 19 is sent to the drainage pond 17.

沈殿池13で発生した沈殿物は排泥池19へ送られ、排泥池19の上澄み液20は排水池17へと送水され、排水池17の一部21が原水1へと返送され、濁質成分を濃縮する。
ここで22は、洗浄排水16を原水1に返送する途中に設置された、本発明の光触媒を用いた水処理装置(光触媒装置、図9に主な構成図)である。
このような一連の浄水過程では、凝集沈殿・ろ過の際に原水1に含まれる砂やプランクトンを含む濁質成分とともに、クリプトスポリジウム、大腸菌のような病原性微生物が補足される。このため、ろ過洗浄排水16にはこれらの成分が含まれることになり、排水池17の一部21を返送を繰り返すたびに原水側に濃縮され、凝集沈殿・ろ過を行っても排水池15に混入してしまう恐れが起きる。大腸菌のような塩素耐性を持たない微生物の場合には、後工程である塩素注入による殺菌消毒により死滅するが、クリプトスポリジウムのような塩素耐性を持つ生物に対しては、飲料水が汚染される危険性が生じてしまい、重大な汚染を引き起こし、問題である。
The sediment generated in the sedimentation basin 13 is sent to the drainage basin 19, the supernatant 20 of the drainage basin 19 is sent to the drainage basin 17, a part 21 of the drainage basin 17 is returned to the raw water 1, and becomes turbid Concentrate the quality components.
Here, 22 is a water treatment device (photocatalyst device, main configuration diagram in FIG. 9) using the photocatalyst of the present invention installed in the middle of returning the washing waste water 16 to the raw water 1.
In such a series of water purification processes, pathogenic microorganisms such as Cryptosporidium and Escherichia coli are supplemented together with turbid components including sand and plankton contained in the raw water 1 during coagulation sedimentation and filtration. For this reason, these components are contained in the filtration washing waste water 16, and every time the part 21 of the drainage basin 17 is repeatedly returned, it is concentrated to the raw water side, and even if coagulation sedimentation / filtration is performed, the drainage basin 15 There is a risk of mixing. In the case of microorganisms such as Escherichia coli that do not have chlorine tolerance, the bacteria are killed by sterilization and disinfection by chlorine injection, which is a subsequent process, but for chlorine-resistant organisms such as Cryptosporidium, drinking water is contaminated. Hazard arises, causes serious contamination and is a problem.

これに対し、本発明は、図8に示した位置に光触媒装置22(主な構成図:図9)を配備することで、排水中の有害生物を光触媒による酸化作用により有害生物の殺菌(不活化)を行うものである。図9は、光触媒反応装置であり、実施例1と同様な方法で製造した網状の光触媒2、紫外線ランプ3が複数設置され、又装置には撹拌ファンFによる被処理水の撹拌により光触媒による殺菌効果の促進を図っている。図8、9における(M)は、撹拌用モータである。
この様にして、洗浄排水16中のクリプトスポリジウム、大腸菌等の有害生物が殺菌され、安全性の高い飲料水が長時間安定して得られる(長時間安全性を確保)。
In contrast, in the present invention, the photocatalyst device 22 (main configuration diagram: FIG. 9) is provided at the position shown in FIG. Activation). FIG. 9 shows a photocatalytic reaction apparatus, in which a plurality of net-like photocatalysts 2 and ultraviolet lamps 3 manufactured in the same manner as in Example 1 are installed, and the apparatus is sterilized by photocatalyst by stirring water to be treated by a stirring fan F. The effect is promoted. (M) in FIGS. 8 and 9 is a stirring motor.
In this way, pests such as Cryptosporidium and Escherichia coli in the washing waste water 16 are sterilized, and highly safe drinking water can be stably obtained for a long time (ensures safety for a long time).

