JP2012213764A - Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater - Google Patents

Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater Download PDF

Info

Publication number
JP2012213764A
JP2012213764A JP2012070627A JP2012070627A JP2012213764A JP 2012213764 A JP2012213764 A JP 2012213764A JP 2012070627 A JP2012070627 A JP 2012070627A JP 2012070627 A JP2012070627 A JP 2012070627A JP 2012213764 A JP2012213764 A JP 2012213764A
Authority
JP
Japan
Prior art keywords
water
reaction tower
polluted
decoloring
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070627A
Other languages
Japanese (ja)
Inventor
Seiki Nakajima
清貴 中嶋
Nozomi Kuroda
のぞみ 黒田
Isao Joko
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUTA DENSHI KOGYO KK
Original Assignee
OMUTA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUTA DENSHI KOGYO KK filed Critical OMUTA DENSHI KOGYO KK
Priority to JP2012070627A priority Critical patent/JP2012213764A/en
Publication of JP2012213764A publication Critical patent/JP2012213764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a decoloring cleaning method of contaminated waste water, by which decoloring of contaminated waste water including colored organic substances and oxidative decomposition reaction of contaminants can be very efficiently carried out.SOLUTION: Air-containing gas is blown in the contaminated waste water including the colored organic substances and the waste water in a gas liquid mixing state is made to pass through a reaction tower filled with a carbonaceous material on which a microorganism film is formed. Then electrolytic functional water which is obtained by electrolysis of electrolyte aqueous solution including chloride ions by using an iridium oxide-containing electrode as an anode, is added to cause reaction and then the water is made to pass through a catalytic reaction tower filled with an organic porous material including iron oxide at the subsequent stage.

Description

本発明は、有機物を主体とする汚濁着色排水の浄化処理方法に関するものである。具体的には、汚濁水中の着色性有機物を分解して汚濁水の着色度と有機物濃度を低減するとともに汚濁水から発生する不快臭の発生も抑制することができる汚濁着色排水の浄化処理方法に関する。具体的な適用対象汚濁排水としては海苔加工生産工程から排出される排水がある。この排水は海苔屑等の有機懸濁物質を含み紅色〜赤褐色に着色している。このような懸濁着色排水の浄化処理方法に関するものである。   The present invention relates to a method for purifying polluted colored wastewater mainly composed of organic matter. More specifically, the present invention relates to a method for purifying polluted colored wastewater that can decompose coloring organic matter in polluted water to reduce the degree of coloration and concentration of the polluted water and suppress the generation of unpleasant odor generated from the polluted water. . Specific wastewater that is subject to application includes wastewater discharged from the laver processing production process. This waste water contains organic suspended solids such as laver, and is colored red to reddish brown. The present invention relates to a method for purifying such suspension colored waste water.

従来、一般的な着色性有機物を含む排水の浄化処理方法としては凝集沈殿法や生物化学的処理方法それに活性炭吸着処理方法等が実用化されている。また、次亜塩素酸ナトリウムやオゾンなどの酸化剤を用いた脱色処理方法も実用化されている。
さらに、電解質を含む水の電気分解によって生成する機能水を光照射下で着色溶液と接触させて処理する方法(特許文献1)や硫黄または硫黄と炭酸カルシウムとの混合物を充填した反応槽に着色した水を導入して脱色処理する方法(特許文献2)、汚濁水を直接電気分解して脱色処理する方法(非特許文献1と2)などの有効性も報告されている。
また、海苔を製造する際に流出する排水から汚濁成分を除去する方法として懸濁物質を沈殿処理させた後に麹菌を添加した条件で酸素を供給する曝気処理工程を組み合わせた方法も提案されている(特許文献3)。
Conventionally, a coagulation sedimentation method, a biochemical treatment method, an activated carbon adsorption treatment method, and the like have been put to practical use as a purification method for wastewater containing general coloring organic substances. In addition, a decoloring method using an oxidizing agent such as sodium hypochlorite or ozone has been put into practical use.
Furthermore, a method of treating functional water produced by electrolysis of water containing electrolyte with a colored solution under light irradiation (Patent Document 1) or coloring a reaction tank filled with sulfur or a mixture of sulfur and calcium carbonate The effectiveness of a method for introducing decolored water by introducing decolorized water (Patent Document 2) and a method for decolorizing by directly electrolyzing contaminated water (Non-Patent Documents 1 and 2) have been reported.
In addition, as a method for removing pollutant components from wastewater discharged when producing laver, a method is also proposed in which an aeration process for supplying oxygen under conditions in which koji molds are added after precipitation of suspended substances has been proposed. (Patent Document 3).