実施例5
図9に示す光触媒反応装置に、浄水場から発生する凝集沈殿洗浄排水、クリプトスポリジウムオーシストを添加した試験用のクリプトスポリジウム添加処理水を導入して、クリプトスポリジウムの不活化について調べた。
処理条件
光触媒反応装置;500Lのステンレス反応容器(図9の構成)。
光触媒の形状;網状(4個)
光源;殺菌灯(照射強度;2.5mW/cm)
光触媒の間に設置(6本)
光触媒の製造法;実施例1と同様の方法で作成した。
Example 5
The inactivation of Cryptosporidium was investigated by introducing into the photocatalytic reaction apparatus shown in FIG. 9 test coagulation sediment washing drainage generated from a water purification plant and Cryptosporidium-added treated water to which Cryptosporidium oocyst was added.
Treatment conditions Photocatalytic reaction apparatus: 500 L stainless steel reaction vessel (configuration shown in FIG. 9).
Photocatalyst shape; mesh (4)
Light source: germicidal lamp (irradiation intensity: 2.5 mW / cm 2 )
Installed between photocatalysts (6)
Production method of photocatalyst: It was prepared in the same manner as in Example 1.

被処理水;クリプトスポリジウムの添加量:1×10個/L
濁度;20度、通常、浄水場の洗浄排水の濁度は、5度から20度程度であり、20度は濁度が高い状態の水である。
撹拌;12回/min
不活化の評価法; 処理後の処理水は、濃縮後顕微鏡でクリプトスポリジウムオーシストの個数を調べ、免疫不全マウスに投与した。投与されたマウスの糞便中のクリプトスポリジウムの個数を計測することで、光触媒による不活化効果を調べた。
結果
不活化率を表3に示す。
Water to be treated: Amount of Cryptosporidium added: 1 × 10 6 / L
Turbidity: 20 degrees, usually, the turbidity of washing wastewater from a water purification plant is about 5 to 20 degrees, and 20 degrees is water in a state of high turbidity.
Stirring: 12 times / min
Evaluation method of inactivation: The treated water after treatment was examined for the number of Cryptosporidium oocysts with a microscope after concentration and administered to immunodeficient mice. The inactivation effect of the photocatalyst was examined by counting the number of Cryptosporidium in the stool of the administered mice.
Results The inactivation rate is shown in Table 3.

Figure 2008302308
この結果から、光触媒処理により、洗浄排水中の病原性微生物の殺菌消毒に高い効果があることが認められた。
Figure 2008302308
From this result, it was recognized that the photocatalytic treatment has a high effect on the sterilization and sterilization of pathogenic microorganisms in the washing waste water.

実施例6
図10及び図11に示す光触媒2と光源3から成る光触媒反応容器22に、アゾ色素として広く用いられている2−ナフトール溶液を導入し、光源の点灯による2−ナフトール濃度の変化を測定することにより光触媒効果を調べた。又、貧酸素状態についても同様に調べた。
尚、符号23は、光源3からの光を光触媒2に照射するためのガラス窓である。
図10は、AgCl/SnO:板状の光触媒の反応容器、図11はAgCl:粒子状光触媒の反応容器である。
処理条件
光触媒反応装置;2Lステンレス製、図10及び図11の構成
光触媒形状;AgCl/SnO:板状、AgCl:粒子状
光源;高圧水銀灯
光触媒の製造法;
(1)AgCl/SnO:実施例1と同様の方法で製造した。
(2)粒子状AgCl:上記(1)を溶液中で、超音波を与えることにより脱離させた。(平均粒径:2.1μm)
Example 6
A 2-naphthol solution widely used as an azo dye is introduced into the photocatalytic reaction vessel 22 composed of the photocatalyst 2 and the light source 3 shown in FIGS. 10 and 11, and the change in 2-naphthol concentration due to the lighting of the light source is measured. Thus, the photocatalytic effect was examined. Further, the poor oxygen state was examined in the same manner.
Reference numeral 23 denotes a glass window for irradiating the photocatalyst 2 with light from the light source 3.
FIG. 10 shows a reaction vessel of AgCl / SnO 2 : plate-like photocatalyst, and FIG. 11 shows a reaction vessel of AgCl: particulate photocatalyst.
Processing conditions Photocatalytic reaction device: made of 2L stainless steel, configuration of FIGS. 10 and 11 Photocatalyst shape; AgCl / SnO 2 : Plate shape, AgCl: particulate light source; High-pressure mercury lamp Production method of photocatalyst;
(1) AgCl / SnO 2 : produced in the same manner as in Example 1.
(2) Particulate AgCl: The above (1) was desorbed in a solution by applying ultrasonic waves. (Average particle size: 2.1 μm)