特開2000-79386「着色溶液の処理方法、および着色溶液の処理装置」JP 2000-79386 “Coloring solution processing method and coloring solution processing apparatus” 特開2003-103280「排水の脱色方法および装置」JP2003-103280 "Method and apparatus for decolorizing wastewater" 特開 2005-254040「海苔の排水処理方法」JP 2005-254040 "Drainage treatment method for seaweed"

水環境学会誌,22(6),498-504(1999):“電気分解を利用した糖蜜廃液の脱色処理”Journal of Japan Society on Water Environment, 22 (6), 498-504 (1999): “Decolorization of molasses waste using electrolysis” 水環境学会誌、22(11),938(1999):“湖沼水中の難分解性有機物の電解処理”Journal of Japan Society on Water Environment, 22 (11), 938 (1999): “Electrolytic treatment of persistent organic substances in lake water”

凝集沈殿法では処理に伴って凝集汚泥が生成するため、その処理処分が必要になる課題がある。生物学的処理法で最も一般的に普及している活性汚泥法は浮遊菌体の増殖反応を利用した方法である。この方法では菌体の増殖反応に伴って余剰汚泥が生成しその処理処分が必要になる課題を抱えている。 In the coagulation sedimentation method, coagulated sludge is generated along with the treatment, and thus there is a problem that requires disposal. The activated sludge method, which is the most commonly used biological treatment method, is a method that utilizes the proliferation reaction of floating cells. This method has a problem that surplus sludge is generated along with the growth reaction of the bacterial cells, and its disposal is required.

また生物化学的処理は反応速度が遅いために滞留時間を長くとる必要がある。そのため反応槽容量を大きくしなければならないとの課題もある。 In addition, since biochemical treatment has a slow reaction rate, it is necessary to increase the residence time. Therefore, there is also a problem that the reaction tank capacity must be increased.

次亜塩素酸ナトリウムやオゾン等の酸化剤を用いた酸化処理法では生物化学的処理法に比べて反応速度は速いものの、処理水中に残存する酸化性物質が処理水の放流水域で生息している生物へ悪影響を及ぼし、場合によっては死滅させる場合もあるため、放流に先立って残留酸化性物質を分解除去する必要がある。 Oxidation methods using oxidizing agents such as sodium hypochlorite and ozone have a faster reaction rate than biochemical treatment methods, but oxidants remaining in the treated water live in the discharge water area of the treated water. It is necessary to decompose and remove residual oxidizing substances prior to release, since they may adversely affect living organisms and may be killed in some cases.

電解質を含む水の電気分解によって生成する機能水を光照射下で着色溶液と接触させて処理する方法(特許文献1)は照射する光の溶液中への透過深度に限界があり、大量の排水を処理する場合には光と排水の接触効率を高めるために受光面積の大きな装置構造とすることが必要となり広大な装置の設置面積が必要になる課題がある。 The method of treating functional water produced by electrolysis of water containing electrolytes with a colored solution under light irradiation (Patent Document 1) has a limit in the depth of penetration of the irradiated light into the solution, and a large amount of wastewater In order to improve the contact efficiency between light and drainage, it is necessary to provide a device structure having a large light receiving area, and there is a problem that a large installation area is required.

硫黄または硫黄と炭酸カルシウムとの混合物を充填した反応槽に着色した水を導入して脱色処理する方法(特許文献2)は硫黄酸化菌を用いる方法で、硫黄酸化細菌の増殖に必要な量の空気を吹き込み、適切な条件に制御する必要がある。 A method of decolorizing treatment by introducing colored water into a reaction tank filled with sulfur or a mixture of sulfur and calcium carbonate (Patent Document 2) is a method using sulfur-oxidizing bacteria. It is necessary to blow in air and control to appropriate conditions.

海苔排水に所定量の麹菌を添加した条件で曝気処理する方法では排水量に応じた特定の麹菌を準備する必要がある。
In the method of aeration treatment under the condition that a predetermined amount of koji mold is added to laver drainage, it is necessary to prepare a specific koji mold corresponding to the amount of drainage.

本発明は、上記のような従来の着色汚濁水処理方法よりも運転管理が簡便で、かつ脱色・浄化処理効果に優れた海苔加工生産工程から排出される有機着色汚濁水の新規な処理方法を提供するものである。  The present invention provides a novel method for treating organic colored polluted water discharged from a seaweed processing production process that is simpler in operation management than the conventional colored polluted water treatment method as described above and has excellent decolorization and purification treatment effects. It is to provide.

上記課題を解決するための本発明の懸濁物質を含む有機着色排水の浄化方法は、海苔加工生産工程から排出される有機着色汚濁排水を所定量の空気(酸素を含んだ気体)を吹きこんだ気液混合状態で粒状の竹炭充填塔に通液処理した後、塩化物イオンを含む水を酸化イリジウム含有電極を陽極に用いて電解処理した処理水(電解機能水)を添加して所定時間反応させ、その後に酸化鉄を含む多孔質材料である酸化鉄担持竹炭と接触させることで電解機能水中の酸化活性物質による汚濁物質の分解反応を促進させ、同時に過剰の残留酸化性物質を分解除去することで着色汚濁水の浄化を高効率で行うことを特徴とする。
In order to solve the above problems, the method for purifying organic colored wastewater containing suspended solids of the present invention blows a predetermined amount of air (gas containing oxygen) into organic colored polluted wastewater discharged from the laver processing production process. After passing through a granular bamboo charcoal packed tower in a gas-liquid mixed state, treated water (electrolytic functional water) electrolyzed with chloride-containing water using an iridium oxide-containing electrode as an anode is added for a predetermined time. By reacting and then contacting with iron oxide-carrying bamboo charcoal, which is a porous material containing iron oxide, the decomposition reaction of the pollutant by the oxidizing active substance in the electrolytic functional water is promoted, and at the same time, the excessive residual oxidizing substance is decomposed and removed. By doing so, the colored polluted water is purified with high efficiency.

本方法によれば、海苔加工生産工程から排出される有機着色汚濁水の脱色と汚濁物質の酸化分解反応が極めて効率よく進み、汚濁水を浄化できる。その結果、排水のTOC(全有機体炭素)やCOD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、着色度(吸光度)、濁度等の指標で示される値が低減できると同時に窒素やリン濃度も低減できる。なお、リンに関しては単に除去できるだけでなく酸化鉄担持竹炭表面に捕捉されるため、肥料として再利用することもできる。さらに排水の溶存酸素濃度も上昇するため対象水域の魚介類の生息環境を改善できる。
According to this method, the decolorization of organic colored polluted water discharged from the seaweed processing production process and the oxidative decomposition reaction of polluted substances proceed very efficiently, and the polluted water can be purified. As a result, TOC (total organic carbon), COD (chemical oxygen demand), BOD (biochemical oxygen demand), coloration (absorbance), and turbidity can be reduced. At the same time, nitrogen and phosphorus concentrations can be reduced. In addition, since phosphorus is not only removed but also captured on the iron oxide-carrying bamboo charcoal surface, it can be reused as fertilizer. Furthermore, the dissolved oxygen concentration in the wastewater also increases, so the habitat of fish and shellfish in the target water area can be improved.

本発明に係る処理装置の第1実施形態を説明するためのものである。1 is a view for explaining a first embodiment of a processing apparatus according to the present invention. 本発明に係る処理装置の第2実施形態を説明するためのものである。2 is a view for explaining a second embodiment of the processing apparatus according to the present invention.

本発明における排水処理方法の基本的処理工程を図1に示した。
以下、本発明の実施の形態を図1に基づいて説明する。
着色汚濁水への空気吹き込み2は、着色汚濁水の流路に所定量の空気を吹きこんだ気液混合状態で粒状炭(竹炭)充填生物反応塔3に導入する方法、または着色汚濁水を粒状炭(竹炭)充填生物反応塔3に通液し、別途空気を粒状炭生物反応塔3の下部から吹き込む方式のいずれの方式でもよく、状況に応じて選択対応できる。
なお、吹き込む空気量は対象とする着色汚濁排水1の汚濁状態によって異なってくる。したがって、目標とする脱色率や有機物の除去率によって必要空気量が異なるため、対象汚濁排水の水質を考慮して空気吹き込み量を調整すれば良い。
The basic treatment process of the wastewater treatment method in the present invention is shown in FIG.
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The air blowing 2 into the colored polluted water is either a method of introducing a predetermined amount of air into the colored polluted water flow path into the biological reaction tower 3 filled with granular charcoal (bamboo charcoal) in a gas-liquid mixed state, or the colored polluted water Either method may be used, in which liquid is passed through the granular charcoal (bamboo charcoal) packed biological reaction tower 3 and air is separately blown from the lower part of the granular charcoal biological reaction tower 3, and can be selected according to the situation.
Note that the amount of air to be blown varies depending on the pollution state of the target colored polluted waste water 1. Accordingly, since the required air amount varies depending on the target decolorization rate and organic matter removal rate, the air blowing amount may be adjusted in consideration of the water quality of the target polluted wastewater.

上向流式電解反応セル8は陽極6に酸化イリジウム電極を用いる。酸化イリジウム電極の基材としては任意の厚みのチタン材を用いることができ、その表面に0.5〜5μmの厚みに酸化イリジウムの薄膜をコートしたものを用いることができる。酸化イリジウム薄膜の厚みは0.5μm以上であれば良いが長期間の使用中での消耗を考慮すると1〜5μmが適している。しかし、製造コストが高くなることを容認すれば5μm以上としても性能上は問題ない。 The upward flow type electrolytic reaction cell 8 uses an iridium oxide electrode for the anode 6. As a base material for the iridium oxide electrode, a titanium material having an arbitrary thickness can be used, and a surface of which a iridium oxide thin film is coated to a thickness of 0.5 to 5 μm can be used. The thickness of the iridium oxide thin film may be 0.5 μm or more, but 1 to 5 μm is suitable in consideration of wear during long-term use. However, if it is allowed to increase the manufacturing cost, there is no problem in performance even if it is 5 μm or more.