図11において、1は被処理液(2−ナフトール)、2は浮遊状態(分散状態)の光触媒(AgCl:粒子状)、3は光源、22は光触媒反応装置、24は光触媒2を浮遊状態にさせるための空気供給菅(散気菅)である。矢印は、空気の流れ方向を示している。粒子状光触媒2は、下方の散気菅24から供給された気泡25により浮遊状態となり、被処理液中の汚染物と接触し、光触媒作用により、2−ナフトールの分解を行う。
被処理物;2-ナフトール、1×10−5M溶液
水中酸素濃度:自然状態:8.8mg/L及び貧酸素状態:1.0mg/L(以下)2−ナフトールの濃度測定法;液体クロマトグラフにより測定
In FIG. 11, 1 is a liquid to be treated (2-naphthol), 2 is a photocatalyst (AgCl: particulate) in a floating state (dispersed state), 3 is a light source, 22 is a photocatalytic reaction device, and 24 is a photocatalyst 2 in a floating state. This is an air supply tank (air diffuser). Arrows indicate the direction of air flow. The particulate photocatalyst 2 enters a floating state by the bubbles 25 supplied from the lower air diffuser 24, contacts with contaminants in the liquid to be treated, and decomposes 2-naphthol by photocatalytic action.
2-naphthol, 1 × 10 −5 M solution Oxygen concentration in water: natural state: 8.8 mg / L and anoxic state: 1.0 mg / L (hereinafter) 2-naphthol concentration measurement method; liquid chromatography Measured by graph

結果
本光触媒の性能;
(1)AgCl/SnO:図12中○及び△は、本光触媒のものを示し、○は、水中酸素濃度:8.8mg/L状態、また、△は、脱気により水中酸素濃度を除去(貧酸素状態)し、同様に試験した結果であり、光触媒への紫外線照射時間と2−ナフトール分解率(除去率)の関係を示す。
(2)粒子状AgCl:図12中●は、本光触媒のものを示し、図11に示すように水中に浮遊状態で使用し、水中酸素濃度は8.8mg/L状態、で光触媒への紫外線照射時間と2−ナフトール分解率(除去率)の関係を示す。
Results Performance of this photocatalyst;
(1) AgCl / SnO 2 : ◯ and Δ in FIG. 12 indicate those of the present photocatalyst, ○ indicates oxygen concentration in water: 8.8 mg / L, and Δ indicates removal of oxygen concentration in water by degassing (Anoxic state) and the results of the same test, showing the relationship between the ultraviolet irradiation time to the photocatalyst and the 2-naphthol decomposition rate (removal rate).
(2) Particulate AgCl: The black circles in FIG. 12 indicate those of the present photocatalyst, which are used in a suspended state in water as shown in FIG. 11, and the oxygen concentration in the water is 8.8 mg / L, and the ultraviolet rays to the photocatalyst The relationship between irradiation time and 2-naphthol decomposition rate (removal rate) is shown.

比較試験の性能;
図12中、×は、比較としてAg/SnO(水中酸素濃度:8.8mg/L)、□は、比較としてAgCl(試薬品)、また、▲は比較用の従来の光触媒(TiO)を、脱気により水中酸素濃度を除去(貧酸素状態)し、同様に試験したものである。
図12の結果は、下記を示している。
従来の光触媒は、貧酸素状態になると光触媒性能を失うが、これに対し、本光触媒は貧酸素状態においても自然状態における酸素状態と同程度の高活性を発揮する。
2−ナフトールが分解・除去されたことから、本光触媒では有機物の分解及び色素の脱色に効果的である。
Comparative test performance;
In FIG. 12, x is Ag / SnO 2 (oxygen concentration in water: 8.8 mg / L) for comparison, □ is AgCl (reagent product) for comparison, and ▲ is a conventional photocatalyst (TiO 2 ) for comparison. This was tested in the same manner by removing the oxygen concentration in water (deoxygenated state) by deaeration.
The results of FIG. 12 show the following.
Conventional photocatalysts lose their photocatalytic performance when they are in an oxygen-poor state. On the other hand, the photocatalyst exhibits high activity in the oxygen-poor state as well as the oxygen state in the natural state.
Since 2-naphthol has been decomposed and removed, the present photocatalyst is effective in decomposing organic substances and decolorizing pigments.