電解質水溶液5としては塩化物イオンを含む電解質水溶液が用いられる。具体的には塩化物イオンを含む海水を用いることができる。海水の入手しがたい場所では塩化ナトリウムを所定濃度に溶かした水溶液を用いても対応できる。これらの水溶液中の塩類濃度は0.5〜5重量%の範囲であればよいが電流効率を考慮すると1〜3重量%の範囲が実用的である。 As the aqueous electrolyte solution 5, an aqueous electrolyte solution containing chloride ions is used. Specifically, seawater containing chloride ions can be used. In a place where seawater is difficult to obtain, an aqueous solution in which sodium chloride is dissolved at a predetermined concentration can be used. The salt concentration in these aqueous solutions may be in the range of 0.5 to 5% by weight, but considering the current efficiency, the range of 1 to 3% by weight is practical.

電解質水溶液4を電解反応槽5に通液する条件は上向流で行い。出来るだけ高流速の条件が望ましい。流速が遅い場合、電解反応によって生成したガスが電解反応槽内に留まる時間が長くなり、両極間の通電抵抗を高めて極間電圧が大きくなり使用電力量が増えるためランニングコストの上昇となり望ましくない。 The condition for passing the electrolyte aqueous solution 4 through the electrolytic reaction tank 5 is an upward flow. High flow rate conditions are desirable. When the flow rate is slow, the time that the gas generated by the electrolytic reaction stays in the electrolytic reaction tank becomes longer, and the current resistance between both electrodes is increased to increase the voltage between the electrodes and increase the power consumption. .

電解機能水9中の酸化活性物質による有機汚濁物質の酸化反応を促進させる酸化鉄担持竹炭は有機多孔質材料である竹材を炭化処理した多孔質炭素材料の細孔表面に鉄酸化物を主成分とする金属酸化物を0.05〜20重量%担持させた機能材料を用いることが有効であり、本処理法の重要な特徴である。 Iron oxide-carrying bamboo charcoal, which promotes the oxidation reaction of organic pollutants by oxidative active substances in electrolyzed functional water 9, is mainly composed of iron oxide on the pore surface of porous carbon material obtained by carbonizing bamboo, which is an organic porous material. It is effective to use a functional material carrying 0.05 to 20% by weight of a metal oxide, which is an important feature of this treatment method.

上記の機能材料と汚濁水の接触処理方法は粒状の機能材料を充填した反応塔に通水することでその目的を達成できる。

<実施例1>
The above-mentioned contact treatment method of the functional material and polluted water can achieve its purpose by passing water through a reaction tower packed with a granular functional material.

<Example 1>

内径30mm,高さ500mm,容量350cm3のガラス製カラムに粒状炭を300cm3充填して(充填高さ:425mm)反応塔とした。海苔加工生産工程から排出された着色汚濁排水を300cm3/hの流速で反応塔に上向流で通液し、同時に反応塔の下部より空気を3,000cm3/hの流量で吹き込む条件で連続実験を行った。
反応塔の上部で気液分離した後、流出液を500cm3容量のビーカを用いた撹拌式反応槽に受け、その反応槽に塩化物イオン含有水を電解して製造した電解機能水を30 cm3/h粒状連続的に添加する方法で反応させた。
電解機能水の製造は、電解質水溶液として3重量%の塩化ナトリウム水溶液を用い、陽極に50mm×50mm×3mmの酸化イリジウム系電極を、陰極には陽極と同じ形状のSUS316Lを用い、両電極間距離が5mmの間隔となるように設定した上向流式電解反応セルを用いておこなった。電解反応セルに直流電流を0.62A通電した条件で電解質水溶液を一過式で通液する方法で電解機能水を製造した。
反応槽での液保有量は330cm3(滞留時間は1h) とし、同反応槽より流出した処理液を貯留槽に受け、貯留槽の液を330cm3/h の流量で粒状触媒を150cm3充填した触媒反応塔に連続的に通液処理した。通液開始後5h 後の各処理工程毎の水質分析結果を表1に示す。
Internal diameter 30 mm, height 500 mm, and 300 cm 3 filled with the granular charcoal in a glass column of capacity 350 cm 3 (packing height: 425 mm) was reactor. The colored polluted wastewater discharged from the laver processing production process is passed upward through the reaction tower at a flow rate of 300 cm 3 / h, and at the same time, air is continuously blown from the bottom of the reaction tower at a flow rate of 3,000 cm 3 / h. The experiment was conducted.
After gas-liquid separation in the upper part of the reaction tower, the effluent was received in a stirred reaction tank using a 500 cm 3 volume beaker, and electrolysis functional water produced by electrolyzing water containing chloride ions in the reaction tank was 30 cm. It was made to react by the method of adding 3 / h granular continuously.
For the production of functional electrolytic water, a 3% by weight sodium chloride aqueous solution is used as the aqueous electrolyte solution, an iridium oxide electrode of 50 mm x 50 mm x 3 mm is used for the anode, and SUS316L with the same shape as the anode is used for the cathode. Was carried out using an upward flow type electrolytic reaction cell set to have an interval of 5 mm. Electrolyzed functional water was produced by a method in which an electrolytic aqueous solution was passed in a transient manner under the condition that a direct current of 0.62 A was passed through the electrolytic reaction cell.
The liquid holding amount in the reaction tank is 330 cm 3 (residence time is 1 h), the processing liquid flowing out from the reaction tank is received in the storage tank, and the liquid in the storage tank is filled with 150 cm 3 of granular catalyst at a flow rate of 330 cm 3 / h. The catalyst reaction tower was continuously passed through. Table 1 shows the results of water quality analysis for each treatment process 5 hours after the start of liquid flow.

表1の結果から、原水(汚濁水)と各処理工程毎の処理水の水質を比較すると、吸光度は0.246が生物反応塔出口で0.083に低下し、触媒反応塔処理水では0.002となり透明にまで脱色できた
TOCの値は151 mg/Lが生物反応塔出口で87.6 mg/Lまで低下し、触媒反応塔処理水では7.4 mg/Lまで低下した。
T-Nの値では原水が 27.9 mg/Lとなっているが、生物反応塔の出口で15.7mg/Lに、触媒反応塔処理水では 0.8 mg/Lに低下している。
残留塩素濃度をみると、原水中には検出されないが、生物活性炭処理水に電解機能水添加後では1,430mg/L 検出された。しかし、触媒反応塔出口では検出限界以下(N.D.)にまで低下している。使用した触媒の残留塩素除去効果が優れていることが分かる。
リン濃度をみると、原水が9.7mg/Lの値を示しているが、生物反応塔出口で8.2mg/L、触媒反応塔処理水は0.61mg/Lまで低下している。
これらの結果が示す通り、本発明の処理方法によって、着色汚濁水の脱色浄化処理ができることが確認できた。

<比較例1>
From the results in Table 1, when comparing the quality of raw water (polluted water) and treated water for each treatment step, the absorbance decreased from 0.246 to 0.083 at the biological reaction tower outlet, and became 0.002 for the catalytic reaction tower treated water to become transparent. I was able to decolorize
The TOC value decreased to 151 mg / L at the biological reaction tower outlet to 87.6 mg / L, and to 7.4 mg / L for the catalytic reaction tower treated water.
The TN value is 27.9 mg / L for raw water, but it is 15.7 mg / L at the outlet of the biological reaction tower and 0.8 mg / L for the catalytic reaction tower treated water.
The residual chlorine concentration was not detected in the raw water, but it was detected at 1,430 mg / L after the addition of electrolytic functional water to the biological activated carbon treated water. However, it falls below the detection limit (ND) at the outlet of the catalytic reaction tower. It turns out that the residual chlorine removal effect of the used catalyst is excellent.
Looking at the phosphorus concentration, raw water shows a value of 9.7 mg / L, but the biological reaction tower outlet is 8.2 mg / L, and the catalytic reaction tower treated water is down to 0.61 mg / L.
As these results show, it was confirmed that the colored polluted water can be decolorized and purified by the treatment method of the present invention.

<Comparative Example 1>

実施例1で行った生物反応塔への空気の吹き込みを行わない条件とし、他は実施例1とまったく同様な条件で連続実験を行った。ほぼ定常状態になった時点での各処理工程処理水の水質を表2に示す。
A continuous experiment was conducted under the same conditions as in Example 1 except that air was not blown into the biological reaction tower in Example 1. Table 2 shows the water quality of each treatment process water when it is almost in a steady state.

表2の結果から、原水(汚濁水)と各処理工程毎の処理水の水質を比較すると、吸光度は0.246が生物反応塔出口で0.167に低下し、触媒反応塔処理水では0.012となった。
TOCの値は151mg/Lが生物反応塔出口で133 mg/L、触媒反応塔処理水では24 mg/Lの値を示した。
T-Nの値では原水の27.9 mg/Lに対し、生物反応塔の出口で22.1 mg/L、触媒反応塔処理水で1.3 mg/Lの値を示した。
リン濃度をみると、原水が9.7mg/Lの値を示しているが、生物反応塔出口で9.6 mg/L、触媒反応塔処理水は0.63
mg/Lまで低下している。
残留塩素濃度をみると、生物活性炭処理水に電解機能水添加後で 1,440mg/L 検出され触媒反応塔出口では検出限界以下にまで低下した。実施例と比較すると、実施例では吸光度の低下率で99%、TOC、 T-N、 P の除去率ではそれぞれ95%、97%、 94%といずれも90%以上の除去性能を示している。一方、本比較例では生物反応塔への空気吹き込みを行わないで行ったものであるが、生物反応塔でのTOCの除去効果が低下し、結果的には触媒処理水までのTOCの除去率が実施例の95%から84%にまで低下した。