実施例7
図10に示した光触媒2と光源3から成るステンレス製の光触媒反応容器22に、アンモニア水溶液(NH−Nとして2mg/L)を導入し、光源の点灯によるアンモニア酸化により生成した硝酸イオン濃度の変化を測定することにより光触媒効果を調べた。
光触媒反応装置の構成は実施例6と同様である。
光触媒は、AgCl/SnO:板状(実施例と同様な方法で製造)である。
硝酸イオン濃度は、イオンクロマト法により求めた。
Example 7
An aqueous ammonia solution (2 mg / L as NH 3 -N) was introduced into a stainless steel photocatalytic reaction vessel 22 composed of the photocatalyst 2 and the light source 3 shown in FIG. The photocatalytic effect was investigated by measuring the change.
The configuration of the photocatalytic reaction device is the same as in Example 6.
The photocatalyst is AgCl / SnO 2 : plate-like (manufactured in the same manner as in the examples).
The nitrate ion concentration was determined by ion chromatography.

結果
図13に、光触媒への紫外線照射時間と、硝酸イオン濃度の関係を示す。
図13中○及び△が本発明の光触媒による分解率であり、○は水中酸素濃度:8.8mg/L状態、△は水中酸素濃度を除去(貧酸素状態)、また、▲は、比較用の従来の光触媒(TiO)を貧酸素状態(0.5mg/L)で使用したものである。
図13の結果により、下記の適用が可能である。
本発明の光触媒は、水中のアンモニアを速やかに硝酸イオンへと酸化する。従来の光触媒、例えば、TiO(酸化チタン)は、貧酸素状態になると、性能低下するが、本光触媒は、酸素状態が変動してもその影響を受けること無く、高効率の長時間運転が可能である。
Results FIG. 13 shows the relationship between the ultraviolet irradiation time to the photocatalyst and the nitrate ion concentration.
In FIG. 13, ◯ and Δ are decomposition rates by the photocatalyst of the present invention, ○ is oxygen concentration in water: 8.8 mg / L state, Δ is oxygen concentration in water (anoxic state), and ▲ is for comparison The conventional photocatalyst (TiO 2 ) is used in an anoxic state (0.5 mg / L).
The following application is possible based on the result of FIG.
The photocatalyst of the present invention quickly oxidizes ammonia in water to nitrate ions. Conventional photocatalysts, such as TiO 2 (titanium oxide), degrade in performance when they are in an oxygen-poor state, but this photocatalyst is not affected by fluctuations in the oxygen state and can be operated for a long time with high efficiency. Is possible.

水中のアンモニア成分は、例えば魚類などの生育に悪影響を及ぼし、高濃度においては死に至らしめるが、本法によって、水中のアンモニアを速やかに硝酸(魚類生育への悪影響はアンモニアと比較すると少ない)へと酸化することが出来るので、アンモニアが問題となる用途に好適に使用出来る。
更に、嫌気条件下で脱窒細菌による硝酸の窒素化、あるいは電解反応による硝酸の電気分解による窒素化など、一般的な硝酸還元方法により、アンモニアや窒素含有物質の効果的な処理が可能となる。
Ammonia components in water adversely affect the growth of fish, for example, and cause death at high concentrations, but this method quickly converts ammonia in water to nitric acid (has less adverse effects on fish growth than ammonia). Therefore, it can be suitably used for applications where ammonia is a problem.
In addition, it is possible to effectively treat ammonia and nitrogen-containing substances by general nitric acid reduction methods such as nitric acid nitric acid by denitrifying bacteria under anaerobic conditions, or nitric acid by electrolysis of nitric acid by electrolytic reaction. .

実施例8
図14は、本発明の粒子状光触媒(AgCl)2を浮遊状態(分散状態)で使用する光触媒反応装置を示す。
1は被処理液、2は浮遊状態(分散状態)の粒子状光触媒、3は光源、22は光触媒反応装置、26は光触媒2を浮遊状態にさせるためのマイクロバブル発生装置(気泡発生装置)である。
矢印は供給空気の流れ方向を示している。
該マイクロバブル発生装置26は、遠向心分離方式によるもので、これにより直径10μm〜50μmの気泡が発生される。
粒子状光触媒2は、下方に設置されたマイクロバブル発生装置26から発生された気泡(マイクロバブル)25により浮遊状態となり、被処理液1中の汚染物と接触し、光触媒作用により、被処理の分解処理が行われる。
Example 8
FIG. 14 shows a photocatalytic reaction apparatus using the particulate photocatalyst (AgCl) 2 of the present invention in a floating state (dispersed state).
1 is a liquid to be treated, 2 is a particulate photocatalyst in a suspended state (dispersed state), 3 is a light source, 22 is a photocatalytic reaction device, and 26 is a microbubble generator (bubble generator) for making the photocatalyst 2 float. is there.
The arrow indicates the flow direction of the supply air.
The micro-bubble generator 26 is based on a far-centered separation method, whereby bubbles having a diameter of 10 μm to 50 μm are generated.
The particulate photocatalyst 2 is suspended by bubbles (microbubbles) 25 generated from the microbubble generator 26 installed below, and comes into contact with contaminants in the liquid 1 to be treated. A decomposition process is performed.

該光触媒反応装置22は、中央部に光源3を設置し、マイクロバブル発生装置26からの気泡25発生により粒子状光触媒(AgCl)2を浮遊状態とするので、光触媒2への光照射及び光触媒2と被処理物との接触効率がより効果的になる。更に、水中の被処理物は、マイクロバブルにより、光触媒表面との接触効率が向上(平均滞留時間が増大)する。
この様に、本光触媒反応装置22は、光触媒2の浮遊状態による効果(接触効率が効果的)と、マイクロバブル25による被処理物と光触媒表面との接触効率の向上効果(平均滞留時間が増大)が、被処理物の処理効率に対して相乗効果をもたらすので、高効率処理が実施される。
The photocatalytic reaction device 22 has the light source 3 installed at the center, and the particulate photocatalyst (AgCl) 2 is brought into a floating state by the generation of bubbles 25 from the microbubble generation device 26. Therefore, the photocatalyst 2 is irradiated with light and the photocatalyst 2. And contact efficiency with the object to be processed become more effective. Furthermore, the to-be-processed object in water improves the contact efficiency with the photocatalyst surface (average residence time increases) by microbubbles.
Thus, the present photocatalytic reaction device 22 has an effect due to the floating state of the photocatalyst 2 (the contact efficiency is effective) and an effect of improving the contact efficiency between the object to be treated and the surface of the photocatalyst by the microbubbles 25 (the average residence time is increased). ) Brings about a synergistic effect on the processing efficiency of the object to be processed, so that high-efficiency processing is performed.

本発明の水処理装置の一例を示すフロー構成図。The flow block diagram which shows an example of the water treatment apparatus of this invention. 図1の光触媒反応装置Aの拡大構成図。The expanded block diagram of the photocatalytic reaction apparatus A of FIG. 実施例1で製造した(a)はAg/SnO、(b)はAgCl/SnOのSEM写真。Prepared in example. 1 (a) Ag / SnO 2, (b) is a SEM photograph of the AgCl / SnO 2. (a)はAg/SnO、(b)はAgCl/SnO、(c)は1ヶ月使用後のはAgCl/SnOのXRDパターン図。(A) is Ag / SnO 2 , (b) is AgCl / SnO 2 , and (c) is an XRD pattern diagram of AgCl / SnO 2 after one month of use. 実施例1で製造した(a)はAg/SnO、(b)はAgCl/SnOの粒径分布を示すグラフ。Prepared in example. 1 (a) Ag / SnO 2, (b) is a graph showing the particle size distribution of AgCl / SnO 2. Ag/SnOにおけるAgからAgClの変化量を示すグラフ。Graph showing the variation of AgCl of Ag in Ag / SnO 2. 実施例3の60日間運転した場合のCODの値を示すフロー構成図。The flow block diagram which shows the value of COD at the time of driving | running for 60 days of Example 3. FIG. 本発明の水処理装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the water treatment apparatus of this invention. 図8の光触媒装置22の拡大構成図。The expanded block diagram of the photocatalyst apparatus 22 of FIG. 光触媒反応装置で板状の光触媒を用いた断面構成図。The cross-sectional block diagram which used the plate-shaped photocatalyst with the photocatalytic reaction apparatus. 光触媒反応装置で粒子状の光触媒を用いた断面構成図。The cross-sectional block diagram which used the particulate photocatalyst with the photocatalytic reaction apparatus. 光触媒への紫外線照射時間と2−ナフトール分解率の関係を示すグラフ。The graph which shows the relationship between the ultraviolet irradiation time to a photocatalyst, and 2-naphthol decomposition rate. 光触媒への紫外線照射時間と硝化率の関係を示すグラフ。The graph which shows the relationship between the ultraviolet irradiation time to a photocatalyst, and a nitrification rate. 粒子状光触媒を用いた光触媒反応装置の他の例を示す断面構成図。The cross-sectional block diagram which shows the other example of the photocatalytic reaction apparatus using a particulate photocatalyst.