<比較例2>
From the results in Table 2, comparing the quality of raw water (polluted water) and treated water for each treatment step, the absorbance decreased from 0.246 to 0.167 at the biological reaction tower outlet and 0.012 for the catalytic reaction tower treated water.
The TOC value was 151 mg / L at the biological reaction tower outlet, 133 mg / L, and the catalytic reaction tower treated water was 24 mg / L.
The TN value was 22.1 mg / L for raw water, 22.1 mg / L at the outlet of the biological reaction tower, and 1.3 mg / L for the catalytic reaction tower treated water.
Looking at the phosphorus concentration, the raw water showed a value of 9.7 mg / L, but the biological reaction tower outlet was 9.6 mg / L, and the catalytic reaction tower treated water was 0.63.
Reduced to mg / L.
As for residual chlorine concentration, 1,440 mg / L was detected after the addition of electrolyzed functional water to biological activated carbon-treated water, and it dropped below the detection limit at the catalytic reaction tower outlet. Compared to the examples, the examples show 99% or higher removal performance of the absorbance decrease rate, and TOC, TN, and P removal rates of 95%, 97%, and 94%, respectively. On the other hand, in this comparative example, the air was not blown into the biological reaction tower, but the TOC removal effect in the biological reaction tower was reduced, resulting in the removal rate of TOC up to the catalyst-treated water. Decreased from 95% of the examples to 84%.

<Comparative example 2>

実施例1で行った生物反応塔への充填剤を粒状炭に変えて平均粒径3mmのガラスビーズを充填し、他は実施例1とまったく同様な条件で実験した。各処理工程毎の水質分析結果を表3に示す。
Experiments were performed under exactly the same conditions as in Example 1 except that the filler in the biological reaction tower used in Example 1 was changed to granular charcoal and glass beads having an average particle diameter of 3 mm were packed. Table 3 shows the results of water quality analysis for each treatment process.

表3の結果から、原水(汚濁水)と各処理工程毎の処理水の水質を比較すると、吸光度は0.246がガラスビーズ出口で0.182に低下し、触媒反応塔処理水では0.022となり透明にまで脱色できた
TOCの値は151 mg/Lがガラスビーズ出口で147 mg/L、触媒反応塔処理水では52 mg/Lまで低下した。
T-Nの値では原水が27.9mg/L となっているが、ガラスビーズ出口で26.8 mg/Lに、触媒反応塔処理水では 2.1 mg/L に低下している。
残留塩素濃度をみると、原水中には検出されないが、ガラスビーズ充填塔に空気吹き込みをした処理水に電解機能水添加後では 1,450 mg/L検出された。しかし、触媒反応塔出口では検出限界以下にまで低下している。使用した触媒の残留塩素除去効果が優れていることが分かる。
リン濃度をみると、原水が9.7mg/Lの値を示しているが、触媒反応塔処理水は0.64 mg/Lまで低下している。

<比較例3>
From the results in Table 3, comparing the quality of raw water (polluted water) and treated water for each treatment step, the absorbance decreased from 0.246 to 0.182 at the glass bead outlet, and became 0.022 in the catalytic reaction tower treated water, and it was decolorized to transparency. did it
The TOC value decreased to 151 mg / L at the outlet of glass beads and 147 mg / L at the outlet of the glass beads, and to 52 mg / L at the water treated in the catalytic reaction tower.
The TN value is 27.9 mg / L for raw water, but it is 26.8 mg / L at the glass bead outlet and 2.1 mg / L for the catalytic reaction tower treated water.
The residual chlorine concentration was not detected in the raw water, but it was detected at 1,450 mg / L after the electrolytic functional water was added to the treated water blown into the glass bead packed tower. However, it falls below the detection limit at the catalyst reaction tower outlet. It turns out that the residual chlorine removal effect of the used catalyst is excellent.
Looking at the phosphorus concentration, the raw water shows a value of 9.7 mg / L, but the catalytic reaction tower treated water has dropped to 0.64 mg / L.

<Comparative Example 3>

実施1で行った生物反応塔を設置しない条件とし、汚濁原水に直接電解機能水を添加する方法で実験した。なお、電解機能水の製造条件は実施例とまったく同じ条件として行った。各処理工程毎の水質分析結果を表4に示す。
Experiments were carried out by adding the electrolyzed functional water directly to the polluted raw water under the condition that the biological reaction tower was not installed in the first embodiment. The production conditions for the electrolyzed functional water were the same as in the examples. Table 4 shows the water quality analysis results for each treatment process.

表4の結果から、原水(汚濁水)と各処理工程毎の処理水の水質を比較すると、吸光度は0.246が、触媒反応塔処理水では0.049となり透明にまで脱色できた。
TOCの値は151 mg/Lが機能水添加後で149 mg/Lまで低下し、触媒反応塔処理水では64mg/Lまで低下した。
T-Nの値では原水が 27.9 mg/L となっているが、触媒反応塔処理水では2.2 mg/Lに低下している。
残留塩素濃度をみると、原水中には検出されないが、電解機能水添加後では1,450 mg/L 検出された。しかし、触媒反応塔出口では検出限界以下にまで低下している。使用した触媒の残留塩素除去効果が優れていることが分かる。
リン濃度をみると、原水が9.7mg/Lの値を示しているが、触媒反応塔処理水は0.64mg/Lまで低下している。
From the results in Table 4, comparing the quality of raw water (contaminated water) and the quality of treated water in each treatment step, the absorbance was 0.246 and 0.049 was obtained in the catalytic reaction tower treated water, and it was possible to decolorize to transparency.
The value of TOC decreased to 151 mg / L after addition of functional water to 151 mg / L, and to 64 mg / L for the catalytic reaction tower treated water.
The TN value is 27.9 mg / L for raw water, but it is lowered to 2.2 mg / L for water treated in the catalytic reaction tower.
Residual chlorine concentration was not detected in raw water, but 1,450 mg / L was detected after the addition of electrolytic water. However, it falls below the detection limit at the catalyst reaction tower outlet. It turns out that the residual chlorine removal effect of the used catalyst is excellent.
Looking at the phosphorus concentration, the raw water shows a value of 9.7 mg / L, but the catalytic reaction tower treated water has dropped to 0.64 mg / L.

本発明は着色汚濁水の脱色浄化処理法として、海苔加工生産排水の脱色浄化処理を目的として開発したものであるが、本分野に限定することなく、有機汚濁水を排出している排水処理法として幅広く利用できる。具体的利用分野としては、畜産排水の処理、染色排水の処理、化学工業における有機着色物質含有排水の処理等に適用できる。
The present invention has been developed for the purpose of decolorizing and purifying colored waste water as a decolorizing and purifying treatment method for laver processing production wastewater, but is not limited to this field, and waste water treatment method that discharges organic polluted water. Can be used widely. As specific application fields, it can be applied to the treatment of livestock wastewater, the treatment of dyeing wastewater, the treatment of wastewater containing organic coloring substances in the chemical industry, and the like.

1.着色汚濁水
2.空気
3.単段式粒状炭(竹炭)充填生物反応塔
4.排ガス
5.電解質水溶液
6.陽極
7.陰極
8.上向流式電解反応セル
9.電解機能水
10. 化学的酸化分解反応槽
11. 金属担持竹炭触媒反応塔
12.処理水
13. 多段式粒状炭(竹炭)充填反応塔
1. 1. Colored contaminated water Air 3. 3. Single-stage granular charcoal (bamboo charcoal) packed biological reaction tower Exhaust gas 5. 5. Electrolyte aqueous solution Anode 7. Cathode 8. 8. Upflow type electrolytic reaction cell Electrolytic functional water
10. Chemical oxidative decomposition reactor
11. Metal-supported bamboo charcoal catalytic reactor
12. Treated water
13. Multistage granular charcoal (bamboo charcoal) packed reaction tower

Claims (6)

有機物を含む汚濁排水を生物化学的に処理したのち酸化活性物質を含む水を添加処理し、処理後の水を触媒充填層に通液処理することを特徴とする汚濁排水の処理方法。
A method for treating polluted wastewater, which comprises biochemically treating polluted wastewater containing organic matter, adding water containing an oxidizing active substance, and passing the treated water through a catalyst packed bed.
生物化学的処理が細孔容積40〜85容量%の炭素材の細孔部表面に微生物の皮膜を形成させた粒状物を充填した反応塔に酸素を含む気体を吹き込み、気液混合状態で有機物を含む着色汚濁排水を通液処理することを特徴とする請求項1項記載の汚濁水の浄化処理方法。
A gas containing oxygen is blown into a reaction tower filled with a particulate material in which a microbial film is formed on the surface of the pores of a carbon material having a pore volume of 40 to 85% by volume. 2. The method for purifying polluted water according to claim 1, wherein a colored polluted wastewater containing water is passed through.
酸化活性物質を含む水が酸化イリジウムを含む電極を陽極に用いた上向流式電解反応セルに、塩化物イオンを含む水を通液し、電流密度100〜3,000A/m2の条件で電解した処理水(電解機能水)であることを特徴とする請求項1ならびに請求項2記載の汚濁水の浄化処理方法。
Water containing an oxidative active substance is passed through an up-flow type electrolytic reaction cell using an electrode containing iridium oxide as an anode, and water containing chloride ions is passed through and electrolyzed under a current density of 100 to 3,000 A / m 2. 3. The method for purifying polluted water according to claim 1 or 2, wherein the treated water (electrolyzed functional water) is treated water.
触媒充填塔に充填する触媒が炭素材の細孔容積が40〜85容量%の多孔質構造の粒状炭素材の細孔部表面に鉄酸化物を 0.2〜10重量%の条件で粒状炭素材に担持させたことを特徴とする請求項1ならびに請求項2及び請求項3記載の汚濁水の浄化処理方法。
The catalyst packed in the catalyst packed tower is converted to a granular carbon material under the condition of 0.2 to 10% by weight of iron oxide on the pore surface of a granular carbon material having a porous structure with a pore volume of the carbon material of 40 to 85% by volume. 4. The method for purifying polluted water according to claim 1, 2 and 3 characterized by being carried.
請求項1、請求項2、請求項3及び請求項4記載の有機物を含む汚濁排水の処理装置おいて、炭素材の細孔部表面に微生物の皮膜を形成させた粒状炭を充填した生物反応塔、酸化活性物質を生成するための酸化イリジウムを含む電極を陽極に用いた上向流式電解反応セル及び金属担持竹炭触媒反応塔を備えたことを特徴とした汚濁水の浄化装置。
In the apparatus for treating polluted wastewater containing organic matter according to claim 1, claim 2, claim 3 and claim 4, a biological reaction filled with granular charcoal having a microbial film formed on the surface of the pores of the carbon material An apparatus for purifying polluted water, comprising a tower, an upward flow type electrolytic reaction cell using an electrode containing iridium oxide for generating an oxidation active substance as an anode, and a metal-supported bamboo charcoal catalyst reaction tower.
生物化学処理を行う粒状炭充填生物反応塔が複数に区画された反応塔構造であることを特徴とする請求項5記載の汚濁水の浄化装置。
6. The apparatus for purifying polluted water according to claim 5, wherein the biological reaction tower filled with granular charcoal for biochemical treatment has a reaction tower structure divided into a plurality of sections.
JP2012070627A 2011-03-29 2012-03-27 Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater Pending JP2012213764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070627A JP2012213764A (en) 2011-03-29 2012-03-27 Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011072444 2011-03-29
JP2011072444 2011-03-29
JP2012070627A JP2012213764A (en) 2011-03-29 2012-03-27 Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater

Publications (1)

Publication Number Publication Date
JP2012213764A true JP2012213764A (en) 2012-11-08

Family

ID=47267106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070627A Pending JP2012213764A (en) 2011-03-29 2012-03-27 Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater

Country Status (1)

Country Link
JP (1) JP2012213764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964599A (en) * 2013-01-29 2014-08-06 绍兴深水环保设备有限公司 Recycling method for iron oxide dye wastewater treatment sludge
CN105016431A (en) * 2015-07-23 2015-11-04 王麒钧 Method and apparatus for removal and recovering of heavy metal ions from wastewater
CN106064866A (en) * 2016-06-14 2016-11-02 中国电建集团贵阳勘测设计研究院有限公司 A kind of process technique of dyeing waste water
CN108996821A (en) * 2018-07-26 2018-12-14 广东中微环保生物科技有限公司 A kind of processing system and processing method of landfill leachate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964599A (en) * 2013-01-29 2014-08-06 绍兴深水环保设备有限公司 Recycling method for iron oxide dye wastewater treatment sludge
CN105016431A (en) * 2015-07-23 2015-11-04 王麒钧 Method and apparatus for removal and recovering of heavy metal ions from wastewater
CN106064866A (en) * 2016-06-14 2016-11-02 中国电建集团贵阳勘测设计研究院有限公司 A kind of process technique of dyeing waste water
CN108996821A (en) * 2018-07-26 2018-12-14 广东中微环保生物科技有限公司 A kind of processing system and processing method of landfill leachate
CN108996821B (en) * 2018-07-26 2021-03-02 广东中微环保生物科技有限公司 Treatment system and treatment method for landfill leachate

Similar Documents

Publication Publication Date Title
Martínez-Huitle et al. A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode
Mook et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review
CN104016547B (en) A kind of coking waste water deep treatment zero-emission process
CN102145967B (en) Device and method for processing restaurant wastewater
US20130264197A1 (en) Nanocatalytic electrolysis and flocculation apparatus
Venu et al. Treatment of stabilized landfill leachate using peroxicoagulation process
CN102838259B (en) Depth treatment method and system of wastewater in industrial park
CN108358363B (en) Advanced treatment method of high-salinity organic sewage
Akyol et al. Treatment of hydroquinone by photochemical oxidation and electrocoagulation combined process
CN104891733A (en) Treatment method of landfill leachate
JP2012091162A (en) Method for purifying organic colored waste water containing suspended substance
WO2011158195A1 (en) Wastewater treatment comprising electrodissolution, flocculation and oxidation
JP2012213764A (en) Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater
Ahmad et al. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: a review
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
CN111423066A (en) Sewage treatment system
Brillas et al. Hybrid and sequential chemical and electrochemical processes for water decontamination
CN106145551A (en) It is applicable to the processing method of high-concentration chemical industry sewage
CN214528493U (en) Hospital wastewater treatment system
CN105130131A (en) Treatment system and method of landfill refuse leachate
CN113233701A (en) Reclaimed water purification treatment method for reusing in landscape water body
CN101973661B (en) Treatment method of processing wastewater of Chinese galls
CN112777870A (en) Hospital wastewater treatment method and system
Lade Introduction of water remediation processes
CN112794529A (en) Combined sewage treatment process