符号の説明Explanation of symbols

1:被処理水、2:光触媒、3:光源、4:光触媒処理水、5:ガス、6:空気、7:生物処理水、8:処理水、9:循環水、11:急速混和池、12:緩速混和池、13:沈殿池、14:ろ過池、15:排水池、16:洗浄排水、17:排水池、18:沈殿物、19:排泥池、20:上澄液、21:返送水、22:光触媒装置、23:ガラス、24:散気管、25:気泡、26:マイクロバブル発生装置、A:光触媒反応装置、B:生物処理装置   1: treated water, 2: photocatalyst, 3: light source, 4: photocatalyst treated water, 5: gas, 6: air, 7: biological treated water, 8: treated water, 9: circulating water, 11: rapid mixing pond, 12: slow mixing basin, 13: sedimentation basin, 14: filtration basin, 15: drainage basin, 16: drainage basin, 17: drainage basin, 18: sediment, 19: mud pond, 20: supernatant : Return water, 22: Photocatalyst device, 23: Glass, 24: Air diffuser, 25: Air bubbles, 26: Microbubble generator, A: Photocatalytic reaction device, B: Biological treatment device

Claims (8)

導電性物質を含む材料上に、塩化銀が担持されていることを特徴とする光触媒。   A photocatalyst characterized in that silver chloride is supported on a material containing a conductive substance. 前記塩化銀は、導電性物質を含む材料上に銀を担持して電解酸化により生成させたものであることを特徴とする請求項1記載の光触媒。   2. The photocatalyst according to claim 1, wherein the silver chloride is produced by electrolytic oxidation by supporting silver on a material containing a conductive substance. 導電性物質を含む材料上に銀を担持して電解酸化して得られた塩化銀が、導電性物質を含む材料上から分離されたものであることを特徴とする光触媒。   A photocatalyst characterized in that silver chloride obtained by carrying out electrolytic oxidation by supporting silver on a material containing a conductive substance is separated from the material containing a conductive substance. 光触媒を製造する方法において、導電性物質を含む材料上に、先ず銀を担持させ、次いで電解酸化により該銀から塩化銀を形成させて製造することを特徴とする光触媒の製造方法。   In the method for producing a photocatalyst, a method for producing a photocatalyst is characterized in that silver is first supported on a material containing a conductive substance and then silver chloride is formed from the silver by electrolytic oxidation. 前記導電性物質を含む材料上への銀の担持は、電解還元析出で行うことを特徴とする請求項4記載の光触媒の製造方法。   5. The method for producing a photocatalyst according to claim 4, wherein the supporting of the silver on the material containing the conductive substance is performed by electrolytic reduction deposition. 有害物質を含む水から有害物質を除去する水処理方法において、有害物質を含む水を請求項1、2又は3記載の光触媒に、光の照射下に接触させることを特徴とする水処理方法。   A water treatment method for removing harmful substances from water containing harmful substances, wherein the water containing harmful substances is brought into contact with the photocatalyst according to claim 1, 2 or 3 under light irradiation. 前記有害物質を含む水が、貧酸素状態であることを特徴とする請求項6記載の水処理方法。   The water treatment method according to claim 6, wherein the water containing the harmful substance is in an anoxic state. 有害物質を含む水から有害物質を除去する装置において、該有害物質を含む水の導入口及び排水口を有し、内部に請求項1、2又は3記載の光触媒と、該光触媒に光照射する光源とを有することを特徴とする水処理装置。   An apparatus for removing harmful substances from water containing harmful substances, having an inlet and a drain of water containing the harmful substances, and irradiating the photocatalyst with the photocatalyst according to claim 1, 2, or 3 inside A water treatment apparatus comprising a light source.
JP2007152204A 2007-06-08 2007-06-08 Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof Pending JP2008302308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152204A JP2008302308A (en) 2007-06-08 2007-06-08 Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152204A JP2008302308A (en) 2007-06-08 2007-06-08 Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof

Publications (1)

Publication Number Publication Date
JP2008302308A true JP2008302308A (en) 2008-12-18

Family

ID=40231487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152204A Pending JP2008302308A (en) 2007-06-08 2007-06-08 Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof

Country Status (1)

Country Link
JP (1) JP2008302308A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227838A (en) * 2009-03-27 2010-10-14 Onomori:Kk Water purifying apparatus
CN102247874A (en) * 2011-05-26 2011-11-23 上海电力学院 Silver chloride-silver phosphate composite photocatalyst and preparation method thereof
TWI450866B (en) * 2011-01-28 2014-09-01 Univ Tamkang Water cleaning device
CN106732683A (en) * 2016-12-06 2017-05-31 江苏大学 A kind of method of synthesis plasma composite photo-catalyst
JP2018043231A (en) * 2016-09-08 2018-03-22 パナソニックIpマネジメント株式会社 Liquid treatment method and liquid treatment device
CN111349808A (en) * 2020-03-12 2020-06-30 东莞理工学院 AgCl/Ag composite material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227838A (en) * 2009-03-27 2010-10-14 Onomori:Kk Water purifying apparatus
TWI450866B (en) * 2011-01-28 2014-09-01 Univ Tamkang Water cleaning device
CN102247874A (en) * 2011-05-26 2011-11-23 上海电力学院 Silver chloride-silver phosphate composite photocatalyst and preparation method thereof
JP2018043231A (en) * 2016-09-08 2018-03-22 パナソニックIpマネジメント株式会社 Liquid treatment method and liquid treatment device
CN106732683A (en) * 2016-12-06 2017-05-31 江苏大学 A kind of method of synthesis plasma composite photo-catalyst
CN111349808A (en) * 2020-03-12 2020-06-30 东莞理工学院 AgCl/Ag composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US20090314711A1 (en) PHOTOELECTROCATALYTIC OXIDIZER DEVICE HAVING COMPOSITE NANOPOROUS TiO2 COATED Ti PHOTOANODE AND METHOD OF REMOVING AMMONIA FROM WATER IN AQUARIA AND RECIRCULATION AQUACULTURE SYSTEMS
CN103384645A (en) Methods for removing contaminants from aqueous solutions using photoelectrocatalytic oxidization
KR100439195B1 (en) Method for killing of microorganisms in the water by UV-TiO2 photocatalytic reaction and reactor for killing of microorganisms
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
EP0766647B1 (en) Photoelectrochemical reactor
CN111762840A (en) UV/NH2Method for removing iopamidol in water by Cl combined process
Chen et al. Treatment of polluted water for reclamation using photocatalysis and constructed wetlands
JP2006231150A (en) Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
CN111233224A (en) Treatment method for simultaneously removing nitrogen, phosphorus and antibiotics in mariculture wastewater and sterilizing
CN107585970A (en) The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water
JP5259311B2 (en) Water treatment method and water treatment system used therefor
WO2001012562A1 (en) Apparatus for purification of contaminated water by using rotating member
CN109626494B (en) Ultraviolet strong oxygen advanced water treatment method and device
CN111423066A (en) Sewage treatment system
KR100606503B1 (en) Photocatalytic Aeration Apparatus
JP2012213764A (en) Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater
KR200346263Y1 (en) The photocatalyst sterilization water purifier with direct connection form which uses a photocatalyst sterilization water purifying device
Khan et al. Photodegradation of real pharmaceutical wastewater with titanium dioxide, zinc oxide, and hydrogen peroxide during UV
CN214528493U (en) Hospital wastewater treatment system
NL2026394B1 (en) Wastewater ozone treatment
JP2015031092A (en) Photodecomposition toilet
CN1328177C (en) Method for treating high salt oil production waste water by suspension state photoelecric catalystic oxidation
CN107487967B (en) Sewage treatment method combining photocatalysis and biology
CN206328268U (en) A kind of industrial organic waste water processing unit
JP2001038348A (en) Water cleaning method and device